Data-Driven Time Series Forecasting for Social Studies Using
Spatio-Temporal Graph Neural Networks

Yi-Fan Li
yli@utdallas.edu
Erik Jonsson School of Engineering
and Computer Science
University of Texas at Dallas
Richardson, TX

Bhavani Thuraisingham
bhavani.thuraisingham @utdallas.edu
Erik Jonsson School of Engineering
and Computer Science
University of Texas at Dallas
Richardson, TX

ABSTRACT

Time series forecasting with additional spatial information has at-
tracted a tremendous amount of attention in recent research, due to
its importance in various real-world applications on social studies,
such as conflict prediction and pandemic forecasting. Conventional
machine learning methods either consider temporal dependencies
only, or treat spatial and temporal relations as two separate autore-
gressive models, namely, space-time autoregressive models. Such
methods suffer when it comes to long-term forecasting or predictions
for large-scale areas, due to the high nonlinearity and complexity
of spatio-temporal data. In this paper, we propose to address these
challenges using spatio-temporal graph neural networks. Empirical
results on Violence Early Warning System (VIEWS) dataset and U.S.
Covid-19 dataset indicate that our method significantly improved
performance over the baseline approaches.

CCS CONCEPTS

* Human-centered computing — Social engineering (social sci-
ences); * Mathematics of computing — Time series analysis; *
Computing methodologies — Neural networks.

KEYWORDS

Spatio-temporal modeling, Graph neural networks, Conflict predic-
tion, Pandemic forecasting

ACM Reference Format:

Yi-Fan Li, Bo Dong, Latifur Khan, Bhavani Thuraisingham, Patrick T. Brandt,
and Vito J. D’Orazio. 2021. Data-Driven Time Series Forecasting for Social
Studies Using Spatio-Temporal Graph Neural Networks. In Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

GoodIT ’21, September 9-11, 2021, Roma, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8478-0/21/09. .. $15.00
https://doi.org/10.1145/3462203.3475929

Bo Dong
bo.dong3 @utdallas.edu
Erik Jonsson School of Engineering
and Computer Science
University of Texas at Dallas
Richardson, TX

Patrick T. Brandt
pbrandt@utdallas.edu
School of Economic, Political, and
Policy Sciences
University of Texas at Dallas
Richardson, TX

61

Latifur Khan
Ikhan @utdallas.edu
Erik Jonsson School of Engineering
and Computer Science
University of Texas at Dallas
Richardson, TX

Vito J. D’Orazio
dorazio@utdallas.edu
School of Economic, Political, and
Policy Sciences
University of Texas at Dallas
Richardson, TX

Information Technology for Social Good (GoodIT ’21), September 9—11,
2021, Roma, Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3462203.3475929

1 INTRODUCTION

Data-driven time series forecasting methods using machine learning
techniques have become one of the most important approaches in
modern social studies. For example, generating models to predict
the state-based conflicts in Africa, including the fatalities associated
with these conflicts, are extremely significant topics in political sci-
ence research, such as Violence Early Warning System (VIiEWS) [8].
By getting accurate forecastings, it could provide international com-
munities with early warning signals of the humanitarian crisis, and it
becomes possible for international organizations to intervene and pre-
vent the conflict from happening beforehand. In the case of Covid-19
spread, this pandemic has led to unprecedented social consequence
and upheaval. Due to the drastic impact of Covid-19 to the whole
mankind, a good estimation about infected cases and death cases in
a timely manner could be critical for a better spread control, and are
helpful for policy and guidance making [1]. In both examples men-
tioned above, recent advances in technologies enable researchers to
obtain a tremendous amount of data. Meanwhile, data-driven models
with the underlying machine learning techniques, appear to be more
powerful to use these collected data and make predictions even with
very limited prior domain knowledge.

Existing data-driven forecasting methods normally follow two
lines of sight: statistical methods and machine learning methods. For
statistical methods, the autoregressive integrated moving average
(ARIMA) model and its variants are one of the most consolidated
approaches in this category [20]. However, this approach assumes
the time sequences to be stationary along time, and it doesn’t con-
sider the additional spatial correlations underlying the data. Recently,
widely-used machine learning frameworks, such as random forest
regressor, or deep learning approaches (e.g., recurrent neural net-
works and its variants), have shown their superior performance in
making sequence predictions [13]. Compared to classical statistical
methods, machine learning models could capture higher order of
nonlinearity, due to their more complex model structure [4, 5]. Take

https://doi.org/10.1145/3462203.3475929
https://doi.org/10.1145/3462203.3475929
https://doi.org/10.1145/3462203.3475929

GoodIT '21, September 9—11, 2021, Roma, ltaly

Figure 1: Different nodes (counties) at the same time step share
spatial dependencies, while the same node at distinct time steps
shares temporal dependencies. Therefore the Covid-19 spread
forecasting can be formulated as a spatio-temporal modeling
problem.

the recurrent neural networks (RNN) for example, it models the
sequence data step by step and allows previous outputs to be used as
inputs while having hidden states. The neural network module along
with the weights in it is shared between steps [16]. Therefore, RNN
model could remember information from previous time steps. But
one of the drawbacks of RNN models is that normally they can not
quite handle the long-term dependencies within the sequence. On
the other hand, its variant, which is called long-short term memory
(LSTM) network, tackles RNN’s shortcomings and designs a cell
state in addition to the hidden state to pass long-term information
along the sequences [9]. Still, both RNN and LSTM models consider
temporal dependencies only and ignore the spatial dependencies.

In the scenario of real-world social studies, it is worth noticing that
normally data could include both spatial and temporal dependencies
at the same time. For example, for the Covid-19 spread prediction,
for a certain county in the US, there are local spreads of the virus,
which can be considered as temporal relations. Meanwhile, since the
movement activities in adjacent counties could be relatively frequent,
so does the virus. Therefore, there are also spatial relations between
nearby counties in the Covid-19 spread case, which should be consid-
ered during the modeling process as well. Such spatial-temporal can
be demonstrated in Fig. 1. As we mentioned before, conventional
time series forecasting models fail to capture the spatial dependen-
cies in the model, and struggles to model the complex nonlinearities
of temporal dependencies. We propose to use spatio-temporal graph
neural networks to address the aforementioned challenges in this
data-driven time-series forecasting problems for social studies. The
key idea here is to use a single graph neural network (GNN) structure
to model both spatial and temporal dependencies simultaneously.
The main contributions of this work are threefold:

e We model the spatial dynamics of adjacent areas in a general
graph, instead of treating them separately (e.g. segments.)
Meanwhile, we consider use temporal convolution techniques
along the time axis to model the temporal dependencies. By
combining these two modules altogether in a deep neural net-
work (DNN) block, both spatial and temporal dependencies
can be captures at the same time.

e We concatenate the proposed DNN blocks together in a single
deep learning architecture, so that the designed framework

62

Yi-Fan Li, Bo Dong, Latifur Khan, Bhavani Thuraisingham, Patrick T. Brandt, and Vito J. D’Orazio

can model the spatial dynamics from multiple hops away, and
capture much longer temporal dependencies from the past.
Such architecture is extremely flexible, as it is possible to
define the order of both dependencies by simply modifying
the number of concatenated modules (layers).

e We compare the proposed framework with other state-of-
the-art (SOTA) methods, including temporal-only models
and spatio-temporal deep learning models in two real-world
datasets. Experiment results demonstrate the superiority of
our method compared to basedline methods.

2 METHOD

A typical time series forecasting problem aims to predict future
length-Q steps based on previous P observations. In this application
we map our training data x; to predicted values y; using some
forecast function f(-):

ey

Given the geographical connections between grid cells in VIEWS,
or the counties adjacent relations in U.S, the map can be defined
as an undirected graph G = (V, &, A), where V represents a set
of locations with ['V| = N; & is a set of edges indicating the con-
nectivity between locations, and; A € RN*N denotes the adjacency
matrix of graph G. Notably, the overall raw inputs to our model
are denoted by X € RFP*N*d where d is the dimension of features.
Here, the solution for the time series forecasting problem requires
considering both the spatial and temporal dependencies in the data.
In consequence, our approach splits the solution into two sets of
convolutional neural networks over space and time, and combines
them with a layering technique.

£
[X(t—ps1)> X)) = [Y@e1)> 5 Y(r0)]

2.1 Spatial Dependency Modeling

The Graph Convolutional Network (GCN) is a model for mining
graph structured data, (e.g., social networks, online advertising,
etc. [10]). In this implementation, we define the geographic map
as an undirected graph, such that the nodes of the graph are the
locations, and edges of the graph represent the adjacency relations
between locations. Mathematically, such relationship can be referred
to as an adjacency matrix defined as A. The GCN module handles
the spatial dependencies by passing the information to each location
from its surrounding locations using a weighted average (convolu-
tions) of their features.

Following Kipf and Welling [10], the spatial dependency model
for each time step ¢t < P has two inputs in this GCN module. The
first one is a variable X5 € RN*d \where d is the dimension of
features for each location. The second put is the adjacency matrix A
of the graph. In adjacency matrix, locations are sorted by ascending
order regarding its ID to keep the consistency during propagation.
For example, A;; = 1 means that ith cell is adjacent to jth cell, while
Ajj = 0 means that these two locations are not directly connected to
each other.

For each time step ¢ < P, the layer-wise propagation rule of the
GCN relationships H (+1) for layer [of the neural network is :

D = & (ﬁ’%Af)’%H(Z)W(l)))

Data-Driven Time Series Forecasting for Social Studies Using Spatio-Temporal Graph Neural Networks

A‘ filters.
= - -
—

P months

J
[P |
—_—

Figure 2: Demonstration of 1D Convolution. By applying tricks
such as padding, we keep the time steps of the outputs the same
as inputs. The feature dimension of outputs is determined by
the number of filters. In this example, d = 4,d’ = 3,P = 6 and
k=3

where H() € RN*4 is the activation matrix in the I*" layer with
HO = X. With an identity matrix Iy of N dimension, the A =
A + I is the adjacency matrix of the undirected graph G with self-
connections. Here D is the degree matrix which can be represented as
Dii=3 j A; j and w e RIXd jg 4 layer-specific trainable weight
matrix. Here, d and d’ represent the number of feature dimensions
at the [th layer for the input and output, respectively. Finally, we
choose ReLU as the activation function in the graph convolutions
during propagation.

Equation 2 implies a two-step propagation rule for the GCN: (1)
aggregate the information from each cell’s neighbors; (2) update the
neural network. The D=2 AD"3 H®) term in Equation 2 represents
the graph convolution, passing the neighbor information to each
cell, and then aggregate them based on the connection weights.
The aggregated matrix is put into a standard neural network, which
multiplies it by the trainable weight matrix W and feeds it to the
activation function o (+).

2.2 Temporal Dependency Modeling

For the temporal aspects of the model, Temporal Convolution Net-
works (TCN) and Recurrent Neural Networks (RNN) are two main
deep learning approaches [12]. In this work, we propose to develop
temporal models based on TCN, and the temporal inputs for each
node are X;p € RExd

The basic idea of TCN-based models is that temporal information
is aggregated by learnable convolution filters—similar to moving
averages [22]. Figure 2 shows the basic idea of one dimensional
temporal convolution with a kernel of size k. Basically, this operation
allows the model to explore the temporal dependency of each node
for k steps at a time. The convolutional kernel K; is designed to map
the input X, to a embedding. In order to keep time steps embeddings
consistent along time as P, we pad zero to both beginning and end
of the window so it stays the same size.

Thus the dimension of embedding after this convolution step is
P xd’. Then, an activation function is applied to this embedding and
this whole process can be abstracted as:

HED = g (conv(H®, WD) 3)

63

GoodIT '21, September 9—11, 2021, Roma, ltaly

STGCN Stacked STGCN Overall
1 Xig piay,r Xig
Nx32 /
PxNxﬁEl ¥ < Nx PN
STGCN
e Embedding
Px N x18 $xNx32 Layer
GCN STGCN
P x N x 16 #’ x N x 32
TCN STGCN
PxNx32 F x N x 32
+ § Ixn

Figure 3: Design of STGCN-TCN module using VIEWS dataset
as an example. This framework consists three STGCN blocks
with a fully-connected (FC) layer by the end to generate the
forecast outputs.

where conv denotes the convolution operation, WU is the trainable
weight representing convolutional kernel here with dimension of
kxdxd.

2.3 Combined Spatio-Temporal Model

We combine the two aforementioned modeling modules together
to form our STGCN-TCN framework. Overall, the STGCN-TCN
model is composed of a stacked modules, and a Fully Connected
(FC) layer at the end to generate predictions. We stack three identical
STGCN modules altogether to jointly process graph-structured time
series. Note it is possible to stack more STGCN modules depending
on the requirement of the task and the input dimension for the first
STGCN block is different from latter ones as the input features here
are the raw data with d dimensions.

Figure 3 shows, in each STGCN block, how we stack the sub-
modules in TCN-GCN-TCN order. The spatial layer is between the
two temporal layers and links those two temporal layers together.
Considering the dimensions of both temporal and spatial layers, we
purposely design it similar to a “sandwich” structure. This trick
is also know as “bottleneck strategy”, which is very useful when
designing a neural network. Having such design encourages the net-
work to compress feature representations to best fit in the available
space, to get the best fitting of the loss function during training. Also,
such design enforce the ability of model to learn from the data other
than remember the data, which could help with the generalization
capability of the model. Based on existing parameters, each STGCN
module is capable of aggregating 1-hop of spatial dependencies, and
three steps of temporal dependencies. Since the stacked STGCN
model has three STGCN modules in it sequentially, overall our pro-
posed framework can aggregate up to 3-hops of spatial dependencies,
and up to 5 steps of temporal dependencies in such block. These are
clearly tuneable parameters in the model.

By generating the hidden representations for each of the node
(location) after the combined spatio-temporal module, we feed those
embeddings to fully-connected (FC) layer to generate predictions
afterwards. For this model, we generate the Q steps of the predictions
at once, which makes the dimension of outputs as N x Q.

GoodIT '21, September 9—11, 2021, Roma, ltaly

[[] © Target cellinode
1-hop cells/nodes

2-hop cells/nodes

AN
/ v

1 ; T~
R = SE=
\\ ~ 1~ ’.'

(a)

Data

T T
3
Month 0 25

(b)

[JreN [CJGeN FC
e a— Filter 1 Filter 2
(Padding 25

Month 0
| Padding y

g
g
E

Data convolve with
two 3x3 filters

1

Month 2 25
Month 3 Output

) N N

Padding 25 |
Mg .
Month 1

Padding

Figure 4: Demonstration to the workflow of the proposed frame-
work. (a) Convert geographic locations in PRIO-GRID form to
graph. For a certain target node at time ¢, any geographic areas
that is directly adjacent to it is assigned an edge to the target
node, with edge weight of 1; otherwise, no edge is connected, or
connected with edge weight of 0. (b) The workflow of STGCN-
TCN after having the formulated graph.

2.4 Demonstration of STGCN

Here we demonstrate our proposed model with a simplified example.
Suppose that there is an area with 5 X 5 PRIO-GRID cells, for each
of the grid cell we have 3 dimensional features, and we have a total
of 4 steps of data available. Also, we want the model to have the
ability of predicting two steps ahead. Therefore for the training, we
have 2 steps of features (Xp and X7) and 2 steps of labels (y2 and y3)
available.

We demonstrate the overall workflow of STGCN-TCN in Fig 4.
Each module in STGCN-TCN is composed by TCN and GCN struc-
tures respectively. Here layers of TCN and GCN models are con-
catenated together, and extract different types of the information in
turns. In this specific example, the raw features Notice that in this
“sandwich” structure, we have two TCN layers and one GCN layer.
Since the filter size in this example is 3, therefore, we can aggregate
information upto ¢t — 2 and ¢t + 2 to representations at time ¢, and
consider 1-hop away information using a single TCN-GCN-TCN
module.

2.5 Model Learning

We use Mean Squared Error (MSE) as the training objective function
to train our proposed STGCN-TCN model. This objective function
represents the average squared differences between predictions for
each grid cell of each step to the ground truth. Mathematically, this
loss function is defined as:

L L
:Q_NZ

i=1j

y;t+i))2

Mz

(7)

Il
—

64

Yi-Fan Li, Bo Dong, Latifur Khan, Bhavani Thuraisingham, Patrick T. Brandt, and Vito J. D’Orazio

3 EXPERIMENT
3.1 Datasets

Two real-world datasets are used in this paper to evaluate the per-
formance of our proposed methods against baselines on two major
applications: political science and pandemic research. The statistics
of these two datasets are shown in Tab. 1.

Dataset #Nodes
VIEWS
Covid-19 Spread

Table 1:

#Edges
10,677 | 41,711 | 240
3,221 9,473 | 344

Statistics of datasets

#Time Steps

o ViEWS! This political science dataset contains PRIO-Grid
level [18] spatio-temporal conflict data concentrating on Africa,
which includes records on monthly basis such as number of fa-
talities and geographical information. The graph at each time
step is constructed follows the demonstration in Figure. 4a.
There are a total number of 10, 677 grid cells for Africa, and
in this study we use data covering a period of 20 years, from
January, 2000 to December, 2019.

e Covid-19 Spread? This pandemic research dataset contains
the number of confirmed cases each day for all counties in
the U.S. during 2020. Additionally, county level climate data,
such as daily average/min/max temperatures, are included in
this datasets as additional features. We construct the graph
using the county adjacency data from U.S. Census Bureau?.
Overall the constructed graphs contrains 3, 221 counties for
the U.S., and the days covered in the dataset are between Jan
22,2020 and Dec 31, 2020.

3.2

We compare the our proposed framework with other SOTA data-
driven forecasting methods and a variant of our proposed method.
These baselines are described as follows:

o ARIMA [2] This is a statistical based method, and is widely
used for time series forecasting, and the dependent variable
is predicted using only its past records.

e Random Forest Regression [6] This is a machine learning
framework, which is composed by constructing a multitude
of decision trees at the training time and take mean prediction
of individual trees during the inference phase.

e STGCN-LSTM This is a variant of our proposed method
in this paper. Instead of using TCN to model the temporal
dependencies along the sequences, we use long-short term
memory networks here.

Baselines

3.3

VIEWS dataset contains 20 years of monthly data. We use data
between Jan, 2000 and Dec 2016 as training set, and the 4 years of
records are used as test set. After splitting the dataset, sequences of
samples are generated by sliding a window of width P + Q. For this

Experiment Setup

Uhttps://per.uu.se/research/views/
2https://usafacls.org/visualizations/coronavirus—covid— 19-spread-map/
3https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html

Data-Driven Time Series Forecasting for Social Studies Using Spatio-Temporal Graph Neural Networks

GoodIT '21, September 9-11, 2021, Roma, Italy

Dataset VIEWS (x107%) Covid-19 Spread, Cases Covid-19, Death
Time Step T 2 [3 |4 [5 [6 |1 2 3 7 5 6 T |2 3 1 5 6
ARIMA

2.96 | 3.05 | 3.07 [3.12 [3.16 | 323 | 11.01 | 1129 | 11.56 | 11.78 | 11.75 | 11.98 | 9.91 | 10.15 | 10.13 | 10.37 | 10.46 | 10.45
Random Forest | o\ 5 93 | 207 | 2.96 | 2.96 | 3.00 | 1126 | 11.95 | 12.16 | 12.06 | 12.21 | 12.25 | 9.81 | 1027 | 1024 | 1043 | 10.62 | 10.68
Regression
STGCN
ST™ 259 | 231|259 [3.00 | 3.07 | 3.07 | 1114 | 1135 | 11.89 | 1232 | 11.83 | 12.04 | 9.89 | 10.13 | 10.31 | 10.63 | 10.52 | 10.48
STGCN
rON 262 | 243 | 2.67 | 229 | 2.26 | 2.51 | 10.96 | 11.39 | 11.57 | 11.50 | 11.61 | 11.56 | 9.94 | 10.35 | 10.21 | 10.43 | 10.42 | 10.52

Table 2: Comparisons of MSE results between our proposed methods and baseline methods.

dataset, we define P = 48 and Q = 6, which means that the first 48
months in the sample sequence are treated as input, while the rest 6
month are considered as ground truth. Also, we follows Hegre et al.
[8] to use the logarithm of the fatalities numbers as the prediction
signal.

For the Covid-19 spread dataset, it contains 344 days of daily
records about No. of confirmed and death cases in U.S. For this
dataset, we use data between Jan 22, 2020 and Aug 31, 2020 as
the training set, and those history between Sep 1, 2020 and Dec 31,
2020 as test set. Similarily to VIEWS dataset, sequences of samples
area generated by sliding windows on Covid-19 spread dataset. Here
we define P = 30 and Q = 6 respectively. In this dataset, we are
interested in prediction the daily confirmed cases and daily death,
and these two signals are used as the prediction signal.

Our implementation of the algorithm is using Python 3.7.6 with
PyTorch 1.6.0 and DGL 0.5.2 libraries. Our experiments are con-
ducted under a computer environment with one Intel i9-9980XE
CPU @ 3.00GHz and two Nvidia Quadro RTX 8000 GPU cards.
Key parameters for our proposed framework in this experiment are
set as follows: No. of stacked modules in STGCN-TCN S;¢p, = 3;
kernal size of temporal convolution k;p = 3; batch_size = 64; learn-
ing rate y = 0.001, and; = 0.9 (Adam).

3.4 Results

We use Mean Squared Error (MSE) as the main evaluation metrics of
the results in Table 2. As we mentioned before, the MSE is computed
for a rolling six-months forecast (so six forecasts of each time period)

Predictions

Ground Truth

Figure 5: Visualization of prediction results using STGCN-TCN
model in Africa at Sep, 2018 (VIEWS)

successfully predict those “hot spots” that may have lots of fatalities
at Sep, 2018. The forecasts generated by STGCN-TCN may provide
the international community early warning of conflict casualties, so
conflicts could get intervened before hand, and tragedies could be
avoided.

Also, from the results table, we observe that our proposed STGCN

based on the previous week 48 months of data for the VIEWS dataset. tions.
Then we compared the STGCN-TCN model with its variant

For Covid-19 Spread dataset, the prediction of the next 6 days is
based on previous 30 days of records.

From the experiment results, we can see that our proposed STGCN-
TCN model outperforms the competing baselines, such as ARIMA
and Random Forest Regression model by a significant margin across
the two experiment datasets and three prediction tasks. For example,
for the STGCN-TCN model has the smallest MSE when predict-
ing month 6 with value of 2.26 x 1072. Whereas the the MSE for
ARIMA, Random Forest Regression and STGCN-LSTM models
are 3.16 X 1072, 2.96 x 1072 and 3.07 x 1072 respectively. We illus-
trate the effectiveness of our proposed method on VIEWS dataset
in Figure. 5. A random month is selected from the test set. Then a
graph demonstrating both ground truth and predictions are generated
to validate the effectiveness of STGCN-TCN. The color coding re-
flects the logarithm of fatalities in each PRIO-Grid cell. Light colors
indicate that there is higher number of fatalities due to state-based
conflicts. In the prediction, negative predictions are set to 0 for the
ease of visualization. From this figure, we can see that STGCN-TCN

65

models have better prediction accuracy compared SOTA temporal
only methods in most cases. This observation indicates that by intro-
ducing additional spatial dependencies into the modeling process, it
is possible to generate more accurate time series forecasting predic-

STGCN-LSTM. From Figure 2, we can see that the performance of
these two models are very similar for Covid-19 Spread dataset when
predicting both confirmed cases and death. When it comes to the
VIEWS dataset, it is very interesting to see that the STGCN-LSTM
model has more accurate predictions for short-term predictions (Step
1-3), while STGCN-TCN model is predicting much better for long-
term predictions. Such phenomenon is mainly due to the way that
predictions are generated by LSTM and TCN. For LSTM model,
the predictions are generated step-by-step, which means that the
estimated value of step 2 is based on the generated estimated value
of step 1. Therefore, we can clearly see that the quality of predictions
generated by STGCN-LSTM is getting worse form short-term to
long-term. However, since we are generating all 6 steps of predic-
tions with fc layer in a single step for STGCN-TCN model, the
observations occur to STGCN-LSTM are not the case for it anymore.
That’s why STGCN-TCN model performs better than its variant in
generating long-term predictions across different datasets.

log_fatalities

GoodIT '21, September 9—11, 2021, Roma, ltaly

Method Training Time
STGCN-TCN 45 mins
STGCN-LSTM 541 mins

Table 3: Training time of STGCN based methods on VIEWS
dataset for 50 epochs.

Additionally, Table. 3 shows the training time of STGCN-based
models. Having relatively close quantitative performance in gen-
erating predictions, STGCN-TCN models are much faster to train
compared to its variant STGCN-LSTM model. This is because the
mechanism of training temporal dependencies. One of the benefits
of convolution operation is that this operator is easy to be com-
puted in a parallel manner in GPU. That is why the training time of
STGCN-LSTM model is 12 times more thatn STGCN-TCN model.
Therefore, we argue that our proposed STGCN-TCN model is more
cost-effective in this experiment.

4 RELATED WORK
4.1 Time-series Forecasting

This section concentrates on the descriptions of data-driven methods
which consider temporal information only.

ARIMA is one of most commonly used classic methods. Even
though these two methods consider the non-stationary pattern within
the time series, they fail to capture the long-term dependencies within
the sequence [17]. Recent deep neural networks have pushed the per-
formance of sequence modeling to a new level. Two major types of
networks are widely used. RNN and its variants, such as LSTM and
GRU network have shown their great capability in modeling Natural
Language Processing (NLP) related tasks [3]. Convolutional Neural
Networks (CNN) are widely used in the computer vision domain,
and have proven to be an effective tool for sequence modeling [21].

4.2 Graph Neural Networks

One of the advantages of representing data using graph is that the
relations between data may not be necessarily in Euclidean space.
GCN proposed to aggregate the neighborhood information to the
target node by a first-order approximation based on graph Laplacian,
and has been applied to various tasks, such as node classification,
link prediction, and etc [11, 14, 15]. Other recent work targets GCN’s
scalability issue, and tries to address it by using local approximations
to compute global node representations, such as GraphSage [7] and
GAT [19].

S CONCLUSION

In this paper, we propose a novel data-driven method, called spatio-
temporal graph neural network (STGCN-TCN), to handle the time-
series forecasting problem in social studies domain. By considering
both spatial and temporal dynamics, and using an integrated module
in the graph neural network to model both dependencies simul-
taneously, our proposed framework achieved SOTA performance.
Accurate predictions generated by our proposed framework can pro-
vide reliable model references for social studies, such as conflict
predictions or pandemic forecasting.

66

Yi-Fan Li, Bo Dong, Latifur Khan, Bhavani Thuraisingham, Patrick T. Brandt, and Vito J. D’Orazio

ACKNOWLEDGEMENT

The research reported herein was supported in part by NSF awards

DMS-1737978, DGE-2039542, OAC-1828467, OAC-1931541, DGE-
17236021, SMA-1539302, OAC-1828467 and DGE-1906630, ONR

awards N00014-17-1-2995 and N00014-20-1-2738, Army Research

Office Contract No. W911NF2110032 and IBM faculty award (Re-
search).

REFERENCES

[1] Stefano Boccaletti, William Ditto, Gabriel Mindlin, and Abdon Atangana. 2020.
Modeling and forecasting of epidemic spreading: The case of Covid-19 and
beyond. Chaos, solitons, and fractals 135 (2020), 109794.

Peter J Brockwell, Richard A Davis, and Matthew V Calder. 2002. Introduction
to time series and forecasting. Vol. 2. Springer.

Li Deng and Yang Liu. 2018. Deep learning in natural language processing.
Springer.

Yang Gao, Yi-Fan Li, Yu Lin, Hang Gao, and Latifur Khan. 2020. Deep learn-
ing on knowledge graph for recommender system: A survey. arXiv preprint
arXiv:2004.00387 (2020).

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016.
Deep learning. Vol. 1. MIT press Cambridge.

Ulrike Gromping. 2009. Variable importance assessment in regression: linear
regression versus random forest. The American Statistician 63, 4 (2009), 308-319.
Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024-1034.

Hévard Hegre, Marie Allansson, Matthias Basedau, Michael Colaresi, Mihai
Croicu, Hanne Fjelde, Frederick Hoyles, Lisa Hultman, Stina Hogbladh, Remco
Jansen, et al. 2019. VIEWS: a political violence early-warning system. Journal of
Peace Research 56, 2 (2019), 155-174.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
Yi-Fan Li, Yang Gao, Yu Lin, Zhuoyi Wang, and Latifur Khan. 2020. Time Series
Forecasting Using a Unified Spatial-Temporal Graph Convolutional Network. In
Proceedings of Preregister Workshop in 34th Conference on Neural Information
Processing Systems.

Bryan Lim and Stefan Zohren. 2020. Time Series Forecasting With Deep Learning:
A Survey. arXiv preprint arXiv:2004.13408 (2020).

Tomas Mikolov, Martin Karafist, Luka$ Burget, Jan Cernocky, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh annual
conference of the international speech communication association.

Hogun Park and Jennifer Neville. 2019. Exploiting Interaction Links for Node
Classification with Deep Graph Neural Networks.. In IJCAI. 3223-3230.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets:
hyper-relational knowledge graph embedding for link prediction. In Proceedings
of The Web Conference 2020. 1885-1896.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673-2681.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. 2018. A comparison
of ARIMA and LSTM in forecasting time series. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE, 1394-1401.
Andreas Forg Tollefsen, Havard Strand, and Halvard Buhaug. 2012. PRIO-GRID:
A unified spatial data structure. Journal of Peace Research 49, 2 (2012), 363-374.
Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Billy M Williams and Lester A Hoel. 2003. Modeling and forecasting vehicular
traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results.
Journal of transportation engineering 129, 6 (2003), 664—672.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial temporal graph
convolutional networks for skeleton-based action recognition. arXiv preprint
arXiv:1801.07455 (2018).

Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérdome Lang
(Ed.). ijcai.org, 3634-3640. https://doi.org/10.24963/ijcai.2018/505

(2]
3]

[4]

[5

(6

[7

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.24963/ijcai.2018/505

	Abstract
	1 Introduction
	2 Method
	2.1 Spatial Dependency Modeling
	2.2 Temporal Dependency Modeling
	2.3 Combined Spatio-Temporal Model
	2.4 Demonstration of STGCN
	2.5 Model Learning

	3 Experiment
	3.1 Datasets
	3.2 Baselines
	3.3 Experiment Setup
	3.4 Results

	4 Related Work
	4.1 Time-series Forecasting
	4.2 Graph Neural Networks

	5 Conclusion
	References

