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Bacterial growth is remarkably robust to environmental fluctuations, yet the mecha-
nisms of growth-rate homeostasis are poorly understood. Here, we combine theory and
experiment to infer mechanisms by which Escherichia coli adapts its growth rate in
response to changes in osmolarity, a fundamental physicochemical property of the envi-
ronment. The central tenet of our theoretical model is that cell-envelope expansion is
only sensitive to local information, such as enzyme concentrations, cell-envelope curva-
ture, and mechanical strain in the envelope. We constrained this model with quantita-
tive measurements of the dynamics of E. coli elongation rate and cell width after
hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is
a key process underlying growth-rate homeostasis. Furthermore, our model correctly
predicted that softening does not occur above a critical hyperosmotic shock magnitude
and precisely recapitulated the elongation-rate dynamics in response to shocks with
magnitude larger than this threshold. Finally, we found that, to coordinately achieve
growth-rate and cell-width homeostasis, cells employ direct feedback between cell-
envelope curvature and envelope expansion. In sum, our analysis points to cellular
mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical
framework for understanding this process.

cell mechanics j hyperosmotic shock j cell envelope j stored growth j envelope softening

For bacterial cells, cell growth and cellular morphogenesis are intimately related. For
example, to achieve its characteristic rod shape, Escherichia coli must maintain its cell
width (Fig. 1) while growing in cell length. Despite its complexity, this process is
remarkably robust: bacterial cells maintain cell shape and cell growth with precision
across environmental conditions and during dramatic environmental perturbations
(1–5). Although much is known about the molecular pathways that are required for
increased cell volume and surface area (6, 7), little is known about the homeostatic
mechanisms that couple these processes to guarantee stable cell growth and morphogene-
sis. In particular, it is unknown which global (cell-scale) morphogenetic variables—such
as cell width, cell length, or cell growth rate—feed back directly onto the mechanisms
that orchestrate cell growth.
The genome encodes the morphogenetic machinery that synthesizes the cell enve-

lope, which is the key structure that defines bacterial cell size and shape (8). Thus, the
expansion of this surface defines cell growth and morphogenesis. The cell envelope is
complex and diverse. In Gram-negative bacteria such as E. coli, the envelope is a multi-
layered structure that includes the peptidoglycan cell wall and the outer membrane
(Fig. 1). Both of these layers contribute to envelope mechanical integrity, while the cell
wall is the key structural determinant of cell shape (8).
Synthesis of the cell wall and the outer membrane is carried out by sophisticated

molecular machineries. Assembly of the cell wall is executed by protein machineries
called “Rod complexes” (9) that are distributed throughout the cylindrical (i.e., non-
polar) regions of the plasma membrane (Fig. 1) (10). Rod complexes synthesize nascent
glycan polymers processively from one end and crosslink them into the existing cell
wall via their free peptide stems. Integration of nascent peptidoglycan into the cell wall
also requires the activity of hydrolases that cleave the existing material (11). Processive
peptidoglycan synthesis is oriented approximately parallel to the circumference of the
cell such that glycans are preferentially oriented circumferentially and peptides are ori-
ented parallel to the cell axis (Fig. 1), resulting in structural anisotropy of the cell wall
at the molecular scale. This structural anisotropy is thought to be critical for rod-shape
maintenance by stiffening the cell envelope in the circumferential direction (12).
A few paradigmatic cases demonstrate how global morphogenetic variables can regu-

late molecular-scale cell envelope homeostasis. First, positioning of the cell-division sep-
tum in E. coli is in part governed by the spatiotemporal dynamics of the Min proteins,
which depend directly on global cell-envelope geometry (13–17). Second, when E. coli
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cells are temporarily constrained to adopt a bent shape within a
curved channel and then released, new envelope synthesis by
Rod complexes preferentially localizes to the inner curvature,
which promotes cell straightening (18, 19). It is likely that this
localization preference represents feedback from global cell shape
via the local geometry of the cell envelope. Similarly, circumfer-
ential glycan synthesis is thought to rely on the ability of some
components of the Rod complexes to sense membrane curvature
(10, 20–23). According to one model, short (∼100s of nm) pol-
ymers of the actin homolog MreB, which scaffold other compo-
nents of the Rod complexes, align circumferentially along the
direction of maximal membrane curvature and act as molecular
rudders that steer glycan synthesis in this direction (24, 25).
These mechanisms likely represent the tip of the iceberg with
respect to how global variables feed back onto the molecular-
scale machinery of cellular morphogenesis.
Ultimately, cellular morphogenesis requires physical cell

inflation, yet the ways in which mechanical forces interact with
the molecular mechanisms of morphogenesis are not under-
stood. A key question is the role of turgor pressure, another
global variable, in promoting cell-envelope expansion during cell
growth (Fig. 1) (26). Turgor pressure, which results from the
osmotic pressure differential across the plasma membrane,
pushes the membrane against the cell wall (27). In principle, tur-
gor pressure could feed back onto cell-envelope expansion in
two ways: (i) by activating the enzymes that carry out synthesis
and/or hydrolysis of the cell envelope or (ii) by direct plastic
deformation of the envelope. Importantly, turgor pressure could
influence cell-wall expansion indirectly through the degree to
which the envelope is stretched (the mechanical strain) or enve-
lope curvature; both of these local variables are dependent on
the degree to which the cell is inflated by turgor pressure.
To address the role of turgor pressure in cell-envelope expan-

sion, in a previous study, we measured the growth-rate dynam-
ics of E. coli in response to osmotic shocks (acute changes in
extracellular osmolarity that alter turgor pressure) (3). The
responses were complex: while modest hyperosmotic shocks
(<300 mM in magnitude) clearly reduced single-cell growth
rate, when turgor pressure was re-established by reversing the
shock, cells rapidly elongated to the size that they would have
had in the absence of the shock (3). That is, the cells appeared

to “store growth” during the period of reduced growth rate.
Although similar phenomena have been observed in the alga
Chara corallina (28), the mechanisms that enable stored growth
and the conditions under which it can be achieved are not well
understood.

To understand stored growth and the interplay of cell mor-
phology, cell envelope synthesis, and turgor pressure more
broadly, we developed a generic theory for the expansion of a
thin pressurized shell (29) that unifies these processes. We vali-
dated this model using an extensive dataset concerning cellular
elongation rate and cell-width dynamics after osmotic shocks.
The central underlying tenet of our model is “locality”: that the
rate of cell-envelope expansion depends only on local informa-
tion, including the rate of cell-envelope synthesis, cell-envelope
curvature, and mechanical strain in the envelope. We found that
the model can only explain stored growth if it includes adaptive
cell-envelope softening, which also accelerates recovery of cell
width. Moreover, the model successfully predicts a threshold
shock magnitude above which stored growth cannot occur due
to an instability generated by envelope softening. Beyond this
shock magnitude, the model quantitatively predicts the slope of
the experimentally observed linear decrease in elongation rate as
a function of shock magnitude. Finally, we found that direct
feedback between envelope curvature and envelope expansion is
required to explain the transient dynamics of cell length and
width after hyperosmotic shock. These results highlight the
sophisticated nature of the feedback system that governs cellular
morphogenesis, which coordinately controls cell-elongation rate
and cell width by coupling them to envelope stiffness and syn-
thesis; the specific organization of this feedback system promotes
robust and rapid homeostasis of each of these variables.

Results

A Physical Model of Surface Expansion Based on the Principle
of Locality Can Be Adapted to Bacterial Growth. Our strategy
for interrogating bacterial morphogenesis was to derive a mathe-
matical model that is generic enough to capture the rich phenom-
enology of cell-growth dynamics upon perturbation, constrain
this model with a broad set of experimental data, and infer prin-
ciples of morphogenesis from these constraints. Motivated by a
large body of experimental support, we chose to derive a coarse-
grained model of cell-envelope expansion based on the principle
of locality. Here, locality implies that envelope expansion at a
given point is only dependent on information within its immedi-
ate microscopic vicinity. Such information could be chemical
(e.g., local enzyme concentration), mechanical (e.g., mechanical
strain in the cell envelope), or geometrical (e.g., curvature of the
cell envelope). Within this framework, global (cell-scale) informa-
tion can only be sensed insofar as it is coupled to local informa-
tion. For example, the width of a rod-shaped cell could only be
sensed indirectly through local curvature since these two variables
are inversely related (Fig. 1). Similarly, turgor pressure could be
sensed indirectly through local mechanical strain.

Based on this principle, we adapted a differential geometry-
based theory for the expansion of thin elastic surfaces to rod-
shaped (cylindrical) cell-envelope expansion (30) (Methods and
Materials and SI Appendix). The dynamics of cell growth are
described by those of the rest-metric tensor, gijðtÞ; along with
the rest-curvature tensor, bijðtÞ, the rest-metric tensor specifies
the geometry of the cell envelope when there are no external
forces applied to it (SI Appendix, Fig. S1). In the presence of
turgor pressure, the envelope stretches (Fig. 1) and its geometry
is described by the metric tensor GijðtÞ and curvature tensor

P

P = 0

Rod complex

L

l

W = 2H-1

w
Deflated 

cell

Turgid

cell

Glycan 

Peptide

z
θ

Fig. 1. Gram-negative bacterial cell geometry and mechanics. Schematic
of a Gram-negative bacterial cell, illustrating its rest length l and rest width
w in the absence of any applied forces such as turgor pressure. During
steady-state growth with rate λ0, turgor pressure PðtÞ = P0 stretches the cell
to length LðtÞ = Lð0Þ expðλ0tÞ and width WðtÞ = 2H�1 =W0, where H is the
curvature. Synthesis of the peptidoglycan cell wall takes place through the
action of rod complexes (blue circles); glycan strands (green) are inserted
in an approximately circumferential direction and crosslinked to old mate-
rial through short peptides (red).

2 of 9 https://doi.org/10.1073/pnas.2200728119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

St
an

fo
rd

 L
ib

ra
rie

s o
n 

O
ct

ob
er

 3
, 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

71
.6

6.
13

.1
66

.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200728119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200728119/-/DCSupplemental


BijðtÞ. Generically, the dynamics of the rest-metric tensor may
depend on envelope curvature and mechanical strain in the
envelope (SI Appendix, Fig. S1). We performed a Taylor expan-
sion of metric-tensor dynamics to leading orders of curvature
and strain, motivated by the fact that the curvature of the cell
envelope (inverse radius of curvature) is small compared with
the inverse of the size of molecular components, such as MreB.
We identified four key terms that could affect cell morphology
dynamics after hyperosmotic shock (SI Appendix):

1
λ0

∂gij
∂t|fflffl{zfflffl}

Expansion rate

= Aij|{z}
1: Envelope synthesis

+
α1

2H0
2
ðH �H0ÞBij|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2: Cell�width homeostasis

� α2
2H0

ðH �H0ÞGij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
3: Width�elongation coupling

+ βSij|{z}
4: Mechanical expansion

:

[1]

The left-hand side of Eq. 1 is the time derivative of the rest-
metric tensor, which defines the expansion rates of the cell
envelope in both principal directions (longitudinal and circum-
ferential, denoted z and θ, respectively, in Fig. 1); λ0 defines
the steady-state rate of exponential elongation (31–34).
Term 1 on the right-hand side of Eq. 1 represents steady-state

anisotropic expansion of the cell surface along the principal cur-
vature directions (SI Appendix). Biologically, this term corre-
sponds to the expansion of the cell surface that results from
curvature-dependent anisotropic synthesis of envelope material.
Terms 2 and 3 encompass direct feedback between cell-

envelope curvature, H, and cell-surface expansion. H is positive
by convention. H0 = 2/W0 is the steady-state envelope curvature
where W0 is the steady-state cell width. α1 and α2 are propor-
tionality constants. For a cylindrical cell, only the circumferential
component of the curvature tensor BijðtÞ is nonzero. Term 2 by
itself ensures cell-width homeostasis by providing negative feed-
back between circumferential curvature and circumferential
expansion. Term 3 modulates isotropic surface expansion in an
envelope curvature-dependent manner. Biologically, these two
terms could rely on a single process, for example, curvature-
dependent localization of Rod complexes (10).
Term 4 corresponds to irreversible cell-surface expansion

driven directly by mechanical strain in the cell envelope, which
results from turgor pressure. This term yields anisotropic
expansion that is directly proportional to the anisotropy in the
strain tensor, SijðtÞ = ðGijðtÞ � gijðtÞÞ=2 , where β is a propor-
tionality constant. Notably, this term is not the only mecha-
nism by which envelope expansion could depend on strain:
since terms 1–3 prescribe changes in the rest-metric tensor that
explicitly depend on envelope shape, and since shape changes
in response to mechanical forces, the elongation rate implicitly
depends on strain, even when β = 0.
A minimal version of the model with terms 1 and 2 alone

can achieve stable rod-shaped elongation: a cylinder with cons-
tant width equal to 2/H0 and exponentially increasing length
LðtÞ = Lð0Þ expðλ0tÞ is a steady-state solution of Eq. 1 (SI
Appendix). To determine whether contributions from terms 3
and 4 are required to explain the dynamics of cell morphogene-
sis in general, we sought to perturb cell growth from its steady-
state behavior. We did so by subjecting cells to hyperosmotic
shock, which rapidly changes the curvature and mechanical
strain in the cell envelope. This strategy allowed us to directly
test whether cell elongation and cell width are coupled due to

curvature-dependent cell-envelope expansion and whether
mechanical strain directly drives cell-envelope expansion.

Stored Growth Implicates Dynamic Adaptation of Cell-Envelope
Stiffness. When E. coli cells are perfused constantly with rich
medium, they elongate at a steady-state rate of λ0 = d(ln L)/dt ∼
0.03 min�1. Stored growth occurs when cells are subjected to
modest (≤300 mM), transient hyperosmotic shocks (5). During
hyperosmotic shock, turgor pressure decreases and the cell enve-
lope contracts (Fig. 2 A and B), with envelope length governed
by linear elasticity:

LðtÞ = 1 + ε0
p

yðtÞ
� �

l ðtÞ, [2]

where l ðtÞ is the rest length of the cell, p = P/P0 is the turgor
pressure normalized by its steady-state value, y(t) = Y(t)/Y0 is
Young’s modulus of the cell envelope normalized by its steady-
state value, and ε0 is the mechanical strain in the cell envelope
prior to the decrease in turgor pressure. In previous work, we
measured ε0 = 0:1 ± 0:03 (SD) (35). Immediately after a hyper-
osmotic shock, cells elongate slower than before. However, the
cells store growth: when the shock is reversed, cells rapidly
expand elastically to the size that they would have attained during
this period had they never been subjected to the shock (Fig.
2B) (3).

To achieve stored growth, the elastic expansion when the
shock is reversed (i.e., during the “downshock”, Fig. 2 A and
B) must necessarily be larger than the elastic contraction when
the shock is applied (“upshock”, Fig. 2 A and B) to make up
for the slower elongation during the period of reduced turgor
pressure (Fig. 2 B–D). This difference means that the cell enve-
lope is less stiff at the end of the period of low turgor than
directly after the hyperosmotic shock. The condition for stored
growth—that the reversal of the shock fully compensates for
the length lost during low turgor—leads to an expression for
the dynamics of the longitudinal Young’s modulus after hyper-
osmotic shock, yðtÞ,

yðtÞ ≈ ð1� pÞε0
jδLðtÞj , [3]

where δLðtÞ ≡ LðtÞ�L0ðtÞ
L0ðtÞ is the relative difference between the

cell length, L(t), and the length that the cell envelope would
have had in the absence of perturbation, L0(t). As this differ-
ence increases, the longitudinal Young’s modulus decreases.
There are no fitting parameters in Eq. 3; hence, y(t) is a direct
consequence of the dynamics of L(t).

We estimated the theoretical rate and extent of softening
upon hyperosmotic shock by solving Eqs. 1–3. By substituting
the predicted length dynamics into Eq. 3, we predicted the
time evolution of longitudinal Young’s modulus after the
hyperosmotic shock (Fig. 2E). By comparing the mechanical
strains induced by hyperosmotic shock and reversal of the
shock (Fig. 2 A–D and SI Appendix, Fig. S2), we found that
during the 60 s after a 100-mM hyperosmotic shock the elastic
modulus decreased by 19 ± 6%, in reasonable agreement with
the prediction of 10% after a normalized time λ0t = 0.033 from
our model (Fig. 2E). Remarkably, our model predicted that lon-
gitudinal Young’s modulus would decrease by >25% during one
cell cycle in the absence of osmoregulation (Fig. 2E).

Envelope softening can be viewed as a mechanical mechanism
of sensing global cellular dimensions. Specifically, envelope soft-
ening intrinsically records the deviation between global cell length
and the length determined by cell-envelope synthesis (i.e., δL).
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Furthermore, softening intrinsically provides a mechanical mecha-
nism to reduce this deviation.

Cell-Envelope Softening and Curvature Feedback Enable
Simultaneous Homeostasis of Cellular Elongation Rate and Cell
Width. We next hypothesized that cell-envelope softening would
affect elongation-rate dynamics on longer time scales after single
hyperosmotic shocks (without reversing the shock). To test this
hypothesis, we used microfluidics to subject E. coli cells growing
at steady state to hyperosmotic shocks across a wide range of
magnitudes and measured the dynamic responses of cell length
over time. We then systematically tested these data against our
model (Eq. 1), with and without envelope softening (Eq. 3).
Throughout our entire analysis, we used a single set of model
parameters to explain experimental data (Methods and Materials).
By quantifying the relative length difference, δLðtÞ, and the

relative difference between the observed elongation rate and the
elongation rate before the shock, δλðtÞ = ðλðtÞ � λ0Þ=λ0, we
found that the shock caused a short, transient period of reduced
elongation rate (Fig. 3 A–C), followed by rapid re-establishment
of the preshock elongation rate (Fig. 3C). In the absence of
envelope softening, both the minimal version of our model (the
“minimal model”; Eq. 1, terms 1 and 2) and the version that
includes feedback from envelope curvature (the “curvature-
feedback model”; Eq. 1, terms 1–3) poorly predicted the experi-
mental cell-length dynamics after hyperosmotic shock (Fig. 3 A
and B). Each model generically predicted that the relative length
change, δLðtÞ, does not approach a constant value (Fig. 3B)
and equivalently that the relative elongation rate change, δλðtÞ,
does not approach zero (Fig. 3C), in contrast to our experimen-
tal observations (Fig. 3 B and C). When combined with soften-
ing (Eq. 3), however, the curvature feedback model accurately

captured the length dynamics after both a 400-mM (Fig. 3
A–C) and a 200-mM shock (SI Appendix, Fig. S3), while the
minimal model did not (Fig. 3 A–C and SI Appendix, Fig. S3).
The minimal model predicted a smaller initial decrease in elon-
gation rate than in experiments, and the relative rate change was
approximately constant over the interval during which the curva-
ture model exhibited adaptation (Fig. 3C). In sum, these find-
ings implicate direct dependence of cell elongation on envelope
curvature and point to the critical role of envelope softening
during adaptation to changes in turgor pressure.

The role of softening in elongation-rate homeostasis is
straightforward to understand mechanistically. First, the reduc-
tion in turgor pressure caused by the hyperosmotic shock causes
the cell to contract. In our curvature-feedback model, this
decrease in pressure leads to a reduced elongation rate (directly
after the shock) due to contributions from term 1 (Eq. 1), as
the contraction reduces the available amount of surface area
into which new material is being inserted for a given rest state,
and term 3, as elongation rate responds to the turgor-induced
decrease in width. As elongation rate decreases, however, and
the relative length change increases in magnitude, softening of
the envelope allows the reduced turgor pressure to adaptively
stretch the envelope to the extent that it was stretched before
the shock, thereby re-establishing the steady-state elongation
rate. In the minimal model, softening also leads to growth-rate
adaptation, but on a much longer time scale (Fig. 3C).

We identified further evidence for our curvature-feedback
model by comparing its predictions with experimental cell-
width dynamics. Hyperosmotic shock caused a rapid reduction
in width (Fig. 3D), followed by a rapid recovery (Fig. 3D) on
the same time scale as elongation-rate recovery (Fig. 3C). Using
the same set of model parameters as was used to fit elongation
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Fig. 2. Stored growth during cycles of hyper- and hypo-osmotic shocks can be explained by cell envelope softening. (A) Osmolarity as a function of time.
(B) Experimentally measured cell-length dynamics (black) in response to cycles of 100-mM hyper- and hypoosmotic shocks demonstrate stored growth: immedi-
ately after the hyperosmotic shocks, growth rate decreases, yet after the hypoosmotic shocks, cell length ends up matching the predicted elongation in unper-
turbed conditions extrapolated from the initial cell length and growth rate. (C) A closer look at a portion from panel B. Orange dashed curve shows the predicted
dynamics after the hypoosmotic shock in the absence of envelope softening. (D) The mechanical strain induced by the hyperosmotic shocks in B is smaller than
the strain induced by the hypoosmotic shocks, implying softening of the cell envelope. (E) Model prediction of the envelope softening necessary for stored
growth after a 100-mM hyperosmotic shock is in reasonable agreement with the softening inferred from the mechanical strain data as discussed in the text.
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rate and length dynamics (Fig. 3 B and C), both our curvature-
feedback model and the minimal model predicted this qualita-
tive width recovery (with or without softening) (Fig. 3D). Both
softening and curvature feedback were predicted to accelerate
width recovery, and the combination of both led to close agree-
ment with experimental measurements (Fig. 3D).

Softening-Mediated Elongation-Rate Homeostasis Is Unstable
for Large Hyperosmotic Shocks. Thus far, we have focused on
scenarios in which turgor pressure remains positive after the
hyperosmotic shock. Within our model, if a hyperosmotic shock
is large enough to cause turgor pressure to fall below zero, soften-
ing combined with the compressive forces in the cell envelope
due to negative turgor pressure would lead to growth arrest rather
than promoting recovery of elongation rate. In the language of
our model, the dynamics of deviations of cell length and width
from their steady-state values depend on turgor pressure, and
these deviations grow indefinitely for negative pressures (Fig. 4A).
This instability is also manifested by considering the relative
length and width behavior at long times as pressure goes to zero,
which is predicted by our curvature feedback model to be

lim
t!∞

W ðtÞ �W0

W0
≡ lim

t!∞
δW ðtÞ = 0, [4]

lim
t!∞

LðtÞ � L0ðtÞ
L0ðtÞ ≡ lim

t!∞
δLðtÞ = δLð0Þ

p
: [5]

That is, width recovers to its preshock steady-state value,
while the relative difference between cell length and the length
prescribed by steady-state elongation diverges as p ! 0.

Based on this analysis, we hypothesized that cells do not
soften after large hyperosmotic shocks, either because cells
actively inhibit softening or because the cell-envelope synthesis
machinery can no longer function, and thus, we explored this
regime experimentally. Remarkably, the relative difference
between the steady-state elongation before and after hyperos-
motic shock exhibited a sharp discontinuity at a critical shock
magnitude (Fig. 4B and SI Appendix, Fig. S4). For all shocks
<700 mM, elongation rate recovered to its unperturbed value
(consistent with envelope softening). Conversely, for larger
shocks, cells continued to grow (in contradiction to model pre-
dictions with envelope softening) but eventually stabilized at an
elongation rate that decreased linearly with shock magnitude
(Fig. 4B). This behavior was in quantitative agreement with
our theory. Specifically, our curvature-feedback model without
softening predicts that the slope of the linear dependence
between elongation rate and shock magnitude is twice the slope
of envelope strain as a function of shock magnitude (Methods
and Materials). This model prediction of 2 ×�0:14 =�0:28
(Fig. 4 B and C) is in reasonable agreement with the experi-
mental slope of �0.35 ± 0.07. According to our theory, this
linear decrease arises because of indirect mechanical effects of
turgor pressure on elongation rate via cell-envelope geometry.
That is, reduction in turgor pressure causes a decrease in cell
surface area, which reduces elongation rate by reducing the
amount of cell-envelope synthesis via term 1 in Eq. 1.

For shocks with magnitude above the 700-mM threshold,
direct feedback between envelope curvature and envelope
expansion (Eq. 1, term 3) was critical for explaining the
dynamics of cell length. The minimal model with only terms
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1 and 2 failed to predict the transient length and elongation
dynamics after the shock, which were precisely explained by
our curvature-feedback model (Fig. 4 D and E and SI
Appendix, Fig. S5). Together, these data suggest that envelope
softening and stored growth do not occur for large-magnitude
shocks and provide further support that envelope expansion is
directly dependent on envelope curvature.
What is the origin of the 700-mM threshold? Within our

model, this threshold is simply the steady-state turgor pressure
in units of osmolarity. Interestingly, 700 mM corresponds to a
large pressure of ∼18 atm (P = RTΔC ). By comparison,
atomic force microscopy (AFM) methods measured the turgor
pressure of E. coli to be ∼1–3 atm (36), which is consistent
with our previous observation that cells plasmolyze for shock
magnitudes ≥100 mM (equivalent to 2.6 atm) (3). However,
we identified a surprising caveat to these measurements: the cell
envelope clearly continues to contract linearly for shock magni-
tudes up to 700 mM (Fig. 4C) (3). In other words, even
though turgor pressure is zero after shocks >100 mM, the cyto-
plasm still induces tensile stress in the envelope unless the
shock is >700 mM; the degree of contraction was maintained
when the shock magnitude was increased from 700 mM to
3 M (35). Since this tensile stress, and not turgor pressure itself,
is the key variable that is relevant to cell-envelope expansion,
we define the effective turgor pressure as 700 mM, which

precisely agrees with the critical shock magnitude above which
we observe the discontinuity in steady-state growth rate (Fig.
4B) and predict that cell-envelope softening is abolished.

Envelope Expansion Is Not Explicitly Dependent on Mechanical
Strain. In all the above analyses, it was unnecessary to invoke
an explicit dependence of envelope expansion on envelope
strain (Eq. 1, term 4). In fact, with inclusion of this depen-
dence, our model predictions are inconsistent with experimen-
tal measurements (Fig. 4 B–F). Under explicit strain-dependent
envelope expansion, altering pressure shifts the steady-state
width, which thus recovers to a different value after the shock
compared with the preshock width (Fig. 4F and Methods and
Materials). Furthermore, inclusion of strain-dependent expan-
sion led to poor predictions of the elongation-rate dynamics for
shock magnitudes above the critical threshold (Fig. 4B and
Methods and Materials). In contrast, the successful prediction of
both these behaviors by our model in the absence of term 4 in
Eq. 1 provides support for the curvature-feedback model without
explicit strain dependence.

Discussion

By combining theory and experiment, we identified two func-
tional relationships between key cell-scale variables that promote
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of strain sensing (g3 = 2). (C) Magnitude of the elastic length strain after hyperosmotic shocks of various magnitudes. The length strain reaches the value
ε0 = 0.1 (the estimated envelope strain during steady-state growth) at an estimated shock magnitude of ∼700 mM. (D) After the 800-mM hyperosmotic
shock, length increased much more slowly than the predicted rate for an unperturbed cell. Model predictions with fixed Young’s modulus (blue) are in close
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The close fit of our model (blue dashed curve) to experimental data (black) provides an estimate of the model parameters g1 = 3:2 and g3 = 0. In the presence
of strain sensing (g3 = 2), our model predicts that width would not recover to its preshock value (purple).

6 of 9 https://doi.org/10.1073/pnas.2200728119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

St
an

fo
rd

 L
ib

ra
rie

s o
n 

O
ct

ob
er

 3
, 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

71
.6

6.
13

.1
66

.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200728119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200728119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200728119/-/DCSupplemental


homeostasis during cell morphogenesis: (i) softening of the cell
envelope due to mismatch between elongation rate and
envelope-synthesis rate and (ii) the direct dependence of cell-
elongation rate on envelope curvature (curvature feedback).
These two relationships are both required to guarantee the
experimentally observed homeostasis in cell-growth rate (Fig. 3
A–C), while only curvature feedback is required to guarantee
cell-width homeostasis (Figs. 3D and 4F), although softening
does accelerate width recovery after a shock (Fig. 3D). Our com-
plete model (Eqs. 1–3) suggests that E. coli morphogenesis relies
on interlocking negative feedback loops linking three key
cellular-scale variables: cell width, cell length, and envelope stiff-
ness (Fig. 5A). Negative feedback has been demonstrated to
increase stability and accelerate the response of control systems
(37), underscoring the likely fitness advantages of homeostatic
mechanisms during cell morphogenesis.
In our model, the interactions between cell-scale morphoge-

netic variables (Eq. 1 and Fig. 5A) must be mediated by
molecular-scale properties, such as cell-envelope synthesis and

envelope curvature. Our results point to potential molecular
mechanisms that underlie these interactions. With respect to
cell-envelope softening, we previously speculated that
molecular-scale wrinkling of the cell envelope could account for
stored growth (3). In this picture, which is consistent with our
theory of envelope softening, hyperosmotic shock reduces elon-
gation rate more than it reduces the rate of cell-envelope syn-
thesis. As a result, new cell-envelope synthesis wrinkles as it is
inserted into the cell wall (Fig. 5B). This wrinkled material
results in envelope softening, since tensile forces will tend to
unwrinkle it prior to stretching. Intuitively, in a toy model in
which the cell envelope is represented by a chain of linear
springs, if new wall material inserted during the period of hyper-
osmotic shock is represented by springs with lower effective
spring constant and rest length, they will gradually soften the
cell over time (SI Appendix). Furthermore, this model predicts
that, when pressure is restored, the wrinkled springs revert to
their unperturbed configuration with higher rest length and
spring constant, leading to stored growth consistent with Eq. 3.
Alternatively, cell-envelope softening could also occur actively
through tension-dependent activity of hydrolases that cleave pep-
tide crosslinks (11), which are typically aligned longitudinally
(38, 39).

One plausible mechanism for feedback between envelope cur-
vature and envelope expansion (Eq. 1, terms 2 and 3) would be
curvature-dependent localization of the rod complexes. Rod
complexes play a key role in cell elongation by coordinating pep-
tidoglycan synthesis, and alteration of their activity in Bacillus
subtilis changes cell width (21) via an unknown mechanism.
Our model suggests that, if the binding affinity of rod complexes
increases as envelope curvature decreases, wider cells would tend
to simultaneously thin and elongate faster (Fig. 5C).

An interesting finding in our study is the disparity between
the hyperosmotic shock magnitude at which cells plasmolyze
(∼100 mM) and that at which the cell envelope reaches its rest
state (∼700 mM). We speculate that this disparity is a direct
result of two cellular features: the stiffness of the cytoplasm and
the strong mechanical connections between the cytoplasmic
(inner) membrane and the cell envelope. If the cytoplasm is
both relatively stiff and connected to the cell envelope, then
hyperosmotic shocks between 100 mM and 700 mM could
cause compression of the cytoplasm/cell envelope complex. In
this case, the inner membrane would be balancing tensile forces
in the cell envelope with shear forces between the two structures.
This question will be an interesting topic for future study.

It remains unclear what prevents cells from implementing enve-
lope softening for high-magnitude shocks. For such shocks, the
substantial plasmolysis (separation of the cytoplasm from the cell
wall) may inhibit wall synthesis by preventing the wall synthesis
and/or hydrolase enzymes from reaching from the inner mem-
brane to the cell wall. Our model predicts that the transition
away from softening occurs at a shock magnitude of ∼700 mM,
which may represent the point at which there is no tension in the
cell envelope (but substantial compression of the outer membrane
(35)). At this point, it may no longer be possible to synthesize
material that can be softened, due to sensitivity of any component
of the wall-synthesis machinery (synthetases or hydrolases) to wall
tension. Future experiments that localize synthesis-machinery
dynamics with superresolution during osmotic perturbations may
resolve this question.

Homeostasis of cellular morphogenesis is a critical process in
most (if not all) cells. The systems that guarantee this homeo-
stasis must inherently incorporate molecular-scale and cell-scale
information. Here, we provided a paradigm for this integration

Cell 

length
(L) Cell 

width
(W )

Envelope

stiffness
(Y)

Eq. 1

Term 3
Eq. 2

Eq. 3

Envelope 

softening

Curvature 

feedback

{ {
A

B
Hyperosmotic shock

Softening increases 

elongation rate and 

stores growth

C

 Increased Rod

complex binding

Cell

widening

 Thinning and elongation

Envelope softening 

due to buckling

Fig. 5. Feedback linking cell length to envelope stiffness and envelope cur-
vature leads to growth rate and width homeostasis. (A) Summary of model
findings. During steady-state growth, cell length increases exponentially due
to term 1 in Eq. 1, and term 2 ensures width homeostasis. After a hyperos-
motic shock is applied, pressure is reduced, which affects length and width
through elastic stretching as well as through coupling between width and
length via term 3 in Eq. 1. Envelope stiffness inhibits elongation through Eq.
2, and a hyperosmotic shock induces softening through Eq. 3. The softening
mechanism is assumed to only be active when the effective turgor pressure
is positive to avoid the predicted instability (Fig. 4A). Softening compensates
for the decrease in width and growth rate after the shock and leads to
growth-rate homeostasis. (B) Toy model of softening mechanism. After a
hyperosmotic shock, newly inserted cell-wall material could be wrinkled and
hence would be softer than fully stretched material and thereby reduce the
cell-envelope Young’s modulus. (C) Toy model illustrating curvature feed-
back. Enzymes responsible for envelope synthesis may prefer binding to cer-
tain local curvatures, such that cell widening promotes increased activity
that leads to simultaneous thinning and elongation.
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for one of the best-studied model organisms. One high-level
takeaway from our analysis is that this homeostatic system is
complex: maintenance of cell width and elongation rate cannot
be decomposed into component systems but are intimately cou-
pled (Fig. 5A). Our model can be used to determine whether
E. coli cells utilize the same homeostatic mechanisms under other
growth conditions, and it will be interesting to compare parallel
systems in other organisms with other cellular morphologies to
test the generality of this architecture.

Methods and Materials

Growth Media. Concentrated growth medium was made by adding sorbitol
(Sigma-Aldrich) to lysogeny broth (LB) (10 g tryptone, 5 g yeast extract, and 5
g NaCl per liter H2O), which has a base osmolality of 260 mmol/kg as mea-
sured with a vapor pressure osmometer (Wescor Environmental). We used the
osmometer to confirm that osmolarity scales linearly with osmolality across the
range of concentrations used for this study, that is c = b ρ, where c is the con-
centration, b is the osmolality, and ρ is the density of water. Throughout this
study, we express shock magnitude in terms of mM of osmolyte since molarity
is what is controlled and measured experimentally.

Time-Lapse Imaging during Osmotic Shocks. Before osmotic shock experi-
ments, overnight cultures grown in LB were diluted 1,000-fold into LB concen-
trated with 0–2 M sorbitol and then incubated at 37 °C until the cells were in
log phase. These cultures were diluted 100-fold into prewarmed medium that
contained 10 μg/mL wheat germ agglutinin (WGA) conjugated with Alexa Fluor
488 (Life Technologies) and loaded into a microfluidic flow cell (CellASIC). To
ensure that cells were growing exponentially prior to the osmotic shock, the flow
cell was incubated for an additional 1 h in the microscope environmental cham-
ber (HaisonTech), which was preheated to 37 °C before cells were imaged.
Before loading cells into the imaging chamber of the flow cell, the chamber was
primed with growth medium using the ONIX microfluidic perfusion platform
(CellASIC). While imaging, fresh medium containing WGA was perfused through
the flow cell.

During osmotic shock, the medium in the flow cell was exchanged using the
ONIX system. WGA was included in all perfusion media. To monitor medium
osmolarity during osmotic shock, 0.5 μg/mL Alexa Fluor 647 carboxylic acid, suc-
cinimidyl ester dye (Life Technologies) was included with the concentrated
medium as a tracer dye. The intensity of the tracer dye was monitored using Cy5
excitation, and osmolarity was calculated by calibrating the high and low osmo-
larities with the maximum and minimum fluorescence intensities, respectively.

Cell tracking was performed using custom MATLAB (The MathWorks) routines,
as described in ref. (3).

Model for Growth without Envelope Softening. Approximating cell shape
using a cylinder whose width W(t) and length L(t) change with time, we can
express the position of a point parameterized by z and θ (Fig. 1) as

Rðθ, z, tÞ = WðtÞ
2

ŝðθÞ + z LðtÞ ẑ, z ∈ ½0, 1�, θ ∈ ½0, 2πÞ,

where ŝðθÞ and ẑ are cylindrical basis vectors. This cylindrical ansatz, with
WðtÞ = W0 and LðtÞ = L0ðtÞ, is a solution of Eq. 1 (SI Appendix), which we
interpret as the steady-state behavior of E. coli. When cells are perturbed away
from the steady-state behavior of Eq. 1, in the absence of softening and to linear
order in deviation, the width and length behave as

1
λ0

d
dt
WðtÞ � W0

W0
≡

1
λ0

d
dt
δWðtÞ = g3δLð0Þ � g1δWðtÞ, [6]

1
λ0

d
dt
LðtÞ � L0ðtÞ

L0ðtÞ =
λðtÞ � λ0

λ0
≡ δλðtÞ = 2δLð0Þ + g3δLð0Þ + g2δWðtÞ, [7]

where g1 = 1
4 ðα1 � α2 � 4Þ,g2 = α2

4 , and g3 =
β
2 (SI Appendix).

The absence of δLðtÞ from the right-hand side of Eqs. 6 and 7 can be under-
stood since the change in length does not manifest as a change in curvature or
strain, which are local quantities. As a result, growth rate does not recover in our
model in the absence of softening.

At long times (steady state), the solution to Eqs. 6 and 7 is given as

δWðt ! ∞Þ = g3δLð0Þ
g1

, δλðt ! ∞Þ = 2 + g3 + g3
g2
g1

� �
δLð0Þ: [8]

These results shows that width does not recover to the steady-state value in
the presence of the direct strain–sensing term (g3 ≠ 0) and the relative change
in elongation rate will not approach 2δLð0Þ.
Model for Growth with Envelope Softening under the Stored Growth
Constraint. During the period of low turgor pressure after the hyperosmotic
shock, the length of the cell L(t) dictated by Eq. 2 is lower than that of an unper-
turbed cell, L0(t). The stored growth condition demands that these two lengths
are equal when pressure is restored (p = 1), which leads to the relation

ε0
yðtÞ =

L0ðtÞ � LðtÞ
LðtÞ � pL0ðtÞ ≈ � δLðtÞ

1� p
=

jδLðtÞj
1� p

: [9]

Thus, the value of normalized Young’s modulus y(t)=Y(t)/Y0 becomes a proxy
for the length deviation δLðtÞ.

Using the relation above (Eq. 9) in Eq. 1 to linear order in length deviation
and width deviation δWðtÞ, we obtain
d
dt

δWðtÞ
λ0

� �
= �ðg1 + g2pÞδWðtÞ � p

1� p

�
g3 � pð2 + g3Þ

�
δLðtÞ

�ε0
�
g3 � pð2 + ΣÞ

�
, [10]

d
dt

δLðtÞ
λ0

� �
= g2ð1� pÞδWðtÞ � pð2 + g3ÞδLðtÞ + δLð0Þð2 + g3Þ, [11]

Interestingly, cell-envelope softening both leads to growth-rate homeostasis
(δLðt!∞Þ = constant) and enhances width homeostasis: width recovers at
the faster rate ðg1 + g2pÞ compared with g1 in the case of fixed Young’s modu-
lus (Eq. 6). This fact is consistent with our observation that the rate of width
recovery after a 400-mM shock (Fig. 2D) is faster than after an 800-mM shock
(Fig. 4F).

By setting the left-hand sides of Eqs. 10 and 11 to zero, we find that the solu-
tions for length and width deviation should approach

δWðt ! ∞Þ = 0, δLðt ! ∞Þ = δLð0Þ
p

: [12]

Note that, as p approaches 0, the deviation in length increases and the equa-
tions lead to an instability when p ≤ 0.

Data Analysis. Each curve in Figs. 2–4 and SI Appendix, Figs. S2–S5 was
obtained by averaging over all single-cell traces after normalizing by the value at
the time point immediately before the hyperosmotic shock. The unperturbed
growth rate and cellular dimensions were determined from the period before
the shock, from which we extrapolated the growth function L0(t). δLð0Þ and
δWð0Þ were computed from the decrease in length and width in the 25 s
directly after the shock, from which we obtained the data shown in Fig. 4C.

The parameters that are needed to determine the behavior of width and
length in our model are g1,g2,g3, and ε0. To fit our model to experimental
data, we take ε0 ≈ 0:1 from previous measurements (5) and minimize the error
function

Eðg1, g2,ΣÞ = ∑
N

i=1
ti
�
½δWtðtiÞ � δWeðtiÞ�2 + 5½δLtðtiÞ � δLeðtiÞ�2

�

over data points i, where the subscripts t and e refer to theoretical prediction
and experimental measurement, respectively. We weighted later times more
heavily since the initial conditions of the model already match the experimen-
tal data. We also weighted the length measurements fivefold more heavily
since they depend on all parameters and are coupled to width; in contrast,
width does not depend on the value of g2 or length (Eqs. 6 and 7). By mini-
mizing this error function using simulated annealing with data for an 800-mM
hyperosmotic shock, we obtained estimates of the parameters g1 = 4:4,
g2 = 7:0, and g3 = 0:23.

To assess the robustness of these values, we examined the eigenvalues and
eigenvectors of the Hessian of Eðg1,g2,g3Þ near this minimum. Directions in
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parameter space with higher eigenvalues are expected to be more tightly
constrained by the data. The eigenvalues of the Hessian (normalized by the
minimum value of the function) were 164, 0.4, and 0.05, with corresponding
eigenvectors v1 = (�0.21, 0.16, 0.96), v2 = (0.44, �0.86, 0.24), and v3 =
(0.87, 0.48, 0.11).

We rewrote the parameters in terms of coordinates G1, G2, G3 along the eigen-
vectors v1, v2, and v3 as g1= 4.4 � 0.21G1 + 0.44G2 + 0.87G3, g2 = 7.0 +
0.16G1 � 0.86G2 + 0.48G3, and g3 = 0.23 + 0.96G1 + 0.24G2 + 0.11G3.
By varying the parameters Gi individually, we obtained CIs for these
parameters.

In addition to fitting the parameters by the optimization procedure described
above, we systematically varied the parameter values and verified the quality of
the fit. Nearly all experimental results in this study were well fit by the values
g1 = 4.4, g2 = 7.0, and g3 = 0.23. For the width-dynamics data, g2 appeared
slightly overestimated, with g2 = 6.0 providing a slightly better fit. We also
obtained fits of g1 = 3.2 and g2 = 5.7 from the curvature-coupled model in the
absence of strain coupling (g2 = 0), approximately consistent with our other fits.
In the minimal model (g2 = 0, g3 = 0), the value of g1 = 3.2 is the same as it
would be in the curvature-feedback model, since g2 does not influence width
dynamics.

Data, Materials, and Software Availability. All data are included in the
manuscript and/or SI Appendix, or available at https://doi.org/10.7910/DVN/
E1I6CF (40).
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