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Abstract: The increasing wildfire activity and rapid population growth in the wildland-urban inter- 18 

face (WUI) have made more Americans exposed to wildfire risk. WUI mapping plays a significant 19 

role in wildfire management. This study used the Microsoft building footprint (MBF) and the Mon- 20 

tana address/structure framework datasets to map the WUI in Montana. A systematic comparison 21 

of the following three types of WUI was performed: the WUI maps derived from the Montana ad- 22 

dress/structure framework dataset (WUI-P), the WUI maps derived from the MBF dataset (WUI-S), 23 

and the Radeloff WUI map derived from census data (WUI-Z). The results show that WUI-S and 24 

WUI-P are greater than WUI-Z in WUI area. Moreover, WUI-S has more WUI area than WUI-P due 25 

to the inclusion of all structures rather than just address points. Spatial analysis revealed clusters of 26 

high percent WUI area in western Montana and low percent WUI area in eastern Montana which is 27 

likely related to a combination of factors including topography and population density. A Web GIS 28 

application was also developed to facilitate the dissemination of the resulting WUI maps and allow 29 

visual comparison between the three WUI types. This study demonstrated that the MBF can be a 30 

useful resource for mapping the WUI and could be used in place of a national address point dataset.   31 

Keywords: Wildland-urban interface; structure point data; address point data; Web GIS 32 

 33 

1. Introduction 34 

The past few years have witnessed the rapid increase of the total wildland-urban 35 

interface (WUI) area [1,2] and the number of homes located within the WUI in the U.S. 36 

[1,3]. Additionally, there has been a rise in wildfire suppression and mitigation costs [3]. 37 

The WUI grew from 7.2% of the total land area in 1990 to 9.5% in 2010, adding 189,000 38 

km2 of land classified as WUI and 12.7 million housing units in the WUI in the U.S. [1]. 39 

According to a recent study, the number of residential homes within the WUI in the U.S. 40 

has reached 49 million [3]. Theobald and Romme [2] have also projected that the WUI in 41 

the U.S. will grow by more than 10% by 2030 as more people move to rural and suburban 42 

communities. The WUI is defined as the area where a built environment meets the 43 

wildland [4]. In the Federal Register, Glickman and Babbitt [4] define the WUI as a popu- 44 

lated area in which structures are adjacent to or intermingle with wildland vegetation. 45 

There are three main WUI categories: interface, intermix, and occluded WUI [4]. Interface 46 
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WUI is where structures and wildland vegetation touch, separated by a clearly defined 47 

boundary [4]. An expanded version of this definition states that interface WUI is where 48 

housing units are within 2.4 km of a 5 km2 or larger patch of vegetation with more than 49 

75% wildland cover [1,5]. The structures in an intermix WUI occur within unbroken 50 

wildland vegetation but must have a minimum housing density of one house per 40 acres 51 

(6.17 houses per km2) [4]. This definition has been refined to state that wildland vegetation 52 

must cover at least 50% of the area where the structures occur in an intermix WUI area 53 

[1,5]. Occluded WUI exists where there is an area of wildland fuels surrounded by urban 54 

structures (e.g., the green spaces within an urban area) [4]. Of these three types of WUI, 55 

interface and intermix WUI have been widely used in WUI mapping research [1,5-7]. The 56 

WUI definition in the Federal Register focuses specifically on housing units as defined in 57 

the U.S. Census housing density data when determining structure density [8,9]. While 58 

there is extensive use of the Federal Register WUI definition in WUI mapping, some re- 59 

searchers use other factors to define the WUI. For example, researchers in Canada ex- 60 

panded the WUI definition to include two other WUI types: WUI-Ind (industrial) and 61 

WUI-Inf (infrastructural) [10]. The inclusion of industrial buildings and other structures 62 

when defining the WUI may be necessary due to the possible impacts of wildfire on these 63 

assets during and after the incident [10]. Similarly, the inclusion of infrastructure in the 64 

WUI definition may also be important as these structures are related to evacuation and 65 

fire protection [10]. Infrastructure networks (e.g., roads, railroads, and powerlines) could 66 

also be sources of wildfire ignition [10-12]. Using industrial and infrastructural assets to 67 

determine where the WUI is located expands the area significantly, mainly where infra- 68 

structure-related structures are present [10].  69 

Over the last several decades, there has been an increasing trend of significant wild- 70 

fire occurrence in the western U.S. [13,14] as well as an increase in the area burned by 71 

wildfire annually [9,14,15]. As climate change has progressed in recent years, there has 72 

been a decrease in precipitation during fire seasons [16] along with an increase in wildland 73 

fuel dryness [17]. As fuel dryness increases, wildfire risk [18] and the total area burned 74 

will likely increase as well [3,16]. Wildfire risk can be defined as the combination of three 75 

factors: the probability of ignition, the intensity of the fire, and the impacts of the fire on 76 

the landscape [19]. One aspect of wildfire risk is the loss of lives and casualties in wildfires. 77 

Between 2014 and 2018, 57 wildfires resulted in casualties, the worst being the Camp Fire 78 

in Paradise, California in 2018 with 85 fatalities [20]. Due to drier fuels [16,17], high inci- 79 

dence of anthropogenic wildfire ignition [21], and the expanding WUI, the wildfire risk in 80 

the WUI is likely to increase [1]. Another aspect of wildfire risk within WUI communities 81 

is structure loss. Multiple recent studies examined the factors that determine the likeli- 82 

hood of structure loss within WUI communities [22-24]. For example, in a study con- 83 

ducted by Syphard, et al. [25], the main focus is on how the spatial grouping of structures 84 

and other factors such as slope, aspect, and elevation relate to structure loss in wildfires. 85 

Other research considers different factors such as building materials and construction, risk 86 

mitigation practices like defensible space, and regional variation that may impact struc- 87 

ture loss [24]. As the WUI expands, significantly more structures are at risk of damage or 88 

destruction by wildfire [9,26]. The increasing risk of structure loss related to wildfire 89 

within the WUI tends to drive research as well [24,25,27-29]. Understanding where the 90 

WUI exists is essential when combined with wildfire risk data to formulate decisions re- 91 

lated to the management and mitigation of wildfire [30]. A better understanding of wild- 92 

fire risk can facilitate decision-making in wildfire policy, fuel management, and commu- 93 

nity planning in the WUI [31]. The analysis of wildfire risk is crucial in wildfire manage- 94 

ment with more frequent, destructive wildfires occurring in the American west [13,23]. 95 

For example, wildfire risk information can be used to establish defensible space regula- 96 

tions to reduce structure loss in wildfires and distribute wildfire management resources.   97 

Wildfire management (e.g., wildfire prevention, suppression, and mitigation) has be- 98 

come more challenging as the WUI expands [1], the anthropogenic wildfires in the U.S. 99 

become predominant [32,33], and wildfires in the WUI are expected to increase [28]. As a 100 
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result, WUI mapping becomes crucial for decision-making in wildfire management. In the 101 

early 2000s, WUI research received attention as wildfire and structure loss increased sig- 102 

nificantly [6]. However, even with increased attention to the WUI problem, a national 103 

WUI map did not exist [6]. This led to the development of a national WUI dataset based 104 

on census block data and the United States Geological Survey (USGS) National Land 105 

Cover Database (NLCD) [6]. Since then many studies have been conducted to develop or 106 

refine different methods to map the WUI within the U.S. [2,8,34-36] and internationally 107 

[10,37-40]. Note that different types of data can be used in different WUI mapping meth- 108 

ods. For example, Radeloff et al. [36] produced their WUI map at a national scale using 109 

the structure density in each census block derived from the US Census housing unit 110 

counts and vegetative cover data from the USGS NLCD. One limitation of the census- 111 

block-based methods is related to the distribution of structures within a census block. For 112 

example, many structures could be concentrated in a small area within a large census 113 

block so that the structure density meets the criteria for inclusion in the WUI classification. 114 

This allows for the entire census block to be classified as WUI even though a large portion 115 

of the area does not meet the WUI criteria. This could lead to less precise WUI and possible 116 

bias due to the uneven spatial distribution of structures within a census block [34,41]. An- 117 

other limitation is the decreased applicability to local and regional scales when it is crucial 118 

to understand where structures are located during and before a wildfire [34,41].  119 

Another popular way to map the WUI is to use the fine-grained structure location 120 

data instead of the housing unit count data from the U.S. Census [27,34,35]. Using exact 121 

structure locations to map the WUI allows for a higher level of precision [10,34,35]. For 122 

example, Johnston and Flannigan [10] utilized physical structure locations from an open 123 

structure database named CanVec+ in Canada to map the WUI. Additionally, Bar- 124 

Massada et al. [34] used the structure locations derived from government agency data and 125 

digitized from satellite and aerial imagery to map the WUI. Moreover, we can also com- 126 

pile structure location data from other sources such as parcel centroids [35] or address 127 

point data [42]. Address point data only includes structures with known addresses, ex- 128 

cluding some structures from the mapping process [42]. In the U.S., the Department of 129 

Transportation is working with local and state governments to aggregate state, local, and 130 

tribal datasets into one cohesive national address point database [42]. However, a com- 131 

plete national address point dataset is not currently available because some states have 132 

address point datasets that exist but are not completely within the public domain [42]. 133 

Thus, it is difficult to use address point data to produce a national WUI map. A relatively 134 

recently developed dataset that may be useful as an alternative to address point data is 135 

the Microsoft Building Footprint (MBF) dataset [43]. This polygon dataset includes all the 136 

structure footprints derived from a machine learning algorithm in the U.S. [43]. The MBF 137 

dataset presents an opportunity to derive more accurate WUI maps based on structure 138 

locations. The MBF dataset has been used in population distribution mapping [44], wild- 139 

fire-related structure loss [27], flood exposure [45], and WUI mapping [46-48]. The release 140 

of the MBF dataset makes it possible to produce a structure-based WUI map for the whole 141 

U.S. The type of structure location dataset (address point or physical structure location) 142 

could also produce variations in the WUI map. Although different types of structure lo- 143 

cation data exist and can be used for WUI mapping, little research has been done to com- 144 

pare these datasets in WUI mapping. Since address point data and the MBF dataset are 145 

two popular datasets used in WUI mapping, we choose to examine the differences of these 146 

two types of structure location data in WUI mapping in this study.  147 

This study focuses on using two different structure location datasets to improve WUI 148 

mapping in Montana. The research objectives of this study are to : 1) derive WUI maps 149 

using the MBF and the Montana structure point datasets; 2) compare the following three 150 

types of WUI maps in Montana: the WUI maps derived from the Montana structure point 151 

dataset (WUI-P), the WUI maps derived from the MBF dataset (WUI-S), and the Radeloff 152 

WUI map derived from census data (WUI-Z); 3) analyze the spatial patterns of the derived 153 
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WUI-P and WUI-S at the county level; and 4) develop a Web geographic information sys- 154 

tem (GIS) application to map the three types of WUI. The novelty of this study is as fol- 155 

lows. First, two different structure location datasets are used to map the WUI in Montana. 156 

Second, a systematic comparison of the three types of WUI maps in Montana is provided. 157 

The remainder of this article is organized as follows. Section 2 details the study area and 158 

the data employed in the study. The proposed methods are included in Section 3. The 159 

results are presented in Section 4. The discussion and conclusion are in Sections 5 and 6, 160 

respectively. 161 

2. Study Area 162 

The study area is the state of Montana (Figure 1). Montana is in the northwest portion 163 

of the U.S. The Continental Divide splits Montana into two distinct climate regions, with 164 

a maritime-like climate where cooler summer months with mild winters are common to 165 

the west of the Divide and hotter summers and colder winters associated with a semi-arid 166 

continental climate to the east of the Divide [49]. Precipitation in these two regions also 167 

differs significantly. The western part of the state experiences higher precipitation with 168 

an average of 22-30 inches annually predominantly occurring in winter and spring [50]. 169 

In the eastern plains, the semi-arid climate provides less precipitation with an average of 170 

12-14 inches annually [50]. The total area of the state is 380,831 km2 [51], and it has an 171 

estimated population of 1,068,778 as of July 1, 2019 [52]. Within Montana, the population 172 

in 2010 is more concentrated in the western portion of the state where counties with the 173 

largest population include Flathead, Missoula, Cascade, Lewis and Clark, and Gallatin. 174 

Montana was chosen as the study area due to the rapid WUI expansion in the state, the 175 

high percentage of residents in the WUI, and the availability of a statewide structure/ad- 176 

dress point dataset from the Montana State Library. In Montana, the total area classified 177 

as WUI in 2010 was 5,304 km2, which is only 1.4% of the total area (an increase of 67% 178 

between 1990 and 2010) of the state but contains 62.3% of the state’s population and 63.9% 179 

of the housing units in Montana [51]. 180 
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 182 

Figure 1. The map of the study area 183 

The two main types of data required for WUI mapping are vegetation cover data and 184 

structure location data [34]. Table 1 presents the details on each of the datasets used in this 185 

study. To ensure accurate analysis, all datasets were projected to the North American Da- 186 

tum (NAD) 1983 2011 State Plane Montana coordinate system to match the address point 187 

data obtained from the Montana State Library Geographic Information Services. 188 

Table 1. The datasets used in this study. 189 

Data Data Source Date Format 

Microsoft building footprint data Microsoft 2018 Vector (polygon) 

Montana structure/address Frame-

work 

Montana State Library Geographic In-

formation Services 
2020 Vector (point) 

Vegetation cover data (NLCD) U.S. Geological Survey 2016 Raster 

Montana State Boundary 
Montana State Library Geographic In-

formation Services 
2020 Vector (polygon) 

3. Methods 190 

3.1. Mapping the WUI 191 

The flowchart in Figure 2 outlines the key steps for mapping WUI-P and WUI-S. We 192 

used the WUI mapping method proposed by Bar-Massada et al. [34] to map the WUI in 193 

Montana. This method requires two input datasets: structure location data and vegetation 194 



Fire 2022, 5, x FOR PEER REVIEW 6 of 26 
 

 

cover data [34]. We used Python and the ArcPy library of ArcGIS Pro 2.9 to generate WUI- 195 

P and WUI-S maps. The Python script was executed for two structure location datasets 196 

with different buffer distances. Initially, we used a buffer polygon of the state boundary 197 

to extract the vegetation cover data from NLCD to ensure there is no edge bias near the 198 

Montana state border. We used the data management tools (feature to point function) in 199 

ArcGIS Pro 2.9 to extract the centroids of the building footprint polygons from the MBF 200 

and derived a point dataset. Then we employed the two structure location datasets to 201 

derive the structure/housing density for the study area. The calculation was accomplished 202 

by using a buffer for each pixel in the 30 m NLCD raster. Note that the area and shape of 203 

the WUI will vary with buffer distance and the WUI generated with different buffer dis- 204 

tances can be used for different purposes [34]. Based on the parameters used by Bar- 205 

Massada et al. in a previous study [34], we choose to use buffer distances ranging from 206 

100 m to 1000 m with a 100 m interval so that we can compare the WUI generated with 207 

two different structure location datasets at different buffer distances. This calculation pro- 208 

duces the structure density per km2 at each buffer distance. Then we reclassified the struc- 209 

ture density raster based on the following rule: ’1’ is assigned to the pixels where the 210 

structure density is larger than 6.17 structures/km2, and ‘0’ is assigned to the pixels with a 211 

structure density equal to or smaller than 6.17 structures/km2. This new raster was then 212 

compared to the vegetation cover dataset to determine each pixel’s WUI classification. 213 

Specifically, any pixel with a structure density of larger than 6.17 structures/km2 and a 214 

vegetation cover larger than 50% in the buffer was classified as intermix WUI; a pixel was 215 

classified as interface WUI if the pixel has a structure density above 6.17 structures/km2 216 

and a vegetation cover equal to or smaller than 50% but is within 2.4 km of a 5 km2 or 217 

larger patch of continuous vegetation. After the WUI maps were generated, we used the 218 

ArcGIS Pro Calculate Geometry tool to calculate the area of the WUI and employed the 219 

ArcGIS Pro Aggregate Points tool to derive the number of structures that fall within the 220 

WUI.     221 

 222 
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Figure 2. The flowchart of the WUI mapping procedure 223 

3.2. Map Comparison 224 

We used GIS to compare WUI-P, WUI-S, and WUI-Z. Specifically, the WUI-Z is used 225 

as the validation dataset to derive the confusion matrices [34]. This comparison method 226 

will show how much area each WUI dataset shares and how much area each dataset iden- 227 

tified as WUI or non-WUI as compared to the other. The comparison results can provide 228 

insight into which WUI dataset is more similar to the WUI-Z map. The comparison of the 229 

two datasets will demonstrate how the inclusion of all structures influences the total area 230 

and spatial patterns of the WUI. Figure 3 shows the detailed comparison procedure. We 231 

used the intersect function in ArcGIS Pro to calculate the overlap between the WUI-P, 232 

WUI-S, and WUI-Z layers to accomplish the spatial comparison. The results were aggre- 233 

gated into a matrix detailing the total area of each WUI map shares with another, the total 234 

area that was classified as WUI in one map but not the other, and the total area that both 235 

WUI maps classified as non-WUI. To ensure that only the areas classified as WUI are con- 236 

sidered, all areas classified as non-WUI were ignored when calculating the percent agree- 237 

ment. The map comparison process can determine the agreement between WUI-P, WUI- 238 

S, and WUI-Z. 239 

 240 

Figure 3. The flowchart of the WUI mapping procedure 241 

3.3. Estimating WUI Population 242 

Another factor that could be compared between WUI-P and WUI-S is the percentage 243 

of the population that resides within the WUI. It is straightforward to calculate the popu- 244 

lation in WUI-Z due to the direct use of census blocks in their method [36]. However, it is 245 

more complicated to determine the population within the WUI-P or WUI-S. The shape of 246 

WUI-P or WUI-S is irregular, which makes it difficult to leverage census data to calculate 247 
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WUI population. As a result, we use dasymetric mapping to address this issue. Dasymet- 248 

ric mapping involves the use of secondary data to refine primary data to be used in further 249 

analysis, including estimation of population distribution [53,54]. We used the method pro- 250 

posed by Tapp [53] to calculate the population per address point or structure location 251 

within a census block group. While the use of census block level population could provide 252 

a more precise population estimate, the use of block group population was adopted in this 253 

case. This is because many census blocks that are populated do not contain any structure 254 

points from either structure location dataset. With the population per point calculated, we 255 

employed the “Summarize Within” function in ArcGIS Pro to derive the total population 256 

falling within the WUI. We used Python and ArcPy to automate the calculation process 257 

to generate the results for each WUI polygon to increase efficiency.  258 

3.4. Spatial Analysis of WUI 259 

We employ the Global and Local Moran’s I [55] to study the spatial patterns of the 260 

derived WUI-P and WUI-S at the county level in Montana. Specifically, this analysis fo- 261 

cuses on two variables: the percent area of the county defined as WUI (𝑝𝑎) and the per- 262 

centage of structures or address points within the WUI for each county (𝑝𝑠). The null hy- 263 

pothesis is that the WUI is randomly dispersed at the county level. The results are com- 264 

pared to various geographical aspects of Montana to explain the spatial patterns. The re- 265 

sults of spatial analysis can be utilized by community planners and wildfire managers. 266 

For example, the county-level spatial cluster information can provide insight into where 267 

resources can be most effective in community planning or wildfire management. Moreo- 268 

ver, the results could also be used by county governments to develop their Community 269 

Wildfire Protection Plan (CWPP).  270 

First, we use the Global Moran’s I to determine if spatial autocorrelation exists at the 271 

county level in Montana. This calculation produces a value, I, that falls between -1 and 1. 272 

A value of -1 represents an instance where no neighbors share the same value (perfect 273 

negative autocorrelation), a value of 0 is an instance where little to no spatial autocorrela- 274 

tion has occurred (random occurrence of values), and a value of 1 indicates perfect auto- 275 

correlation (similar values are clustered together) [55]. A z-score and a p-value are also 276 

derived in Global Moran’s I analysis. The p-value is used to determine whether the null 277 

hypothesis can be rejected. Once the Global Moran’s I is derived, the next step is to use 278 

Local Moran’s I [55] to identify the locations of clusters. When applied to a dataset, each 279 

observation is calculated separately to generate a Local Moran’s I statistic. In the case of 280 

this study, each county within Montana represents an observation of the two variables 281 

being tested. Once the Local Moran’s I for an observation is determined, a z-score is cal- 282 

culated. The z-score is used to determine if an observation is surrounded by neighbors 283 

that have similar values or not. If the z-score for an observation has a high positive value, 284 

it is likely to be surrounded by neighbors with similar values; and if the observation has 285 

a large negative z-score, it is likely to be surrounded by dissimilar neighbors [56]. The 286 

values of an observation and its neighbors can be defined as having a high-high (HH), 287 

low-low (LL), low-high (LH), or high-low (HL) relationships [57]. Both HH and LL will 288 

have positive Local Moran’s I values, while LH and HL will have negative Local Moran’s 289 

I values [57]. To determine if the generated values are statistically significant, a pseudo p- 290 

value is calculated [55]. We used Python and ArcPy to perform the spatial analysis. The 291 

outputs are individual feature classes for Local Moran’s I and an HTML report for Global 292 

Moran’s I for each buffer distance, structure location dataset, and variable. 293 

3.5. Web Mapping 294 

A Web GIS application (https://tinyurl.com/2p8rajju) is developed to disseminate the 295 

results of this study. The Web GIS application includes three types of WUI maps: WUI-P, 296 

WUI-S, and WUI-Z. The users of the Web GIS application may include, but are not limited 297 

to researchers, stakeholders, and the public. Specifically, researchers can use the Web GIS 298 

application to compare the WUI maps derived from different methods and data; stake- 299 

holders can employ the Web GIS application to check different WUI maps to facilitate 300 
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their decision-making; and the public can access the WUI maps via the Web GIS applica- 301 

tion to evaluate possible wildfire risk in a specific area. The Web GIS application includes 302 

the search tool that allows the users to zoom in to a specific location to check the WUI 303 

maps. The system architecture of the Web GIS is shown in Figure 4. Within this system 304 

most of the computation will be handled on the server side (i.e., the Web server or the GIS 305 

server). The user can use a web browser (client) to access the Web GIS. To ensure the 306 

results are available to anyone who may need it, the Web GIS application will not require 307 

users to log into the system to access the data. By presenting the data in a Web GIS in this 308 

manner, the data will be accessible to anyone that could use it to supplement any decisions 309 

that they may need to make related to wildfire. 310 

 311 

Figure 4. The system architecture of the Web GIS 312 

The design of the graphical user interface (GUI) of the Web GIS application is shown 313 

in Figure 5. This design was chosen to ensure that the data presented could be easily in- 314 

terpreted and accessed. To allow users to perform direct comparisons, these WUI maps 315 

are arranged as three separate map windows placed in a row. We use a dashboard style 316 

web application in ArcGIS Online [58] to make sure that each of the three maps could be 317 

presented to allow easy comparison. This style of Web GIS also allows more data to be 318 

easily accessed, through the inclusion of graphs, charts, or tables as well as descriptive 319 

text which can also provide links to external sources. Our Web GIS application also has a 320 

search tool, which allows the user to locate points of interest and determine how the theme 321 

of the Web GIS applies at that location. 322 



Fire 2022, 5, x FOR PEER REVIEW 10 of 26 
 

 

 323 

Figure 5. The design of the Graphical User Interface (GUI) for the Web GIS application 324 

We used ArcGIS Online to implement the Web GIS application. When setting up a 325 

Web GIS, it is important to consider how to optimize the system. Due to the large size of 326 

the WUI maps, we used map tiling to improve system performance. Map tiling is a prac- 327 

tice where a series of tiles are generated to represent the feature that will be displayed and 328 

then cached on the web server which improves client-side performance as well as usability 329 

and scalability [59]. The specific type of map tile used for this Web GIS is vector tiles as 330 

opposed to raster tiles. We used ArcGIS Pro to generate the tiles and upload them to 331 

ArcGIS Online. While vector tiles can improve the performance of a Web GIS, they also 332 

have some limitations. For instance, unlike a non-tiled vector feature class layer, a vector 333 

tile layer has limited intractability. Vector tiles in ArcGIS Online do not currently have the 334 

option to enable pop-up boxes when clicked. This limitation is not of concern for this study 335 

as the Web GIS is only meant to be used as a visual comparison tool for different WUI 336 

maps. Another limitation is that we cannot directly add a legend for a vector tile layer in 337 

ArcGIS Online. In order to overcome this limitation, the WUI-Z layer was not converted 338 

to a vector tile layer and the legend was based on this layer. Thus, the symbology of the 339 

WUI-S and WUI-P layers was set to match that of the WUI-Z layer. 340 

4. Results 341 

4.1. WUI Maps 342 

The results include ten WUI-P layers and ten WUI-S layers. Each of the ten maps 343 

represent one of the WUI maps generated with a buffer distance ranging from 100 m to 344 

1000 m (with a 100 m interval). The total areas of interface and intermix WUI for WUI-P 345 

and WUI-S are shown in Table 2. The results show that the area of intermix WUI is greater 346 

than that of the interface WUI at all buffer distances in both WUI-P and WUI-S. For each 347 

structure location dataset, the WUI area initially starts small, increases, and then decreases 348 
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as the buffer distance increases. At the 100 m buffer distance, the total WUI for both WUI- 349 

P and WUI-S is below 10,000 km2, and the difference is within 2,000 km2. However, as the 350 

buffer distance increases, the gap in area widens with WUI-S consistently being more than 351 

3,000 km2 greater in area, peaking at nearly 10,000 km2 more than WUI-P at 500 m and 600 352 

m buffer distances. The total WUI in WUI-P peaks at 12,073.90 km2 at 200 m buffer dis- 353 

tance. The largest area for WUI-S is 19878.45 km2 at a buffer distance of 500 m. The larger 354 

area defined as WUI in WUI-S is most likely due to the greater number of structures in- 355 

cluded as opposed to single addresses, especially in rural areas. 356 

Table 2. The area of different types of WUI in WUI-P and WUI-S (unit: km2) 357 

Buffer Distance (m) 
Intermix 

WUI-P  

Interface 

WUI-P  

WUI-P 

 

Intermix 

WUI-S  

Interface 

WUI-S  

WUI-S 

 

100 3,403.18 1,552.80 4,955.98 4,201.29 1,981.58 6,182.88 

200 8,686.18 3,387.73 12,073.90 10,590.12 4,434.30 15,024.43 

300 7,777.51 3,172.98 10,950.48 11,904.26 5,448.97 17,353.23 

400 6,139.58 2,508.00 8,647.58 11,151.68 5,584.64 16,736.32 

500 7,139.12 2,768.52 9,907.64 13,259.49 6,618.96 19,878.45 

600 7,193.79 2,750.59 9,944.38 13,031.34 6,603.06 19,634.40 

700 6,923.42 2,655.90 9,579.32 11,429.46 5,842.45 17,271.91 

800 7,018.06 2,658.73 9,676.79 10,751.28 5,365.80 16,117.08 

900 7,286.63 2,728.69 10,015.32 10,526.75 5,191.54 15,718.29 

1000 7,338.08 2,745.20 10,083.28 10,090.48 4,854.59 14,945.07 

 358 

Another important aspect to examine is how many structures fall within the WUI. 359 

The overall total number of structures within the WUI-S is the highest at the 100 m buffer 360 

and decreases as the buffer distances increase (Table 3). The intermix WUI in WUI-S con- 361 

tains more structures than that in WUI-P at each buffer distance. The number of structures 362 

within intermix WUI-P at each buffer distance behaves somewhat differently than inter- 363 

face WUI-P and both intermix and interface WUI-S. The main difference is while the total 364 

number of structures starts off high (193,250 structures within intermix WUI-P at 100 m), 365 

the number of WUI-P intermix structures decreases to a minimum of 164,343 structures at 366 

400 m, which then increases to 178,112 WUI-P intermix structures at 1000 m with some 367 

slight fluctuation as the buffer distance increases. 368 

Table 3. The number of Structures within WUI-P and WUI-S 369 

Buffer Distance (m) 
Intermix 

WUI-P  

Interface 

WUI-P  

WUI-P 

 

Intermix 

WUI-S  

Interface 

WUI-S  

WUI-S 

 

100 193,205 333,031 526,236 293,055 348,807 641,862 

200 194,536 330,912 525,448 286,643 353,281 639,924 

300 178,304 320,778 499,082 270,657 348,779 619,436 

400 164,343 309,183 473,526 251,476 338,938 590,414 

500 169,876 302,770 472,646 250,686 332,990 583,676 

600 169,342 297,328 466,670 239,243 323,569 562,812 

700 168,044 291,569 459,613 222,348 310,722 533,070 

800 172,147 283,491 455,638 215,752 298,227 513,979 

900 175,652 278,220 453,872 212,330 290,240 502,570 
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1000 178,112 272,701 450,813 209,434 281,788 491,222 

 370 

While the total number of structures within the intermix WUI differ greatly between 371 

WUI-P and WUI-S, the difference in the total number of structures within the interface 372 

WUI is much smaller. With the difference within the intermix WUI ranging between about 373 

31,000 at 1000 m to approximately 100,000 at 100 m, the difference between the total num- 374 

ber of structures within interface WUI-P and WUI-S ranges from just over 9,000 at 1000 m 375 

to a maximum of approximately 30,000 at 500 m. 376 

4.2. Map Comparison 377 

The map comparison procedure generated multiple vector datasets representing the 378 

total area that each WUI shared with other types of WUI. Figure 6 shows how each WUI 379 

relates to other types of WUI at 100 m, 500 m, and 1000 m buffer distances around Billings, 380 

Montana. The differences between WUI-P and WUI-S are minor, with WUI-S appearing 381 

to cover more area. This difference is likely due to the inclusion of all structures instead 382 

of just address points. WUI-P and WUI-S have a larger area of WUI than WUI-Z at each 383 

buffer distance except WUI-P at 100 m. This difference is likely due to two factors: the use 384 

of precise structure location in WUI-P and WUI-S and the use of only housing units when 385 

calculating structure density in each census block in WUI-Z (the WUI-P and WUI-S use 386 

all structure points regardless of their classification). Table A1 includes the area shared 387 

between WUI-P and WUI-S at each buffer distance and along with the area each WUI 388 

shares with WUI-Z. WUI-P and WUI-S may show a more precise WUI location due to 389 

exact structure points used to define WUI classification rather than a blanket housing den- 390 

sity used to determine WUI-Z classification. Dividing the area shared between WUI-P, 391 

WUI-S, or WUI-Z (Table A1) by the combined area classified as WUI in each pairing pro- 392 

duces the percent agreement between each WUI. Table A2 includes the percentage of 393 

WUI-S that agrees with both WUI-P and WUI-Z at each buffer distance. Figure 7 illustrates 394 

the percent agreement at each buffer distance. The percent agreement between WUI-P and 395 

WUI-S varies between 42.60% and 58.57%. The low percent agreement values occur at 396 

buffer distances of 400 m, 500 m, and 600 m, and the high percent agreement values occur 397 

at 200 m and 1000 m. While the percent agreement between WUI-P and WUI-S did not 398 

drop below 40.00%, the percent agreement between WUI-P and WUI-Z was always below 399 

40.00% and the agreement between WUI-S and WUI-Z was never above 30.00%.  400 

    401 

     402 
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 405 

Figure 6. WUI comparison results around Billings, Montana at 100 m, 500 m, and 1000 m buffer 406 
distances 407 

 408 
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 409 

Figure 7. Percent agreement between different types of WUI  410 

4.3. WUI Population Estimates 411 

Performing basic dasymetric population mapping shows that differences between 412 

each buffer level and point dataset are relatively minor (Table 4). Table 4 contains the 413 

results showing the estimated populations in the WUI-P and WUI-S at each buffer level 414 

and WUI-Z within non-WUI, interface WUI, and intermix WUI. In all cases, the point- 415 

based WUI methods encapsulate more of the population within intermix and interface 416 

WUI. However, as the buffer distance increases, the percentage of the total population 417 

within the WUI decreases. Figure 8 illustrates the downward trend of the percent popu- 418 

lation within the WUI-P and WUI-S at each buffer distance as well as the comparison to 419 

the percent population within WUI-Z. 420 

Table 4. The estimated population within the WUI 421 

WUI  

Type 

Buffer 

Distance 

(m) 

Non-WUI 

Population 

(2010) 

Intermix-WUI 

Population 

(2010) 

Interface-WUI 

Population (2010) 

Total Popu-

lation (2010) 

Percent Population 

in WUI (2010) 

WUI-Z NA 373,358 155,175 460,882 989,415 62.26% 

WUI-P 

100 224,904 231,378 533,133 989,415 77.27% 

200 226,189 232,753 530,472 989,415 77.14% 

300 259,835 213,634 515,946 989,415 73.74% 

400 289,931 198,440 501,044 989,415 70.70% 

500 289,560 206,089 493,766 989,415 70.73% 

600 297,209 206,534 485,672 989,415 69.96% 

700 305,439 205,615 478,361 989,415 69.13% 

800 309,969 211,182 468,265 989,415 68.67% 

900 311,752 216,063 461,600 989,415 68.49% 

1000 315,182 219,568 454,665 989,415 68.14% 

WUI-S 

100 222,570 247,920 518,925 989,415 77.50% 

200 224,085 245,385 519,945 989,415 77.35% 

300 237,006 237,926 514,483 989,415 76.05% 
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400 255,618 227,877 505,920 989,415 74.16% 

500 258,819 231,159 499,437 989,415 73.84% 

600 270,419 227,018 491,978 989,415 72.67% 

700 287,015 219,728 482,672 989,415 70.99% 

800 297,194 220,363 471,858 989,415 69.96% 

900 303,113 222,037 464,265 989,415 69.36% 

1000 310,007 223,002 456,406 989,415 68.67% 

 422 

 423 

Figure 8. Percentage of population within each WUI at different buffer distances 424 

4.4. The Spatial Patterns of WUI 425 

Table 5 lists the Global Moran’s I, variance, z-score, and p-value for 𝑝𝑎 and 𝑝𝑠 at each 426 

buffer distance for each structure location dataset. In most cases, the results show the pres- 427 

ence of spatial clustering, and it is statistically significant with p-values below 0.1. In the 428 

case of  𝑝𝑎 for WUI-P, all buffer distances have Global Moran’s I values between 0.36 and 429 

0.414 with z-scores between 4.581 and 5.276. The z-scores of  𝑝𝑠 for WUI-P differ greatly 430 

from those of  𝑝𝑎. The Global Moran’s I values range from 0.109 to 0.137 and have z-scores 431 

that are between 1.588 and 1.881. With these z-scores the p-values are all much less statis- 432 

tically significant. The results for the WUI-P at 100 m, 900 m, and 1000 m buffer distances 433 

are not statistically significant, indicating spatial randomness. The results at all other 434 

buffer distances for  𝑝𝑠 of the WUI-P are statistically significant. For the WUI-S dataset, 435 

the Global Moran’s I values for  𝑝𝑎 in the WUI are all statistically significant (p = 0.05 or 436 

lower). The Global Moran’s I values for different buffer distances range from 0.242 to 0.396 437 

and have z-scores between 3.127 and 4.979. The Global Moran’s I values of  𝑝𝑠 range be- 438 

tween 0.178 and 0.395 with z-scores ranging between 2.436 and 4.895. Nearly all data 439 

points for  𝑝𝑠 of the WUI-S have p-values below 0.01 except the 100 m buffer data point 440 

which is just above 0.01. Overall, both WUI-S and WUI-P show some level of clustering. 441 
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Even with  𝑝𝑠 of the WUI-P showing less statistical significance than the other data points 442 

and variables, it is safe to proceed to perform Local Moran’s I analysis. 443 

Table 5. Global Moran’s I calculation results with variance, z-score, and p-value 444 

WUI 

Type 

Buffer 

Distance 

(m) 

Area (𝒑𝒂) Structures (𝒑𝒔) 

Moran's I Variance z-score p-value Moran's I Variance z-score p-value 

WUI-P 

100 0.360 0.00683 4.581 0.000005 0.109 0.00630 1.602 0.109204 

200 0.374 0.00691 4.722 0.000002 0.115 0.00630 1.675 0.093882 

300 0.379 0.00677 4.833 0.000001 0.126 0.00649 1.785 0.074324 

400 0.393 0.00668 5.027 0.000000 0.124 0.00674 1.733 0.083176 

500 0.411 0.00671 5.243 0.000000 0.137 0.00677 1.880 0.060071 

600 0.414 0.00670 5.276 0.000000 0.136 0.00675 1.881 0.059932 

700 0.408 0.00668 5.213 0.000000 0.126 0.00674 1.753 0.079595 

800 0.405 0.00667 5.182 0.000000 0.120 0.00671 1.691 0.090899 

900 0.403 0.00666 5.161 0.000000 0.116 0.00670 1.642 0.100559 

1000 0.397 0.00665 5.094 0.000000 0.112 0.00669 1.588 0.112349 

WUI-S 

100 0.273 0.00685 3.516 0.004380 0.178 0.00650 2.436 0.014866 

200 0.288 0.00696 3.669 0.000244 0.196 0.00650 2.655 0.007931 

300 0.265 0.00695 3.392 0.000693 0.200 0.00643 2.715 0.006632 

400 0.242 0.00693 3.127 0.001769 0.207 0.00648 2.798 0.005140 

500 0.243 0.00695 3.128 0.001760 0.222 0.00654 2.967 0.003006 

600 0.277 0.00695 3.540 0.000401 0.283 0.00676 3.665 0.000247 

700 0.332 0.00694 4.198 0.000027 0.342 0.00698 4.312 0.000016 

800 0.370 0.00694 4.661 0.000003 0.386 0.00708 4.802 0.000002 

900 0.386 0.00694 4.857 0.000001 0.391 0.00710 4.860 0.000001 

1000 0.396 0.00693 4.979 0.000001 0.395 0.00711 4.895 0.000001 

 445 

The Local Moran’s I analysis generated twenty sets of results for each point dataset: 446 

ten for  𝑝𝑎 and ten for  𝑝𝑠. Figure 9 shows the results at 100 m, 500 m, and 1000 m buffer 447 

distances. These were chosen as examples to show how the clusters differ at small, me- 448 

dium, and large buffer distances. The Global Moran’s I values for  𝑝𝑠 of the WUI-P at the 449 

100 m and 1000 m buffer distances are not statistically significant (p > 0.1). In the resulting 450 

maps, the dark blue areas represent the low-low (LL) clusters where the values of the 451 

percentage of WUI in the county and its surrounding neighbors are lower than average; 452 

and the dark red represent the high-high (HH) clusters where the values are higher than 453 

average for the county and its neighbors. The counties with lighter colors represent spatial 454 

outliers, which have low values (light blue) or high values (light red) surrounded by 455 

neighboring counties with dissimilar values and are considered statistically significant. 456 

For  𝑝𝑎, the differences at each buffer distance are subtle, even between the two datasets. 457 

In each map for  𝑝𝑎, the LL clusters are predominantly in the east and the HH clusters in 458 

the west. Of the counties with larger populations in Montana, only Missoula County is 459 

classified as HH in all  𝑝𝑎 maps with Flathead classified as HH in others. However, some 460 

lower population counties in the western portion of the state are also labelled as HH clus- 461 

ters at various buffer levels, which may indicate that population is not an important factor. 462 
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A possible factor that could be driving the HH clusters is the mountainous terrain in west- 463 

ern Montana along with the LL clusters that occur in the eastern plains. However, several 464 

of the LL cluster counties are those with small populations. In contrast to  𝑝𝑎,  𝑝𝑠 varies 465 

much more as the buffer distance changes. With the smaller buffer distances, more HH 466 

clusters appear in the east with very few clusters (HH and LL) or outliers (HL and LH) in 467 

the west. This could be due to more individual structures being counted as within the 468 

WUI as the 100 m buffer surrounding a single structure will define that area as WUI due 469 

to the structure density threshold being met. As the buffer distance increases, fewer indi- 470 

vidual structure/address points will be included in the WUI. 471 
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Figure 9. The Local Moran's I results for WUI-P and WUI-S at 100 m, 500 m, and 1000 m buffer 473 
distances 474 

4.5. A Web GIS Application for Mapping the WUI 475 
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The developed Web GIS application can be accessed at https://tinyurl.com/2p8rajju. 476 

The GUI for the Web GIS is shown in Figure 10. A simple GUI was used to ensure intuitive 477 

usability, giving the user the ability to compare different WUI maps. The Web GIS appli- 478 

cation includes three linked maps that can show the same location when a user navigates 479 

the map via the zoom or pan tool. All three maps have a search icon that can be used to 480 

find any location. The home icon will return the view to the default view of the entire 481 

state. For the WUI-P and WUI-S maps, a select layer widget is available that allows the 482 

user to show or hide the available layers that include the WUI layers for all buffer dis- 483 

tances as well as the respective structure point data layer that was used to generate the 484 

WUI. The lower three panels contain further information related to the research and 485 

guidelines on how to use the Web GIS application.  486 

 487 

Figure 10. The WUI in Billings, Montana in the Web GIS application 488 

5. Discussion 489 

The first goal of this study was to use two different structure location datasets to 490 

generate WUI maps with multiple buffer distances in Montana. The generated WUI maps 491 

show how the buffer distance affects the total area of interface and intermix WUI. In the 492 

case of the total area, the patterns of WUI-P and WUI-S related to buffer distance pre- 493 

sented in this study are similar to those shown in a previous study done by Bar-Massada 494 

et al. [34] in some ways but differ in relation to at which buffer distance the highest area 495 

of WUI occurs. We found that the intermix WUI has a greater total area as compared to 496 

interface WUI in our study, which aligns with the findings in the previous study [34]. 497 

Another similarity between the two studies is that the interface WUI area in WUI-P peaks 498 

at the same buffer distance of 200 m. However, the intermix WUI in our study peaks at 499 

200 m, while the intermix WUI in all study areas in the previous study conducted by Bar- 500 

Massada et al. [34] peaks at larger buffer distances. This difference could be due to the 501 

larger area of our study site. As for the behavior of WUI-S in this study, the peak area for 502 

both intermix and interface WUI occurs at the 500-m buffer and then decreases. Similar to 503 

the previous study conducted by Bar-Massada et al. [34], the smallest area occurs at the 504 

100-m buffer distance. The trend that appears when examining the number of structures 505 

within the WUI as the buffer distance changes is distinct from the trend in WUI area. The 506 

number of structures that fall within WUI-P and WUI-Z is the greatest at the smallest 507 

buffer and decreases as the buffer size increases. This trend is consistent with the results 508 
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found in a previous study conducted by Bar-Massada et al. [34] and a more recent study 509 

done by Carlson et al. [46]. We employed the buffer distances used by Bar-Massada et al. 510 

in a previous study [34] to compare the two structure location data in WUI mapping. Alt- 511 

hough buffer distance will affect the derived WUI, little research has been conducted to 512 

examine the ideal buffer distance for different types of applications in WUI management. 513 

Future research needs to be conducted to further identify the ideal buffer distance for dif- 514 

ferent WUI applications. For example, we can use historical house loss data and the WUI 515 

generated with different buffer distances to determine the ideal buffer distance for gener- 516 

ating WUI maps that can be used for relevant applications related to house loss.   517 

The results of the map comparison analysis in this study are similar to the findings 518 

in the previous study done by Bar-Massada et al. [34] with regard to WUI-P. The percent 519 

agreement between WUI-P and WUI-Z for Montana is similar to the percent agreement 520 

within the Grand County, Colorado in the previous study conducted by Bar-Massada et 521 

al. [34], which could be related to the similarities in topography as both study areas con- 522 

tain mountainous and flat terrains. The percent agreement between WUI-S and WUI-Z is 523 

lower than that in the previous study [34]. The lower level of agreement between WUI-S 524 

and WUI-Z could be due to the larger number of structures included in the MBF dataset 525 

as compared to the Montana address/structure framework dataset. The increased number 526 

of structures would likely have the greatest impact on the rural areas where outbuildings 527 

are included in the MBF dataset but are not in the address point dataset. It could be pos- 528 

sible to refine the MBF data to reduce the number of structures and include only the struc- 529 

tures that could be residential. One potential way to accomplish this could be to classify 530 

each structure in the MBF dataset by performing a spatial join using the OpenStreetMap 531 

(OSM) land use polygon data to determine which structures could be classified as resi- 532 

dential. Then we can eliminate the non-residential structures and those structures that are 533 

identified as residential but are too small (e.g., sheds or other outbuildings) or too large 534 

(e.g., commercial structures or schools) [44]. The above-mentioned procedure can increase 535 

the agreement between the WUI-S and WUI-Z as the WUI-Z dataset structure density is 536 

based on housing units and does not consider non-residential structures. As the Montana 537 

address framework dataset does not include a standardized classification system for all 538 

addresses, we can use the OSM land use dataset to determine if an address point is in a 539 

residential polygon and remove all non-residential address points. This can increase the 540 

agreement between WUI-P and WUI-Z. Note that OSM data can be inconsistent in terms 541 

of data quality because OSM is a crowdsourcing project [60]. Thus, more research on the 542 

data quality of OSM data should be conducted if we use OSM data to improve WUI map- 543 

ping. Additionally, the population estimation procedure in this study evenly distributes 544 

the population over all structure points within a block group. Thus, trimming each struc- 545 

ture point dataset can also improve the accuracy of the WUI population estimates. It 546 

should be noted that the necessity of the data trimming process depends on the intent and 547 

purpose of the WUI to be generated.  548 

The spatial analysis shows distinct patterns between  𝑝𝑎 and  𝑝𝑠 at smaller buffer 549 

distances, and the patterns differ less at larger buffer distances. The spatial patterns for 550 

the two variables at each buffer distance do not differ significantly between WUI-P and 551 

WUI-S. However, the difference between  𝑝𝑎  and  𝑝𝑠 within the WUI is apparent. For 552 

 𝑝𝑎, the LL clusters are in the eastern portion of Montana, while HH clusters are concen- 553 

trated in the western part of the state. These patterns are possibly linked to the population 554 

distribution within the state. These patterns remain mostly constant as the buffer distance 555 

increases. In contrast, the cluster patterns shown for  𝑝𝑠 are sensitive to the increase in 556 

buffer distance. At smaller buffer distances the HH clusters are predominantly in the east, 557 

likely due to the inclusion of individual structures at those buffer distances. As the buffer 558 

distance increases, fewer HH clusters are identified in the east with more appearing in the 559 

western portion of the state. The greater shift of the clusters could be related to a higher 560 
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sensitivity of  𝑝𝑠 due to the change in the number of structures required to meet the struc- 561 

ture density threshold as buffer distance increases. More research related to the spatial 562 

patterns of WUI could help explain the sensitivity of the cluster patterns. 563 

Lastly, the WUI maps that have been compared in this study may beg the question 564 

of which dataset or buffer distance best represents the location of the WUI. This is a chal- 565 

lenging question as the selection of method or dataset depends on the purpose of the WUI 566 

maps and the availability of relevant data in a study area [7,47]. For example, the home- 567 

owners in Montana may find the WUI-S generated using the MBF with a 100 m buffer 568 

distance to be most useful as the defensible space distance recommended by Montana 569 

DNRC [61] is less than 100 m and a single structure will meet the density threshold for 570 

WUI [46]. The WUI-S (100 m buffer distance) will allow homeowners to easily identify 571 

any structure on their property that may be at risk to wildfire damage. The best buffer 572 

distance for community planners and wildfire managers is 500 m as the number of struc- 573 

tures required to meet the structure density threshold is closest to the structure density in 574 

the WUI definition widely used for wildfire management or community planning pur- 575 

poses [46]. 576 

6. Conclusions 577 

As wildfire risk in populated areas continues to grow, it is essential to have tools 578 

available to aid wildfire-related decision-making. By mapping the WUI, higher-risk areas 579 

can be clearly identified. Understanding what areas are classified as WUI is critical to 580 

keeping people and property safe and reducing wildfire risk through wildfire mitigation, 581 

fuel reduction, public education, and government regulation at various levels. The contri- 582 

butions of this study are as follows. First, this study provides a systematical comparison 583 

of address point data and the MBF dataset in WUI mapping, which can help researchers 584 

and practitioners develop a better understanding of these two types of structure location 585 

data and their pros and cons in WUI mapping. Our results demonstrate that the MBF 586 

dataset works well as a basis for calculating WUI in the same manner as the address point 587 

dataset. While the area calculated as WUI-S and WUI-P is larger and more precise than 588 

WUI-Z, there are still some limitations as it is more computationally intensive and may 589 

require some additional expertise to derive point-based WUI. Second, our results can help 590 

researchers and practitioners develop a better understanding of the parameters used to 591 

map the WUI and their impacts on the potential applications of the WUI maps. Lastly, 592 

this study also provides a Web GIS application that allows different types of users to ac- 593 

cess the WUI maps for different applications. This can help researchers and practitioners 594 

better present and share their WUI maps in different applications. Finally, based on the 595 

results of our state-level study, researchers and practitioners can conduct further research 596 

to assess the variations in the methods and parameters used to map the WUI and the ap- 597 

plicability of the methods at the national scale. 598 
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Appendix A 620 

Table A1. The area shared between different types of WUI (unit: km2) 621 

  WUI-Z 
WUI-P 

100 

WUI-P 

200 

WUI-P 

300 

WUI-P 

400 

WUI-P 

500 

WUI-P 

600 

WUI-P 

700 

WUI-P 

800 

WUI-P 

900 

WUI-P 

1000 

WUI-Z  5,299.1 2,068.0 3,428.6 3,597.0 3,549.3 3,852.8 3,941.0 3,937.2 3,973.3 4,026.5 4,030.2 

WUI-S 

100 
2,075.9 3,870.8 5,025.7 4,100.6 3,392.2 3,426.6 3,308.6 3,161.4 3,089.1 3,063.4 3,009.6 

WUI-S 

200 
3,405.0 4,402.2 9,970.3 8,069.6 6,287.7 6,490.7 6,222.8 5,858.1 5,699.2 5,653.8 5,533.9 

WUI-S 

300 
3,780.7 4,283.7 9,677.9 9,375.1 7,323.3 7,630.1 7,301.9 6,850.3 6,659.8 6,606.7 6,457.7 

WUI-S 

400 
3,859.2 3,983.2 8,668.9 8,783.4 7,628.4 8,048.8 7,701.8 7,226.2 7,019.5 6,952.6 6,789.4 

WUI-S 

500 
4,132.8 4,009.0 8,768.5 8,926.3 7,827.9 8,898.8 8,663.7 8,131.2 7,915.5 7,859.8 7,673.0 

WUI-S 

600 
4,231.0 3,865.0 8,288.9 8,587.1 7,712.7 8,874.5 9,036.7 8,584.8 8,395.5 8,353.9 8,158.6 

WUI-S 

700 
4,241.3 3,648.9 7,588.2 8,008.9 7,428.1 8,594.9 8,887.9 8,744.3 8,656.7 8,647.4 8,454.4 

WUI-S 

800 
4,274.2 3,526.0 7,203.4 7,652.5 7,226.4 8,389.8 8,745.1 8,708.5 8,864.0 8,959.9 8,797.1 

WUI-S 

900 
4,314.0 3,460.5 7,003.6 7,447.0 7,093.6 8,253.5 8,646.8 8,655.4 8,879.9 9,181.0 9,115.4 

WUI-S 

1000 
4,316.6 3,371.8 6,746.0 7,190.7 6,915.8 8,049.6 8,464.8 8,517.8 8,777.2 9,140.2 9,244.9 

 622 

Table A2. Percent agreement between different types of WUI 623 

 WUI-Z 
WUI-S 

100 

WUI-S 

200 

WUI-S 

300 

WUI-S 

400 

WUI-S 

500 

WUI-S 

600 

WUI-S 

700 

WUI-S 

800 

WUI-S 

900 

WUI-S 

1000 

WUI-Z  100.0% 22.1% 20.1% 20.0% 21.2% 19.6% 20.4% 23.1% 24.9% 25.8% 27.1% 

WUI-P 

100 
25.3% 53.3% 28.3% 23.8% 22.5% 19.3% 18.6% 19.6% 20.1% 20.1% 20.4% 
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WUI-P 

200 
24.6% 38.0% 58.2% 49.0% 43.0% 37.8% 35.4% 34.9% 34.3% 33.7% 33.3% 

WUI-P 

300 
28.4% 31.5% 45.1% 49.5% 46.5% 40.8% 39.0% 39.6% 39.4% 38.7% 38.4% 

WUI-P 

400 
34.1% 29.7% 36.2% 39.2% 43.0% 37.8% 37.5% 40.2% 41.2% 41.1% 41.5% 

WUI-P 

500 
33.9% 27.1% 35.2% 38.9% 43.3% 42.6% 42.9% 46.2% 47.6% 47.5% 47.9% 

WUI-P 

600 
34.9% 25.8% 33.2% 36.5% 40.6% 40.9% 44.0% 48.5% 50.5% 50.8% 51.5% 

WUI-P 

700 
36.0% 25.1% 31.3% 34.1% 37.9% 38.1% 41.6% 48.3% 51.3% 52.0% 53.2% 

WUI-P 

800 
36.1% 24.2% 30.0% 32.7% 36.2% 36.6% 40.1% 47.3% 52.4% 53.8% 55.4% 

WUI-P 

900 
35.7% 23.3% 29.2% 31.8% 35.1% 35.7% 39.2% 46.4% 52.2% 55.5% 57.8% 

WUI-P 

1000 
35.5% 22.7% 28.3% 30.8% 33.9% 34.4% 37.8% 44.7% 50.5% 54.6% 58.6% 

 624 
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