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Photoelectron angular distributions (PADs) in SO photodetachment using linearly polarized 355 

nm (3.49 eV), 532 nm (2.33 eV), and 611 nm (2.03 eV) light were investigated via photoelectron 

imaging spectroscopy. The measurements at 532 and 611 nm access the X 3 and a 1 electronic 

states of SO, whereas the measurements at 355 nm also access the b 1Σ+ state. In aggregate, the 

photoelectron anisotropy parameter values follow the general trend with respect to electron kinetic 

energy (eKE) expected for π∗ orbital photodetachment. The trend is similar to O2
, but the mini-

mum of the SO curve is shifted to smaller eKE. This shift is attributed mainly to the exit-channel 

interactions of the departing electron with the dipole moment of the neutral SO core, rather than 

the differing shapes of the SO and O2
 molecular orbitals. Of the several ab initio models 

considered, two approaches yield good agreement with the experiment: one representing the 

departing electron as a superposition of eigenfunctions of a point dipole-field Hamiltonian, and 

another describing the outgoing electron in terms of Coulomb waves originating from two 

separated charge centers, with a partial positive charge on the sulfur and an equal negative charge 
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on the oxygen. These fundamentally related approaches support the conclusion that electron-dipole 

interactions in the exit channel of SO photodetachment play an important role in shaping the 

PADs. While a similar conclusion was previously reached for photodetachment from  orbitals of 

CN (Hart, Lyle, Spellberg, Krylov, Mabbs, J. Phys. Chem. Lett., 2021, 12, 10086-10092), the 

present work includes the first extension of the dipole-field model to detachment from π∗ orbitals. 
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1.  Introduction 

Photoelectron angular distributions (PADs) are often used to probe the properties of the molecular 

orbitals from which the electrons are ejected. Unlike neutral-molecule ionization,1 anion photode-

tachment leaves behind a neutral residue, which interacts relatively weakly with the departing 

electron. Therefore, exit-channel interactions are often disregarded in the analysis of anion PADs 

and the measured photoelectron anisotropy parameters () are interpreted in terms of the anion/

neutral electronic structure.2 

This approximation has its limits, which are easily breached if the neutral residue possesses a 

significant dipole moment. The charge-dipole interactions between the departing electron and the 

remaining neutral molecule are weaker than the Coulomb force in neutral-molecule ionization, but 

they do affect the cross-sections and (asymptotic) relative phases of the photoelectron (orbital) 

angular momentum partial waves.3 Since PADs reflect interference between these partial waves, 

it is not surprising that they too are sensitive to the interactions. Moreover, the non-spherical dipole 

potential results in mixing of the partial waves propagating in the dipole field.  

 In discussions of dipole effects, two important limits are usually encountered. 1.625 Debye = 

0.6393 a.u. (1 atomic unit  𝑒𝑎଴, 𝑒 is the elementary charge and 𝑎଴ the Bohr radius)4 is the critical 

value of the dipole moment necessary to bind an electron in a fixed-dipole field. Molecular rotation 

increases the dipole binding threshold, and a more realistic limit is generally accepted to be about 

2.4 Debye (0.94 a.u.).4 However, the ability to support a dipole-bound state is not a requirement 

for the PADs to be affected, a fact that is often overlooked when considering detachment from 

anions. 

 A recent report examined the role of electron-dipole interactions in CN photodetachment.5 

The theoretical framework developed there applied to  orbital photodetachment, but similar 
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effects can be expected for any photodetachment transition which leaves a significantly polar 

neutral residue. In the present work, we use photoelectron imaging spectroscopy and theoretical 

modeling to examine the angular distributions in the photodetachment of the sulfur monoxide 

anion, SO. The results show that consideration of dipole effects is important for agreement 

between theory and experiment. Similar to CN,5 the SO PADs are not just signatures of the parent 

detachment orbitals—they also carry fingerprints of the exit-channel interactions between the 

departing electron and the neutral residue. Although the dipole moments of SO and CN are similar 

(1.45 and 1.55 Debye, respectively),6-8 the highest-occupied molecular orbitals have different char-

acter (π∗ and , respectively), and this work offers the first extension of the previously published 

formalism5 to non- detachment orbitals. It also allows us to compare the SO PADs to the exten-

sively studied anion of superoxide, O2
,9-12 a benchmark system in which no dipole effects are 

present. The comparison aims to establish which of the two factors contributing to the PAD 

differences plays a more determining role: the distinct shapes of the detachment orbitals or the 

exit-channel interactions. This work demonstrates that in the SO vs. O2
 case it is the latter. 

Although not quite as frequently as di-oxygen, sulfur monoxide has been studied extensively, 

especially by the astronomy community. It is involved in several photochemical processes in the 

atmosphere of Io (one of Jupiter’s moons), where it is believed to be generated from Pele-type 

volcanic activity.13-15 In Io’s exosphere and the interstellar space, photoionization of SO results in 

the formation of SO+.16,17 SO has also been detected in the Hale-Bopp comet,18 while in the 

interstellar media, it is present in Orion A,  Ophiuchi, Sagittarius B2, and many others.19-23 In 

Earth’s atmosphere, SO is commonly produced by ultraviolet photolysis of SO2.24-26 It plays a role 

in oxidizing sulfur dioxide (SO2) and sulfur trioxide (SO3), both components in acid rain and cloud 

condensation nuclei that contribute to the global sulfur cycle.25,27 
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There have been several experimental and theoretical studies on the electronic states of SO and 

SO,28-30 while Lineberger and coworkers used photoelectron spectroscopy to study SO.31 They 

obtained the high-resolution photoelectron spectrum including the SO(X 2)  SO(X 3, a 1, 

b 1) photodetachment transitions and determined the adiabatic electron affinity (EA) of SO to be 

1.125(5) eV. Here, we revisit these latter transitions focusing on the corresponding PADs. 

2.  Experimental Methods 

The experiments were carried out using the negative-ion photoelectron imaging spectrometer 

described elsewhere.32,33 A CO2 or O2 carrier gas at a backing pressure of ~1.4 atm was passed 

over a saturated solution of elemental sulfur dissolved in CS2, kept at room temperature. The 532 

nm results presented here were obtained with CO2 carrier gas, while O2 was used in the 355 nm 

and 611 nm experiments for increased production of the SO ions. The precursor gas mixture was 

expanded into a high-vacuum ion-source chamber (base pressure 2×107 torr; operational pressure 

2-3×10–5 torr) through a pulsed supersonic nozzle (General Valve, Inc., Series 9) operated at a 50 

Hz (532 and 355 nm) or 20 Hz (611 nm) repetition rate matching that of the laser.   

The supersonic expansion was intersected by a beam of electrons emitted from a thoria-coated 

iridium filament (e-Filaments, LLC). The filament was kept at a variable 200 V to 500 V 

potential and resistively heated by an approximately 5 A current from a floated DC supply. The 

plasma created by electron bombardment of the neutral precursor gas was cooled in the supersonic 

expansion. Negative pulses (about 700 to 900 V) applied to an extraction plate positioned 

downstream from the ionization region were used to separate the negative ions from the cations 

and neutral species and extract them into the acceleration region of a Wiley-McLaren time-of-

flight mass-spectrometer. After passing through a ~2 m long flight tube, the anions were separated 

according to their masses. In the detection region of the instrument, kept at a pressure of ~109 
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torr, the SO ion packets were intersected by a pulsed laser beam.  

The photodetached electrons were analyzed using a velocity-map imaging (VMI)34 assembly 

described elsewhere.32 In the present experiments, the three VMI electrodes were kept at –330, 0, 

and +900 V, respectively, projecting the photodetached electrons in the direction perpendicular to 

the ion and laser beams. At the end of a 15 cm long electron flight tube, the electrons were post-

accelerated into a 40 mm diameter dual microchannel plate detector coupled to a P47 phosphor 

screen (Burle Inc.). Images from the screen, fiber-optically coupled to an outside window, were 

captured using a charge-coupled device camera (Roper Scientific, Inc.). Photoelectron images of 

SO were taken at 532 and 355 nm using the second and third harmonics, respectively, of a Spectra 

Physics Lab-130-50 Nd:YAG laser (25 mJ/pulse and 5 mJ/pulse, respectively, ~6 ns pulse 

duration). The 611 nm light was generated by the fluorescence of Rhodamine 640 dye in an 

ND6000 dye laser pumped by Surelite II-20 Nd:YAG (Continuum, Inc.). In all measurements, the 

(linear) laser polarization direction was set parallel to the imaging detector surface. 

3.  Experimental Results 

Photoelectron images of SO were collected using 611 nm (2.03 eV), 532 (2.33 eV), and 355 nm 

(3.49 eV) light. The results are shown in Fig. 1. The laser polarization axis is vertical in the plane 

of all images. The left and right halves of the composite images shown represent the raw and Abel-

inverted data, respectively. Reisler and co-workers’ BASEX program35 was used for inverse Abel 

transformation.36 The spectra for all wavelengths are plotted together with respect to electron 

binding energy, eBE = hv – eKE, where hv is the energy of the photon and eKE is electron kinetic 

energy. These spectra are compared to the higher-resolution 351.1 nm (3.531 eV) spectrum 

obtained by Lineberger and coworkers,31 shown in the same figure in gray. The comparison was 

used for electronic-vibrational band assignment. 
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The X 3 and a 1 electronic states of neutral SO are accessed at 532 and 611 nm, with an 

additional b 1 state also visible at 355 nm. The vibrational assignments (𝑣′,𝑣″) for the dominant 

peaks in the spectra are indicated in Fig. 1 for the SO(X 3Σ, a 1, b 1Σ; 𝑣′)  SO(X 23/2; 𝑣) 

transitions from the = 3/2 spin-orbit component of the anion electronic state.31  

The PADs obtained from the Abel-inverted images were analyzed to determine the anisotropy 

of each transition. The values of the anisotropy parameter  for each spectral peak were obtained 

by fitting the standard one-photon PAD function37,38 

 𝐼ሺ𝜃ሻ ൌ ሺ𝜎/4𝜋ሻሾ1 ൅ 𝛽𝑃ଶሺcos𝜃ሻሿ (1) 

to the PADs obtained from the photoelectron images within the narrow energy range of the tran-

sition. In eqn (1),  is the angle between the photoelectron velocity vector and laser polarization 

direction in the laboratory frame, 𝐼ሺ𝜃ሻ is the angle-dependent transition intensity, i.e. the PAD,  

is the total cross-section at the kinetic energy being studied, 𝑃ଶ is the second-order Legendre poly-

nomial, 𝑃ଶሺcos 𝜃ሻ ൌ ଵ

ଶ
ሺ3 cosଶ 𝜃 െ 1ሻ, and 𝛽 is the anisotropy parameter, whose allowed values 

range from –1 for a purely perpendicular transition to +2 for a purely parallel transition. The 

resulting 𝛽 values are plotted with respect to eKE in Fig. 2(a). 

4.  Modeling and Discussion 

4.1.  SO versus O2
 

The spectral assignments and spectroscopic constants of SO and the three lowest electronic states 

of SO have been reported previously.31 In this work, we focus on the information contained in the 

photoelectron angular distributions. In particular, we highlight the differences between two isova-

lent anions, SO and O2
. O2

 PADs have been studied in detail previously.9-12 For easy comparison 

with the present SO data, Fig. 2(b) displays the anisotropy values for the X 3Σg
  X 2g transition 
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in O2
, similarly plotted with respect to eKE. The O2

  values were reported previously by Van 

Duzor et al.12 The reader is referred to Fig. 3 in Ref. 12 for vibrational assignments. 

O2
: the Cooper-Zare central-potential model. Historically, a common approach to model-

ing one-photon PADs has been based on the Cooper-Zare central-potential model, which assumes 

that the detachment Dyson orbital or the initial (bound) state of the electron can be described by a 

definite value of the orbital angular momentum quantum number l. In this case, the final state of 

the electron is a superposition of the dipole-allowed partial waves with the orbital angular 

momentum quantum number ℓ = l ± 1. The photoelectron anisotropy resulting from interference 

of these waves is described by the Cooper-Zare formula,38,39 which is based on the original deri-

vation by Bethe.40,41 Direct application of the Cooper-Zare model requires the calculation of 

energy-dependent transition-dipole matrix elements for the partial waves,42 but a popular simpli-

fication, first introduced by Hanstorp et al.43 allows to forego this direct calculation. Hanstorp’s 

approximation assumes that the ratio of the l ± 1 partial cross-sections (𝜎௟േଵ) scales with energy 

in accordance with the Wigner law:3 𝜎௟ାଵ 𝜎௟ିଵ⁄ ∝ 𝜀௟ାଷ/ଶ/𝜀௟ିଵ/ଶ, i.e., 𝜎௟ାଵ 𝜎௟ିଵ⁄ ൌ 𝐴௟
ଶ𝜀ଶ, where 𝜀 

 eKE and 𝐴௟ is the Hanstorp coefficient. 

The Cooper-Zare formula is strictly applicable to atomic transitions only, but similar 

approaches taking rotational motion into account have been developed for diatomics.44,45 In the 

absence of resolved rotational structure, the original Cooper-Zare formula has been used to 

describe photodetachment of molecular anions, including O2
 and S2

.10-12,46 These applications 

rely on the approximate description of the detachment orbitals in these diatomics using a single 

atomic-like function with l = 2.2 To this end, Fig. 2(b) includes a model curve calculated using 

Hanstorp’s implementation of the Cooper-Zare equation with A2 = 0.36 eV1 and cos3,1 = 0.96, 

where 3,1 is the assumed phase shift between the ℓ = 1 and 3 partial waves of the emitted electron. 
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These parameter values are consistent with the detailed (vibrational state specific) findings of Van 

Duzor et al.,12 as well as with a similar analysis (disregarding the vibronic effects) by Blackstone 

et al.47 For purposes of comparison with SO−, we will use the Cooper-Zare curve shown in Fig. 

2(b) to describe the overall () trend in O2
 experimental data.12 

SO: the p-d mixing model. The number of molecular systems for which the above approach 

with a single l value may work is limited. As a case in point, it cannot be applied directly to SO 

because of the asymmetric (lopsided) character of the π∗ HOMO (highest occupied molecular 

orbital) or, more precisely, the Dyson orbitals corresponding to the three lowest photodetachment 

transitions. To overcome the central-potential limitation, various l-mixing models have been devel-

oped in recent years.48 These models approximate the detachment orbitals as superpositions of two 

(or more) atomic-like functions with different l values, all placed on the same center in the mole-

cular frame. The s-p mixing approach is useful for hybrid orbitals in organics2,49-51 and polarization 

interactions of s type anions in clusters.52,53 Of particular relevance to the present work is the p-d 

variant48 of l-mixing. Unlike the π௚∗  HOMO of O2
, the essential character of the lopsided π∗ 

HOMO of SO cannot be captured by a single l = 2 function; it requires at least one additional 

component with l = 1. Similar scenarios have been discussed previously for NO or HO2
.47 

In detachment from a mixed-character orbital described as ห𝜓௣ௗൿ ൌ ඥ1 െ 𝛾ௗ|𝑝⟩ ൅ ඥ𝛾ௗ|𝑑⟩, 

where 𝛾ௗ is the fractional d-character (0 ൑ 𝛾ௗ ൑ 1), () is given by:47,48 

 (2) 

where A1, A2, and B2 are the generalized Hanstorp coefficients describing the relative scaling of 

the p → d over p → s, d → f over d → p, and p → d over d → p photodetachment channels, 

respectively.48 In the limit of 𝛾ௗ = 1 (e.g., for O2
), eqn (2) coincides with the Hanstorp’s 
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formulation of the Cooper-Zare equation for l = 2. By varying 𝛾ௗ, eqn (2) allows, in principle, 

modeling of photodetachment from a lopsided orbital, such as the π∗ HOMO of SO.  

While l-mixing provides insight into the PADs, its downside is the number of required model 

parameters, which increases with increasing number of the l components included. For reference, 

the Hanstorp formulation of the Cooper-Zare equation for detachment from any orbital with l > 0 

includes one Hanstorp coefficient (𝐴௟) and one phase shift (𝛿௟ାଵ,௟ିଵ). In comparison, the p-d variant 

of the mixing model, eqn (2), involves the fractional d character of the orbital (𝛾ௗ), three general-

ized Hanstorp coefficients (𝐴ଵ, 𝐴ଶ, and 𝐵ଶ), and two relative phases (𝛿ଶ,଴ and 𝛿ଷ,ଵ).47,48 The 

Hanstorp coefficients are not entirely independent of each other: treating the radial parts of the p 

and d components of the MO as hydrogenic functions, 𝐴ଵ, 𝐴ଶ, and 𝐵ଶ can be expressed in terms 

of two effective charges, 𝜁ଶ௣ and 𝜁ଷௗ, describing the p and d contributions to the MO.47,48 𝐴ଵ is 

defined by 𝜁ଶ௣, 𝐴ଶ by 𝜁ଷௗ, while 𝐵ଶ—by both 𝜁ଶ௣ and 𝜁ଷௗ and can therefore be determined from 

the two A coefficients.  Yet, this still leaves five parameters (𝛾ௗ, 𝜁ଶ௣, 𝜁ଷௗ, 2,0, and 3,1 or, equiva-

lently, 𝛾ௗ, 𝐴ଵ, 𝐴ଶ, 2,0, and 3,1). While these properties can be, in principle, evaluated by ab initio 

methods, they are often used as empirical fitting parameters. Unfortunately, such black-box appli-

cation of the model amounts to fitting experimental data with a many-parameter function: an 

adequate fit can usually be obtained, but the physical insight is limited. 

It is mainly to describe the overall experimental trend for comparison with O2
 and with the 

more robust treatments to follow that we include two different 2p-3d mixing curves in Fig. 2(a), 

both calculated via eqn (2). The solid curve, representing the overall experimental trend, was 

generated with 𝛾ௗ = 0.81, 𝐴ଵ = 0.53 eV-1, 𝐴ଶ = 0.10 eV-1, 𝐵ଶ = 11.4 eV-1, and cos2,0 = cos3,1 = 

0.96. The phase-shifts were set equal to the O2
 value,12 while the three Hanstorp coefficients are 

defined by effective charges 𝜁ଶ௣ = 1.05 and 𝜁ଷௗ = 3.10 according to the formulae in eqn (6) in Ref. 
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47. The above 𝛾ௗ, 𝜁ଶ௣, and 𝜁ଷௗ values match the model to the experimental results, but the curve 

shown is not a unique fit to the data. The significance of the dashed curve in Fig. 2(a) will be 

explained later. 

Note that 𝐴ଶ = 0.10 eV for SO [solid curve in Fig. 2(a)] can be compared to 𝐴ଶ = 0.36 eV 

for O2
. The Hanstorp coefficients are generally associated with the “size” of the detachment 

orbital. For example, if the d components of the two MOs are each described by a hydrogenic 

function with effective charge 𝜁ଷௗ, then 𝐴ଶ ∝ 1/𝜁ଷௗ
ଶ .47,48 That is, the larger the 𝐴ଶ value, the 

smaller the effective charge, and the more diffuse the corresponding MO. Comparing the 𝐴ଶ values 

for SO and O2
, the less diffuse nature of SO is consistent with its larger detachment energy: 

EA(SO) = 1.125(5) eV vs. EA(O2) = 0.448(6) eV.31,54 

While the EA consideration agrees with the observed anisotropy results, the above logical 

chain nonetheless does not stand up to scrutiny. That is because, as we will show shortly, no ab 

initio treatment of SO PADs can capture the experimental () trend unless another property 

distinguishing SO from O2
 is considered—the dipole moment of the neutral residue.  

4.2.  Ab initio modeling neglecting electron-dipole interactions 

The ab initio calculations of SO PADs first focus on the detachment orbitals and the final state of 

the electron, without accounting for its interactions with the dipole moment of the neutral residue. 

In the following, several increasingly sophisticated approaches applying the free electron approxi-

mation fail to yield satisfactory descriptions of the experimental observations, and the importance 

of including dipole effects is demonstrated. 

Many-body calculations.  In contrast to l-mixing (Sec. 4.1), a more rigorous approach to PAD 

calculations does not limit the description of the detachment orbital to a few l components. Given 

sufficiently general implementation, expansion of the Dyson orbital in a single-center basis (as in 
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the l-mixing model) is not necessary. Instead, partial-wave expansion is reserved for the final state, 

described by the wave function of the emitted photoelectron, 𝜓௞
௘௟, where k is linear momentum. 

The anisotropy parameter for a given transition can then be calculated from the transition-dipole 

matrix elements ൻ𝜓௞
௘௟ห𝑟𝑌ଵ,଴

 หΦௗൿ defined within the electric-dipole and sudden-detachment 

approximations. In the above, Dyson orbital Φௗ is defined as: 

  (3) 

where Ψ௜
ேሺ1, … ,𝑁ሻ and Ψ௙

ேିଵሺ2, … ,𝑁ሻ are many-body wave functions of the initial N-electron 

and final N1 electron states, respectively.55-57 In the limit of a Hartree-Fock (or Kohn-Sham) 

description of the N-electron state and Koopmans approximation for the N1 electron state, Dyson 

orbitals correspond to the canonical orbitals—hence, the latter are often used as an approximation 

to the Dyson orbitals computed from many-body wave functions.58  

There are several approaches for the treatment of  𝜓௞
௘௟.57,59-62  We will first attempt to describe 

the departing electron as a free particle experiencing no interactions with the neutral residue, 

aiming to show that this approach (commonly used for anion photodetachment) is inadequate in 

the present case. 

Plane-wave calculations. Without exit-channel interactions, the electron can be conveniently 

represented as a superposition of free spherical waves: 

  (4) 

where Yℓ,ఒ are spherical harmonics and 𝑗ℓሺ𝑘𝑟ሻ are integer-order spherical Bessel functions for a 

plane wave. In contrast to the l components of the detachment orbital, ℓ and  in eqn (4) describe 

the emitted waves (ℓ = l ± 1). 

To apply this approach to SO, the anion geometry was optimized with CCSD(T)/aug-cc-
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pVTZ. The equation-of-motion (EOM-CCSD) method63 was then used to calculate the Dyson 

orbitals for each of the SO(X 3Σ, a 1, b 1Σ)  SO(X 23/2) transitions at the optimized geometry 

(R = 1.592 Å) of the anion. Two different EOM approaches were used. In the first, the SO(X 23/2) 

and SO(X 3Σ, a 1, b 1Σ) states were obtained using electron-attachment (EOM-EA-CCSD) and 

spin-flip (EOM-SF-CCSD) calculations, respectively, starting from the common triplet-state 

CCSD reference.64,65 This approach uses a well-behaved reference and treats the initial (SO) and 

all the final (neutral SO) states on an equal footing.66 The second approach uses ionization-

potential (EOM-IP-CCSD) ansatz to access each of the three neutral states starting from the 

(doublet) anion reference.63 By virtue of using orbitals and coupled-cluster amplitudes optimized 

for the anion, this approach describes the anion state better than the first one, but can be affected 

by artifacts due to symmetry breaking of the open-shell doublet reference and an imbalance in 

treating degenerate π∗ orbitals.  

The aug-cc-pVTZ+5s5p5d5f basis set was used for most ab initio calculations, unless indicated 

otherwise. The basis set was constructed by supplementing the standard aug-cc-pVTZ basis with 

five s, five p, five d, and five f additional diffuse functions with exponents decreasing progressively 

by a factor of 2. All electronic structure calculations were carried out using Q-Chem.67  

The Dyson orbitals obtained using the above EOM-EA/SF and EOM-IP approaches are shown 

in Fig. 3(a) and (b), respectively. Although nominally each of the three transitions removes an 

electron from the doubly degenerate π∗ HOMO of SO, in the spin-unrestricted picture neither the 

canonical MOs nor Dyson orbitals for the three transitions are identical. As expected, the Dyson 

orbitals calculated using the EOM-EA/SF and EOM-IP methods are similar in appearance, but this 

assessment refers only to the orbital shapes at the chosen isosurface amplitude. The corresponding 

〈𝑅ଶ〉 values indicate that the EOM-IP orbitals are consistently more diffuse than the respective 
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EOM-EA/SF counterparts. For the X 3Σ transition, 〈𝑅ଶ〉 = 2.192 and 2.572 Å2 describe the EOM-

EA/SF and EOM-IP Dyson orbitals, respectively. The corresponding values for a 1 are 2.112 vs. 

2.426 Å2, while those for b 1Σ are 2.049 vs. 2.257 Å2. The 〈𝑅ଶ〉 differences are largely due to the 

long-range tails of the wave functions, rather than their short-range amplitudes, which is why they 

are not observable in Fig. 3. To illustrate this point, Fig. 4 shows one-dimensional plots of the 𝑦 

dipole operator (𝑦ො) multiplied by the EOM-EA/SF and EOM-IP Dyson orbitals for the X 3Σ tran-

sition. The graph reveals a more diffuse tail of the orbital computed using EOM-IP. 

From the Dyson orbitals, the ezDyson 5.0 program68 was used to calculate the () curves using 

the plane-wave expansion represented by eqn (4) with waves up to ℓ = 5 included.59 The results 

are shown in Fig. 5(a) for the EOM-EA/SF orbitals and Fig. 5(b) for EOM-IP. In each case, the 

calculated curves are compared to the experimental data reproduced from Fig. 2(a). Unlike the p-

d mixing and Cooper-Zare curves in Fig. 2, the ezDyson curves in Fig. 5 are purely ab initio: no 

parameters were adjusted to match them to the experimental results. Overall, the agreement 

between either set of the ezDyson curves and the experiment is poor: the models significantly 

overestimate the location of the () minima. Also surprising is the fact that there is a significant 

discrepancy between () curves computed with EOM-EA/SF and EOM-IP Dyson orbitals.  

As noted above, the two approaches differ by their treatment of the electron correlation and 

orbital relaxation effects in anionic and neutral states. Both methods are known to be robust and 

are comparable in the level of correlation treatment (both include up to double excitations); 

however, as our results indicate, one may be more effective than the other in treating anionic states.  

We attribute the discrepancy between the two sets of computed anisotropy trends to the sensitivity 

of PADs to the diffuse parts of the wave functions. The importance of long-range wave function 

behavior in PAD calculations has been stressed before;69 it comes from the dipole operator 𝑟̂, 



15 

which amplifies the contribution of the tails of Dyson orbitals into the dipole matrix elements. 

The l-mixing formalism provides an alternative perspective on this effect. The generalized 

Hanstorp coefficients depend on radial integrals of orbital functions scaled by high powers of r, 

amplifying the effect of diffuse orbital tails on the resulting PADs.48 If hydrogenic radial functions 

are used, the B2 coefficient in eqn (2) scales as 𝐵ଶ ∝ 𝜁ଷௗ
଻ /𝜁ଶ௣

ଽ , where 𝜁ଷௗ and 𝜁ଶ௣ are the effective 

charges introduced in Sec. 4.1.47,48 While the appearance of the orbitals in Fig. 3 is defined mainly 

by their dominant d character, a major effect on the () curve comes from the long-range scaling 

of the more diffuse (𝜁ଶ௣ ൏ 𝜁ଷௗ) and relatively minor p component of the orbital, described by 𝜁ଶ௣. 

To support this point, the dashed curve in Fig. 2(a) was generated using eqn (2) with the same 

parameters as the solid curve, except for 𝜁ଶ௣, which was increased from 1.05 (solid curve) to 1.30 

(dashed curve). This change makes the p (polarization) component less diffuse, without affecting 

the orbital’s dominant d contribution. The resulting change in (), i.e. a significant shift of the 

minimum to larger eKE, is qualitatively similar to how the EOM-EA/SF ezDyson curves in Fig. 

5(a) differ from their EOM-IP counterparts in Fig. 5(b). Therefore, it should come as no surprise 

that the differences in the long-range behavior of the EOM-EA/SF and EOM-IP Dyson orbitals 

lead to significant variations in the predicted anisotropy trends. Using the axis definition from Fig. 

4, the p component of the p-d model orbital in the l-mixing treatment of SO is represented speci-

fically by a py function. The above empirical conclusion about the less diffuse nature of the p 

component describing the EOM-EA/SF orbital, compared to EOM-IP, is therefore consistent with 

the y-dimension plots in Fig. 4. 

The differences between the EOM-EA/SF and EOM-IP approaches are ultimately rooted in 

approximate treatment of electron correlation. These differences are expected to decrease and 

eventually disappear when higher excitations are included (triples, quadruples, ...), as the two 
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treatments become equivalent at the full configuration interaction limit.    

Moreover, there were discrepancies between the predicted ezDyson curves and the experi-

mental trends. Due to the similarity of the () curves for each of the X 3Σ, a 1, and b 1Σ neutral 

states, the calculations discussed in the remainder of this section will focus on the X 3Σ state. 

Unless indicated otherwise, the discussion is focused on the EOM-IP Dyson orbitals computed 

with the aug-cc-pVTZ+5s5p5d5f basis set. 

To check the sensitivity of the calculations to where we place the origin of the plane-wave 

expansion, we compared () computed with the expansion placed at the centroid of the Dyson 

orbital to those computed with the origin of expansion placed at the sulfur atom. As shown in Fig. 

6(a), the sulfur-centered calculations resulted in only a small change. 

Whereas the partial-wave expansion per eqn (4) provides a useful tool to analyze the wave 

function of the ejected photoelectron for contributions of different angular momentum quantum 

numbers, in practice it must be truncated at some finite value of ℓ. Such a truncation may be 

justified for molecular orbitals that resemble atomic orbitals, especially at low eKE. Nonetheless, 

we test the consequences of truncating the partial wave expansion at ℓ = 5 in two ways. First, we 

increased the upper limit of ℓ to 10. As shown in Fig. 6(b), this had a negligible effect on the () 

curves. Next, we avoid the partial-wave expansion by using the full expression for the plane wave, 

 𝜓௞
௘௟ ൌ ଵ

ሺଶగሻయ/మ 𝑒
௜𝒌∙𝒓, (5) 

where 1/(2)3/2 is the continuum normalization factor. Without using a partial wave expansion, the 

anisotropy parameter  can be computed from 

 𝜎௣௔௥ ∝ ൻΦ௅
ௗห𝑟𝑌ଵ,଴

 ห𝑒௜𝒛∙𝒓ൿൻ𝑒ି௜𝒛∙𝒓ห𝑟𝑌ଵ,଴
 หΦோ

ௗൿ (6) 

and 
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 𝜎௣௘௥௣ ∝
ଵ

ଶ
ൻΦ௅

ௗห𝑟𝑌ଵ,଴
 ห𝑒௜𝒙∙𝒓ൿൻ𝑒ି௜𝒙∙𝒓ห𝑟𝑌ଵ,଴

 หΦோ
ௗൿ 

             ൅ଵ

ଶ
ൻΦ௅

ௗห𝑟𝑌ଵ,଴
 ห𝑒௜𝒚∙𝒓ൿൻ𝑒ି௜𝒚∙𝒓ห𝑟𝑌ଵ,଴

 หΦோ
ௗൿ (7) 

using69 

  (8) 

In eqn (6) and (7), Φ௅
ௗ is the left Dyson orbital and Φோ

ௗ is the right Dyson orbital (for Hermitian 

methods the two are identical).70 Averaging over molecular orientations is performed numerically 

in ezDyson using orientations computed with REPULSION.71 

The results of these calculations are represented by the ℓ୫ୟ୶ ൌ ∞ curve in Fig. 6(b). Again, 

using the exact expression for the plane wave gave almost identical results as using the partial 

wave expansion with ℓ୫ୟ୶ = 10 or 5. In fact, the ℓ୫ୟ୶ = 5 (blue) curve is difficult to discern in 

Fig. 6(b), because it coincides almost exactly with the other two curves in the figure. This demon-

strates that using the partial wave expansion with terms up to ℓ = 5 is sufficient for describing the 

near-threshold photoelectron anisotropy in SO. 

While the ab initio calculations using plane-wave description of the ejected electron do not 

agree quantitatively with the experiments, the β() profile has the correct shape; the calculations 

just overestimate the energy of the β() minimum. The value of β is dependent on the contributions 

of partial spherical waves with different angular momenta to 𝜓௞
௘௟. When 𝜓௞

௘௟ is dominated by ℓ = 

0 waves (near the ionization threshold), β  0. The mixing in of higher angular momentum 

spherical partial waves gives rise to cross-terms that result in a negative β.72 As higher angular 

momentum waves become dominant at higher energies, β increases and becomes positive. The 

energy where this occurs is determined by the integral ൻ𝜓௞
௘௟ห𝑟𝑌ଵ,଴

 หΦௗൿ. The disagreement between 

the ab initio calculations and experiment, therefore, must be because partial waves with ℓ ൐ 0  do 
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not overlap early enough with ห𝑟𝑌ଵ,଴
 หΦௗ⟩ as the energy increases. There are two possible explana-

tions for this:69  

(1) The true Dyson orbital is more diffuse than the computed one, and therefore starts overlap-

ping with ℓ ൐ 0 waves at lower energies.  

(2) The interaction between the photoelectron wave function (𝜓௞
௘௟) and the SO molecule after 

detachment cannot be neglected. That is, a plane wave treatment of 𝜓௞
௘௟ is not adequate and an 

improved theory is required to account for this interaction.  

The first explanation is unlikely, because Dyson orbitals were computed using correlated 

EOM-CCSD wave functions with the standard triple- basis augmented with 20 additional diffuse 

functions. To confirm that the basis set is not an issue, we carried out calculations using four 

different basis sets. Specifically, the aug-cc-pVTZ+5s5p5d5f results were compared with aug-cc-

pVTZ, aug-cc-pVQZ, and aug-cc-pVQZ+2s2p1d1f1g basis set calculations. The latter is 

constructed by supplementing aug-cc-pVQZ with two s, two p, and one of each d, f, and g 

additional diffuse functions, with the exponents decreasing by a factor of 3. The results (Fig. 7) 

indicate that, regardless of whether EOM-EA/SF or EOM-IP was used, including diffuse functions 

in the basis set does have an effect on the β() values. However, once such diffuse functions are 

added, the calculations are not very sensitive to the details of how many diffuse functions are 

added. For example, the less diffuse aug-cc-pVQZ+2s2p1d1f1g basis set and the more diffuse aug-

cc-pVTZ+5s5p5d5f give essentially the same results.  

This leaves us with the second hypothesis. While the expansion in eqn (4) is rigorously com-

plete (assuming the upper limit of ℓ is set to infinity), it neglects interactions between the outgoing 

electron and the remaining neutral molecule. Thus, it does not describe the final state of the emitted 

electron in cases when such interactions cannot be ignored. As SO appears to be such a case, the 
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way forward is to use final-state basis functions that accommodate exit-channel interactions. At 

first, we will attempt to use a simple point-charge (Coulomb) interaction-consistent basis set. This 

approach will fail, similar to plane waves, but further treatments explicitly including the dipole 

field will succeed. Taken together, these results will provide a clear indication of the importance 

of specifically electron-dipole interactions in SO photodetachment. 

Coulomb waves. One way to construct an interaction-consistent basis set is to replace the 

spherical Bessel functions 𝑗ℓሺ𝑘𝑟ሻ in eqn (4) with Coulomb radial functions 𝑅ℓሺ𝑘𝑟, 𝜂ሻ that account 

for an electrostatic interaction: 

  
(9)

 

where Γ is the Gamma function, and 1F1 is the confluent hypergeometric function of the first kind. 

The Sommerfeld parameter η depends on the charge Z, 

 𝜂 ൌ
െ𝑍
𝑘

 , (10) 

which determines the strength of the Coulomb interaction between the ejected photoelectron and 

the remaining molecule. In photoionization of atoms, Z = 1 is used to account for the interaction 

between the electron and the positively charged ionized core, while in photoionization of 

molecules, an effective partial charge Zeff may be used instead.59,73 The Coulomb wave treatment 

of 𝜓௞
௘௟ has been used with success to calculate photoionization cross sections in small and medium-

sized molecules,59,74,75 but the accurate description of photoelectron angular distributions remains 

problematic with this approach.73 This is demonstrated again here for SO in Fig. 8, where the 

computed curves do not agree with the experimental data. With Coulomb waves, the contribution 

of spherical partial waves with ℓ ൐ 0 becomes large near the ionization threshold, causing the 

value of β to increase above 0 even at near-threshold energies. 
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A problem with using a Coulomb wave expansion of 𝜓௞
௘௟ in combination with the single-center 

electric-dipole approximation, ൻ𝜓௞
௘௟ห𝑟𝑌ଵ,଴

 หΦௗൿ, is that selection rules stemming from orthogonality 

conditions are lost. By having the center of expansion of 𝜓௞
௘௟ placed at the centroid of the Dyson 

orbital and therefore, in this case, displaced from the S and O atomic centers, multiple high angular 

momentum partial waves contribute significantly to the wave expansion even at low energies. In 

practice, we must truncate the expansion at some finite ℓ (in this case, we use ℓ ൌ 10, the maxi-

mum implemented in ezDyson). An even more serious issue is that a single-center expansion in 

terms of Coulomb waves is a monopolar approach which cannot reasonably account for the dipole 

moment of the neutral residue—a feature that will be shown to be critical in the present case. Both 

of these limitations are resolved in the second part of Sec. 4.3. 

4.3.  Ab initio treatment of the electron-dipole interactions 

Replacing the spherical Bessel functions 𝑗ℓሺ𝑘𝑟ሻ in eqn (4) with Coulomb radial functions from 

eqn (9), as described in Sec. 4.2, adopts an alternative interaction-consistent basis for the final state 

of the electron, but if only a single expansion center is used, this approach does not introduce a 

dipole moment into the system. We now turn to two alternative formalisms to model the exit-

channel interactions between the emitted electron and the polar neutral residue. 

Fixed point-dipole calculations. Recently, comparison of the formalism defined in eqn (4) to 

experimentally measured β values in near-threshold CN− detachment demonstrated the importance 

of exit-channel interactions between the emitted electron and CN dipole (1.45 Debye in the X 2 

state),6 at least for detachment from a σ-type orbital.5 Given the similar dipole moment of SO (1.55 

Debye in the X 3 state),7 it should be expected that such interactions are also important in SO. 

SO is indeed an excellent system to demonstrate that the effect of a strong neutral dipole moment 

on detachment from a non-σ orbital is not negligible. To take the electron-dipole interactions into 
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account, the free-electron waves describing the continuum in eqn (4) are replaced with the eigen-

functions of an electron moving in the field of a point dipole:76 

  (11) 

In this expansion, the radial parts are represented by non-integer index spherical Bessel functions 

𝑓௅ಿഊ
ሺ𝑘𝑟ሻ. Their indices 𝐿ே

ఒ  are determined from the eigenvalues of the point-dipole matrix 

 ൻ𝑌ℓᇲ,ఒᇲሺ𝜃௥𝜙௥ሻห൫𝓵ሬ⃑
ଶ െ 2𝐷 cos𝜃௥൯ห𝑌ℓ,ఒሺ𝜃௥𝜙௥ሻൿ (12) 

where D is the magnitude of the dipole moment. Whereas the eigenvalues of 𝓵ሬ⃑ ଶ, ℓሺℓ ൅ 1ሻ, are 

defined by the ℓ quantum number, which is always integer, the similarly expressed eigenvalues of 

the composite operator ൫𝓵ሬ⃑ ଶ െ 2𝐷 cos𝜃௥൯ are defined by eigenvalues 𝐿ே
ఒ ൫𝐿ே

ఒ ൅ 1൯, where 𝐿ே
ఒ  is 

non-integer, if D  0. The corresponding eigenfunctions, Ω௅ಿഊ , replace the standard spherical 

harmonics of eqn (4). The non-integer 𝐿ே
ఒ  values reflect the mixing of the pure angular momentum 

components of the free electron due to interactions with the point dipole. The corresponding 

angular functions can therefore be described as superpositions of pure spherical harmonics: 

  (13) 

where 𝐴௅ಿഊ ,ℓ are the eigenvector coefficients from the point dipole matrix in eqn (12). Unlike the 

magnitude of orbital angular momentum, its projection onto the dipole axis (represented by the 

quantum number λ) is still a conserved quantity. In the limit of zero dipole moment, the free-

particle and point-dipole approaches become identical and 𝐿ே
ఒ  correlates with a particular ℓ, λ 

combination. Thus, the index N can be correlated with a zero-dipole-limit ℓ quantum number. 

Although still approximate, the point-dipole approach gives a strong indication of the impor-

tance of electron-dipole interactions in photodetachment.5 To illustrate this point, Fig. 9 shows 
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isosurface representations of the continuum probability densities at D = 0 (left) and D ≠ 0 (right) 

for particular Ω௅ಿഊ . For D = 0, the probability densities are those of a single spherical harmonic 

(multiplied by the appropriate radial function). For D = 0.60 a.u. (1.53 Debye), there are small 

quantitative differences to the D = 0 case for larger N, λ, but they are not visually obvious and 

hence omitted from the figure. That these differences are small is mainly an effect of the centrifugal 

barrier, which suppresses the radial amplitude and, hence, point-dipole functions correlating to 

higher ℓ in the vicinity of the dipole. However, even by eye, the point-dipole functions correlating 

to smaller ℓ (N ≤ 2) are strongly affected.  

We used the point-dipole representation of the continuum, eqn (11)-(13), within an updated 

version of our existing Matlab code,5 to calculate the () trends in SO photodetachment for 

various dipole-moment values assigned to the neutral residue. As noted previously, the relevant 

Dyson orbitals shown in Fig. 3 are reminiscent of lopsided d-like orbitals, so this work is the first 

application of this approach to non-σ Dyson orbitals. In Fig. 10, () curves for the three 

transitions, SO(X 3Σ, a 1, b 1Σ; 𝑣′)  SO(X 2) are shown at different dipole moment values 

(given in atomic units). The left half of the figure, (a)-(c), presents the results obtained using the 

EOM-EA/SF Dyson orbitals from Fig. 3(a). The right half, Fig. 10(d)-(e), with the EOM-IP 

orbitals from Fig. 3(b). As a reminder, both methods used the aug-cc-pVTZ+5s5p5d5f basis set. 

We repeated the calculations with Dyson orbitals obtained using the aug-cc-pVQZ+2s2p1d1f1g 

basis set, with nearly identical results (not shown). 

For D = 0, the curves in Fig. 10(a)-(c) coincide with the plane-wave ezDyson calculations in 

Fig. 5(a), while those in Fig. 10(d)-(f) with their counterparts in Fig. 5(b). This is expected: with 

the dipole moment set to zero both types of calculations amount to the free-particle treatment of 

the detached electron. As D is increased, the curves calculated using eqn (11)-(13) deviate from 
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the free-particle limit.  

The three transitions appear to be affected in a similar manner, consistent with the similar 

shapes of the corresponding Dyson orbitals. The location of the () minimum consistently shifts 

to lower eKE as D increases, and the width of the minimum becomes narrower. At the same time, 

the depth of the minimum increases as D changes from zero to ~0.4 a.u., but this trend reverses for 

larger values of D. For D  0.4 a.u., the entire () curve for each of the transitions gradually shifts 

upward with increasing D. This parametric trend accelerates as D approaches the critical value for 

binding an ℓ = 0 electron in the point-dipole field, Dc = 0.6393 a.u. (1.625 Debye).4 Our current 

implementation only allows for D values below the critical dipole (i.e. in the absence of dipole 

bound states). Above the critical limit, the unphysical nature of the point dipole model becomes 

problematic. At the origin, an infinite number of deeply bound states exist – and more pertinently, 

the radial wave function oscillates rapidly as the origin is approached.77 In future versions of our 

code, this problem will be addressed using a more physically reasonable description of the dipole 

as two separated point charges.78 

The rapid anisotropy change just below Dc signals significant changes in the outgoing electron 

wave function as its s component approaches the binding limit in the point-dipole field. To 

emphasize the rapid evolution of the () trends as D  Dc, all graphs in Fig. 10 include the curves 

calculated with D = 0.6390 a.u. (i.e., just below Dc). In each case, the difference between the 

0.6390 and 0.6 a.u. curves is more significant than that between 0.6 and 0.4 a.u.  

The D  Dc regime is relevant to SO photodetachment, because the SO(X 3) dipole moment 

is 0.610(8) a.u., while that for the a 1 state is 0.52(2) a.u.7 Both of these published dipoles corre-

spond to the respective neutral equilibrium geometries. Since photodetachment is a vertical pro-

cess, dipole moment values corresponding to neutral states at the geometry of the anion are more 
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appropriate. Our CCSD/aug-cc-pVTZ calculations indicate significant increases (by 0.16 and 0.22 

a.u., respectively) in the dipole moment for the triplet and singlet channels. This is due to the larger 

charge separation as the bond length is extended from the neutral to the anion equilibrium value. 

Inclusion of these corrections increases D to above the fixed dipole 0.6393 a.u. critical value.  

The 0.6393 a.u. (1.625 Debye) critical dipole for binding an electron is based on a fixed dipole 

approximation.4 This limit is the same regardless of whether a point-dipole or a two-center sepa-

rated-charge representation is employed.79 Of course, real molecules are neither fixed nor point 

dipoles, and the accepted requirement for a molecule to support a dipole-bound anion state is for 

D to be in excess of about 0.94 a.u. (2.4 Debye). Similar limitations are likely to apply to our 

analysis. Nonetheless, the results in Fig. 10 clearly show that, similar to previous observation for 

a σ orbital,5 -orbital detachment is affected by the presence of a strong dipole in the neutral resi-

due. For a proper understanding of photoelectron ejection dynamics, even in cases where dipole-

bound states are not supported, long-range electron-dipole interactions need to be considered. 

The above approach, employing the solutions of the fixed point-dipole Schrödinger equation 

to evaluate the ൻ𝜓௞
௘௟ห𝑟𝑌ଵ,଴

 หΦௗൿ integrals, demonstrates the importance of accounting for the inter-

action between dipole moment and the electron in PAD modeling. Next, we present an alternative 

approach that models SO as two separate electron wave emitters with opposite but equal charges. 

Multi-center calculations. We now model the dipole moment in the neutral SO residue by 

placing a (charged) center of Coulomb-wave expansion of the emitted electron, 𝜓௞
௘௟, on each 

atomic center.73 In such a multi-center treatment, the molecular Dyson orbital is split into parts 

corresponding to each atomic center c: 

 , (14) 

Using this expansion, the total photoelectron dipole matrix element is computed as a sum of the 
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contributions from matrix elements determined at the individual centers. The dipole matrix ele-

ments are then computed using these atom-centered fragments of the Dyson orbital instead of the 

full molecular Dyson orbital. While this approach neglects coherences between the atomic centers, 

not all information about the molecular orbital is lost since the atomic centers retain some infor-

mation about the bonding and polarization from the nearby atoms. The advantage of this approach 

is that it ensures orthogonality by placing the center of expansion of the photoelectron wave func-

tion on the corresponding atomic center.  

For the multi-center PAD calculations in this section, Dyson orbitals were computed using 

both the EOM-IP-CCSD and the EOM-EA/SF-CCSD methods described above, but with the 

standard aug-cc-pVTZ basis set (without augmenting it with additional highly diffuse functions). 

This is to avoid artifacts from the highly diffuse functions that result in electron density far from 

the atom centers [e.g., see the X 3 EOM-EA/SF Dyson orbital in Fig. 3(a)]. β(ε) was computed 

using both plane (ZS, ZO = 0) and Coulomb (ZS, ZO  0) waves to test the effect of varying the 

effective charges on oxygen (ZO) and sulfur (ZS), under the constraint ZO = − ZS. Since oxygen is 

more electronegative than sulfur, we use a negative charge on O and a positive charge on S. The 

results for ZS = 0, 0.05, 0.10, 0.15, and 0.20, obtained using the X 3 channel Dyson orbital (Fig. 

3) are shown in Fig. 11(a) for EOM-EA/SF-CCSD and Fig. 11(b) for EOM-IP-CCSD. The results 

with the two methods are quantitatively different, indicating a high sensitivity to the diffuseness 

of the Dyson orbital. However, both exhibit the same trend and lead to a conclusion that is consis-

tent with the point dipole calculations above—the increasing strength of the interaction of the 

ejected electron with the polar core leads to a shifting of the β(ε) minimum to lower eKE. For the 

EOM-IP-CCSD Dyson orbital, the multi-center calculation using Coulomb waves with ZS = 0.10 

and ZO = −0.10 give the best agreement with experiment, while for EOM-EA/SF-CCSD the best 
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agreement is when using ZS = 0.15 and ZO = −0.15.  

The dipole moment of SO at its X 3 equilibrium bond length is 0.610(8) a.u. (1.55 Debye).7 

Dividing by the equilibrium bond length of SO, 1.592 Å (from CCSD/aug-cc-pVTZ calculations), 

the partial charge on sulfur is estimated to be ZS = 0.20 (assuming that the dipole moment does not 

change from its adiabatic value). A similar estimate for the a 1 channel (D = 0.52(2) a.u.)7 yields 

ZS = 0.17. These estimates are in reasonably close to the values suggested by the above multi-

center calculations. Due to the approximate treatment of the photoelectron wave function and the 

sensitivity of the multi-center approach to the details of the method and basis set, the better 

quantitative agreement for the EOM-EA/SF-CCSD calculations is likely coincidental and does not 

mean that the EOM-EA/SF-CCSD method is more accurate than EOM-IP-CCSD for this system. 

The improved agreement of the multi-center calculations with the experiment reaffirms the 

need for a theory to compute PADs and anisotropies using a description of the continuum that 

accounts for interaction of the outgoing photoelectron waves with the molecular dipole.  

5.  Summary and conclusions 

We have reported a photoelectron imaging and ab initio study of the angular distributions in SO 

photodetachment accessing the X 3, a 1, and b 1Σ+ electronic states of SO, and discussed the 

results in comparison to the PADs determined previously for O2
. Taking a bird’s eye view of the 

experimental data for the three transitions in aggregate, the observed  vs. eKE anisotropy curve 

follows the general trend expected for π∗ orbital photodetachment, but compared to O2
, the 

minimum of the SO curve is shifted to smaller eKE.  

Several ab initio models using Dyson orbitals were considered. It is most revealing that neglect 

of the SO dipole moment yields () curves with shallow minima mostly at  > 1.5 eV. This 
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predicted behavior is similar to the O2
 results, but inconsistent with the SO experimental data. 

On the other hand, the models that include the SO dipole into the theoretical framework yield a 

much-improved agreement with the experiment. These models are: the point dipole-field model 

with D > 0.6 a.u. [Fig. 10(d)-(f)] and the multi-center model with ZS = 0.10-0.15 [Fig. 11]. While 

these are two different approaches for accounting for the SO dipole–photoelectron interaction, 

their results are consistent and lead to the overarching conclusion: The distinctions between the 

O2
 and SO PADs should be attributed mainly to the electron-dipole interactions in the exit 

channel of SO photodetachment, rather than the different shapes of the detachment orbitals. A 

similar conclusion was previously reached for CN;5 here we presented the first extension of the 

dipole-field model to detachment from non- orbitals. 

The computed photoelectron angular distributions are sensitive to the long-range behavior of 

wave functions and, therefore, the exact method for calculating the Dyson orbitals. At a relatively 

low-level of treatment (up to double excitations), the EOM-IP approach using the anionic reference 

yields more diffuse Dyson orbitals and quantitatively different () curves compared to the EOM-

EA/SF method using the neutral reference. For most of the calculations in this work, the EOM-IP 

Dyson orbital calculations yield the more accurate () curves. This is consistent with a known 

behavior of these methods in calculations using closed-shell references, e.g., the effect of triple 

excitations is more important for EOM-EA than for EOM-IP. Hence, we expect the differences 

between the two approaches to be reduced when triple excitations are included.    

Nevertheless, the sensitivity of the results to the correlation level in calculations of Dyson 

orbitals does not affect our main conclusion, that the electron-dipole interactions must be 

considered for accurate modeling of PADs. We emphasize that for this effect to be prominent, the 

dipole moment D of the neutral residue does not have to exceed the critical value Dc for binding 
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an electron in the dipole field. Nonetheless, as D is increased towards Dc, the parametric depend-

ence of PADs on the former increases sharply. In the future it would be interesting to incorporate 

the (non-Born-Oppenheimer) effects associated with molecular rotation and examine these effects 

in the regime of D  Dc, which is not accessible in the current model implementation.  

Finally, we highlight the pitfalls of empirical fitting approaches, such as those often used in 

conjunction with the Cooper-Zare or l-mixing models. These models contain physical variables 

(transition-dipole matrix elements, phase shifts, etc.), which can be determined in one of two ways: 

via ab initio calculations or by treating them as adjustable parameters while fitting the model to 

experimental data. It is the latter approach that can be problematic, for given several empirical 

parameters it is usually possible to match the model to the experimental results, without guarantee 

that the “best” parameter values are physically meaningful. Ab initio calculations—such as 

ezDyson with correlated Dyson orbitals—do not always support the parameter values giving the 

best fit. Such discrepancies help one learn about essential physics of the problem—in the present 

case, the effect of the core dipole moment on the emitted photoelectrons. 
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Figure 1 

 

 

 

 

 

 

Figure 1. SO photoelectron images (top) and corresponding spectra (bottom) collected at 611 nm 

(2.03 eV), 532 nm (2.33 eV), and 355 nm (3.49 eV) using linearly polarized light. The left and 

right halves of each image shown represent the raw and Abel-inverted data, respectively. The laser 

polarization direction is vertical in the plane of each image. The light-gray trace superimposed 

with the present data represents Lineberger’s 351.1 nm (3.531 eV) spectrum;31 it is used here to 

facilitate the vibrational state assignments. The SO(X 3Σ, a 1, b 1Σ; 𝑣′)  SO(X 23/2; 𝑣) 

photodetachment transitions observed in the spectra are labeled using the (𝑣′,𝑣″) format.  
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Figure 2 

 

Figure 2. Photoelectron anisotropy parameter () as a function of eKE for (a) SO and (b) O2
. 

The SO data in (a) correspond to the 611 nm (2.03 eV), 532 nm (2.33 eV), and 355 nm (3.49 nm) 

experimental results presented in Figure 1. The blue solid curve in (a) is a 2p-3d mixing curve 

calculated using eqn (2) with 𝛾ௗ = 0.81, 𝐴ଵ = 0.53 eV-1, 𝐴ଶ = 0.10 eV-1, 𝐵ଶ = 11.4 eV-1, and cos2,0 

= cos3,1 = 0.96. The dashed curve corresponds to 𝐴ଵ = 0.35 eV-1, 𝐵ଶ = 1.7 eV-1, with all other 

parameters unchanged (see the text for details). The curve in (b) is defined by Hanstorp’s 

implementation of the Cooper-Zare equation [or, equivalently, eqn (2) with 𝛾ௗ = 1], using A2 = 

0.36 eV1 and cos3,1 = 0.96. 
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Figure 3 

 

 

 

Figure 3. The Dyson orbitals corresponding to detachment transitions from SO(X 2) to the X 3Σ, 

a 1∆, and b 1Σ+ electronic states of neutral SO. The orbitals shown in (a) were calculated using 

transitions from EOM-EA-CCSD to EOM-SF-CCSD states, each starting from the common 

triplet-state reference, ሾ… ሿଶଶሺπαሻଵሺπᇱαሻଵ, where π and π′ are the canonical HOMOs of SO(X 3Σ) 

and ሾ… ሿଶଶ is the closed-shell configuration comprised of 22 electrons. The orbitals in (b) were 

obtained using EOM-IP-CCSD, starting from the ሾ… ሿଶଶሺπαሻଵሺπβሻଵሺπᇱαሻଵ anion reference. The 

two orbitals for the a 1∆ state shown in (a) describe the degenerate ሾ… ሿଶଶሺπαሻଵሺπβሻଵሺπᇱαሻଵ  

ሾ… ሿଶଶሺπαሻଵሺπβሻଵ and ሾ… ሿଶଶሺπαሻଵሺπᇱαሻଵሺπᇱβሻଵ  ሾ… ሿଶଶሺπᇱαሻଵሺπᇱβሻଵ transitions accessible 

from the triplet reference. Only the former is accessible from the anion reference and hence only 

one a 1∆ orbital in shown in (b). The calculations were done using the aug-cc-pVTZ+5s5p5d5f 

basis set at the CCSD(T)/aug-cc-pVTZ optimized geometry of the anion. Isosurface values 0.02.  
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Figure 4 

 

 

 

 

 

Figure 4. A plot of 𝑦ො ൈ Φௗ versus 𝑦ො for Dyson orbitals computed for detachment from SO(X 2) 

to the X 3Σ state of SO. The figure shows Dyson orbitals computed using CCSD  EOM-IP-

CCSD (orange) and EOM-EA-CCSD  EOM-SF-CCSD (blue) wave functions with the aug-cc-

pVTZ+5s5p5d5f basis set. The y axis was chosen for this plot, because it goes through a region of 

the Dyson orbital that has a large electron density.   
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Figure 5 

 

 

 

 

Figure 5. Curves represent β() trends computed for the three different neutral states accessed in 

SO photodetachment: X 3Σ– (blue), a 1∆ (orange), and b 1Σ+ (grey). The curves in (a) were calcu-

lated using the EOM-EA/SF Dyson orbitals shown in Fig. 3(a), whereas the curves in (b)—the 

EA-IP orbitals from Fig. 3(b). A plane-wave expansion of the emitted-electron wave function was 

used in each case. Symbols represent the experimental data reproduced from Fig. 2(a) for compa-

rison. 
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Figure 6  

 

 

Figure 6. (a) Comparison of the β() profiles for photodetachment into the X 3Σ–  state of SO using 

a plane-wave expansion centered on the Dyson orbital centroid (Dyson-centered, blue) and on the 

sulfur atom (S-centered, orange). (b) Comparison of the β() profiles for photodetachment into the 

X 3Σ–  state of SO when truncating the plane wave expansion at ℓmax = 5 (blue), 10 (orange), or 

without using a plane wave expansion with numerical averaging (ℓmax ൌ ∞). In both panels, 

symbols represent the experimental data reproduced from Fig. 2(a) for comparison. Calculations 

were carried out using EOM-IP-CCSD/aug-cc-pVTZ+5s5p5d5f Dyson orbitals. 
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Figure 7  

 

 

 

 

 

 

Figure 7. Comparison of the β() profiles for photodetachment into the X 3Σ–  state of SO obtained 

using EOM-EA/SF (different shades of blue) and EOM-IP (different shades of orange) Dyson 

orbitals with different basis sets. Symbols represent the experimental data reproduced from Fig. 

2(a) for comparison. 
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Figure 8 

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Comparison of the β() profiles for photodetachment into the X 3Σ– state of SO using 

Dyson-centered Coulomb waves with varying values of the charge parameter Z (indicated to the 

right of each curve). Symbols represent the experimental data reproduced from Fig. 2(a) for 

comparison. Calculations were carried out using EOM-IP-CCSD/aug-cc-pVTZ+5s5p5d5f Dyson 

orbitals. 
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Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Continuum probability density, |𝑓ேఒሺ𝑘𝑟ሻΩ௅ಿഊ |ଶ, influenced by point dipole of strengths 

0 (left) and 0.6 a.u. (right). 
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Figure 10 

 

 

Figure 10. Experimental and computed PADs for SO−(X 2) photodetachment to the SO neutral 

states: (a) and (d) X 3Σ, (b) and (e) a 1, (c) and (f) b 1Σ+. The calculations in the left column (a)-

(c) used the EOM-EA/SF-CCSD Dyson orbitals; those on the right (d)-(f)—EOM-IP-CCSD. 

PADs calculated with varying point dipole strength (in a.u.) are shown. Symbols represent the 

experimental data reproduced from Fig. 2(a). 



42 

Figure 11 

 

 
 
 
 
 
 
 

Figure 11. Curves: photoelectron anisotropy parameter (𝛽) as a function of eKE for SO computed 

using the multi-center Coulomb-wave treatment of the photoelectron wave function. Symbols: 

experimental data reproduced from Fig. 2(a). The calculations in (a) used EOM-EA-CCSD to 

EOM-SF-CCSD Dyson orbitals, while those in (b) EOM-IP-CCSD. The aug-cc-pVTZ basis set 

was used in both cases. Results are shown with varying charges ZS and ZO = −ZS for photodetach-

ment to the X 3Σ state of SO. The ZS values for various curves are indicated on the right.  


