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ABSTRACT
Journaling of consumed foods through digital devices is a popular
self-tracking strategy for weight loss and eating mindfulness. Re-
search has explored modalities, like photos and open-ended text
and voice descriptions, to make journaling less burdensome and
more descriptive than traditional barcode and database searches.
However, less is known about how people prefer to journal foods
when less constrained by limitations of databases, natural language
processing, and image recognition. We deployed a food journal
prototype supporting varied devices and input modalities, which 15
participants used to journal 1008 food logs over two weeks. Partici-
pants had diverse strategies for indicating what and howmuch they
ate, varying from ambiguous foods to specifying varieties and using
di�erent measurements for clarifying amount. Some strategies were
interpretable by natural language food identi�cation and image
classi�cation services, while others point to open research ques-
tions. We �nally discuss opportunities for accounting for variance
in food journaling.
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1 INTRODUCTION
Food tracking, or digital food journaling, has become one of the
most popular self-tracking strategies to help with self-awareness
and eating mindfulness, with 42% of U.S. adults having tried an app
for diet or nutrition tracking as of 2017 [10, 30, 35, 37, 81]. Tracking
of food intake has been shown to help people achieve health goals
such as losing weight [18, 67, 81] and managing chronic diseases
(e.g., diabetes) [27, 32, 48, 63], identifying intolerances [53, 75],

This work is licensed under a Creative Commons Attribution International
4.0 License.

DIS ’21, June 28–July 02, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8476-6/21/06.
https://doi.org/10.1145/3461778.3462145

and making healthier food choices [58]. Commercial applications
typically support people in journaling the foods they eat through
lookups to food databases and scanning barcodes on packaged
foods, enabling them to aggregate a record of the foods they eat
and monitor how their daily intake aligns with calorie or nutrient
goals [6, 52, 77, 81].

Although food tracking can promote health bene�ts, it is widely
regarded as burdensome, requiring a person to reliably journal to
produce useful logs and contend with challenges around journaling
accurately [30, 31, 52]. For example, some foods may not appear
in food databases (e.g., foods from cultures the database was not
designed to support), and some social contexts may make jour-
naling uncomfortable or awkward [31]. In light of food tracking
challenges, various research e�orts have sought to minimize track-
ing burden by examining input modalities (i.e., methods of input)
beyond barcode and database searches, such as photos [30, 67]
and voice memos [62, 77]. Several e�orts have also invested in au-
tomating or complementing food tracking through eating moment
detection [11, 12, 26, 89], food image analysis [13, 45, 65, 83], and
identifying food consumption in natural language descriptions (e.g.,
social media posts) [2, 25, 79]. Other devices pose further oppor-
tunity for people to track their foods as they navigate di�erent
contexts throughout their life, such as through conversational inter-
actions with increasingly-available voice assistants (VA) [38, 68, 76].

Food journaling can be used to support open-ended awareness
and mindfulness goals [10, 37] as well as calorie and nutrient-
consumption goals [6, 52, 77, 81]. To support awareness and mind-
fulness, technology has often leveraged �exible food journaling
through text descriptions or photos to allow people to self-describe
their food or eating moments however they desire [10, 30]. Towards
nutrient consumption goals, substantial work has examined how
to recognize the foods and amount eaten to convert these input
modalities into logs which contain consumed nutrients. For exam-
ple, research in computer vision [16, 45, 82] and crowdsourcing
[67] has examined labeling foods in images, while work in natural
language processing [55, 56] has sought to identify what and how
much a person ate from a text description. Research has also looked
at improving the coverage of food databases [52].

As food journaling becomes incorporated into more devices and
systems, people will have access to increasingly varied methods of
tracking their foods in their daily routines. However, less is known
about how people wish to record their foods when under fewer
technology constraints around recognition, accurate entry, and
desire for recall. For example, input modalities can include varying
levels of detail about the foods people eat, from listing ingredients
to describing a high-level category food fall under. Additionally,
people often incorporate contextual information of where they ate
and who they ate with into �exible logs [30]. Understanding how
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people choose to describe what they eat in real-world settings can
o�er suggestions for how technology can better support people’s
preferred ways of journaling, such as opportunities for technology
to assist in clarifying descriptions, adding context when desired,
suggesting areas where recognition can improve, or accounting for
variance in how people describe their foods.

To understand how people prefer to journal their foods when
under fewer constraints, we developed and deployed ModEat, a
lightweight prototype for journaling on phones, computers, and
voice assistants, that supported di�erent input modalities, like bar-
code scanning, free text entry, voice logging, photo-taking, and
simulating a database search. 15 participants journaled 1008 food
logs with the prototype over two weeks. In analyzing food logs and
post-deployment interviews, we identify preferences and strategies
for describing foods. To understand gaps between description and
recognition, we further investigate how participant’s logs were and
were not interpretable by commercial natural language process-
ing (NLP) and food image classi�cation services. Through these
analyses, we note high variance in how people prefer to describe
what they eat, both between individuals based on goals and among
individuals based on their foods and circumstances. We contribute:

• An understanding of how people choose to describe what
and howmuch they ate when less constrained by recognition
limitations, through the deployment of ModEat, a �exible
technology prototype. Participant’s journal entries varied in
how they described the granularity, speci�city, amount, and
context of the foods they ate. Participant’s descriptions were
still typically interpretable by NLP and Computer Vision ser-
vices, but were less e�ective at evaluating more ambiguous
descriptions or unclear food packages.

• An understanding of how people’s food journaling goals and
modality use in�uence their preferred journaling strategies.
Input modality tended to in�uence the level of granularity
and speci�city participants used to describe foods, aggregat-
ing multiple foods into a single input more often and describ-
ing foods less speci�cally in more �exible input modalities,
like plain text and voice descriptions. Participants interested
in quantifying their nutrition typically included formal mea-
surements or counts of distinct items they ate, while people
with less quantitative focus tended to not indicate howmuch
they ate.

• Design recommendations for addressing and accounting for
variability in how people prefer to describe foods. We sug-
gest that designs could help mitigate variance in journal
entries through conversational approaches, but can also ac-
knowledge or leverage ambiguity to promote reminiscence.
By combining with general-purpose classi�ers, recognition
services could also detect more contextual information in
people’s text descriptions and images.

2 BACKGROUND
Our work builds on previous self-tracking research examining ap-
proaches for manual and automated food journaling, leveraging
prototype deployment for eliciting people’s perspective on use of
technology in real-world settings.

2.1 Food Journaling
Self-tracking technology, or personal informatics technology, aims
to help people monitor and understand their habits [57]. Food
journaling is one of the most popular self-tracking domains, helping
people monitor and understand their food related practices [39]
and change their behaviors towards healthier eating habits [50].
While food journaling can be done on paper, it has been supported
in technology through barcode scans of packaged foods [77] and
database lookups [6, 52, 77, 81]. These strategies aim to accurately
identify nutrient information from food databases and barcode
libraries. These techniques are pervasive in commercial apps such
as MyFitnessPal [66], WW (formerly Weight Watchers) [86], and
Lose It! [59], as well as various research that employ food journaling
systems [6, 33, 52, 81]. However, people often �nd needing to search
for and correctly identify every food eaten in food databases tedious
[52], with unreliable information or di�cult to �nd speci�c foods
and amounts [31]. Barcode scanning can lower this burden, but can
potentially nudge people from eating fresh and healthier foods in
favor of packaged ones [31]. Recent work has also tried to lower
the burden of database searches. In the design of EaT [52], Jung et
al. leverage a search-accelerator for narrowing search results in a
large food database. Participants found the search-accelerator easy
to use and e�ective for reducing typing, but logged accuracy was
impaired when users did not provide details for some composite
foods.

In general, manual self-tracking requires substantial e�ort [23],
with food tracking in particular introducing additional challenges
that make the practice burdensome. Cordeiro et al. identi�ed several
barriers to typical database and barcode food journals that nega-
tively impact food tracking practices [31]. People often do not want
to journal in social situations because of a perceived stigma, forget
to journal and fall out of the habit, �nd homemade or ethnic foods
more di�cult to journal, struggle to contend with unreliable food
databases, and feel shame or judgment when not reaching a food-
related goal due to prominent calorie and nutrient goal features
[31].

Research has examined approaches to make manual food jour-
naling more �exible to promote eating mindfulness and awareness
rather than collecting calorie or nutrient metrics. Photos, free text,
and voice inputs have been found to be feasible ways of record-
ing and describing foods [15, 27, 30, 37]. Some commercial apps,
such as YouFood [88] and Ate [9], have also leveraged voice and
photo-based journaling. Free text input has typically been incorpo-
rated to complement photo entries [27, 30, 37], often to add more
details to assist social contacts [28, 60] or clinicians [27, 34, 61] in
interpretation.

Various research e�orts have further examined automation
for lowering food journaling burden. These e�orts have been ex-
amined detecting eating moments through sound (e.g., chewing
noises) [5, 11, 71], automatic photo-taking with wearable cam-
eras [12, 80], movement or proximity with necklace-like wearables
[26, 89], and combining multiple sensor modalities [70]. Research
has also sought to estimate food volume and label identi�ed foods
through crowdsourcing nutritional estimates [67], computer vision
[13, 65, 82, 83, 85], and natural language processing (NLP) [55, 56].
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With increased power of computer vision and machine learning,
food recognition from images have been introduced into systems
for ingredient identi�cation and nutritional estimation. Im2Calories
uses CNN-based deep learning to identify foods from restaurants,
interpreting their food volume and their nutritional values [65].
Similarly, Menu-Match logs calorie intake estimated from image
classi�cation and food databases, but also has a focus on restaurant
foods [13]. Ingredients or nutrients recognized can further be used
to create more abstract representations, such as digital postcards
summarizing what was eaten for later re�ection [79] or reverse-
engineering recipes from photos [19, 74]. Di�erent from using
deep-learning techniques, Yang et al. proposed representing foods
as pairwise statistics over image pixels, reasoning that this can
indicate spatial combinations of ingredients (e.g., a “bread” pixel
next to a “cheese” pixel) [87].

Other systems have proposed the use of NLP for automatically
interpreting foods from spoken or open-ended written descriptions.
Korpusik et al. proposed the use of deep learning for semantic map-
ping foods in text based meal descriptions with searches in USDA’s
[40] food database [55]. In a di�erent contribution, Korpusik et al.
incorporated this technique onto a food journaling app, using both
text-based descriptions and voice input with speech recognition for
then NLP and database mapping [56]. Studies have also aimed to
identify and classify foods in free text descriptions of foods posted
to social media to understand community-level eating practices
[2, 25].

Although these systems posit that automation can lower food
journaling burden, complete automation can be inaccurate and is
still far from being practical [42, 58, 63]. Choe et al. further high-
light that fully automating data capture can reduce awareness and
engagement, suggesting that self-monitoring technology balance
manual and automatic tracking [23]. We expand opportunities for
supporting manual and semi-automated food journaling by under-
standing people’s journaling preferences when less constrained by
current recognition limitations.

2.2 Elicitation of In-Situ Everyday Technology
Use

Elicitation studies are often used to understand people’s prefer-
ences for interacting with technology, such as input methods. For
example, they have been used to discover preferred gestures for
interacting with mobile devices [73] or interactive surfaces [84].
Although these studies uncover ways people wish to interact with
technology, they can fall short of considering real-world contexts.
For example, people’s preferences might be in�uenced by their so-
cial and environmental contexts, or additional factors unaccounted
for in studies that are not “in-the-wild” [49]. In self-tracking, stud-
ies have used di�erent approaches to circumvent constraints of
in-lab elicitation studies. For example, Gorm et al. suggest that
participant-driven photo taking can elicit in-situ technology use,
such as for understanding activity tracking practices [43]. Gouveia
et al. similarly leveraged video recordings from wearable cameras
to understand people’s use of activity trackers in daily life [44].
Other self-tracking studies have instrumented the deployed apps to
understand their use, for example to identify how often participants

engaged with a particular feature [44, 64] or evaluate novel inter-
actions and approaches [46, 52, 60]. Similarly, we deploy a �exible
prototype, ModEat, to understand people’s preferred interactions
with technology in real-world settings.

3 METHODS
We created and deployed a prototype to understand how partic-
ipants would like to journal their food when less constrained by
recognition or a desire for recall.

3.1 The ModEat Prototype
We developed ModEat (Figure 1), a multiplatform system available
for Android and iOS phones, computers, and Amazon Alexa and
Google Assistant voice assistants. We aimed to include common
input techniques for food journaling in ModEat that prior research
has suggested to support calorie and nutrient-consumption goals or
open-ended awareness and mindfulness goals (e.g., [30, 66, 77, 81],
see section 2.1), while supporting many of the devices people fre-
quently interact with. ModEat for phone supported six di�erent
input modalities: text, voice log, picture from device camera, simu-
lated database search, website URL, and barcode scanning. ModEat
for computer ran onweb browsers supporting the same inputmodal-
ities as the phone, with images supported as uploads and barcodes
are typable. ModEat for VAs supported conversational interaction
commands, allowing people to create a new food description (e.g.,
“journal green eggs and ham”) or request and hear their previous
journal entry (“read last entry”). ModEat for computer and mobile
supported reviewing previous entries by displaying the result (e.g.,
the text description, the numeric barcode, a simulated database
search), with voice logs being displayed as text. We also imple-
mented ModEat for Apple Watch via voice logging, but none of the
participants regularly wore an Apple Watch, so we do not report
further on watch entry.

We sought to avoid incorporating suggestions for what or how to
journal foods in ModEat. We intentionally did not add food recogni-
tion features to ModEat (e.g., image recognition, database searches,
look up UPC barcodes), instead asking participants to suspend be-
lief about feedback and journal as if receiving idealized responses.
Doing so spared participants from limitations of current technology
(e.g., incorrect or missing foods in databases, images which could
not be recognized, barcodes which could not be identi�ed), while
prompting consideration of preferred entry methods.

3.2 Participants
Our study was approved by our university’s IRB prior to recruit-
ment. We advertised our study through a screener survey sent to
local mailing lists and subreddits related to food tracking or cities
close to our university. We targeted the recruitment of people with
prior journaling experience or interested in starting to journal. We
primarily recruited participants with prior experience to ensure
participants were highly-motivated to pursue a journaling goal,
and would therefore carefully consider how their descriptions of
foods would support their goals. Participant’s past experiences also
made them aware of the capabilities and recognition constraints
of traditional food journaling approaches, enabling them to enact
di�erent uses of ModEat if they wished and allow them to journal
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(a) Simulated database search (b) Text description input (c) Photo Input (d) URL input

(e) Scanning barcode of a
packaged food

(f) Barcode input after scanning (g) Visual representation of voice input with
Alexa

Figure 1: Examples of modality inputs on ModEat phone and VA.

Table 1: Nearly all participants had prior experience using digital food journals, but had a mix of awareness and quantitative
goals.

ID Gender Occupation Age Journaling Experience How Journaled Journaling Goal

P1 Female Designer 36 4 years Calendar Awareness
P2 Female Massage Therapist 35 2.5 years Paper, LoseIt, MyFitnessPal Quantitative
P3 Male Civil Engineer 33 2.5 months Spreadsheet Awareness
P4 Male Engineering Manager 38 1 month Paper Awareness
P5 Female Student 28 3 years MyFitnessPal, Self-made app Quantitative
P6 Female Student 25 ⇠10 months Cronometer Quantitative
P7 Female Retail 30 3 months Paper Awareness
P8 Female Accounting Clerk 27 1 month Spreadsheet Awareness
P9 Male Engineer 31 - - Awareness
P10 Male Student 28 2 years MyFitnessPal Quantitative
P11 Female Researcher 50 ⇠2 months FitDay Awareness
P12 Male Engineer 43 “On and o�” MyFitnessPal Quantitative
P13 Female Academic Librarian 44 2 years MyFitnessPal Awareness
P14 Woman Student 33 3 years MyFitnessPal Quantitative
P15 Male Drafting Design 31 2 months MyFitnessPal Quantitative

with more freedom to go beyond current recognition constraints.
In addition, we required participants speak English and be 18 years
or older. We also required that participants have access to a phone,
computer and Amazon Alexa or Google Assistant. In case a partici-
pant did not own a VA, we o�ered to lend one if they were located
near our university. Participants used ModEat for two weeks be-
tween February and April 2020. Participants were o�ered $30 as
compensation for full participation.

55 people responded to our screener survey, out of which 33
satis�ed our requirements and 18 responded to our contact. One
participant dropped out of the study due to family health issues
and two were dropped because they became unresponsive during
deployment. The remaining 15 participants had a median age of 33
(range: 25 – 50), 8 identi�ed as female, 6 as male, and 1 as a woman.

While P9 had no prior food journaling experience, the other partic-
ipants had a median journaling experience of 10 months (range: 1
month - 4 years). Participants had various personal motivations for
journaling that could fall under one of two categories: quantitative
goals, that focused on various numerical information (e.g., calo-
ries, micro or macro nutrients); or awareness goals, that focused
on broad food consumption information (e.g., eating more greens,
frequency of snacking, general healthy eating). Table 1 summarizes
participant related information.

3.3 Study Procedures
Each participant went through an initial 30-minute onboarding
interview to understand the study’s goal, learn about the ModEat,
con�gure it on their devices, and tell us about their journaling
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experience and goals. For a few participants (P5, P6, P7, P19) this
interview was in-person in public locations, but an increase in the
spread of COVID-19 led every other participant-researcher interac-
tion to be conducted through remote video calls. We encouraged
participants to journal their foods according to their personal food
goals and with whatever input modality they preferred at a given
moment, thinking past the recognition constraints of similar cur-
rent technology they had used or seen before. Participants were
also provided with a manual describing ModEat’s con�guration and
features for later reference if needed (included in the supplemental
materials).

Participants used ModEat for their daily food tracking for at least
two weeks (mean 14.7 days, min 14, max 16). Other food journaling
studies have similarly deployed systems between 2 to 4 weeks to
understand participant’s regular use [37, 51, 81, 89, 90]. To help
the research team understand the circumstances surrounding each
journal entry, participants also answered a daily survey question-
naire. The questionnaire showed participants the entries they made
that day, asking them to describe where they ate (e.g., home, restau-
rant), whether they ate with others, the type of meal (e.g., full meal,
snack), and when they journaled relative to when they ate (e.g.,
long before, long after, while eating).

We conducted a one-hour post-deployment interview with each
participant to discuss their experiences with ModEat. During the in-
terview, we showed participants their food logs and asked questions
to clarify how and why they chose their logging techniques. We
also asked participants about the limitations they experienced with
current journaling strategies and what they would ideally wish
to be able to do with food journaling technologies. Participants
were compensated at the end of the interview and returned any
lent device in a socially distant manner (e.g., leaving device in the
porch).

3.4 Data Analysis
All journal entries were separated by input (e.g., text description,
barcode, photo), resulting in 1008 individual inputs. The �rst author
followed thematic analysis [17] to analyze the food logs, �rst open
coding and then discussing themes with the research team. After
re�ning de�nitions and coding criteria, the �nal codebook con-
tained 39 codes in 12 categories, such as how many food items were
present in a log, how speci�cally foods were described, and if and
how logs described food amounts. For example, the code category
amount had the subcodes numeric scale, numeric only, broad, com-
parative/reference, non-standard, and non-quanti�ed). Two authors
independently coded the same 10% of inputs, reaching near-perfect
agreement on 34 codes (Cohen’s � � 0.8) and substantial agree-
ment on the remaining 5 codes (Cohen’s � � 0.6). They discussed
and resolved di�erences in code application, then the �rst author
coded the remaining data. All �nal interviews were audio-recorded
and transcribed through a university-approved vendor. Authors
reviewed interview transcripts to understand participant’s reasons
for how they described their foods to support the analysis of the
food logs.

Once all logs were coded, we used logistic regression to quan-
titatively analyze the in�uence of contextual factors surrounding
the creation of journal entries based on the frequency of speci�c

codes (e.g., whether journal entries created with certain modalities
were more likely to be more granular or describe amounts). We
examined four contextual factors from the daily surveys as �xed
e�ects: modality used, how many others they ate with, meal type,
whether they journaled before or after eating. We treated partic-
ipant id as a random e�ect to account for individual di�erences
in how participants described foods (e.g., participants who were
more likely to include amounts). We corrected for multiple compar-
isons in post-hoc tests between levels of �xed e�ects with Tukey
corrections.

To understand how participant’s preferred methods of food jour-
naling aligned with traditional approaches to food recognition, we
ran participant’s logs through commercially-available recognition
services. It is not our intention to evaluate or compare the overall
accuracy or quality of these methods for food identi�cation, rather
to explore how they might need to adjust to people’s strategies for
describing their food.

We submitted database search, text, and voice input descriptions
to commercially-available NLP services. We are not aware of prior
research comparing and ranking the quality of NLP services for
foods, so we ran three services (Nutritionix [69], Edamam [36], and
Spoonacular [78]) regarded as highly used and frequently men-
tioned in top lists (e.g., [72]) on a random 10% of journal inputs,
comparing the results against our manual inspection of the de-
scriptions. These services accept requests with food descriptions in
text and aim to return a list of described foods and their amounts,
including an amount unit (e.g., grams, cups), calories, and nutrients
(e.g., fats, sugar). For example, a text input of “100g rice and 2 eggs”
should identify “rice” and “eggs”, and “100 grams” and “2” as their
respective amounts, returning calorie and nutritional information.
This di�ers from non-NLP services that only do direct database
searches for provided food items, such as the USDA FoodData Cen-
tral [40]. The NLP services proved to have di�erent levels of success
for a set of 10% random journal inputs. All three services identi-
�ed amounts fairly similarly (37.6%, 33.6%, 35.6% of inputs), but
Nutritionix was more successful in identifying all food items in an
input (78.2%), versus Edamam (37.6%) and Spoonacular (57.43%).
Furthermore, Nutritionix failed to identify any food item or amount
in just 1.9% of inputs, while Edamam in 21.7% and Spoonacular in
19.8%. Therefore, we chose to analyze the remaining inputs with
results from Nutritionix.

We also used commercially-available image classi�cation ser-
vices to understand opportunities for improving recognition of
the pictures people used to represent their foods. Similar to NLP
services, we chose three popular services regarded in top service
lists (e.g., [1]): Clarifai [29], Google CloudVision [41], and Ama-
zon Rekognition [4]. Clarifai provides a service module speci�c for
classi�cation of food images, while the other two are publicized as
image classi�cation more generally and o�er food detection as an
example. These services return a list of identi�ed elements paired
with a con�dence level (e.g., a percentage from 0-100, probability
from 0-1). For example, a query for an image of a chocolate cake
could result in “[chocolate(1.00) cake(1.00) brownie(0.94) ... �our(0.38)
pumpernickel(0.34) cookie(0.32)]”. We ran the three services over 54
of our full set of 60 images, again comparing against our manual in-
spection of the foods present in the images and discarding 6 images
where we could not manually identify any of the foods. We took a
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conservative approach to recognition, considering all foods identi-
�ed by the service with con�dences above 0.8 as recognized. For
instance, we coded an image as successfully identi�ed if the classi-
�er service identi�ed any element present in an image of a ham and
cheese sandwich (e.g., “bread”, “cheese”) with at least 0.8 probability,
regardless of whether foods which were not present were identi�ed
with high con�dence (e.g., “cookie” at 0.92 con�dence).

We also searched barcode inputs in a barcode search website [8],
searching for unidenti�ed items using the barcode search in MyFit-
nessPal [66], which also leverages user-created database items.

We quote participants with PXX when presenting quotes from
interviews or journal descriptions they created.

3.5 Limitations
We acknowledge our limited sample size, and although relatively
diverse in gender and occupation, �ndings might not be generaliz-
able to the journaling practices of di�erent age or cultural groups.
For instance, low-income communities have particular needs and
expectations around food journaling technologies [46], and care
needs to be taken in applying our �ndings to these cultural settings.
Furthermore, while our participants’ high degree of interest and
prior experience using food journaling technologies led them to
carefully consider how their approaches to journaling in ModEat
would support their goals, their prior experience may have also in-
�uenced a few participants towards approaches they were familiar
with. Though most participants used and appreciated a range of
input techniques, a few participants described intending to leverage
database searches in ModEat in similar ways to their journaling
prior experiences. None of our participants had a disease diagnosis
or management goal, although it is a commonly-studied motivation
for food journaling [48, 53, 75, 90]. We suspect that people with
such a motivation might be inclined to emphasize speci�city in
their food descriptions and may have other di�erent journaling
preferences from our participants.

Study deployment coincided with the COVID-19 pandemic, with
10 participants (P1-5, P7, P9, P11, P12, P14) mentioning feeling sig-
ni�cant impact on the eating habits and stress levels. For instance,
participants that would frequently eat at work or at restaurants
almost exclusively ate at home during the study. The pandemic also
in�uenced available foods, such as P13 that mentioned “I would
love to eat more fresh foods . . . [but] I can’t go to the grocery store
multiple times”. Other than the emotional and social consequences,
only P9 and P13 felt their food description practices were impacted
by the pandemic, with P9 reporting being “a little more observant” to
detailing food compositions and P13 doing the opposite by relaxing
her diet restrictions. Overall, participants still used regularly Mod-
Eat to explore varied journaling strategies, despite the pandemic
in�uencing what they ate and changing contexts surrounding how
they ate.

4 FINDINGS
Participants used the ModEat prototype to make 659 food journal
entries with 1008 modality inputs (average 1.53 modality inputs
per entry, max 13). Participants journaled fairly frequently, aver-
aging 2.98 entries per day (min 1.07, max 4.26). Out of the three

descriptive inputs (database search, text description, and voice de-
scription), database search was the most used (37.8%), followed by
text description (27.4%) and voice description (23.1%). Images and
barcodes were used 60 (5.9%) and 51 (5.1%) times, while URLs were
recorded 7 times (0.7%).

Overall, participants tended to use database search, text, and
voice descriptions in similar ways, often describing their food
choices and amounts. Participants varied in how they used those
modalities to describe and measure food. Descriptions varied in
granularity and speci�city, occasionally captured contextual in-
formation, and indicated amounts using measurement scales or
numeric values alongside subjective measures, but entries were
occasionally ambiguous or unclear. Similarly, participants varied
in how they used images to depict their food, such as arranging
foods for aesthetics and clear amount compositions, use of stock
images, and packages. This input variability had consequences for
the recognition and performance of commercially-available NLP
and image classi�cation ML models, with some styles of entry more
accurately interpreted than others.

4.1 Granularity
We de�ne the granularity of a food log as the quantity of food items
present in a single input log. We observed that food descriptions
(text input, database search, voice input) were either single food
item, a single item decomposed into its requisite ingredients, or
aggregated foods. As described in Table 2, most food entries were
composed of a single item (62.9% e.g., “1 cup blueberry”, “fajitas”).
However, participants occasionally described single foods with
detailed ingredient compositions, such as the ingredients in a sand-
wich or a salad (8.2% of inputs). Some of these inputs had a food’s
common name followed by its composition (e.g., “breakfast burrito
with a whole wheat tortilla, two eggs, bacon. . .”, P14), while others
described the ingredients without indicating a common name (e.g.,
“2 tortilla with butter and honey”, P6).

Participants also regularly aggregated distinct food items into a
single input (28.9% of descriptive modalities), averaging 3.09 foods
per input when they aggregated (min 2, max 9). These di�er from
decomposed single food’s in that they typically combined foods
eaten together in a single event (e.g., meal, a snack), but represented
distinct foods. We classi�ed 101 aggregated food inputs (39%) as
main course dishes journaled with one or more side dishes. For
example, P13 logged “egg omelet and side salad”, P9 logged “wonton
soup, Chinese book choy, rice, breaded shrimp. Orange”, P4 logged
“Veggie enchiladas, half a cookie, grapes, pistacios [sic]”. 60 aggregated
food inputs (23.3%) were foods alongside drinks, such as “co�ee
and banana” (P5) and “tea and chips” (P9). Participants tended to
aggregate entries more often when eating with others versus alone
(Z=2.04, p<0.05, 95% CI 2%-90% more likely to aggregate), perhaps
suggesting that participants tended to aggregate when in social
situations where they wanted to journal multiple items quickly.

Input modality tended to in�uence the granularity with which
participants entered food (�2(2, N=890)=89.56, p<0.001), but we did
not observe a statistically signi�cant impact of food journaling goals
on granularity (p=0.15). Figure 2a shows that nearly all database
searches were of single food items (94.5%), versus about half of voice
input entries (52%), and a quarter of text inputs (28.6%). P6 described
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Table 2: Examples of granularity and speci�city from participant food journal entries.

Generic Speci�c Varietal # of Inputs

Single Food “Pizza” “Chicken” “4 oz chicken thigh” 560 (62.9%)
“tea” “Milk” “240 ml whole milk”
“mixed vegetables” “Orange” “Hawaiian beef ”

Decomposed Single
Food

“Random greens in
tortilla”

“Hummus and cheese sandwich” “protein shake with almond milk 1
scoop protein powder”

“vegetable soup” “cauli�ower rice 2 servings” “Trader Joe’s, tahini, pepita, &
apricot slaw kit”

73 (8.2%)

“chips soup” “a bowl of rice and 3 meatballs” “drunken chicken noodles”
Aggregated Foods “slice of pizza with

side salad”
“co�ee and oatmeal” “pizza and chicken wings” 257(28.9%)

“taco and burrito” “spaghetti and half an orange” “orange juice, egg roll biscuits”
“sandwich and
steamed vegetables”

“peanut butter bagel and co�ee” “bean burrito and corn salsa salad”

# of Food Items 128 842 607

using database search for single food items because she considered
it as keyword input, while other modalities were more appropriate
for inputting multiple items. She said, “Database was most useful
generally because it’s keywords. So, a lot of the time I put ‘cutie
tangerine’ because we have tons of those and quick keywords. ‘Banana’,
same thing. [. . .]. [Text] Description was because I would eat several
di�erent foods at one time and didn’t want to have to put a bunch of
di�erent database searches down one long entry.” Decomposed single
food descriptions were provided most often in voice input (8.5%)
and text (14.5%), but rarely in database searches (3.1%). Aggregating
foods was prominent in text (56.9%) and voice (39.5%) inputs, but
infrequent in database searches (2.4%). P9 explained that he found
it easier to journal in this way “when I want to record a handful of
items, because I could just rattle o� a bunch of things I ate [to voice
assistant] [. . .] [or] I easily put down multiple items at the same time
[in text description]”. Participant’s logs varied in granularity both
as a group and individually, other than P14 and P15 that mostly
journaled single foods and in database searches, as shown in Figure
2b.

Five participants incorporated symbols to help describe or ex-
plain the components of their foods in text entry �elds. For ex-
ample, P6 used a “/” character as a delimiter when decomposing
a food, such as “shrimp burger / 2 shrimp patty, 1 wheat bun, 2
tsp. sriracha&mayo, 1/4c. spring mix”. Similarly, P7 used “:” with
the same objective. P7 would also use this approach to translate
and describe varieties of ethnic foods inside parenthesis: “[Name
of restaurant]: Lobster hand roll (x2), cooked scallop (hotate), alba-
core, salmon (sake), squid (ika), tuna (maguro), escolar (ono), yellow
tail (hamachi), blue�n tuna (akami), [. . .])”. P1 used “+” to denote
combinations, such as “cheese toast with cream cheese + co�ee”.

After using the ModEat prototype, some participants imagined
that future journaling systems could encourage people to aggregate
foods they ate in a single meal or setting through conversational
approaches. Participant P15 described wanting to interact with a
VA similarly to a drive-through window. He said, “Like you drive
up the window [. . .] Then I’d say, ‘Alexa, journal food,’ and then she
just says, ‘Ready.’ Then I start, ‘All right, I’m having, a double-double

and fries and a shake.’ If there’s a pause, she can ask, ‘Is there more?’
Then I can just reply, ‘Oh, add some chicken nuggets,’ or whatever”.
P14 had a similar idea, but felt “it could be a burden” to say so many
details to the VA.

4.2 Speci�city
We de�ne speci�city as the level of detail of a food description
belonging to a particular food item, observing three levels: generic,
speci�c, and varietal. Inputs with multiple food items could also
have multiple levels of speci�city (e.g., one item is speci�c with
another being generic). A minority of food descriptions consisted
of foods with generic ingredients or contents (e.g., “dumplings. . .”
P1, “veggie taco salad. . .” P4), comprising 8.1% of all food items.
Participants instead tended to describe foods in ways which were
speci�c enough to distinguish between foods or ingredients of
prepared foods (e.g., “peanut butter 14 gram” P5, “broccoli, chicken,
rice. . ..” P9; 53.4% of all food items) or further describing varietals
of same food (e.g., “red beans. . .” P12, “roast chicken breast. . .”, P4;
38.5% of all food items). Table 2 shows additional examples of inputs
at di�erent levels of speci�city. Similar to granularity, we did not
observe a statistically signi�cant correlation between participant
goal and speci�city levels (p=0.83). Instead, all participants greatly
varied individually in how speci�cally they journaled their foods,
as visualized in Figure 3a.

Descriptions of aggregated foods were not always clear about
how they were composed, leading to potential uncertainty or am-
biguity around what was eaten. 39% of descriptive inputs with
multiple food items were joined with conjunctions or prepositions
like “in”, “and”, or “with” (e.g., “chicken broth with rice and chicken
meat” P11), while 25% of text input and database searches with
multiple food items used commas as a separation symbol (e.g., “or-
ange juice, egg roll biscuits” P9), and 9.4% used both (e.g., “co�ee,
1/2 bagel with cream cheese”, P13). However, some aggregated or
decomposed food inputs (92, or 27.8%) had unclear food descrip-
tions, especially when lacking conjunctions or item separators. For
example, descriptions like “co�ee cinnamon rolls” (P2), “cup of soy
milk small pastries” (P8), and “half apple chicken link” (P15), could
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(a) Distribution of granularity per modality (b) Distribution of granularity per participant

Figure 2: Participants varied in the granularity they used to describe their foods in eachmodality, typically journaling a single
itemwith database searches and often aggregatingmultiple items in a single input or detailing a food’s ingredient composition
with text and voice inputs. Individually, most participants entries and journaled foods varied in granularity and speci�city,
though a few participants consistently created single-food entries.

(a) Distribution of speci�city of food items per participant (b) Distribution of amount description per participant

Figure 3: Speci�city of food detail varied per modality while amount tended to align with personal food journaling goal.

be interpreted as �avors or varieties, or separate items that were
combined into a single entry. For example, P5’s description of “war-
rior chia bar cinnamon and apple” could be interpreted as a bar with
cinnamon and apple �avor, versus bar with cinnamon �avor and a
side apple.

Database entries were more likely to include more speci�c items
than either text descriptions or voice descriptions (Z=4.68, p<0.001,
95% CI 28%-87% more likely). Participants explained that they ex-
pected that the input to database searches would need to be speci�c.
For example, P14 said, “if it’s lasagna, there’s going to be 10,000 home-
made lasagna’s in the database”, expressing that the more generic
description could have varied nutrient information or ingredients.
P5 sought to circumvent this by decomposing foods into their el-
ements, she said that “you start by [searching] ingredients [. . .] So,
when I use the search function for those, I would get the accurate
calorie counts”. However, “it’s annoying to �nd all the ingredients”
(P14) and can be a “chore to log your food, and to be accurate with it”

(P12), revealing tension between accuracy, e�ort and speci�city for
this modality.

Participants described simply not being able to add more speci-
�city in some circumstances. P12 re�ected that sometimes when
eating at a restaurant, “you can’t be as �nely detailed, unfortunately.
[. . .] [if it is a] non-chain type restaurant, you’ve just got to eyeball it,
there’s literally no way of getting around it”. P13 had similar remarks
about restaurant foods, adding that, “If you eat out and you are
logging what you had, then more than likely, all you can say is, ‘I
had Irish stew,’ because I don’t know what’s in it. I don’t know what
oils are in it”. Some participants also felt that some foods did not
warrant detailed descriptions. P14 explained that “[my logs] will
often be [with] a check-in for red wine. That is the only one I will
want to use. It doesn’t matter what kind of wine it is, it’s more useful
to me to have those carbs accounted for... The same is true for beer
and any other booze”. Similarly, P5 said “I kind of want to know that
I got enough �ber, [if] I just eat enough greens”, justifying making
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(a) Presence of
receipt

(b) Empty plate after eating (c) Restaurant food
screenshot

(d) Package after �nished
eating

(e) Stock image

(f) Desktop dining (g) Aggregated foods (h) Separated
composition

(i) Aggregated and speci�ed
food

(j) Clear food
amounts

(k) Package with
consumed quantity

(l) Packaged snack during
eating

(m) Food being made (n) incorrectly classi�ed, but
like (i)

(o) Leftover food
journaled long after
eating

Figure 4: Participants had various styles of using photos to capture foods and eating events. Participants used photos indi-
cate amounts of foods eaten by referencing containers, leveraged stock images to represent foods similar to what was eaten,
intentionally laid for better recognition of foods eaten, and took photos of foods at di�erent stages of being eaten.

generic food logs such as “random salad greens” and “random greens
in tortilla”.

Burdens of entry occasionally led participants to be less speci�c
than they wanted to be. For example, participants reported that
issues with VAs not hearing or understanding them led to repe-
tition and frustration, and also felt it led them to speak shorter
descriptions in hopes of decreasing errors. For instance, P10 said,
“as you increase the amount of time using voice input, the chances
for the number of errors that you would have using the voice entry
increases. So, I felt compelled to use only short phrases that I could
really enunciate and that I believe would be easily recognizable by the
voice assistant.” Similarly, P2 said that, “I got the impression with it
that the command had to be really short, that if there was too long of
a pause it would just [�nish] recording what it was”. This aligns with
previous work identifying that people often shorten and simplify
their sentences in the hopes of being better understood by voice
interfaces [14].

When journaling with images, participants used di�erent strate-
gies to depict the speci�city of their foods. Most images were of
foods just about to be eaten, such as on plates and in wrappers

(43/60). Some images were pictures of food packages (7/60), others
were stock images retrieved from the web (10/60). P10 purposefully
took a picture of his food alongside the receipt while eating at a
restaurant to better describe what he ate (Figure 4a). In another
situation, he took a picture of an empty plate (Figure 4b) alongside
a text input describing its consumed content “cut fruit and 1/2 a
panera berry danish”. P8 would often journal with stock or menu
images found online, especially for restaurant meals and when
journaling long after eating (e.g., Figure 4c).

Most images had clear identi�able composition (54/60). For ex-
ample, packaged food images (e.g., Figure 4d, 4e) had clear food
details in text. Unclear food images typically had indistinct ingredi-
ent mixes (e.g., liquid substances in Figure 4f, 4g), an empty plate
(Figure 4b), or food inside unlabeled wraps. Participants typically
focused and arranged foods to be fully captured in their photos
(45/50 non-stock images). In a few cases, photos modeled the food
arrangement to better capture the exact amount or variety of foods
eaten (4/50 non-stock images), such as Figures 4h and 4i. P7 ex-
plained that Figure 4h’s arrangement was because she “didn’t want
to list all the foods I was consuming. Plus, I thought the presentation
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Table 3: Examples of amount strategies grouped by granularity from participant food entries

Scale Numeric Non-standard Non-quanti�ed

Single Food “soy milk 18 oz” “2 cuties” “small plate of seasoned almonds” “spaghetti carbonara”
“2 tbsp chia seeds” “spaghetti squash .25” “handful walnuts” “granola”
“Cheese 1 oz” “4 eggs” “a small glass of wine” “cereal”

Decomposed Single
Food

“PB&J / 1 low carb Mission
tortilla; 1 tbsp jelly; 1 tbsp
sun�ower seed spread”

“2 tortilla with butter
and honey”

“protein shake with almond milk 1
scoop protein powder”

“collard wraps with
turkey”

“Trader Joe’s, Tahini, Pepita, &
Apricot slaw kit (75g)”

“[a] warrior chia bar
cinnamon and apple”

“cauli�ower rice 2 servings” “sesame beef tacos”

“banh mi 4 oz pork 2 eggs 6 in
baguette”

“toast with jelly” “a bowl of rice and 3 meatballs” “chicken noodle soup”

Aggregated Foods “5oz 85% ground beef 2 tbsp
sriracha 2 tbsp teriyaki; [. . .]”

“1/2 Calzone with
salad”

“chips & salsa, Marbella market
samples, 1 spoonful each”

“co�ee and oatmeal”

“baked potato with 1 tbsp
butter”

“[a] baked potato with
butter”

“medium cup vanilla �avor yogurt
land with oreo”

“locro with rice”

“4 oz chicken thigh 1 tbsp
Italian dressing salad mix”

“half a sandwich in 2
oranges”

“one avocado one bowl of mixed
vegetable and a handful beef jerky”

“cheese and wine"

# of Food Items 226 331 106 907

looked nice.” P6 used manual labeling on paper to discriminate the
di�erent varieties of salsa present in their meal, explaining that she
arranged Figure 4i according to her lighting and that “I tried to be
pretty thorough with my recording here.” P8 explained that for her
aiming for aesthetics “has to do a lot with what I’m used to seeing
too on Instagram or social media, nice food [. . .] I would want to take
a picture that would look nicer.”

4.3 Amount
For descriptive inputs, participants used di�erent methods to artic-
ulate how much they ate, such as using formal scales (14.3% of food
items; e.g., cup, grams), numbers (21.0% of food items; e.g., “1 roma
tomato”, P15), and non-standard measures (6.7% of food items; e.g.,
serving, bowl, handful, slice). 10.1% of aggregated or decomposed
food logs used more than one strategy for describing amounts. For
instance, 33% of these mixed-amount inputs combined some food
items measured using a formal scale with counted items (e.g., “[a]
baked potato with 1 tbsp butter” P15). More than half (64.4%) of
mixed-amount inputs had a quanti�ed food item alongside food
items with no amount at all, such as “. . . plain burger, fries, 1 glass
dry white wine” (P5), “raisin bran [cereal] and an egg” (P4), and “3
cat�sh tacos, corn tortillas, salsa” (P3). One explanation is that some
foods are more di�cult to count or quantify than others, especially
foods that are small, numerous, or liquids.

Participants structured their amount descriptions in various
ways, re�ecting however they preferred to describe their foods.
287 inputs had amount description in front of each food item (e.g.,
“18 oz silk vanilla soymilk 1 oz chia seeds”, P10), while 88 indicated
amount after the item (e.g., “curried chicken sandwich .75”, P14). 2 in-
puts used one amount to reference every item (e.g., “2 spoonful each
of roja, �esta, roasted”, P6). Participants occasionally used quantity
descriptions in ways that they could interpret, even if not exact
measures. For example, P6 acknowledged estimation by adding “⇠”

to scale amounts (e.g., “. . .⇠2 oz. salmon; ⇠.5c weed greens; ⇠.25c
avocado”). Similarly, non-standard amounts could be imprecise, ref-
erencing food containers with variable sizes such as plate, spoonful,
bowl, scoop, or glass, as exempli�ed in Table 3

Although rare (7 inputs), participants occasionally referenced
other known sizes in amounts. For example, P6 fractioned a package
“.25 pkg Trader Joe’s Asian noodle salad [. . .]” and a bottle “Health-
Ade Kombucha, pink lady apple, half bottle”. Similarly, P5 referred to
a personally-known package size: “lays baked chips subway size”. In
other inputs, food amount used subjective quali�ers such as “large”,
“big”, and “small” (16 inputs), or related to portion sizes with “slice”,
“cut”, “entire”, and “serving” (34 inputs). For example, “one small
vegetarian pizza” (P11), “2 slices of honey turkey breast” (P15), “entire
pizza” (P5), and “bacon .4 serving” (P14). 22 inputs used “handful”
for snacks or ingredients. Variations included fractions (e.g., “half
handful almond”, P11), or other quali�ers (“small handful craisins”,
P15).

More than half (57.5%) of described food items had no amount
clari�cation, and we observed no signi�cant di�erence in the rate
at which amounts were clari�ed between voice, text, or database
search input modalities (p=0.36). Participant’s goals typically in�u-
enced their decision for choosing whether to describe their food
amounts. Typically, participants that had weight management, nu-
trient, or calorie-focused goals mentioned a desire for measuring
their foods. For instance, P12 said, “If you’re trying to be really, really
anal and accurate, you’ve got to remember these grams”. Likewise,
P5 preferred measuring her foods, explaining that she “wanted to
make sure I get correct amount of fats logged” when journaling “28
gram mozzarella” with a scale amount. In contrast, P3 was primar-
ily interested in becoming more aware of his eating habits and
explained that “the way I would log would be more just what I ate
rather than a quantity [. . .]. I would just put what I did with some
qualitative things, ‘I had a small plate of this’, or ‘I had a couple of
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this’. I wanted to make it easy to log. [...]. Just a description of the
meal, rather than getting into, ‘I had three eggs and 200 grams of
ham and blah blah blah’.” P13 similarly aimed to be “cognizant of
what they’re eating” and felt less of a need to clarify the amounts
they ate. Overall, participants with quantitative goals were more
likely to clarify the amount of food they ate in an entry than par-
ticipants with awareness goals (Z=1.71, p<0.05, 95% CI 14%-328%
more likely). Participants variated substantially in how often their
food item descriptions included amounts, with 7 indicating amount
in less than 25%, 3 indicating amount in more than 75%, and the
remaining 5 in between. This variance is illustrated in Figure 3b.

Participants also used images to convey food quantity, usually
through an angle which enabled determining volume and container
dimensions. P9 felt that “the picture would be a way to document
that in terms of how many servings I had”. A sense of quantity
was usually present in images that had full plates (e.g., Figure 4g),
bowls (e.g., Figure 4f, 4g), cups (e.g., Figure 4j), or food units (e.g.,
food wrap in Figure 4a, chocolate square in Figure 4k, a banana
in Figure 4j). Most images conveyed some form of food amount
(57/60). However, even in cases where the foods in pictures could
represent a single serving, they typically left no indication that the
full amount of food shown in the image was eaten. For instance, P2
had a plate with pasta, but later revealed in a survey answer, “I took
a picture of the meal and then I forgot to eat it”.

Pictures or stock images of packages usually had visible weight
descriptions on the packages, but they were sometimes still am-
biguous around how much was consumed. For instance, although it
could be reasonably assumed that small snack packages were fully
consumed when a person journaled after they ate (e.g., the protein
bar wrapper in Figure 4d), most other packages were larger (9/12
of picture and stock images). For example, P11 uploaded the same
stock photo of a 2 lb. bag of oatmeal (Figure 4e) for multiple entries.
Barcodes similarly varied in whether amounts could be reasonably
inferred. For instance, the barcode input of a 330 ml. Vita Coco
coconut water bottle (P7) could be assumed as fully consumed,
whereas a barcode of a 24 oz. Kellogg’s Raisin Bran cereal box (P4)
is unlikely to be. In a few journal entries (5), participants clari�ed
this ambiguity by combining inputs to detail actual eaten amounts
of barcode foods. For instance, P6 made a barcode input of an 8-
count tortilla package combined with a text input of “Salmon wrap
(2) ⇠1c. marinated salmon ⇠.5c microgreens [. . .]”, likely indicating
that two tortillas were eaten.

4.4 Context
Participants included contextual information related to the food
and eating event in a few entries (4.9%). 21 of these inputs had
implicit or explicit indications of where the person ate the food. For
example, P5 mentioned in a text input making a homecooked meal,
“quick homemade stir fry sauce; 15 calories”, versus another meal in
a di�erent place, “dinner at friends house, bbq chicken with mac and
cheese”. Implicit locations were present in inputs with foods from
restaurant, such as “Chinese takeout chowmein beef broccoli” (P2),
and “WABA grill: salad, brown rice, chicken, beef, . . .” (P3).

Like descriptive inputs, some images (14/60) also had implicit
location indications. For example, participants journaled images
with background elements such as desktop computers at the o�ce

or at home (e.g., Figure 4f, 4l), kitchen appliances (e.g., Figure 4m),
restaurant names and time of meals on receipts (Figure 4a), and
other household objects like living room tables and TV controllers.
Similar to Cordeiro et al.’s �ndings [30], participants used images
in this way to improve interpretability for re�ection. However,
participants seemed to focus more on capturing the nuances of
their food than on capturing context. For instance, P10 said that he
thought images “su�cient for me to e�ectively reconstruct or eyeball
how much protein I have that day”, similar to P5 that said images
were useful to “remember what you ate”. Unlike Cordeiro et al.’s [30]
participants, none of ours took a picture of others present during a
meal.

Participants also gave contextual information that gave more
detail about when they were eating. For example, 12 inputs
speci�ed the type of meal, such as snack (e.g., “jubes snack”,
P3), dinner, dessert (e.g., “Persian dessert, many”, P6), lunch (e.g.,
“lunch: slice of pizza with side salad”, P13), and supplement (e.g.,
“supplement set / 3 multi, 2 �sh oil, 2 D3 [. . .]”, P6). Other in-
puts (35) gave glimpses at participant’s routines. P3 would of-
ten tag mealtimes when journaling long after he ate, such as
“(meal eaten at 10 PM Saturday March 21st) Pasta with broccoli”, and
recurring food, such as “same pasta, chicken, veggies, and now hot
sauce” and “[. . .] leftover chashu and bok choy”. Similarly, P6 had
a particular recurring meal that she would label as a daily mix-
ture, detailing its varying contents each time: “daily mix / 3 multi,
1 elderberry, 4 �ber”.

Some participants (P2, P6, P8, P12, P14) indicated that knowing
meal contexts would help them re�ect on their eating behaviors.
For instance, P6 mentioned a desire to “explore my emotions around
my food emotions [. . .] because I’m really interested in how food
would impact emotions or how my emotions impact what I eat”,
and suggested that this could be through “writing and answering a
questionnaire or photos ”. Similarly, P14 said that capturing context
was lacking in her past journaling experience and could have given
more insight for her food choices. She said:

“I have in the past thought about when I look back on
my journal, on MyFitnessPal, [that] I can identify things
that I felt good about eating and things that I sort of
felt like, ‘well that was a bit of a waste’. [I would like]
Having a bit of context, if there was a way to easily
visualize that somehow to sort of know, because what
I would think I might �nd is I eat a bunch of crap, I
don’t need to eat late at night or during a stressful day
or something like that.”

4.5 Automatic food interpretation
Participants expressed interest in leveraging automatic interpre-
tation of food descriptions logged. Nine participants (P2, P5, P6,
P10, P11, P12, P13, P14, P15) wished that VAs could execute a back-
ground database search on described foods during the conversation
or for later re�ection. For instance, P11 said, “I wish the [Alexa] VA
can �gure out the total calories of the food after I tell her what kind
of the food I had and the quantity of the food.”. There were similar
requests for interpreting text descriptions and images. P9 wished
that text inputs would retrieve nutritional information, combining
with database search, saying “a blend of those two [db search and
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text input] would be great [. . .] it would give me the option of pro-
viding me the additional nutritional facts about each of the items
that was in my [text] description”. P9 suggested a similar feature for
capturing food composition from images, comparing to Shazam,
a popular music classi�cation app: “it would be like the Shazam
of food [images]. [. . .] I think that would certainly add additional
value”.

Current automated approaches were overall successful given
how participants desired journaling their foods, but had some lim-
itations depending on how participants wished to structure their
entries.

4.5.1 Interpretation of natural language food descriptions. Overall,
food items were generally identi�ed correctly by the NLP systems
we tested, with 80.7% of descriptive entries correctly being inter-
preted and returning relevant nutritional information for every
food item or component (e.g., calories, micro and macro-nutrients).
For example, the entry “eggs in cheese sauce over English mu�n with
co�ee” (P13) was interpreted as four separate ingredients: “eggs”,
“cheese sauce”, “English mu�n”, and “co�ee”. The remaining 19.3%
inputs were not fully interpreted correctly, but 77.9% of these had at
least one food item that was correctly identi�ed. For instance, “4 oz
chicken breast 3 oz spinach 125g tamaki haiga 2 tsp soy sauce” (P10)
had all items identi�ed except for “tamaki haiga”. Overall, only
4.3% of inputs completely failed, either not matching any items
(14 inputs) or wrongly identifying foods (24 inputs), such as “2
tablespoons salad topper” (P15) being classi�ed as “salad”. Six of
the non-matched foods were direct references to brands, such as “2
square 70% lindt” (P5), while four others were ethnic foods such as,
“chapaguri” (P7).

Modality impacted the rate at which inputs were accurately inter-
preted (�2(2, N=890)=36.91, p<0.001). Text inputs were less likely
to be interpreted correctly than voice inputs or database searches
(Z=-5.70, p<0.001, 95% CI 49%-121% less likely). Text inputs had
greater opportunity for at least one item not being understood due
to most entries being aggregated foods, versus database searches
and voice inputs that had a majority of single food inputs (Figure
3a). 79.4% of text inputs had at least one item correctly understood.

Speci�city also impacted in interpretability of food descriptions
(�2(2, N=890)=36.39, p<0.001), with speci�c foods more likely to be
interpreted than either generic or varietal foods (Z=4.74, p<0.001,
95% CI 32%-98% more likely).Many varietal descriptions used adjec-
tives to describe food names, which could lead to misinterpretations
and ambiguity. For instance, the voice input “chicken eggs and avo-
cado” (P10) was interpreted as “chicken eggs” and “avocado”, but
could alternatively be chicken meat (e.g., “chicken and rice 4 oz” P10)
and not a description of egg type. Other examples include “salmon
cakes . . .” (P14), “peanut butter mu�n” (P12), and “banana tea” (P9).
Similarly, decomposed foods that had a food name followed by
individual ingredients could be counted twice. For instance, “pasta
/ 3 oz. edamame spaghetti, 4 variety tomato, .5 tbsp. olive oil, [. . .]”
(P6) was interpreted as general pasta as well as edamame spaghetti,
tomato, and so forth.

Most descriptive inputs had food items where amount was speci-
�ed, but amount interpretability depended on how it was described.
Scale and numeric descriptions had 78.7% and 80.0% of inputs com-
pletely and correctly interpreted, while non-standard measures

were correctly interpreted in about half of inputs (53.8%). Some
of the non-standard measures could be occasionally understood
and return estimated nutritional metrics, such as bowl, spoonful,
bottle, plate and scoop. However, “handful” was not captured as a
measure in any of its 23 occurrences. Inputs where the amount was
not clari�ed tended to return a default scale measure estimated by
serving size, such as “cereal with milk” (P13) being assumed as 1
cup each. Similarly, “serving” was also mapped to default measures,
such as “bacon .4 serving” being record as 0.4 of unit “slice”.

4.5.2 Classification of food images. Most images had at least one
food composition identi�ed by the Clarifai service (42/54) with
probabilities above 0.8, versus CloudVision and Rekognition that
correctly identi�ed components in 22/60 and 21/60, respectively.
However, the latter two services accurately identi�ed background
elements in 14 images (e.g., table, keyboard) and food containers in
36 images (e.g., plate, bowl), whereas Clarifai did not identify these
elements at all. We based our analysis on food identi�cation on Clar-
ifai’s results and background elements on results from CloudVision
and Rekognition.

Participants frequently took photos of packages, wrapped foods,
or uploaded stock photos of food items, representing a third of the
images participants uploaded (19/60). Non-stock images of packages
were mostly classi�ed correctly (5/7), such as Figure 4d being clas-
si�ed as “chocolate” (1.00), “candy” (0.98), “sweet” (0.91). However,
shape and color occasionally in�uenced the recognition, with the
cookie snack in Figure 4l classi�ed as “beer” (0.96), “bacon” (0.95),
“cake” (0.92), or “chips” (0.83). 7/10 stock images had key compo-
nents identi�ed, such as Figure 4e that had “oatmeal” and “cereal”
among high-con�dence food items. However, the three other stock
image inputs, two inputs of “Dried mango slices” and one of “Apple
Smoked Bacon”, had food names written on the package but failed
to be correctly classi�ed. This may be because pictures of the food
items were not prominently displayed on the packaging, although
other similar packages were classi�ed correctly (e.g., Figure 4e).
Neither of the 2 photos of wrapped foods were correctly identi�ed,
with food composition suggestions being in�uenced by the package
and components of the background. For example, Clarifai incor-
rectly classi�ed the wrapped sandwich in Figure 4a as “chocolate” or
“cake” with high con�dence (0.92 and 0.88), whereas CloudVision
and Rekognition identi�ed the “aluminum foil” (0.98) rather than
the sandwich.

As expected, images with unclear food composition (6) were
not well-classi�ed by models. However, images of foods that had
clear identi�able composition and that were not stock or packaged
foods were mostly classi�ed correctly (29/33). For example, Figure
4i was classi�ed as “salsa” (0.97), “corn” (0.96), “vegetable” (0.95),
“tortilla chips” (0.87), “pepper” (0.86), “tomato” (0.84), and “chili”
(0.81). In contrast, Figure 4n also had tortilla chips and salsa but
was incorrectly classi�ed as “bread” (0.84) “peanut” (0.82), or “peanut
butter” (0.81). This demonstrates that although generally images
were correctly classi�ed, inconsistencies around recognition make
the method appear unpredictable and unexplainable.

Several background elements in 14 images were correctly identi-
�ed, such as computer keyboards (e.g., Figure 3l, 0.99 probability),
screens (e.g., Figure 4f, 0.92 probability), tables (e.g., Figure 4f, 0.64
probability), and even a kitchen oven in Figure 4m (0.57). Food
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containers were also mostly identi�ed (36/38), such as bowls (e.g.,
Figure 4g, 0.95 probability), plates (e.g., Figure 4b and 4i, 0.62 and
0.60 probabilities), cups (e.g., Figure 4j, 0.98 probability), and the
blender in Figure 4m (0.98). However, the bowl in Figure 4f and the
cake pan in Figure 4o were not detected, either because other back-
ground elements were identi�ed with higher con�dence (display
0.92, screen 0.92, monitor 0.92 . . .) or the food itself was recognized
(chocolate 0.97, fudge 0.80, . . .).

5 DISCUSSION
Through deployingModEat, we observed that when providedwith a
range of input modalities less constrained by recognition methods
than current commercial tools and research prototypes, partici-
pants had high variance in how they preferred to describe their
foods. Participants varied in how they described their foods collec-
tively and individually, ranging from single to aggregated inputs
with varying levels of speci�city and detail, often describing food
composition and varieties but sometimes created less speci�c en-
tries. Participants also varied in how and whether they described
amounts, either with numbers or formal scales but also with subjec-
tive references that made personal sense. Our study also suggests
that automatic NLP for food description can identify food elements
people describe fairly well, and classi�cation services for image
recognition can identify some food elements in most images. How-
ever, our �ndings also suggest that these automatic recognition
services are optimized for identifying well-formed descriptions over
free text, and plated food rather than the packages or stock photos
participants often showed when journaling.

Re�ecting on our results, we consider implications for designing
both to mitigate and leverage the high levels of variance in how
people prefer to describe foods. We also re�ect on implications of
automatic food interpretation.

5.1 Designing to Mitigate Variance in Food
Descriptions

Prior work in personal informatics have suggested that technology
can better support people’s goals through customization or �exibil-
ity about what is recorded, allowing people to align self-tracking
to their needs [7, 54]. However, we have also observed that sup-
porting �exibility during data collection led to great variance in
food description styles, some of which are not precise or introduce
ambiguity. Ambiguity, in turn, can lead to challenges when data
might want to be reviewed or re�ected on later. This can be a par-
ticular issue for those with goals related to quantifying nutritional
aspects of food consumption. Ambiguous food descriptions can lead
to inaccuracy in food metrics, uncertainty about nutritional infor-
mation, and ultimately not allowing for more precise re�ection on
progress toward a quantitative goal (e.g., Did I surpass my calorie
budget? Have I consumed my protein quota for the day?). Likewise,
completely unstructured inputs run the risk of introducing enough
uncertainty that days or weeks later, people with awareness goals
(e.g., learning about eating habits) might not be able to interpret
their logs.

To mitigate ambiguity and uncertainty in logs, food journaling
systems could encourage inclusion of food granularity, speci�city,

and amount by surfacing what was recognized and enabling cor-
rection or incrementation. Although recognition libraries often
attempt to estimate nutrient values for ambiguous foods and those
where amounts are unspeci�ed, these values could be o� from the
reality of what a person consumed. Compared to gold-standard
clinician-assisted 24- and 48-hour recalls, commercial food jour-
nals typically underestimate foods consumed [21, 22]. Current food
databases show portion, calorie, and nutrient estimates based on
what they search for, allowing them to edit or con�rm prior to entry.
Implementations of image recognition libraries or voice journaling
could operate similarly, asking a person to con�rm whether a food
was correctly identi�ed and how much was eaten.

For people with quantitative food goals, conversational jour-
naling could enable prompting for greater speci�city or clearer
amounts to produce journals which more accurately represent what
a person ate. We observed that generic food descriptions were often
foods which could vary widely in calorie and nutrient informa-
tion, such as “pizza” varying by toppings, slices eaten, and slice
size. When someone with a goal that requires accurate metrics
creates an entry that contains ambiguous characteristics, conver-
sational journals could detect and interact to highlight the issue
(e.g., report that an amount is missing) and o�er suggestions to
clarify or increase details of the entry (e.g., ask if the estimated or
standard serving quantity for that food is accurate). This type of
feedback could trigger more mindful consideration of foods con-
sumed [10, 37], but requires careful consideration for balancing
improving journal entry detail with burden [23] and feelings of
judgment [31]. Conversational journaling could further adapt to
people’s use of non-standard amount measures. For instance, if
someone uses a personally-meaningful reference point, the journal
could work with the person journaling to jointly estimate portion
size, such as comparing with an object with relatively standard
proportions (e.g., a tennis ball) and remembering that estimate for
future logs [20].

5.2 Designing to Allow for and Leverage
Variance in Food Descriptions

Although uncertainty and inaccuracy is often seen as a negative
in journaling and self-tracking [24], methods aimed to address
variance could introduce burdens to the already-demanding food
journaling domain. Allowing for �exibility or even treating variance
in how people prefer to describe their food as a design opportunity
could allow systems to support people’s journaling goals without
introducing unnecessary demands. Supporting variance may be
particularly bene�cial for people with awareness goals, who may
have less of a need for a detailed or accurate record of what they
ate.

While designing to e�ectively support the creation of accurate
calorie or nutrient logs will ensure completeness and decrease
variance, it has the downside of imposing structure on the data
a person must enter. Beyond using conversational approaches or
clari�cation questions to add detail about the food a person is
eating, journals could aim to �exibly support adding di�erent kinds
of further detail. For example, a journal could provide open-ended
�elds for a person to include contextual information (e.g., whether
eating alone or with others), information which could promote later
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reminiscence (e.g., how they are feeling, a memory associated with
that food), or anything else they wish the journal to know about
their food. This could potentially balance desires for �exibility and
detailed entries, leaving people to journal however they prefer and
perhaps support awareness alongside quantitative journaling goals.

Past work has suggested that interpreting ambiguous journal
entries can also provide an opportunity for deeper re�ection around
the circumstances under which the data was collected [3], poten-
tially highlighting the social and cultural celebratory nature of
food [47]. For instance, we observed that the presence of others
during food journaling impacted how foods were described (e.g.,
aggregating foods in a single description). From this perspective,
food description ambiguity can positively serve as a means of high-
lighting people’s positive interactions with foods and encourage
re�ecting on around the circumstances which surrounded such an
entry.

5.3 Implications of Automatic Food
Interpretation

We found that commercial NLP and image classi�cation services
were reasonably successful in interpreting and identifying the foods
that participants logged using their preferred strategies. Our results
indicate that input structure in�uences NLP performance, with in-
puts with more speci�city and standard amount descriptions more
likely to be correctly recognized. We were surprised that most food
descriptions were correctly interpreted and returned nutritional
information for identi�ed foods. While this might be su�cient for
quantitative-focused goals, commercial NLP systems were unable
to interpret the contextual cues participants occasionally put in in
food descriptions describing their location or social circumstances.
Likewise, non-standard food descriptions that reference routines
(e.g., “same as lunch. . .”) or subjective amount descriptions, were
also a challenge for automatic inference of logs, but are valuable
information that people wanted to record. Similarly, image recog-
nition libraries traded o� accuracy for identifying the foods in an
image with accuracy for identifying contextual information, such
as what room a person might be eating in or whether they are
eating from a plate or another container.

Our results, as well as others, suggest that people intend to collect
contextual information for later re�ection [30], perhaps pointing
towards an opportunity for recognition models that comprehend
not only food items, but other data. Incorporating models speci�-
cally trained for recognizing food in text and images together with
other classi�cation models (e.g., optical character recognition, more
general object recognition models, barcode recognizers, amount
classi�ers) could enable adding such context as well as supporting
recognition. Even if not identi�ed with high detail or accuracy,
these models could help point to fun or personally meaningful ex-
periences [47], such as surfacing restaurant names or household
objects visible in communal dining. Further mining of information
embedded in photo metadata or passively recorded (e.g., location,
time) could further provide context to complement reminiscence
and re�ection for both quantitative and awareness goal groups.

While automation is typically leveraged for food tracking to-
wards calorie or nutrient goals, surfacing contextual elements from
food photos and descriptions might also be bene�cial for people

with mindfulness and behavior awareness goals. As food jour-
nals become easier to collect passively through automated sensing
[11, 70, 89] or with lower journaling burden [23, 30], there are in-
creased opportunities for re�ecting on long-term logs. Photos and
text descriptions can be di�cult to aggregate, but automation can
promote longer-term re�ection or reminiscence by mining abstract
concepts from these logs. For instance, people could be provided
with a cloud of words with the names of frequent foods or food
categories they journaled, or display a color gradient representing
how the color of these foods has varied over time.

Food journaling can also bene�t from image classi�cation for
increasing detail of food consumption. People with calorie and nu-
trient goals could leverage this by con�rming identi�ed foods in the
image, adding further speci�city about the ingredient makeup, and
possibly clarifying amounts. Identi�ed and con�rmed foods could
then be automatically searched for nutritional data in a database.
Amounts could also be suggested based on contextual informa-
tion present in the image, such as text on packages or food inside
containers (e.g., plate, cup). This semi-automated approach might
potentially lower journaling time and e�ort [58], while still pro-
moting engagement [23].

6 CONCLUSION
In deploying ModEat, a lightweight food journaling technology
prototype, we have identi�ed that participant’s strategies for de-
scribing foods had high variance, ranging from granular to aggre-
gated inputs, and di�erent levels of speci�city and ways of describ-
ing amounts. We also observed that food descriptions or images
could also be ambiguous and often not clear as to actual consumed
amounts. The strategies which people use to create food logs were
typically interpretable by recognition libraries, but were less suc-
cessful for aggregated or less speci�c food inputs. Our �ndings
point to opportunities for conversational food journaling to help
mitigate variance by supporting adding further detail, but also for
technology to leverage journaling variance to promote reminis-
cence. Leveraging automatic food interpretation can additionally
lower journaling burden or add context, supporting increased value
from long-term food logs.
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