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Abstract

For semantic segmentation, label probabilities are often
uncalibrated as they are typically only the by-product of a
segmentation task. Intersection over Union (loU) and Dice
score are often used as criteria for segmentation success,
while metrics related to label probabilities are not often ex-
plored. However, probability calibration approaches have
been studied, which match probability outputs with exper-
imentally observed errors. These approaches mainly fo-
cus on classification tasks, but not on semantic segmenta-
tion. Thus, we propose a learning-based calibration method
that focuses on multi-label semantic segmentation. Specif-
ically, we adopt a convolutional neural network to predict
local temperature values for probability calibration. One
advantage of our approach is that it does not change pre-
diction accuracy, hence allowing for calibration as a post-
processing step. Experiments on the COCO, CamVid, and
LPBA40 datasets demonstrate improved calibration perfor-
mance for a range of different metrics. We also demonstrate
the good performance of our method for multi-atlas brain
segmentation from magnetic resonance images.

1. Introduction

With the development of deep convolutional neural net-
works (CNNs), the accuracy of semantic segmentation has
improved dramatically [9} 43]. However, ideally seman-
tic segmentation networks should not only be accurate, but
should also indicate when they are likely incorrect. For
example, an autonomous driving system might use deep
convolutional neural networks to analyze a real-time scene
from a camera [3]], the associated semantic segmentation of
street scenes should provide accurate detections of pedes-
trians and other vehicles, and the system should recognize
when such predictions are unreliable. Another example is
the segmentation of brain tumors with a CNN [22]. If the
segmentation network can not confidently segment critical
regions of the brain, then a medical expert should decide or
be alerted to such doubtful regions. Thus, it is important for
semantic segmentation networks to generate both accurate

label predictions and accurate confidence measures.

However, due to overfitting, CNNs for semantic seg-
mentation tend to be overconfident about predicted la-
bels [17, 20, 29} 41]. Approaches for joint prediction and
calibration exist [36) 44, 48| |52]. However, they require
changing the learning task and typically strive for calibra-
tion, but do not guarantee it. An alternative approach is
to calibrate the resulting probabilities of a model via post-
processing so that they better reflect the true probabilities
of being correct. This is the kind of approach we consider
here as it easily applies to pre-trained networks and can even
benfit joint prediction/calibration approaches. Probability
calibration, first studied for classification [58]], generally ad-
dresses this problem via a hold-out validation dataset.

Existing calibration approaches still have several limi-
tations: (1) Most of the probability calibration approaches
are designed for classification, thus are not guaranteed to
work well for semantic segmentation (where it is also more
challenging to annotate on a pixel/voxel level); (2) While
there is limited work discussing probability calibration for
semantic segmentation, this work either only applies to spe-
cific types of models (e.g., Bayesian neural networks [29])
or only implicitly improves calibration performance (e.g.,
via model ensembling [47] or multi-task learning [31])); (3)
Most methods are designed to work for binary classifica-
tions and approach multi-class problems by a decomposi-
tion into k one-vs-rest binary calibrations (where k£ denotes
the number of classes). However, such a decomposition
does not guarantee overall calibration (only for the individ-
ual subproblems before normalization) and the classifica-
tion accuracy of the trained model may change after cali-
bration as the probability order of labels may change.

Our goal is to develop a post-processing calibration
method for multi-label semantic segmentation, which re-
tains label probability order and, therefore, a model’s seg-
mentation accuracy. Our work is inspired by temperature
scaling (TS) [20] for classification probability calibration.
As TS determines only one global scaling constant, it can-
not capture spatial miscalibration changes in images. We
therefore (1) extend TS to multi-label semantic segmenta-
tion and (2) make it adaptive to local image changes.



Our contributions are: (1) Spatially localized proba-
bility calibration: We propose a learning-based local TS
method that predicts a separate temperature scale for each
pixel/voxel. (2) Completely separated accuracy-preserving
post-processing: Our approach is completely separated
from the segmentation task, leaving the prediction accuracy
unchanged. (3) Theoretical justification: We provide a the-
oretical analysis for the effectiveness of our approach. (4)
Comprehensive analysis: We provide definitions and eval-
uation metrics for probability calibration for semantic seg-
mentation and validate our approach both qualitatively and
quantitatively. (5) Practical application: We successfully
apply our calibrated probabilities for multi-atlas segmenta-
tion label fusion in the field of medical image analysis.

2. Related Work

A variety of calibration approaches have been proposed,
but none addresses our target setting.

Bin-based Approaches. Non-parametric histogram bin-
ning [67] uses the average number of positive-class sam-
ples in each bin as the calibrated probability. Isotonic re-
gression [68] extends this approach by jointly optimizing
bin boundaries and bin predictions; it is one of the most
popular non-parametric calibration methods. ENIR [55]
further extends isotonic regression by relaxing the mono-
tonicity assumption of isotonic regression. These bin-based
methods do not consider correlations among neighboring
pixels/voxels in semantic segmentation, while our proposed
method captures correlations via convolutional filters.

Temperature Scaling Approaches. Platt scaling [58]
uses logistic regression for probability calibration. Ma-
trix scaling [20], vector scaling [20]], and temperature scal-
ing [25} 20]] all generalize Platt scaling to multi-class cal-
ibration, among which temperature scaling is both effec-
tive and the simplest. ATS [51] extends temperature scaling
by using the conditional distribution on each class to ad-
dress the calibration challenge on small validation datasets,
for noisy labels, and highly accurate networks. BTS [30]
extends temperature scaling to a bin-wise setting and also
uses data augmentation inside each bin to improve the cali-
bration performance. However, unlike our approach (which
extends temperature scaling) none of these approaches con-
siders spatial variations for probability calibration.

Bayesian Approaches. BBQ [54] extends binning via
Bayesian averaging of the probabilities produced by all pos-
sible binning schemes. Bayes-Iso [[1] extends isotonic re-
gression by using Bayesian isotonic calibration to allow for
more flexibility in the monotonic fitting and smoothness.
Jena et al. [29] proposed to use a utility function focusing on
the intermediate-layers of a Bayesian deep neural network
to calibrate probabilities for image segmentation. Maronas
et al. [46] proposed decoupled Bayesian neural networks
to calibrate classification probabilities. Bin-based Bayesian

methods do not consider pixel/voxel correlations. Bayesian
neural networks can capture spatial correlations, but require
a Bayesian formulation in the first place. Furthermore,
while Bayesian uncertainty quantification [32]] helps proba-
bility calibration, it may also not achieve it (Appx. [A). In-
stead, our approach considers pixel/voxel correlations and
can be used as a post-processing approach for any semantic
segmentation method which generates probability outputs.

Other Approaches. Mehrtash et al. [47] found that
model ensembling improves confidence calibration for
medical image segmentation. A similar conclusion was also
found in [38] [69], where an ensemble is used to produce
good predictive uncertainty estimates. Karimi et al. [31]]
showed that multi-task learning can yield better-calibrated
predictions than dedicated models trained separately. Note
that ensembling or multi-task learning does not directly ad-
dress probability calibration, instead they provide insights
on how to obtain a better calibrated segmentation model.
Leathart et al. [39] improved the calibration of classifica-
tion tasks by building a decision tree over input tabular
data, where the leaf nodes correspond to different calibra-
tion models. Further, beta calibration [35] extends logistic
calibration to overcome the situation where per-class score
distributions are heavily skewed. Dirichlet calibration [34]]
uses the Dirichlet distribution to generalize beta calibration
to multi-class problems. Rahimi et al. [59] proposed to use
neural network based intra order-preserving functions for
calibration. These methods are also not directly designed
for probability calibration of semantic segmentation, but fo-
cus on classification. Learning algorithms [36, 44, 48| [52]
that jointly consider prediction and calibration also exist.
Although they can help mitigate miscalibrations, they typi-
cally cannot entirely remove it. In fact, they can also benefit
from our post-processing approach (§4.2).

3. Methodology
3.1. Problem Statement

Our goal is the calibration of the predicted probabilities
of deep semantic segmentation CNNs. Assume there is a
pre-trained neural network F, with an image [ as the input,
which outputs a vector of logits at each location x. Each
logit corresponds to a label, and the logit value reflects the
label confidence. The predicted label is the one with the
largest logit value; the corresponding confidence (probabil-
ity of correctness) for each pixel/voxel is usually obtained
via softmax of the logits. Specifically, the predicted confi-
dence map and the corresponding segmentation map are
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where o gy is the softmax function, = denotes position, L is
the set of all labels, [ is the label index and z(x)() = z()
is the logit that corresponds to label [ at location x.

The goal of probability calibration is to ensure that the
confidence map P represents a true probability. For exam-
ple, given a 10 x 10 image, with label confidence of 0.7
for each pixel, we would expect that 70 pixels should be
correctly segmented. This can be formalized as follows:

Definition 1. A semantic segmentation is perfectly cali-
brated in region ) if

IP’(S(:E) = S(x)|]5(x) =p) =p, ¥pe0,1,z€Q (3.2

where S(x) and S(z) are the true and predicted segmenta-
tions at location x, respectively, P(x) is the confidence of
the prediction S(x), and P is the probability measure.

In short, if the observed probability is the true prob-
ability, then the semantic segmentation model is well-
calibrated. As it is difficult to work directly with this defini-
tion to assess miscalibration, we extend several visual and
quantitative metrics [11} 153} 154} 156, 157]], which have previ-
ously been proposed in the context of classification.

3.2. Calibration Setup

Assume the data split for a semantic segmentation net-
work F i8S Dyygin | Dyar | Diest, i.€. F is trained on the
D ,qin dataset, validated on the D,,,; dataset to choose the
best model, and finally tested on the D,.s; dataset. Note
that Dyygin, Dyals and Dy are disjoint datasets. Miscal-
ibration can be observed when evaluating F on D;.4: for
probability-related measures. Our goal is to calibrate the
probability output of F on Dy.,. To this end, we train a
calibration model C on the hold-out validation dataset D,,;
via cross entropy loss, to obtain a better calibrated probabil-
ity output of F on Dc.

3.3. TS for Probability Calibration

Temperature scaling [20] has been proposed as a sim-
ple extension of Platt scaling [58] for post-hoc probability
calibration for multi-class classifications. Specifically, tem-
perature scaling estimates a single scalar parameter T° €
R, i.e., the temperature, to calibrate probabilities: § =
maxjer, osn(z/ T)(l) , where ¢ is the calibrated probability.

We can directly extend temperature scaling to seman-
tic segmentation by estimating one global parameter 1" €
Rt for all pixels/voxels of all images: Q;(z,T) =
max;er, osar(z:(2)/T)®, where Q; is the calibrated prob-
ability map for the ¢-th image. As in [20], we obtain this
optimal value for T" by minimizing the following negative
log-likelihood (NLL) w.r.t. a hold-out validation dataset:
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Figure 1: Left: Predicted probabilities (confidence) by a U-Net in
§4.3! Middle: Average accuracy of each bin for 10 bins of reliabil-
ity diagram with an equal bin width indicating different probabil-
ity ranges that need to be optimized for different locations. Right:
Temperature value map obtained via optimization, revealing dif-
ferent optimal localized TS values at different locations.

where () denotes the image space and n the number of train-
ing images. However, temperature scaling in this way as-
sumes that each image has the same distribution (i.e., the
same temperature, 7', for all images), which is unrealistic.
We therefore propose to relax this assumption as follows:

Definition 2. Image-based temperature scaling (IBTS):

Qi(w, 7)) = maxosu ((2)/T)V, (34)

where T; € RT is image-dependent.

While this at first seems like a minor change to the stan-
dard temperature scaling approach, it is important to note
that moving to an image-based temperature value, 7; re-
quires us to learn a regressor which predicts this tempera-
ture value for each image, I. Therefore, we use a CNN [19]
to learn a mapping from (z;, I;) to T;. Suppose the network
is .#, then the optimization is

0" = arg min — Z Z log (USM (e(zl‘) ))(Sq,(m)))

i=1xeN

st. F(0,2:,1;) >0, (3.5

where 6 are the parameters of the network .#. The cal-
ibrated probability can be obtained by substituting T;" =

F(0*,2;,1;) in Eq. (3.4).
3.4. Local TS for Probability Calibration

Probabilities predicted by a deep CNN vary by loca-
tion. Fig. [l illustrates that object interiors can usually be
accurately predicted while predictions on boundary or near-
boundary locations are more ambiguous. Thus the optimal
temperature value may vary across locations. However, us-
ing a global parameter, 7', or an image-based parameter, 7;,
cannot account for such spatial variations. That this is a
practical concern is illustrated in the uncalibrated reliabil-
ity diagrams of Fig. 2| which shows that the confidence-vs-
accuracy relation may indeed vary across an image. Hence,
spatial variations should be considered for semantic seg-
mentation. Therefore, we propose the following local tem-
perature scaling (LTS) approach.
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Figure 2: An example of global and local rehablhty diagrams for dlfferent methods for a U- Net segmentation experiment (§E) Iis
the image, P is the predicted uncalibrated probability, and S is the predicted segmentation. Figures are displayed in couples, where the
left figure is the probability distribution of pixels/voxels while the right figure is the reliability diagram (See Appx.[Ffor definitions). The
top row shows the global reliability diagrams for different methods for the entire image. The three rows underneath correspond to local
reliability diagrams for the different methods for different local patches. Note that TS and IBTS can calibrate probabilities well across the
entire image. Visually, they are only slightly worse than LTS. However, when it comes to local patches, LTS can still successfully calibrate

probabilities while TS and IBTS can not. In general, LTS improves local probability calibrations. More results are in Appx. @

Definition 3. Local temperature scaling (LTS):
Qi(w, Ti(w)) = max ogu (@i(0)/Ti(@) ", (G.6)

where T;(x) € R is image and location dependent.

For T;(z) = 1, no calibration occurs as the logits z; ()
do not change. For T;(x) > 1, confidence will be re-
duced, which helps counteract overconfident predictions.
As T;(x) — oo, the calibrated probabilities will approach
1/|L|, which represents maximum uncertainty. For T;(z) <
1, prediction confidence will be increased. This will be
helpful to counteract underconfident predictions. Lastly, as
T;(x) — 0, the calibrated probabilities will become bi-
nary (¢ {0,1}), which represents minimum uncertainty.
As T;(x) is positive, such a local scaling does not change
the ordering of the probabilities over the different classes.
Hence, the segmentation accuracy remains unchanged.

Another network 77, with parameter «, can be used to
learn this local mapping from (z;, I;) to T;(z). The op-
timization follows Eq. (3.5)), with .Z (0, z;, I;) replaced by
H(a,z;, I;, ), where x indicates the spatial locations. Fi-
nally, we obtain T;(z)* = (", z;, I;, ).

Fig.[3]illustrates our high-level design for probability cal-
ibration. The input is a logit map z, usually obtained by a
segmentation network (Seg). Together with the image I, it
is then passed to an optimization unit or a prediction unit to
generate the temperature map. These temperature values are
used to calibrate the logit map. The calibrated probabilities

osm(z/T) Q

Seg I

Figure 3: Architecture for probability calibration via (local) tem-
perature scaling. The output logit map of a pre-trained semantic
segmentation network (Seg) is locally scaled to produces the cali-
brated probabilities. O P denotes optimization or prediction via a
deep convolutional network to obtain the (local) temperature val-
ues. Details of this O P unit can be found in Appx.

are, in turn, obtained via a softmax on the calibrated log-
its. Class labels do not change under this process and can
still be obtained by determining the class with the largest
predicted probability. Appx.|B|details the implementation.
Training details are described in Appx.[Cl

3.5. Theoretical Justification

Why does miscalibration happen? One usually uses
the loss corresponding to the negative log-likelihood (NLL)
of the multinomial distribution [3} [15]] (i.e., the multi-class
cross-entropy loss) to train semantic segmentation networks
because minimizing it will minimize the Kullback-Leibler
(KL) divergence between the ground-truth probability dis-
tribution and the predicted probability distribution. The
minimum loss is achieved if and only if the predicted proba-
bility distribution recovers the ground-truth probability dis-



tribution [3} [15]. For semantic segmentation, the NLL loss
is minimized when P(z) = 1 and S(z) = S(x), for all
. The segmentation error is minimized when z(z)(5(®) >
z(z)® forall I € L and [ # S(z). This indicates that even
if the segmentation error is minimized to zero, the NLL loss
may still be positive and the optimization will consequently
try to continue reducing it to zero by pushing P(:c) to one
for S(x) = S(x). This explains how overconfidence oc-
curs in the context of semantic segmentation. Note that this
overconfidence also results in low-entropy distributions.

How to eliminate miscalibration? As indicated in [52]
encouraging the predicted distribution to have higher en-
tropy can help avoid overconfident predictions for deep
CNN:s, and can thereby improve calibration. Thus, to cali-
brate an overconfident semantic segmentation network, we
need to simultaneously minimize the NLL loss w.r.t. the
to-be-learned calibration parameters while assuring that the
corresponding entropy of the calibrated probabilities stays
sufficiently large to probabilistically describe empirically
observable segmentation errors. Note that we minimize the
NLL loss for the same reason as for segmentation (above):
because the goal is to recover the true probability distribu-
tion. The difference is that for segmentation we optimize
w.r.t. the segmentation network parameters while for cali-
bration we optimize w.r.t. the calibration model parameters.

Why do we use (local) TS to calibrate probabilities?
Overconfident networks usually exhibit the phenomenon
that the entropy of the output probabilities is much lower
than the cross entropy on the testing dataset as shown in
[20} 52]. Thus, we define overconfidence as entropy being
lower than the cross entropy of probabilities (Appx. [E; and
similarly for underconfidence). Specifically, we show the
following theorem in Appx.[E.
Theorem @l When the to-be-calibrated segmentation net-
work is overconfident, minimizing NLL w.r.t. TS, IBTS, and
LTS results in solutions that are also the solutions of maxi-
mizing entropy of the calibrated probability w.r.t. TS, IBTS
and LTS under the condition of overconfidence.

For example, for TS, the above theorem can be mathe-
matically expressed as follows,

arg min — Z Z log (USM zi(z )/T)(Si(ai))>

i=1 z€Q)

arg o — 35S o Z*;

i=1 € =1 T
ot 3053w Vo (22 DWHIELE
i=1 z€Q [=1 i=1 xz€Q

where T > 0. Hence, our three different variants for
probability calibration via temperature scaling (TS, IBTS,
LTS) will counteract the tendency of entropy minimization

caused by the NLL loss discussed above. Training the seg-
mentation network via the NLL loss followed by post-hoc
probability calibration via temperature scaling is an effec-
tive approach to obtain high segmentation accuracy while
avoiding overconfidence of the resulting label probabilities.
show experiments to support this claim.

4. Experiments

We show the performance and behavior of our proposed
TS approaches for semantic segmentation on the COCO
dataset (§4.1), CamVid dataset (§4.2) and LPBA40 dataset
(a dataset of magnetic resonance (MR) images of the human
brain) (§4.3). We further show how our probability calibra-
tion may influence downstream tasks, by exploring it in the
context of multi-atlas segmentation on LPBA40 (§4.4).

Evaluation Metrics. To assess the performance of prob-
ability calibration, we use five metrics, which were origi-
nally designed for classification, for semantic segmentation.
Specifically, they are the reliability diagram [11}153}156], ex-
pected calibration error [54] (ECE), maximum calibration
error [54]] (MCE), static calibration error [S7]] (SCE), and
adaptive calibration error [S57] (ACE). To make the above
metrics applicable to semantic segmentation, we consider
the predicted probabilities for each pixel/voxel as separate
samples. We use 10 equally-sized (probability or sample
size) bins to compute all these metrics. In we addition-
ally use average surface distance (ASD), surface Dice (SD),
the 95-th percentile of the maximum symmetric distance
(95MD), and average volume Dice (VD) to measure seg-
mentation performance. Detailed definitions are in Appx.

Baseline Methods. To illustrate the effectiveness of our
proposed LTS approach (see Eq. (3.6)), we compare it to
standard TS and IBTS (see Eq. (3.4)), where we directly
assess if local adjustments can be properly predicted and
if they are beneficial. While other probability calibration
methods exist, as discussed in §2| most are for classifica-
tion and not for semantic segmentation. This is an important
difference. For example, in semantic segmentation, nearby
pixels/voxels are correlated with each other, whereas such
relations do not apply to classification. Thus, simply con-
sidering each pixel/voxel as a classification data point is not
appropriate. For completeness, however, we still choose
several classic methods (§4.1) to compare against, i.e. iso-
tonic regression (IsoReg) [68]], vector scaling (VS) [20], en-
semble temperature scaling (ETS) [69]], and Dirichlet cal-
ibration with off-diagonal regularization (DirODIR) [34].
Furthermore, to illustrate that our method is also beneficial
for joint training (§4.2), we show the performance before
and after using LTS for models trained with maximum mean
calibration loss (MMCE) [36] and focal loss (FL) [52]. All
methods are fine-tuned with the best parameters via grid
search. Details are in Appx.

Evaluation Regions. Since label boundaries are difficult



to segment, these are the regions where most of the relevant
miscalibrations are expected to occur (see also Fig. [T). For
a refined analysis, we extract boundaries and their nearby
regions (i.e., regions up to 2 pixels/voxels away from the
boundary). We denote this evaluation region by Boundary
in all experiments. We also evaluate performance within
label regions (excluding the background, but including the
respective Boundary region). We denote this large region
as All. Tt is expected that the calibration inside the Bound-
ary region will be more challenging (as the prediction is
more ambiguous) than the calibration inside the bigger All
region. Appx.[G shows examples of these regions for a 3D
brain MR image. Furthermore, to evaluate the local prob-
ability calibration performance for an image segmentation,
we also randomly select 10 small patches (72x72 for 2D,
72x72x72 for 3D) and compute the same metrics as for
the entire image. We report average performance (denoted
Local-Avg) and the worst case performance (denoted Local-
Max) across 10 patches. Appx. [H shows results for differ-
ent patch sizes. Note that results in the All region reflect the
overall calibration performance for an image segmentation;
results in the Boundary region reflect the most challenging
calibration performance for an image segmentation; results
in the Local region generally reflect whether the calibration
method can handle spatial variations.

Downstream MAS setting. Multi-atlas segmentation
(MADS) relies on transferring segmentations from a set of
atlas images to a target image via deformable registration.
The segmentation in the target space is then obtained by a
label fusion method, which establishes a consensus among
the registered atlas labels. We use the label fusion strat-
egy by Wang et al. [[64]], which takes advantage of the label
probabilities. Hence, better-calibrated probabilities should
lead to better fusion accuracy (i.e., segmentation accuracy).

Statistical Considerations. To indicate the success of
probability calibration, we use a Mann-Whitney U-test [45]]
to check for significant differences between the result of
LTS and the results for all other baseline methods (UC, TS,
IBTS, etc.). We use the Benjamini/Hochberg correction [4]]
for multiple comparisons with a false discovery rate of 0.05.
Results are highlighted in green when LTS performs sig-
nificantly better than the corresponding method (no color
means no statistically significant differences).

Datasets. We use three datasets for our experi-
ments: The Common Object in Context (COCO) [42]
dataset, the Cambridge-driving Labeled Video Database
(CamVid) [Z, 6], and the LONI Probabilistic Brain Atlas
(LPBA40) [62] dataset. Detailed descriptions and the train-
ing/validation/testing splits are in Appx.

4.1. FCN semantic segmentation on COCO

General: We use a Fully-Convolutional Network
(FCN) [43] with a ResNet-101 [23]] backbone for seman-

tic segmentation on the COCO dataset. Tab. [I| shows our
quantitative evaluation results for calibrating such a seg-
mentation model. In the All region, TS and IBTS do not im-
prove calibration performance, possibly because the natural
images in the COCO dataset are complex and vary signifi-
cantly in type and shape, yet TS uses a global temperature
value for all images. IBTS performs slightly better than TS
on average because it uses an image-dependent temperature
scaling to capture image variations, though it cannot explain
the spatial image variations in the All region. Furthermore,
we observe that LTS is in general significantly better than
classical methods, i.e. IsoReg [68]], VS [20], ETS [69] and
DirODIR [34]. This is likely because these classical meth-
ods treat each pixel/voxel independently without consider-
ing their spatial correlations in semantic segmentation.

Boundary: The relatively low segmentation perfor-
mance of the segmentation network suggests that such spa-
tial variations might matter. Specifically, semantic seg-
mentation results in a mean IOU of 63.7%, indicating how
challenging this dataset is. Further, all methods except
VS [20] show significant improvements in the Boundary re-
gion. This indicates that (1) these boundary regions share
common miscalibration patterns, which can be captured by
most methods, and (2) miscalibration effects are indeed, as
expected, more pronounced in these boundary regions.

Local: Different from the All region, the Local region
is based on randomly extracted small patches of an image.
Specifically, Local-Avg reflects the average performance of
local probability calibration while Local-Max reflects the
calibration performance in the most uncalibrated patch re-
gion thus measuring the worst-case calibration result. Re-
sults in ECE, SCE and ACE all suggests that LTS can cali-
brate the entire image region as well as local image regions.
Other approaches result in significantly worse calibrations.

MCE: Further, the MCE results illustrate that proba-
bility calibration for semantic segmentation is indeed very
challenging compared with classification. This is because
classification annotation is typically very accurate while
per-pixel/voxel annotation of semantic segmentation can be
difficult, especially at object boundaries. For example, in
the extreme case, if one pixel/voxel is annotated wrong but
predicted correct (or vice versa), then the accuracy is 0
while the prediction confidence is nearly 100%. This will
result in MCE values close to 100% for bin based evalua-
tion. Usually, these outliers make up only a small portion
of all pixels/voxels in an image. Examples for such outliers
can be observed in Fig. 2] uncalibrated patch 1 and 3 at the
lowest confidence point, where the percentage of samples
is very small, but the accuracy-confidence difference is no-
table. Thus, for all experiments, we expect that MCE can
be very high compared to the classification probability cal-
ibration literature. LTS can improve MCE values, but may
still result in large MCE values.
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Table 1: Calibration results for 4 different segmentation models on 4 different tasks. Results are reported in mean(std) format. The number
of testing samples are listed in parentheses underneath each dataset name. UC denotes the uncalibrated result. | denotes that lower is better.
Best results are bolded and green indicates statistically significant differences w.r.t. LTS (FL+LTS for CamVid). Note that due to GPU
memory limits, results of MMCE and MMCE+LTS are for downsampled images, thus can not be directly compared with other methods.
The goal of including them is to show that LTS can improve MMCE. LTS generally achieves the best performance on almost all metrics in
the All region, Boundary region and Local region. Additional results are in Appx.

4.2. Tiramisu semantic segmentation on CamVid

General: We use the Tiramisu segmentation model [28]]
on the CamVid dataset. Tab. 1| shows quantitative results
for calibrating this segmentation model. Compared with
the results for the COCO dataset, all four metrics are re-
duced greatly. This is mainly because the images in CamVid
only contain 11 class street scenes and the images are rel-
atively consistent for such scenes. Instead, images from
the COCO dataset show different objects in different im-
ages. See Appx. [ for details. Results are consistent with
the COCO dataset. Specifically, (1) LTS can calibrate both
the All region probabilities as well as the local regions in-
side an image; (2) LTS is, in general, significantly better
than TS and IBTS for most comparisons.

Joint Prediction and Calibration: Further, we show
that our approach is beneficial for methods that jointly op-
timize prediction and calibration [36} 52]. MMCE [36] and
FL [52] both consider miscalibration when training seman-
tic segmentation networks. Tab. [I] shows that compared to
the uncalibrated results, both MMCE and FL work signif-

icantly better. Furthermore, with LTS as a post-hoc cal-
ibration, calibration performance further consistently im-
proves (except Boundary regions for FL). These findings
are consistent with the results in [52]] where TS is used
as a post-hoc calibration method and the authors show
that MMCE+TS and FL+TS work consistently better than
MMCE and FL. Hence, this favors our LTS as a successful
post-hoc calibration method for segmentation.

4.3. U-Net segmentation on LPBA40

General: We use a customized 3D U-Net [9] for the seg-
mentation of the LPBA40 dataset. Tab.[l|shows quantitative
results for calibrating this segmentation model. All three
methods calibrate the probabilities relatively well in this ex-
periment. This might be because images have been affinely
registered to a common atlas space, which reduces the vari-
ations of images and may make it easier for TS, IBTS and,
LTS to calibrate both in the All region and the Boundary re-
gion. This might also explain the performance differences
between the computer vision datasets and the medical imag-



Method ASD (mm),  SD (%)t  95MD (mm)} VD (%)t VC(All) (%) VC(Boundary) (%)

All Boundary rate w—c T c—ow | rate w—e T c—w |
Best Fusion 0.04(0.01)  99.06(0.23)  0.18(0.08)  98.99(0.19) 97.29(0.45) 20.53(1.13) 94.62(0.93)  0.00(0.00)  35.85(1.06) 94.11(0.90)  0.00(0.00)
Best Calibration  0.27(0.04)  93.51(1.01) 1.69(0.20)  93.71(0.73)  87.70(1.09) 13.96(0.43) 98.88(0.18)  0.00(0.00)  25.93(0.46) 98.68(0.21)  0.00(0.00)

uc 0.99(0.07)  75.89(1.79)  3.82(0.26) 81.19(1.09)  61.01(1.13) - - - - - -

TS 0.99(0.07)  75.85(1.80)  3.83(0.27) 81.21(1.08) 61.01(1.13)  0.45(0.03) 43.20(1.33) 40.16(1.23)  0.73(0.04)  39.34(1.32) 41.37(1.24)
IBTS 1.00(0.07)  75.75(1.82) 3.86(0.27) 81.20(1.08) 60.87(1.13)  1.43(0.12) 41.14(1.56) 43.27(1.35)  2.35(0.17)  36.93(1.45) 45.14(1.30)
LTS 0.98(0.07)  75.96(1.78)  3.82(0.26)  81.27(1.07) 61.15(1.13)  1.88(0.14) 42.42(1.43) 37.53(1.04) 2.96(0.18) 40.51(1.15) 35.59(1.01)

Table 2: MAS label fusion results based on calibrated probabilities.

J(1) indicates that lower(higher) values are better. mm denotes
millimeter. UC denotes uncalibrated results. VC denotes voxel annotation changes between the uncalibrated approach to the corresponding
method: w—+c is from wrong voxel annotation to correct voxel annotation; c—w is from correct voxel annotation to wrong voxel annotation.
Rate is calculated based on the number of changes out of the possible number of changes. (Note that many voxel annotations can not change
because all atlas annotations give the same label, thus a change in probability would not change the voxel annotation.) LTS generally
improves segmentations slightly. After LTS probability calibration, JLF changes more voxels than for TS and IBTS. Further, the difference
between the correct conversion and the incorrect conversion is improved over TS and IBTS. This indicates that JLF can produce better
segmentations with a better probability calibration and suggests that downstream tasks may in general benefit from better calibration.

ing dataset in Tab. [T} See Appx.[[ for details. Differences
between calibration performance among TS and IBTS are
relatively small. However, LTS still performs best with re-
spect to most metrics.

Spatial Variation: Furthermore, when it comes to the
Local region analysis, LTS consistently works best. Fig.
visualizes such difference via reliability diagrams. The red
arrows highlight that TS, IBTS and LTS calibrate proba-
bilties for the whole image well but only LTS consistently
performs well in the Local region. This indicates the supe-
riority of LTS’s spatially-variant probability calibration.

4.4. Downstream MAS label fusion on LPBA40

We use a customized VoteNet+ [13] for multi-atlas seg-
mentation on the LPBA40 dataset. In this approach, a net-
work (VoteNet+) is trained to locally predict if a labeled at-
las that has been registered to the target image space should
be considered trustworthy or not. Label fusion (among the
registered atlas images) can then make use of these proba-
bilities to obtain the multi-atlas segmentation results. It is
these VoteNet+ probabilities that we seek to calibrate.

Calibration Metrics: Tab.|I|shows our quantitative cal-
ibration results. Different from the U-Net experiments in
we observe bigger differences between the calibration
approaches. This might be because the VoteNet+ calibra-
tion experiment has sufficient training data (as multi-atlas
segmentation performs image registrations from each at-
las image to each target image) whereas the experiments
in §4.3|are much more data-starved. Besides, as the labeled
atlases are registered to the target image space via a flexible
non-parametric registration approach, data variance is fur-
ther reduced in comparison to the affine registrations used
as preprocessing in §4.3] Tab. [I] shows that all three meth-
ods calibrate probabilities well, and that performance or-
der is consistent with model complexity. L.e., LTS performs
better than IBTS, and IBTS performs better than TS. These
differences are statistically significant.

Label Fusion with Probability: Tab. [1] only demon-
strates that the calibration approaches can improve the cal-
ibration of the VoteNet+ output. To obtain the multi-atlas

segmentation result, we need to use label fusion. As the
joint label fusion (JLF) approach [64] we use for this pur-
pose can make use of the VoteNet+ label probabilities, it is
natural to ask if improved calibration results translate to im-
proved segmentations via JLF. Tab. [2| shows that while dif-
ferences are small, consistent improvements can indeed be
observed. Hence, our proposed LTS not only shows good
calibration performance on traditional metrics (i.e. ECE,
MCE, SCE and ACE), but can also benefit downstream
tasks that are sensitive to accurate probabilities. For com-
parison, we also show two theoretical upper bounds. The
Best Fusion bound, which is obtained by assigning the cor-
rect label to the segmentation result if at least one atlas pro-
vides the right label; and the Best Calibration bound, which
is obtained by assigning a probability of 1 if the prediction
by VoteNet+ is correct and 1/|L| otherwise, followed by
JLF. We observe that there is still a large room to improve
probability calibration as the obtained results are far from
the two upper bounds.

5. Conclusion and Future Work

We introduced LTS, a general temperature scaling
method that allows for spatially-varying probability calibra-
tion for multi-label semantic segmentation. Experiments on
the COCO, CamVid and LPBA40 datasets show that LTS
outperforms probability calibration approaches which can-
not account for spatially-varying miscalibration. LTS not
only works for standard segmentation models but can also
benefit models that aim to jointly optimize prediction and
calibration. Further, using a multi-atlas brain segmentation
experiment we demonstrated that downstream tasks may
benefit from improved probability calibration. Future work
could focus on further calibration improvements. For ex-
ample, LTS could be easily extended to a bin-wise setting as
in [30] or use distributions conditioned on classes as in [S1]].
Acknowledgements. This work was supported by NI-
AMS 1R01-AR072013, NIMH 2R42MH118845, and NSF
EECS-1711776; it expresses the views of the authors, not
of NIH/NSF. The authors have no conflicts of interest.



References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

Mari-Liis Allikivi and Meelis Kull. Non-parametric
Bayesian isotonic calibration: Fighting over-confidence in
binary classification. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pages 103—120. Springer, 2019.

Xabier Artaechevarria, Arrate Munoz-Barrutia, and Carlos
Ortiz-de Solérzano. Combination strategies in multi-atlas
image segmentation: application to brain MR data. IEEE
transactions on medical imaging, 28(8):1266-1277, 2009.
Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep
learning, volume 1. MIT press, 2017.

Yoav Benjamini and Yosef Hochberg. Controlling the false
discovery rate: a practical and powerful approach to multiple
testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289-300, 1995.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla.
Semantic object classes in video: A high-definition ground
truth database. Pattern Recognition Letters, 30(2):88-97,
2009.

Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and
Roberto Cipolla. Segmentation and recognition using struc-
ture from motion point clouds. In European conference on
computer vision, pages 44-57. Springer, 2008.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Computer vision
and pattern recognition (CVPR), 2018 IEEE conference on.
IEEE, 2018.

Ozgiin Cicek, Ahmed Abdulkadir, Soeren S Lienkamp,
Thomas Brox, and Olaf Ronneberger. 3D U-Net: learning
dense volumetric segmentation from sparse annotation. In
International conference on medical image computing and
computer-assisted intervention, pages 424-432. Springer,
2016.

Pierrick Coupé, José V Manjén, Vladimir Fonov, Jens
Pruessner, Montserrat Robles, and D Louis Collins. Patch-
based segmentation using expert priors: Application to
hippocampus and ventricle segmentation.  Neurolmage,
54(2):940-954, 2011.

Morris H DeGroot and Stephen E Fienberg. The comparison
and evaluation of forecasters. Journal of the Royal Statistical
Society: Series D (The Statistician), 32(1-2):12-22, 1983.
Zhipeng Ding, Xu Han, and Marc Niethammer. Votenet: A
deep learning label fusion method for multi-atlas segmenta-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 202-210.
Springer, 2019.

Zhipeng Ding, Xu Han, and Marc Niethammer. Votenet+:
An improved deep learning label fusion method for multi-
atlas segmentation. In 2020 IEEE 17th International Sympo-
sium on Biomedical Imaging (ISBI), pages 363-367. IEEE,
2020.

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
Pascal visual object classes challenge: A retrospective. Inter-
national journal of computer vision, 111(1):98-136, 2015.
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
elements of statistical learning, volume 1. Springer series in
statistics New York, 2001.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
pages 1050-1059. PMLR, 2016.

Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea,
Victor Villena-Martinez, and Jose Garcia-Rodriguez. A re-
view on deep learning techniques applied to semantic seg-
mentation. arXiv preprint arXiv:1704.06857, 2017.
GRnther Grabner, Andrew L Janke, Marc M Budge, David
Smith, Jens Pruessner, and D Louis Collins. Symmetric at-
lasing and model based segmentation: an application to the
hippocampus in older adults. In International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pages 58—66. Springer, 2006.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma,
Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang,
Gang Wang, Jianfei Cai, et al. Recent advances in convo-
lutional neural networks. Pattern Recognition, 77:354-377,
2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, pages 1321-1330. JMLR. org, 2017.

Lars Kai Hansen and Peter Salamon. Neural network en-
sembles. IEEE transactions on pattern analysis and machine
intelligence, 12(10):993-1001, 1990.

Mohammad Havaei, Axel Davy, David Warde-Farley, An-
toine Biard, Aaron Courville, Yoshua Bengio, Chris Pal,
Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor seg-
mentation with deep neural networks. Medical image analy-
sis, 35:18-31, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Rolf A Heckemann, Joseph V Hajnal, Paul Aljabar, Daniel
Rueckert, and Alexander Hammers. Automatic anatomical
brain MRI segmentation combining label propagation and
decision fusion. Neurolmage, 33(1):115-126, 2006.
Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Juan Eugenio Iglesias and Mert R Sabuncu. Multi-atlas seg-
mentation of biomedical images: a survey. Medical image
analysis, 24(1):205-219, 2015.

Ozan Irsoy and Ethem Alpaydin. Autoencoder trees. In
Asian Conference on Machine Learning, pages 378-390,
2016.

Simon Jégou, Michal Drozdzal, David Vazquez, Adriana
Romero, and Yoshua Bengio. The one hundred layers



(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

tiramisu: Fully convolutional densenets for semantic seg-
mentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pages 11—
19, 2017.

Rohit Jena and Suyash P Awate. A Bayesian neural net to
segment images with uncertainty estimates and good calibra-
tion. In International Conference on Information Processing
in Medical Imaging, pages 3—15. Springer, 2019.
Byeongmoon Ji, Hyemin Jung, Jihyeun Yoon, Kyungyul
Kim, and Younghak Shin. Bin-wise temperature scal-
ing (BTS): Improvement in confidence calibration perfor-
mance through simple scaling techniques. arXiv preprint
arXiv:1908.11528, 2019.

Davood Karimi and Ali Gholipour. Improving calibration
and out-of-distribution detection in medical image segmen-
tation with convolutional neural networks. arXiv preprint
arXiv:2004.06569, 2020.

Alex Kendall and Yarin Gal. What uncertainties do we need
in Bayesian deep learning for computer vision? In Proceed-
ings of the 31st International Conference on Neural Infor-
mation Processing Systems, pages 5580-5590, 2017.
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Meelis Kull, Miquel Perello Nieto, Markus Kéngsepp,
Telmo Silva Filho, Hao Song, and Peter Flach. Beyond tem-
perature scaling: Obtaining well-calibrated multi-class prob-
abilities with Dirichlet calibration. In Advances in Neural
Information Processing Systems, pages 12295-12305, 2019.
Meelis Kull, Telmo M Silva Filho, Peter Flach, et al. Beyond
sigmoids: How to obtain well-calibrated probabilities from
binary classifiers with beta calibration. Electronic Journal of
Statistics, 11(2):5052-5080, 2017.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Train-
able calibration measures for neural networks from kernel
mean embeddings. In International Conference on Machine
Learning, pages 2805-2814, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. arXiv preprint
arXiv:1612.01474, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In Advances in neural infor-
mation processing systems, pages 6402-6413, 2017.

Tim Leathart, Eibe Frank, Geoffrey Holmes, and Bernhard
Pfahringer. Probability calibration trees. In Asian Confer-
ence on Machine Learning, pages 145-160. PMLR, 2017.
Chen-Yu Lee, Patrick Gallagher, and Zhuowen Tu. Gener-
alizing pooling functions in CNNs: Mixed, gated, and tree.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(4):863-875, 2017.

Zeju Li, Konstantinos Kamnitsas, and Ben Glocker. Overfit-
ting of neural nets under class imbalance: Analysis and im-
provements for segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, pages 402-410. Springer, 2019.

(42]

(43]

(44]

[45]

[40]

[47]

(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
European conference on computer vision, pages 740-755.
Springer, 2014.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431-3440, 2015.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P
Vetrov, and Andrew Gordon Wilson. A simple baseline for
Bayesian uncertainty in deep learning. In Advances in Neural
Information Processing Systems, pages 13132-13143, 2019.
Henry B Mann and Donald R Whitney. On a test of whether
one of two random variables is stochastically larger than the
other. The annals of mathematical statistics, pages 50—60,
1947.

Juan Marofias, Roberto Paredes, and Daniel Ramos. Calibra-
tion of deep probabilistic models with decoupled Bayesian
neural networks. Neurocomputing, 2020.

Alireza Mehrtash, William M Wells III, Clare M Tempany,
Purang Abolmaesumi, and Tina Kapur. Confidence cali-
bration and predictive uncertainty estimation for deep med-
ical image segmentation. arXiv preprint arXiv:1911.13273,
2019.

Dimitrios Milios, Raffaello Camoriano, Pietro Michiardi,
Lorenzo Rosasco, and Maurizio Filippone. Dirichlet-based
Gaussian processes for large-scale calibrated classification.
arXiv preprint arXiv:1805.10915, 2018.

Marc Modat, David M Cash, Pankaj Daga, Gavin P Winston,
John S Duncan, and Sébastien Ourselin. Global image regis-
tration using a symmetric block-matching approach. Journal
of Medical Imaging, 1(2):024003, 2014.

Marc Modat, Gerard R Ridgway, Zeike A Taylor, Manja
Lehmann, Josephine Barnes, David J Hawkes, Nick C Fox,
and Sébastien Ourselin. Fast free-form deformation using
graphics processing units. Computer methods and programs
in biomedicine, 98(3):278-284, 2010.

Azadeh Sadat Mozafari, Hugo Siqueira Gomes, Wilson
Ledo, Steeven Janny, and Christian Gagné. Attended tem-
perature scaling: A practical approach for calibrating deep
neural networks. arXiv preprint arXiv:1810.11586, 2018.
Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart
Golodetz, Philip HS Torr, and Puneet K Dokania. Calibrat-
ing deep neural networks using focal loss. arXiv preprint
arXiv:2002.09437, 2020.

Allan H Murphy and Robert L Winkler. Reliability of sub-
jective probability forecasts of precipitation and temperature.
Journal of the Royal Statistical Society: Series C (Applied
Statistics), 26(1):41-47, 1977.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
Bayesian binning. In Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence, 2015.

Mahdi Pakdaman Naeini and Gregory F Cooper. Binary clas-
sifier calibration using an ensemble of near isotonic regres-
sion models. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 360-369. IEEE, 2016.



[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Alexandru Niculescu-Mizil and Rich Caruana. Predicting
good probabilities with supervised learning. In Proceedings
of the 22nd international conference on Machine learning,
pages 625-632, 2005.

Jeremy Nixon, Mike Dusenberry, Linchuan Zhang, Ghassen
Jerfel, and Dustin Tran. Measuring calibration in deep learn-
ing. arXiv preprint arXiv:1904.01685, 2019.

John Platt et al. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods.
Advances in large margin classifiers, 10(3):61-74, 1999.

Amir Rahimi, Amirreza Shaban, Ching-An Cheng, Byron
Boots, and Richard Hartley. Intra order-preserving functions
for calibration of multi-class neural networks. arXiv preprint
arXiv:2003.06820, 2020.

Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG
Hill, Martin O Leach, and David J Hawkes. Nonrigid
registration using free-form deformations: application to
breast MR images. IEEE transactions on medical imaging,
18(8):712-721, 1999.

Mert R Sabuncu, BT Thomas Yeo, Koen Van Leemput,
Bruce Fischl, and Polina Golland. A generative model for
image segmentation based on label fusion. IEEE transac-
tions on medical imaging, 29(10):1714-1729, 2010.

David W Shattuck, Mubeena Mirza, Vitria Adisetiyo, Cor-
nelius Hojatkashani, Georges Salamon, Katherine L Narr,
Russell A Poldrack, Robert M Bilder, and Arthur W Toga.
Construction of a 3D probabilistic atlas of human cortical
structures. Neuroimage, 39(3):1064—1080, 2008.

Gia-Lac Tran, Edwin V Bonilla, John Cunningham, Pietro
Michiardi, and Maurizio Filippone. Calibrating deep convo-
lutional gaussian processes. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 1554—
1563. PMLR, 2019.

Hongzhi Wang, Jung W Suh, Sandhitsu R Das, John B Pluta,
Caryne Craige, and Paul A Yushkevich. Multi-atlas segmen-
tation with joint label fusion. IEEE transactions on pattern
analysis and machine intelligence, 35(3):611-623, 2012.

Jonathan Wenger, Hedvig Kjellstrom, and Rudolph Triebel.
Non-parametric calibration for classification. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 178-190. PMLR, 2020.

Long Xie, Jiancong Wang, Mengjin Dong, David A Wolk,
and Paul A Yushkevich. Improving multi-atlas segmentation
by convolutional neural network based patch error estima-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 347-355.
Springer, 2019.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated
probability estimates from decision trees and naive Bayesian
classifiers. In ICML, volume 1, pages 609-616. Citeseer,
2001.

Bianca Zadrozny and Charles Elkan. Transforming classifier
scores into accurate multiclass probability estimates. In Pro-
ceedings of the eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 694—
699, 2002.

[69] Jize Zhang, Bhavya Kailkhura, and T Han. Mix-n-match:

Ensemble and compositional methods for uncertainty cali-
bration in deep learning. arXiv preprint arXiv:2003.07329,
2020.



Local Temperature Scaling for Probability Calibration
Supplementary Material

This supplementary material provides additional details for our approach. Specifically,

1.

10.

Appx. [A briefly introduces additional related work about uncertainty quantification. This section connects with §2]in
the main manuscript and provides additional comments regarding uncertainty quantification approaches in relation to
our approach.

. Appx. [B| describes the networks we use for LTS and IBTS. This section connect with and Fig. |3| in the main

manuscript and provides details about the tree-like convolutional neural network we use to train the IBTS and LTS
models. We emphasize that the network architecture is not our contribution, it is inspired and modified from [40] and
other network architectures could also work.

. Appx. [C] provides dataset descriptions and implementation details. This section connects with §4 §4.11 §4.2] §4.3

and in the main manuscript and details (1) the dataset we use; (2) the training/validation/testing data split of
segmentation and calibration; (3) the specific hyper-parameters we use to train both segmentation models and calibration
models; (4) the GitHub repositories for baseline calibration methods we compare against.

. Appx. D provides additional examples for local reliability diagrams. This section connects with §3.4]and Fig. 2] in the

main manuscript to additionally show the spatially-variant feature of our LTS approach.

. Appx. [E discusses our temperature scaling approaches from an entropy point of view. This section connects with

in the main manuscript to prove the theorems to support our claims. Specifically, this section discusses the relation of
entropy and cross entropy and uncovers why our temperature scaling approaches (TS, IBTS, LTS) works.

. Appx. [F]details the evaluation metrics we use for semantic segmentation. This section connects with Fig. 2| Tab.

and Tab. [2]in the main manuscript to provide formal definitions for all our evaluation measures.

. Appx. [G illustrates the Boundary and All evaluation regions. This section connects with §4] and Tab. [I] in the main

manuscript to illustrate a visual example of the different regions we evaluate. Note that the results in the A/l region
reflect the overall calibration performance for an image segmentation; results in the Boundary region reflect the most
challenging calibration performance for an image segmentation.

. Appx.[H shows evaluation results for the Local region for different patch sizes. This section connects with §4]and Tab.[T]

in the main manuscript to indicate how the local patch size influences the quantitative results. Note that results in the
Local region generally reflect whether the calibration method can handle spatial variations. This is different from the
All and Boundary regions discussed in Appx.[G above.

. Appx.[[ discusses variations across the different datasets. This section connects with §4.4]and Tab. [T)in

the main manuscript and explains the different magnitudes of the quantitative results for different datasets. Specifically,
the COCO dataset shows the biggest variantions, followed by the CamVid dataset and lastly LPBA40 exhibits the
smallest variations. Due to the different levels of variation of the different datasets, the reported values in COCO are
larger than those in CamVid and the smallest values are observed in LPBA40.

Appx. [J] contains additional evaluation results besides the results presented in Tab. [I] This section connects with §4.2]
and Tab. |1|in the main manuscript to further strengthen our manuscript. These results are line with the conclusions we
obtain in §4] i.e. our LTS approach generally works best among different baseline methods.

. Appx. [K provides details on joint label fusion for multi-atlas segmentation. This section connects with and Tab.

in the main manuscript to provide details about the downstream MAS label fusion task. Specifically, this section illus-
trates why the VoteNet+ based joint label fusion method is sensitive to accurate probability predictions, which in turn
demonstrates that improved calibration of our approach results in improved fused segmentation results.



A. Additional Related Work

Probability calibration can be used for uncertainty estimation [37] as calibrated probabities can directly be used as measures
of uncertainty. However, methods that provide uncertainty estimates are not necessarily calibrated. Most existing work on
uncertainty estimation starts with a Bayesian formulation [37, 29, 46], whereby a prior distribution is specified, and the
posterior distribution over the parameters is optimized over the training data. These Bayesian models should result in better
calibrated probability measures if their prior assumptions are valid. However, when some of the underlying assumptions
are violated, the results may not be calibrated: [32] is a good example for a Bayesian model improving calibration, but not
achieving it. Other uncertainty estimation approaches include ensembles [37] and Monte Carlo dropout [16], which help
probability calibration but do not directly cope or achieve it. Gaussian Process (GP) approaches [65]] can inherently provide
good uncertainty estimates, but may suffer from lower accuracy and higher computational complexity on high-dimensional
classification tasks. In particular, a GP will only provide calibrated measures of uncertainty if the Gaussian assumption is
valid. In practice, this may not be the case when combined with a deep network [63]. Further, GP models are costly for
classification and GP regression formulations require calibration [48] [65]. Our formulation is entirely different and directly
predicts calibration parameters for softmax layers. Our model does not depend on any assumption and is a completely
poct-hoc approach for any pre-trained segmentation model with probability outputs.

B. Networks for LTS and IBTS

To obtain 7™ in Eq. (3.3), we directly optimize the parameter 7" with respect to the NLL loss on the hold-out validation dataset.

To obtain T;(x)*, we borrow the idea of soft decision trees [27] and propose to use a tree-like convolutional neural net-
work [40] to predict T;(x), which has fewer parameters than a standard convolutional neural network while achieving com-
parable state-of-the-art performance [40]. We resort to such a simpler tree-like model, because one of the datasets that we
use for evaluation is relatively small, though more complex models could be further explored.

F(z,1)

‘Average Pooling

Figure 4: LTS (left) and IBTS (right) hierarchical tree-like architectures demonstrated in 2-D. W is the image width, D is the image
length, L is the number of classes, C' is the number of channels. @ is the patch centered at location x of size L x 5 x 5. Its corresponding
patch inside image I is denoted by y, which is of size C' x 5 x 5. ¢ is the sigmoid function. Input to the model are the logits of size
L x W x D. Output is the spatially varying temperature value of the image (1 x W x D) for LTS or an image-dependent temperature
scalar value (1 x 1 x 1) for IBTS. v; and ¢; are convolutional filters of size L x 5 x 5 (except vs is of size C' X 5 x 5 to be compatible
with the size of image). Note that the dilation is 2 for all convolutional filters, thus resulting in a 9 x9 receptive field.

The proposed framework is constructed as a pre-specified hierarchical binary tree in which each leaf is a convolutional
filter learned during training. Denote the leaf node with index m as v,,, the patch in logits z to be convolved as x and its
corresponding patch in image I to be convolved as y. Since a convolutional layer can be transformed into a fully-connected
layer, which is essentially a matrix multiplication plus a bias offset, we use v z to represent the convolution operation in
the framework for ease of notation (omit bias offset for simplicity). For internal nodes of the tree, each parent node value
is a mixture (i.e. weighted average) of children nodes’ values and the mixture parameter is also learned during training.
Specifically, we use a convolution operation ¢,, plus a sigmoid function o to determine the mixture parameter o(c’ x). The
root node is the final output. For IBTS, the output is a single temperature value for the logits, while, for LTS, the output is a
temperature map which has the same size as the input logits, except that the number of feature channels is 1. Thus, the nodes



of the tree can be represented as follows:

viy+1 if leaf node in image
(2 y) = 'v,Tna::FJr 1 . %f ?eaf node in 19gits B
o(Cp, ) A togits leit () + (1 — 0(Cp, ) Hom togits, right (T) if internal node in logits

ReLU(U(CZ;zw)%mJogits(w) + (1 - U<C%w))t%ﬂm7image(y)> +e if root node

where ReLU is the Rectified Linear Unit, .7, (x, y) is the root node value, 7, 1ogits,left () and 27, 1ogits righe () are the left
child node value and right child node value for internal nodes in logits, respectively. %,L,mgm(w) is the top node containing
information only from the logits and 4, image (¥) is the top node containing information only from the image. ¢ is a very
small positive real number to guarantee the positivity for the output temperature value. The +1 value for the leaf node is for
model initialization and stabilization. With this trick, the learning process is more stable and the performance is much better.
If there are only leaf nodes, then the convolution filters are trying to learn the residual of the temperature scalar value with
respect to the standard uncalibrated temperature value 1. Fig. [d{left) illustrates the proposed tree-like learning framework for
LTS. For simplicity, let us assume the output is positive, then the specific representation becomes

Hiee(@,y) = 0(c5 ) (v y +1)
+ (1 —o(ctz)){o(ctz)[o(ciz)(vix+ 1)+ (1 —o(ciz))(vsz +1)] (B.2)
+(1—o(crz))[olcgz)(vsz +1) + (1 - o(cga))(viz +1)]}.

To connect back to the definition in Hiree 1s the network S, v; and c¢; are parameters «, « is the patch centered at
location z in logits z, y is the corresponding patch of image 1.

To obtain T3, we modify the above-mentioned network .7#. to predict one temperature value 7; for each image. We add an
average pooling layer after /%, to get the image-based temperature value. Specifically, using .# to represent the network
of IBTS as in Eq. (3.3), we have .# = ﬁ > weq Hiee (T, y), Where @ is the patch centered at location x in logits z, y is
the corresponding batch of @ in image I, and € is the logits space. Fig. ffright) illustrates the proposed tree-like learning
framework for IBTS. Source code is publicly-available athttps://github.com/uncbiag/LTS.

C. Dataset Description and Implementation Details
We use the following image segmentation datasets in our experiments:

1. COCO [42]: The Common Object in Context (COCO) [42] dataset is a large-scale dataset of complex images. It
provides pixel-level labels for 118K training images (COCO train2017) and 5K validation images (COCO val2017).
Further, the COCO-stuff [8] dataset augments COCO with dense pixel-level annotations for 80 thing classes and 91
stuff classes. For simplicity, we focus on the 20 categories that are present in the Pascal VOC [14] dataset for our
experiments, considering the remaining classes as background.

2. CamVid [7,l6]: The Cambridge-driving Labeled Video Database (CamVid) [[7, 6] is a collection of videos with object
class semantic labels. We use the split and image resolution as in [28]], which consists of 367 frames for training, 101
frames for validation and 233 frames for testing. Each frame has a size of 360x480 and its pixels are labeled with 11
semantic classes excluding background.

3. LPBA40 [62]]: The LONI Probabilistic Brain Atlas (LPBA40) [62] dataset contains 40 T1-weighted 3D brain MR
images from healthy patients. Each image has labels for 56 manually segmented structures. For preprocessing, all
images are first affinely registered to the ICBM MNI152 nonlinear atlas [[18] using NiftyReg [49, 50, 60] and intensity
normalized via histogram equalization.

For the Fully-Convolutional Network (FCN) experiment in §4.1| we use the COCO val2017 dataset for our calibration
experiment in which the training/validation/testing images are partitioned in sets of size 3.5K/0.5K/1K, respectively. We use
the PyTorch pre-trained modeﬂfor semantic segmentation on the COCO dataset. This is an FCN [43]] with a ResNet-101 [23]

Ihttps://pytorch.org/docs/stable/torchvision/models.html#semantic—segmentation
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backbone. The pre-trained model has been trained on a subset of COCO train2017, i.e., for the 20 categories that are present
in the Pascal VOC [14] dataset. For details, please resort to the Pytorch official webpage (footnote) mentioned above.

For the Tiramisu experiment in §4.2| we use the hold-out validation dataset for our calibration experiment in which the
training/validation images are 90/11. Finally the calibration performance is tested on the testing dataset which includes 233
images. We use the PyTorch Tiramis segmentation model [28] on the CamVid dataset. Training details are included in the
GitHub repository.

For the U-Net experiment in we use a 2-fold cross-validation setup to cover all the 40 images in the dataset.
Training/validation/testing images are partitioned as 17/3/20. This is consistent with the setting in [12]. We use 4-fold
cross-validation for our calibration experiment to cover all 40 images. Training/validation/testing images are partitioned
as 10/3/10 for each fold. The U-Net takes patches of 72 x 72 x 72 of the training images, where the 40 x 40 x 40 patch
center is used to tile the volume. The output is the voxel-wise probability of each label at each position. Training patches
are randomly cropped assuring at least 5% correct labels in the patch volume. We use Adam [33] with 300 epochs and a
multi-step learning rate. The initial learning rate is 1e-3, and then reduced by 90% at the 150-th epoch and the 250-th epoch,
respectively. Cross-entropy loss is used as the loss function. When calibrating, within each fold of the U-Net 2-fold cross
validation, we perform another 2-fold cross validation. Specifically, 23 images (3 from validation and 20 from testing) are
split into 10/3/10 for train/validation/test. 2-fold cross-validation will cover all 20 testing images of U-Net testing. This
design results in a 4-fold cross validation experiment to cover all 40 images.

For the Downstream MAS label fusion experiment in §4.4] we use 2-fold cross-validation to cover all the images. In each
fold, 17 atlases are chosen. Training/validation/testing images are partitioned as 272/51/340. This is consistent with the
setting in [[13]]. We use 4-fold cross-validation for the calibration experiments to cover all images. Training/validation/testing
are partitioned as 170/51/170 for each fold. Training data for VoteNet+ is acquired by deformable image registrations.
Specifically, the same 17 images as for the U-Net training are chosen as atlas images. First, all 17 atlases are registered
to each other, which results in 17 x 16 = 272 pairs of training data. Then all 17 atlases are registered to the 3 validation
images for the U-Net, which results in 17 x 3 = 51 pairs of validation data. Finally, all 17 atlases are registered to the
20 testing images for the U-Net, which results in 17 x 20 = 340 pairs of testing data. The same 2-fold cross-validation
strategy still applies to VoteNet+, but with the data split as 272/51/340 for train/validation/test. VoteNet+ takes patches
of 72 x 72 x 72 from the target image and a warped atlas image at the same position, where the 40 x 40 x 40 patch
center is used to tile the volume. The output is the voxel-wise probability, indicating whether the warped atlas label is
equal to the target image label. We use Adam [33]] with 500 epochs with a multi-step learning rate. The initial learning
rate is le-3 and then reduced by half at the 200-th epoch, 350-th epoch, and 450-th epoch respectively. Same as for the
U-Net, training patches are randomly cropped assuring at least 5% correct labels in the patch volume. Binary cross-entropy
is used as the loss function. When calibrating, within each fold of the VoteNet+ 2-fold cross validation, we perform a
2-fold cross validation. Specifically, 391 pairs (51 from validation and 340 from testing) are split into 170/51/170 for
train/validation/test. 2-fold cross-validation will cover all 340 testing pairs of VoteNet+ testing. This design results in a
4-fold cross validation experiment to cover all 680 pairs. Furthermore, we use joint label fusion (JLF) [64] to obtain the fi-
nal segmentation for each image. See Appx.[K for more information on MAS and label fusion, as well as experimental details.

To train IBTS and LTS, we use Adam [33] with 100 epochs and a multi-step learning rate. The initial learning rate for the
LPBAA40 dataset is le-4 and is reduced to le-5 after 50 epochs, while for the COCO and the CamVid dataset, it is 1e-5 and
is reduced to le-6 after 50 epochs. We use the cross-entropy loss. The loss is evaluated over the All region to ignore the
majority of the background.

The FL and MMCE losses are from the GitHub repository’| of [52]]. Isotonic regression (IsoReg) [68] and ensemble temper-
ature scaling (ETS) [69] are from the GitHub repositor ﬁ of [69]]. Vector scaling (VS) [20]] and Dirichlet calibration with
off-diagonal regularization (DirODIR) [34] are from the GitHub repositor of [34]]. Training with FL and MMCE follows
the same recipe as training with the multi-class entropy loss except that the training loss term is changed. The GitHub imple-

2The implementation follows this GitHub repository: https: //github.com/bfortuner/pytorch_tiramisu
3https://github.com/torrvision/focal_calibration/tree/main/Losses
4https://github.com/zhang64fllnl/MixfnfMatchf(Ialibration
Shttps://github.com/dirichletcal/experiments_neurips
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Figure 5: An example of global and local reliability diagrams for different methods for the Tiramisu semantic segmentation experiment
(. I is the image, Pis the predicted uncalibrated probability, and S is the predicted segmentation. Figures are displayed in couples,
where the left figure is the probability distribution of pixels/voxels while the right figure is the reliability diagram (See Appx. [H for
definitions). The top row shows the global reliability diagrams for different methods for the entire image. The three rows underneath
correspond to local reliability diagrams for the different methods for different local patches. LTS not only calibrates probabilities well for
the entire image but also calibrates probabilities better than TS and IBTS in local pacthes.

mentation repositoryﬁ provides all details about the hyper-parameters of training of the deep Tiramisu network; we thus omit
them here to avoid duplication. For DirODIR, the hyper-parameters for off-diagonal regularization and bias regularization
are both set to 0.01. We use Adam for a maximum of 100 epochs with early stop patience set to 10 epochs, i.e. training stops
early if 10 consecutively worse epochs are observed. The model is trained with an initial learning rate of le-3 and fine-tuned
with a learning rate of le-4.

D. Local Reliability Diagrams

To visualize the spatially-varying property of LTS, we show the local reliability diagram of Tiramisu for the CamVid experi-
ment in Fig.[5] Similar to the conclusion from Fig. 2] Fig.[5]also suggests that LTS performs better than TS and IBTS for the
entire image as well as for the local image patches. This observation is consistent with results in Tab.[T}

E. Temperature Scaling from Entropy Point of View

Temperature scaling can also be connected to entropy [20]. In this section, we establish the relation between entropy and
temperature scaling by showing that different temperature scaling models are indeed the solutions for entropy maximization
or minimization subject to different constraints. Note that a related insight has been proposed in for classification.
We extend it to semantic segmentation for our different temperature scaling settings and provide detailed discussions.
Specifically, we show the solutions of TS, IBTS and LTS when minimizing NLL in Appx. we define overconfidence
and underconfidence in Appx. [E.2} we show the entropy maximization and minimization solutions without constraints in
Appx. [E3} we deduct the solutions for entropy maximization under the condition of overconfidence as well as for entropy
minimization under the condition of underconfidence in Appx. [E4} finally, we show that the solutions for minimizing
NLL w.r.t. TS, IBTS, LTS are also the solutions for entropy maximization in the case of overconfidence or the solutions
for entropy minimization in the case of underconfidence in Appx. [E.5] Overall, TS, IBTS and LTS determined based on
a given dataset results in NLL (cross entropy) and entropy reaching an equilibrium which empirically corresponds to a
well-calibration state.

Shttps://github.com/bfortuner/pytorch_tiramisu
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E.1. Minimize NLL with (Local) Temperature Scaling

Lemma 1. Given a logit vector map z(x) at position x and its corresponding probability map obtained via softmax function
(osar) the weighted averaged logits with temperature scaling (TS) are (1) monotonic with respect to temperature value and
(2) yield the following bounds:

~
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h \
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By the Cauchy—Schwarz inequality, we have
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=1
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Thus, 6]57&)‘) > 0. This indicates that the function F(\) is monotonicly increasing with respect to A. Since the temperature
scaling value T is non-negative, i.e., T' € R*, we have A € R*. Furthermore,
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Therefore, we have %ZZLZI z(2)D < F(N\) < max;{z(z)V}.

Remark. If T is allowed to be negative, i.e. T' € R, then the following bounds hold:

mm{z 1 < Z: O'SM )/T) < mlax{z(x)(l)}. (E4)

Theorem 1. Given n logit vector maps 21, ...,2, and label maps S, ..., Sy, the optimal temperature values of temperature
scaling (TS), image-based temperature scaling (IBTS) and local temperature scaling (LTS) to the following NLL minimization
problem
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where
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a
1
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(LTS):  «;(x) = a;(z), and T;(z) =
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Case 1: If z;(z)(5:(®) < %Zle z;(z)V, we have %&S)) s (@)=0> 0. With Lemmau, F(a;(x)) is a monotonic

increasing function. This indicates the minimum value is achieved at cv;(x) = 0.
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Seea Sier zi@) Vosar (ai(2) m(@) Y = 2, cq(e) ) such thar L)
the point where F(cv;(z)) reaches the minimum value.

a;(z)—+oo

ai(z)=ai(z)== 0. This a;(z)* is

O

Remark. The original temperature scaling method defines 7" instead of o in Theorem [l| 7" and « are exchangeable via
T = i Here we use o to make the proof readable and easy to follow. Furthermore, the definition of temperature scaling
requires the temperature value 7' > 0. By using o, we require o > 0 with @« — 0 when T — +o0.

E.2. Overconfidence and Underconfidence

One indication of overconfidence for semantic segmentation is that the NLL is greater than or equal to the entropy on the
testing dataset (and also the validation dataset) (see §3.5|for a detailed explanation). As demonstrated by [52], this greater-
than relationship is mainly because the network gradually becomes more and more confident on its incorrect predictions.
Mathematically, before calibration, we have the following relationship on the validation (or testing) dataset:

—ZZIOg (USM(Zy‘,( ) (S (m))) ZZZO’S]\/[ Zz log (USM(Zz( ))(l)> (E.14)

i=12€Q i=1 e I=1
Furthermore, Eq. (E.14) leads to

_ Z 3 [ )Si@) 4 1og (ZeXp 2)®) )} Z 3 [Z 2)Dogur (Zi($)>(l) E.15)

=1 z€Q i=12eQ2 =1

+ Z osm (2i(z)) ® log ( i eXp(Zi(z)(l)))}
=1 =1

=1

[Z (@) Dosnr (z:(x)) " (E.16)
=1
+ lo (D
52 )|
> (x)H®) <ZZZzz Dognr (z:(x)) " (E.17)

i=1 z€Q i=1 zeQ I=1
Eq. (E.17) is where the idea of the TS constraint in Eq. (E.40) is coming from. Similarly, if we assume

— Z log (USM( ) (S (x))) Z ZO’SM log (a M( (x))(l)> Vi (E.18)

zeQ zeQ 1=1

o)

~
=
~—

~

—1og (s (zi(2)) * ) = ZJSM () V10g (7501 (2:(2) ) Vi, (E.19)

we get

S 2y(w)S) < ZZzl Dogn (2:(2)) ", Vi (E.20)

€N zeQ =1

(S(:c))<zz YOosu (z:(2)", Vi, z. (E21)



Hence, Eq. (E.20) is where the idea of the IBTS constraint in Eq. (E.40) is coming from and Eq. (E.21) is where the idea of
the LTS constraint in Eq. (E.40) is coming from.

Definition 4. For semantic segmentation, a model is overconfident for the predicted probabilities in n validation images if

- Z 2 ZUSM zi(a)) " log (USM (zi(2) (l)) = Zn: > log (USM (Zi(l’»(&(w)))

i=1z€Q =1 =1 xeQ)
or (E.22)
ZZZ )(S: T))<ZZZZZ Dorgnr (zs(a)
i=1zeQ i=1zeQ =1

a model is overconfident for the predicted probabilities in a validation image I; if

_ Z ZUSM zi(x log (O'SM (zz ) Z log (USM 2i(z ))(Si(w))>

zeQ =1 z€Q
or (E.23)
Sz (S(”)<ZZZ (@)Posa (zi(2)
TEQN zeQ I=1

a model is overconfident for the predicted probabilities at position x of a validation image I; if

*ZUSM zi(x log (O’S]V[(ZZ( ))(l)) < —log (USM(Zi(I’))(Si(x)))

or (E.24)

£)(5:(@) <Zzz Dosar(zi(@) .

Furthermore, for underconfidence of semantic segmentation, the NLL is generally less than or equal to the entropy. This
is because, when training is insufficient, for correct predictions we have NLL less than or equal to the entropy while for
incorrect predictions there is no guaranteed relationship between NLL and entropy. Besides, the majority of the pixel/voxel
label predictions for a semantic segmentation are correct after the network has been trained a certain period of time (before
overconfidence). Hence, NLL will is expected to be less than or equal to the entropy on average during the underconfident
stage. Thus we have the following constraints during underconfidence,

33 @ 2 35S @) Vo aie) (E25)

=1 xeQ i=12eQ =1
3z, (@) ) > 3 Z Dogn (z:(x) ", vi (E.26)
e zeN I=1
2)(Si@) > Zzz Dogr (z:(x)) ", Vi, . (E.27)

Eq. (E.23), Eq. (E.26)), and Eq. (E.27) are the prototypes of the constraints for TS, IBTS, LTS in Theorem

Definition 5. For semantic segmentation, a model is underconfident for the predicted probabilities in n validation images if



3 S e o o)) 2 55 )

i=1zeQ =1 =1 e
or (E.28)
ZZZ (S w))>zzzz CTSM (@ ))(l);
i=1 € i=1zeQ =1

a model is underconfident for the predicted probabilities in a validation image I; if

- Z ZUSM zi(z log (USM (Zz ) Z log (USI\/I zi(x ))(Si(w)))

xeQ l=1 2eQ
or (E.29)
ZZ ) (S ”)>ZZZ Dogar(zi(z ))a);
xeQ) zeQ l=1

a model is underconfident for the predicted probabilities at position x of a validation image I; if

N XL:USM (zi(z)) )log (USM( i(x ))( )) > —log (O'SM (zi(x))(si(x)v
1=1

or (E.30)
2)(Si=) > Zz Dogas (zi(x ))(l)_

Definition 6. For semantic segmentation, a model is balanced for the predicted probabilities in n validation images if

—ZZZUSM z2i(2)) " og (s (z:(2)) ") = Zzlog (vsae(as(a)) &)

i=1zeQ I=1 =1 oe
or (E.31)
ZZZ )5 *ZZZ& Dosum (zi(z ))(Z);
i=1xeQ i=1zeQ l=1

a model is balanced for the predicted probabilities in a validation image I; if

N Z ZUSM zi(x 10g (USM (Zz ) Z log (JSM zi(z ))(Si(w)))

zeQ =1 ze
or (E.32)
l
Zzi( )Sie)) = ZZZ Doga (2i(x ))(>;
e zeQ l=1

a model is balanced for the predicted probabilities at position x of a validation image I; if

3 ) () ) =t ) )

or (E.33)

) (54 —Zzl Dosar (zi(z) "



E.3. Weighted Averaged Logits and Entropy Extremes

Lemma 2. Given n logit vector maps 21, ..., Zn, equal probability for all labels is the unique solution q (probability distribu-
tion) to the following entropy maximization problem:

ma 305 S afe0) o (o))

i= 11:651[ 1

subject to  q(z;(x) ) >0 Vi,z,l (E.34)

x))(l) =1 Viz

Mh
()
-
N

Proof. We use Lagrangian multipliers to solve the optimization problem. q(zz(x)) @

the deducted solution satisfies this constraint automatically.
Let 3;(z) be the multipliers. The Lagrangian is

ZZZ z;(x ()10g( ())+ZZ& (XL:q )W - ) (E.35)

i=1ze =1 i=1zeN

> 0 is ignored in the Lagrangian but

We take the derivative with respect to ¢(z;(z)) ™) and set it to 0

oL
— = - log (Q(zi(x))(l)) + Bi(x) = 0. (E.36)
9q(z;(z))
Thus, we obtain the expression of q(zz(x)) @ as

Hence, ¢(z; (x))(l) > 0. Since Y72, ¢(zi(x)) ) — 1 for all  and z, it must satisfy

1

g(zi(2))"” = Z. (E.38)

Hence the equal probability distribution over all labels is the entropy maximization solution.
O

Remark. For a classification or semantic segmentation task, equal probability for each label will yield the maximum entropy.

Remark. The minimum entropy lies at extreme points, i.e.

arg min Z Z Z z;(x 10g< (z (x))(l))

i=1zeQ =1
subject to q(zi )(l) >0 Vi,ax,l {Q(Zi(x))(l) = 1»(](11'(3”))(]) =0,(Vj # i)},Vi (E.39)

L
Zq —1 Vi, x

=1




E.4. Entropy Extremes Under Constraints

Theorem 2. Given n logit vector maps z1, ..., 2, and label maps S, ..., Sy, temperature scaling (TS), image-based tempera-

ture scaling (IBTS) and local temperature scaling (LTS) are the unique solutions q (probability distribution) to the following
entropy maximization problem with different constraints (A, B or C):

max ZZZ zi(x log( (z (x))(l))

i=1xeQ =1
subject to q zl (l) >0 Viax,l
L l
Y (@) =1 Vi (E.40)
=1

er Zl 1Zi(T >(Z)Q(Zi($))(l) > e (A: TS constraint)
zeQ Zz 1z1( YOq(zi(x)" > eB Vi (B: IBTS constraint)
l 1%l ( i(x ))(l) > EZC(:E) Vi, x (C: LTS constraint)

where €4, € 5 and ¢ S (x) are the following constants:

S IELT

i=1 €N

= 3 2i(a) @) (E41)

zeQ
gc(x) = Zz($)(SL($)) .

?

And the corresponding optimal inverse temperature values for TS, IBTS and LTS are

a* =0, if S Y eozi(@)S@) < LS S S zi(a)®
{07 > 01 I Shea Dt 2il@) Vosu (@z@)) =SS e )50} otherwise
a; =0, if >iea zi() 51 @) < %erQ Zz=1 zi(z)® (E.42)
{Oé? >0 Y, co S zi(@) Dosar (ai“zi(w))(]) = .ca zi(x)(si(w))}mtherwise '
a;(z)* =0, if zi(z)5@) < %ZlL:; zi(z)®
{oi@) > 0 S 2(0)Oosar (@) () = 2,(@) S0} othervise

Proof. We use the Karush—Kuhn-Tucker (KKT) conditions to solve the optimization problems. q(zl(x)) ®
for the KKT conditions as the deducted solution satisfies this constraint automatically (i.e., it is inactive).

For constraint A, let «, 5;(z) be the multipliers. The Lagrangian is

> 0 is ignored

n

Y S a(ae) g (e (w))“’)ZZ@(@(Zq(zi(x))(”l)

i=12eQ I=1 i=1z€N

—a(= ) B IABLY u(@) "),

i=1 zeQ =1

(E.43)



Thus, the KKT conditions are

875(” —1 —log (q(zi(a:))(l)> + azi(aj)(l) —Bi(x) =0 Vi,l,z, (E.44)
aQ(zz( )
Y q(z@) —1=0 Vi, (E.45)
=1
n L
!
eSS () Vg (i)Y <o, (E46)
i—1 2€Q I=1
a>0, (E.47)
n L
!
a(eA - 3 2i(2)Vg(zi(2))" )) 0. (E.48)
i—1 2€Q I=1
From Eq. (E-44), we obtain the expression of ¢(z;(x)) D as
Q(Zi(x))(l) = eon(@®V-Bi(@)-1, (E.49)

Hence, q(z; (x))(l) > (. Since Zle q(zi(m))(l) =1 (Eq. (E-45)) for all 7 and x, it must satisfy

@) eoi(@)!!
() = ST (E50)
=

From Egq. (E.46), we have

n L n azi(z)(l)
0 e
2.0 2 n@ V(@) =3 > Y u@)
i=1 2€Q =1 i=1 2€Q =1 D jog €%
> el (E.51)
= Z z;(z)%(®)
i=1 2€Q
Case 1: If >0 | > z;(x)5@) > L5 S~ o> zi(z)(Y, then we have
- - . 0w y o een@?
D2 > m@) (@) =33 > w0
i=1 z€Q I=1 i=1 z€Q I=1 Zj:l e~
> Z z;(x) 5 @) (E.52)
i=1 z€Q
5> Z z)®.
i=1 z€Q l=1

If a = 0, then q(zi(x))(l) = 1/L forall i, and z. Thus, Eq. (E46) becomes e — >°7 | 3 o 37 z; ()L < 0, which

violates the 37 | > z;(x) @) > LS~ St Zl L zi(x) assumption. Hence, o # 0.
Furthermore, we have

%izzzi( M) < ZZ (i) < szax{zz s (E.53)

i=1zeQ =1 i=1zeQ i=1 zeQ)



with Lemma |1| and the intermediate value theorem, there must be a unique strictly positive solution a* for « such that

S o SF 2i(2) Vg (z:(2)) Y = A = T S, o 2i(2) 5D, Thus Eq. (EA7) and Eq. both hold.

n ) n L
Case2: If >, > g z;(z)51() < % Dot 2w 21 zi(x)".
If o # 0. Bq. (EAB) yields Y0, 3,00 S, zi(2) Vo (zi(2)) ) = 4 = S, 5, 2:(2) 5. With Lemmall] and

intermediate value theorem, there exists a unique non-positive . This violates Eq. (E.47) and the « # 0 assumption. Thus,
a=0.
Furthermore, when o = 0, it yields q(zi(a:))(l) = 1/L for all 4, [ and x. Take q(zi(q:))(l) = 1/L into Eq. (E.46), the

inequality holds. Eq. (E.47) and Eq. (E.48) also hold. From Lemma we know that q(zi (x))(l) = 1/L is the solution for

entropy maximization of Eq. (E.34). Since Eq. (E.40) is the subproblem of Eq. (E.34), q(zi(x))(l) = 1/L also reaches the
entropy maximization of Eq. (E.40).

Overall, the optimal solution is

0 e 2i (@)
C](Zi(x)) = W, (E.54)
=
with
. ) " . n L
o =0, it Yr, erﬂ zZ‘(x)(Sl( 2 (% % Dic erﬂ P Zz‘($)(l) (E.55)
* n L e 7 (@) n i(x i ’
(0" >0 Y, S eaSE, Zi(x)(l)m =2 ic1 2 ren z;(z) 5 @)}, otherwise
Jj=1

LetT = -t (a* — 0as T — +00), then this is the TS solution. Note that 7" does not depend on ¢ and =, which is the same

a*

as the temperature value in Eq. (3.3).

For constraint B, let cv;, 8;(x) be the multipliers. Then the Lagrangian is

£==3>"3">" alzi(@) " 108 (a(zi(2))") - 3 5i(x)<zq(zi(x))(z> B 1)

i=1 zeQ 1=1 i=1 zeQ =1
. . . (E.56)
=S ai(=P = 30> wi@) Vg (i) ).
i=1 zeQ =1
Thus, the KKT conditions are
L(l) =—-1-log (q(zi(x))(l)) + aizi(x)(l) — Gi(x) =0 Vi l,x, (E.57)
dq(zi(x)
Y q(z@) —1=0 Vi, (E.58)
1=1
33 zi(@0)Pg(zi(a) " <0 v, (E.59)
zeQ I=1
a; >0 Vi, (E.60)
L
@ (aﬁ - Zzi(x)(l)q(zi(x))(l)) —0 Vi (E.61)
zeQ I=1

From Eq. (E.57), we obtain the expression of q(zz(z)) @ as

1 iz (@)D — B, (2)—
q(zi(:c))() — eizi(x)" =Bi(z) -1 (E.62)



Hence, q(zi(:c))(l) > 0. Since 21L=1 q(zi()) W—1 (Eq. (E.58)) for all ¢ and z, it must have

0] eoizi(@)®
q(Zi (m)) = W, (E63)
j:

From Egq. (E.59), we have

L e zq‘,(m)( )
z;(z)® <l> z(z <l>—
> ng (E.64)
_ Z z;(2) 5 @)
zeQ

Case 1: If 3, z;(2)S5i(®) > LS~ S~ 2;(x) (), then we have

e 2i(z) ")

S Valn(e)” = 3 ale) e
zeQ l=1 zeQ l=1 =1
> 2i(x) 5@ (E.65)
e
L
1 S0 zi(2)®
L z€eQ I=1

If a; = 0, then q(z;(z ))(l) = 1/L for all 4, [ and z. Thus, Eq. (E39) becomes e — 3> o S/ z;(x)D L < 0, which
violates the ) -, z;(x )Si@) > 1 LY ea Zl 1 2;(x)® assumption. Hence, a; # 0.

Furthermore, we have
L
1
72> m(@) ) < Y (@) 3 < Y Tmax{ai(x) 0}, (E.66)
xeQ l=1 e e

with Lemma |1 and the intermediate value theorem, there must be a unique strictly positive solution «; for «; such that

Y eo SF 2:(2) Vg(2i(2) Y = B = ¥, . 2i(2)5®). Thus Eq. and Eq. (E-61) both hold.

Case2: If 3 2;(2)5i®) < LS~ S 2(2) .

If a; # 0, Eq. (E.61) yields }_ . Zlel Zi(m)(l)q(zi(x))(l) = =3 o z;(x)5/(®) With Lemma 1| and the
intermediate value theorem, there exists a unique non-positive «;. This violates Eq. (E.60) and the «; # 0 assumption. Thus,
o = 0.

Furthermore, when a; = 0, it yields q(zi(x))(l) = 1/L for all 4, [ and x. Take q(zi(x))(l) = 1/L into Eq. (E.59), the
inequality holds. Eq. (E.60) and Eq. (E.61) also hold. From Lemma , we know that q(zi (x))(l) = 1/L is the solution for

entropy maximization of Eq. (E.34)). Since Eq. (E.40) is the subproblem of Eq. (E.34), q(zi(x))(l) = 1/L also reaches the
entropy maximization of Eq. (E.40).

Overall, the optimal solution is

) eoiz(@"
Q(Zz( )) W, (E.67)
j=1
with
aj =0, if Y ,eqzi(@) @) <13 Zz L 2zi(z) D

ez (@™

ZL ea;‘zi(;@)(f)
j=1

(E.68)

{af >0[>ca Zle z;(z)® =3 cati(x)F @} otherwise



LetT; = a—l* (o — 0asT; — +o00), then this is the IBTS solution. Note that T; does not depend on x, which is the same as

the tempereiture value in Eq. (3.4).

For constraint C, let o; (), 8;(z) be the multipliers. Then the Lagrangian is

b o) Sl
i=1zeQ =1 i=1 zeQ =1
n L

_;%al ( hzlzl )(l))

Thus, the KKT conditions are

oL

W —1—log (Q(Zi(m))(l)> o)) — Bi(x) =0 Vi1,
q\Z;(x

L
Y q(z@) —1=0 Vi,

L
zc(x) - Zli(x)(l)q(li(x))(l) <0 Vix,

ai(z) >0 Vi,z,
- @
ai(@) (=€ (@) = D 7a(2) Vg (2:(2) ) =0 Vi,
From Eq. (E-70), we obtain the expression of ¢(z;(x)) @
! o (212 () D — B () —
g(zi(z))V = ex @m0 —pi@) -1

Hence, ¢(z; (x))(l) > 0. Since 1, q(z;(x))D = 1 (Eq. (E-71)) for all i and z, it must have

a;(z)z; (z) D
PENOI:
Q(Zi(m)) - ZJLZI eai(l’)zi(w)(j) )
From Eq. (E.72), we have
L L a;(z)z; (z) D
0 _ n__ €
> zi(@) V(@) =3 m@)V o
1=1 =1 Yooy e @n@®
> ef (x)
= z,( )(Si(r))
Case 1: If z;(z)(5:(®) > LS  7,(2)D, then we have
L L a;(z)z; (z) D
0 _ n__ ¢
> zi(2) V(i) =D i)V — -
1=1 =1 Yooy e @n@®

(E.69)

(E.70)

(E71)

(E.72)
(B.73)

(E.74)

(E.75)

(E.76)

(E.77)

(E.78)



If a;(z) = 0, then q(zi(x))( = 1/L for all 4, [ and =. Thus, Eq. (E.72) becomes £{ (z) — Zl 1zi(z)V 1 < 0, which
violates the z;(z) (/) > LS~ 7,(2)(!) assumption. Hence, a;(x) # 0.
Furthermore, we have

h \

L
Z )V < z;(z) @) < mlax{zi(yc)(l)}7 (E.79)

with Lemma and the intermediate value theorem, there must be a unique strictly positive solution a;(z)* for o;(x) such
that ZzL:1 zi(x)(l)q(zi(x))(l) = e%(z) = z;(x)5:(®), Thus Eq. (E.73) and Eq. (E.74) both hold.

Case 2: If z;(z)(% LZl L Zi(x)®

If o () # 0, Eq. - yields Y7, z;(2) Vg (z; (x))(l) = %(z) = z;(x)5:(*)), With Lemmaand the intermediate value
theorem, there exists a unique non-positive «;. This violates Eq. and «;(x) # 0 assumption. Thus, o;(x) = 0.
Furthermore, when a;(z) = 0, it yields q(zi(m))m = 1/L for all i, [ and x. Take q(z; (x))(l) = 1/L into Eq. (E.72), the
inequality holds. Eq. (E.73) and Eq [E.74) also hold. From Lemma | we know that ¢(z;(z ))(l) = 1/L is the solution for

entropy maximization of Eq. ( . Since Eq. ( is the subproblem of Eq. (E-34), q(z;( ))(l) = 1/L also reaches the
entropy maximization of Eq. li

Overall, the optimal solution is

§ e @Y
q(zi()) =TT @ (E.80)
j:
with
ai(z)* =0, it z;(z)(() < %)zlezxxw
(@) > 0] L, 2;(2) 0 T (@)Si@DY, otherwise (E.81)

ZL eai(@)*z;(z)
=1

Let T;(z) = m (aj(z)* — 0 as T;(x) — 400), then this is the LTS solution. Note that this T;(x) depends on ¢ and z,

which is the same as the temperature value in Eq. (3.6).
O

Remark. Note that the first two constraints on ¢(z;(x)) are shared by all three models, while the last constraint varies
across the three models, i.e. A for TS, B for IBTS, and C for LTS. The first two constraints guarantee that ¢ is a probability
distribution while the last constraint makes assumptions on the distributions of the corresponding models. Constraint A
assumes that the average true class logit is less than or equal to the weighted average logit over the entire image space and
all samples. Constraint B requires that the avearge true class logit is less than or equal to the weighted average logit over
the image space. Constraint C specifies that the true class logit is less than or equal to the weighted average logit at each
location of each image. Note that the three constrains are designed under the overconfidence scenario. The order of the
restrictiveness of the constraints is C > B > A, which indicates the model complexity order LTS > IBTS > TS.

Remark. Theorem [2] gives a more general proof. However, when it comes to TS, IBTS and LTS, we do not necessarily need
such strong conditions. Instead we can use the following simplified theorem 2-b.

Theorem 2-b. Given n logit vector maps z1, ...,2, and label maps S, ..., Sy, the optimal temperature values of temper-
ature scaling (TS), image-based temperature scaling (IBTS) and local temperature scaling (LTS) to the following entropy



maximization problem with different constraints (A, B or C)

max Z Z Z OSM ozz )z (x ))(l) log (oSM (ai(x)zi(x))(l)>

i=1 2€Q I=1
subject to  a;(x) >0 Vi, x,l

(E.82)
S ZIEQ Zl 1zi(2)WDoga (az(x x)) > e (A: TS constraint)
Y 2o lel zi(z)Vog (i) (a:)) l >¢eB Vi (B:IBTS constraint)
Zlel zi(2)Dogn (ai(z)zi(z ))(l) >eC(x) Vix (C: LTS constraint)
where £4, €8 and € () are the following constants:
Z Z Z S (z))
i=1 €N
Z i s (x)) (E.83)
€N
o€ () = 2i() )
are
o =0, /A DI P zi(w) @) < %Z?:l >wcn Zlel z;(ar) V)
[0 > 0| S0y Sreo T () Vs (00 (2) V) = Iy 3y e2:() S0} otherwise
a;( =0, if ZacEQ zl(x)(SL(w)) < %Zaceﬂ Zlel zl(x)(l)
* L ) * G _ (S;(2)) . (E.84)
{0% >0 Y, cq i zi(@)Dosn (fzi(x) =3, cqzi(2)S },othermse
ai(z)" =0, if 2i(2) &) < 3 Y zi(0) 0
{ai(@) > 01 i zi(@) Vo (ai@)zi() Y = z0(@) @ | oherwise
where
. 1 4
(TS): «i(x) =a,Vi,x, and T:=—TE€eR
«
1
(IBTS): «;(x) = a;,Vz, and T;=— T, R’ (E.85)
o

(LTS): «;(x) = ai(z), and Ti(z):= Ti(x) € RT.

a;(z)’

Proof. We use the Karush-Kuhn-Tucker (KKT) conditions to solve the optimization problems. a > 0 is ignored in the
Lagrangian and later be validated w.r.t. the deducted solution. For TS, Let A be the multiplier, the Lagrangian is

n L n
30 D) LMMCAB LI AP Y0 3) DAETIS ) 3y pAC I e E) )}

i=1 xz€Q I=1 i=1 €N i=1 z€Q I=1
(E.86)



Taking the derivative w.r.t. o, we have

n L v
9%a Z Z Z osm (az(x (l)( i) — Zzi(x)(j)oszu (azi(x))(j)) log (USM (azi(x))(l))
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L .
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Thus, the KKT conditions are

P (A=) (Z (z(2) D) osar (azi(x Zz )Dognr (azi(z ))(l))Q) -0 Vi,
1=1 z€Q) =1
§§:<M Y S ) Vs (0 () < 0
=1 xz€Q i=1 zeQ =1

A>0,

A3 X 205 = 33 Y o) Vs (en ) ) =0

=1 xeN i=1z€Q I=1

(E.88)

(E.89)

(E.90)

(E91)

(E.92)
(E.93)

(E.94)



By the Cauchy-Schwarz inequality, we have
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Hence, we have A = «in Eq. ( -

Case L: If Y0 S0 z;(w)Si®) > Ly~ S~ S~ 2;(x) @, then we have
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If « = 0, then O'SM(OéZZ'({L‘))(l) = 1/L for all 4, [ and z. Thus, Eq. (E92) becomes > 1ern z; ()% @)

L . . "
Z?:l Exeﬂ Zl:l Zi(x)(l)% S O’ which violates the E?:l ZwEQ ( )(S ) > T Ez 1 Zzeﬂ Zl 1 Zl( ) b assump-
tion. Hence, o # 0.

Furthermore, we have
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with Lemma |I| and the intermediate value theorem, there must be a unique strictly positive solution o* for o such that

S S e S zi(@) Doga (az; (:c))(l) =30 > cqzi(z) @), Thus Eq. and Eq. (E-94) both hold.

Case2: If 371" | >0, o Zi(z )@ < 3 L 2im1 > e Zz 1Zi(2 )®
If a # 0, Eq. (E:94) and A = « yields Zizl Y ea SE zi(2) Vg ( (@)Y = S0 Y, 0 2(2)S@). With Lemmali]

and the intermediate value theorem, there exists a unique non-positive «. This violates Eq. (E.93) and the v £ 0 assumption.
Thus, o = 0.

Furthermore, when o = 0, it yields o5y (azi (ac))(l) = 1/L for all i, [ and z. Take ogps (azi(x)) O _ 1/L into Eq. (E.92),
the inequality holds. Eq. (E.93) and Eq. (E.94) also hold. From Lemma , we know that ogps (azi (x))(l) = 1/L is the

solution for entropy maximization of Eq. (E334). Since Eq. (E-82) is the subproblem of Eq. (E:34), ogas (z;(2)) M _q /L
also reaches the entropy maximization of Eq. (E.82).

Overall, the optimal solution is
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LetT = al (a* = 0as T — +00), then this is the TS solution. Note that 7" does not depend on 7 and =, which is the same
as the temperature value in Eq. (3.3).

Similarly, for IBTS and LTS, we can get

arg max — Z Z Z OSM oz7Zl ( ) log (USM (aizi(a?)) (l))

i=1zeQ l=1

aj =0, i Lo s < 3 Yoen Ticy w(x)" E.10D)
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B {ai(x)* >0 0, zi(x)Dogar (ai(x)*zi(:c))m = zi(x)(si(m))},otherwise (E-102)
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Theorem 3. Given n logit vector maps 21, ...,2, and label maps Si, ..., Sy, the optimal temperature values of tempera-
ture scaling (TS), image-based temperature scaling (IBTS) and local temperature scaling (LTS) to the following entropy
minimization problem with different constraints (A, B or C)

min 353 o o) Vo (s (o))

i=1 zeQ I=1
subject to  a;(x) >0 Vi, x,l

S 12169 Zl L zi(z)¢ USM(aZ(x) ( )) <e? (A: TS constraint)

D20 S zi(@) Do (i (ac)) <eB Vi  (B:IBTS constraint)
Zle zi(2) Doy (ai(z)zi(z ))(l) <el(z) Vi,x (C: LTS constraint)

(E.103)

where £4, e8 and €€ () are the following constants:
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where
) 1 4
(TS):  «i(x) =a,Vi,x, and T := E’T eR

1
(IBTS): «;(z) = «a;,VYx, and T;:= a—,Ti eRT (E.106)

%

(LTS): «;(x) = ai(x), and Ti(x) =

Proof. For TS, Let
Z Z Z osMm CKZZ log (OSM (azl (x))(l)>. (E.107)
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Taking the derivative w.r.t. o, we have
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By the Cauchy-Schwarz inequality, we have

> (i) ) s o)) = (3 m(@) Vs (o))

=1 =1
= (ZL: (z¢(x)(l)) osm (azi( ) (ZUSM az;(z ) (Zzl Do (ozi(z ))(l)>2 (E.112)
=1
L ) L o ,
> (Z|Zi(x)(l)|GSM(aZi(x))(l)> - (ZZi(x)(l)O'SM(@Zi(x))(l)) (E.113)
>0 - B (E.114)



Since a > 0, finally we get

<0. (E.115)

Thus F(«) is monotonicly decreasing w.r.t. c.

Furthermore, we have the following relations by definition

ZZZZ Dosa(azi(2) " < ZZ )(S+(=) (E.116)
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With Lemma L] and the intermediate value theorem, there must be a unique non-negative solution a* for « such that

l . . .
S Y wen Zl 1zi(2)Woga (azi(z ))( ) = S Y owen z;(z)(%®)_ This o* is also the maximum o that we can get
without violating the constraints. Because JF(«) is monotonicly decreasing, thus «* is the optimal point that minimizes the
entropy, i.e.
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=1 2€Q =1
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Similarly, for IBTS and LTS, we can get

arg min — Z Z Z osnm (oizi(x ( ) log (USM (izi(2)) (l))
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Remark. Different from the proof in Theorem [2) where we used KKT conditions, we only used the gradient here and gave a
specific expression for the probability (i.e. softmax of logits) to prove Theorem 3| This kind of proof choice is because (1)
the objective function in Theorem [2]is concave and we want to obtain the maximum; (2) the constraints in Theorem [2] are
strong enough (self-contained) to derive the solution.

E.5. (Local) Temperature Scaling Drives NLL and Entropy to an Equilibrium

Theorem 4. (1) When the to-be-calibrated semantic segmentation network is overconfident, minimizing NLL w.rt. TS,
IBTS, and LTS results in solutions that are also the solutions of maximizing entropy of the calibrated probability w.r.t.
TS, IBTS and LTS under the condition of overconfidence. (2) When the to-be-calibrated semantic segmentation network
is underconfident, minimizing NLL w.r.t. TS, IBTS, and LTS results in solutions that are also the solutions of minimizing
entropy of the calibrated probability w.rt. TS, IBTS and LTS under the condition of underconfidence. (3) The post-hoc
probability calibration of semantic segmentation with TS, IBTS and LTS approaches reach an equilibrium between Negative
Log Likelihood (NLL) and entropy for both underconfidence and overconfidence.



Proof. For TS, if overconfident, we have the following relationship from definition

ZZ )i < ZZZ 2)Dogr (zi(a ))(”_ (E.121)

=1 xeQ i=12eQ) =1

To eliminate overconfidence, we need to decrease NLL and increase entropy to probabilistically describe empirically observ-
able segmentation errors (see §3.5]for detailed explanations). From Eq. (E.121), Theorem 2] (or theorem [2-b) and Theorem
we know there is a unique optimal a*

{ o if Z:L 1 2z Zi(T) (=) < 7 Z:L:l > oreo Zlel Zi(u’”)(l)

E.122
[0<0" <120, Do D, 2:0) Vosar (07 (2) ) = S0, Sy m(@) @) | oterwise 1

that drives the NLL to minimum point and the entropy to maximum point simultaneously. Besides, at the optimal point, NLL
equals to entropy, thus reaching an equilibrium. And the overconfidence state is transferred to a balanced state

n L n
— e Ezeﬂ P %log (%) == i erﬂ log (1) lez 1 erﬂ z;() (S @) <1 Ez 1 erﬂ Zl 1 Zi( )(l)

l
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If underconfident, we have the following relationship from definition

ZZ 2)S:@) >ZZZZZ YOoga (zi(x) " . (E.124)

i=1 x€Q) i=12eQ) =1

To eliminate underconfidence, we need to decrease NLL and decrease entropy to probabilistically describe empirically ob-
servable segmentation errors. From Eq. (E.124), Theorem 3|and Theorem [1| we know there is a unique optimal *

{a >1|ZZZZZ Dogu (az(x)) " ZZ SW} (E.125)

i=1 zeQ I=1 i=1 z€N

that drives the NLL to minimum point and the entropy to minimum point simultanously. Besides, at the optimal point, NLL
equals to entropy, thus reaching an equilibrium. And the underconfidence state is transferred to a balanced state

Z > ZZ Dosu (a2 Z > ()5 ®) (E.126)

i=1zeQ =1 i=1zeN

Overall, TS post-hoc probability calibration makes NLL and entropy reach an equilibrium for the validation dataset under
both the underconfidence and overconfidence scenarios.

Similarly, IBTS and LTS post-hoc probability calibrations also make NLL and entropy reach an equilibrium for each image
and for each location respectively under both the underconfident and overconfident scenarios.
O

F. Evaluation Metrics for Semantic Segmentation

This section introduces evaluation metrics for calibration and segmentation.

Reliability Diagram. Reliability diagrams are commonly used as visual representations of calibration perfor-
mance [11} [53} 156]. A reliability diagram is derived from the definition of perfect calibration where the accuracy and
the confidence are presented separately. If a model is perfectly calibrated, then the diagram should indicate an identity
relationship between the confidence and the accuracy. Otherwise, there is miscalibration in the model. See Fig. [2and Fig. [3]
for examples.



To visually illustrate the relationship of the confidence and the accuracy in Eq. (3.2)), one can estimate both the confidence and
the accuracy from finite samples. Specifically, semantic segmentation results can be grouped into N equal-sized probability
intervals (each of size 1/N) to calculate the accuracy of each bin. Let 2; be the set of pixels/voxels whose predicted

probabilities fall into the interval A; = (%, %] Thus, the accuracy [20] of €2, can be estimated as
1 N
acc(Q);) = o Z 1(S(x) = S(x)), (E.1)
J

where S(x) and S(z) are the predicted and true labels for pixel/voxel z, 1 is the indicator function. Note that acc(§2;) is
an unbiased and consistent estimator of P(S = S|P € A;) [20] where P(x) is the probability associated with S(x) for
pixel/voxel at location . The average confidence [20] over bin €2; can be defined as

conf(Q;) = ﬁ Z P(x), (F2)
T zen

Thus, ace(€2;) and con f(§2;) approximate the left-hand side and right-hand side of Eq. (3.2) for bin ;.

Based on the definition of perfect calibration, a reliability diagram checks whether acc(Q2;) = conf(£2;) for all
7 € 1,2,..., N and plots the quantitative relation in a bar chart.

Expected Calibration Error (ECE). A reliability diagram is only a visual cue to indicate the performance of model cali-
bration: it does not reflect the number of pixels/voxels in each bin. Thus, to account for such variations of the number of
samples in a bin, it has been suggested [54] to use a scalar value to summarize the overall calibration performance. The
expected calibration error [54] uses the expectation between confidence and the accuracy to indicate the magnitude of the
miscalibration. More precisely,

N
ECE = Z %MCC(QJ») — con f(£2;)], (F.3)

j=1

where (2, = Z;V |€2;] is the total number of pixels/voxels. The difference between acc and con f for a given bin represents
the calibration gap.

Maximum Calibration Error (MCE). The maximum calibration error [54] measures the worst-case deviation between the
confidence and the accuracy. This is extremely important in high-risk applications where reliable confidence prediction is
crucial for decision making. Specifically,

OB = iy () — o ) .

Note that both the ECE and the MCE are closely related to the reliability diagram. The ECE is a weighted average of all
gaps across all bins while the MCE is the largest gap.

Static Calibration Error (SCE). The ECE is computed by only using the predicted label’s probability, which does not
consider information obtained for other labels. The static calibration error (SCE) [57] has therefore been proposed for the
multi-label setting, which extends ECE by separately computing the calibration error within a bin for each label followed by
averaging across all bins. More precisely, the SCE is defined as

QA
SCE=% > ‘L“' jace($) = conf ()], (ES)

where L is the set of labels, §2;; is the subset of pixels/voxels for label [ in bin €2;.

Adaptive Calibration Error (ACE). Another weakness of ECE is that the number of pixels/voxels in each bin varies a lot
among different bins, posing a bias-variance tradeoff for choosing the number of bins [57]]. This motivates the introduction



of the adaptive calibration error (ACE) [S7]. Specifically, ACE uses an adaptive scheme which separates the bin intervals so
that each bin contains an equal number of pixels/voxels. Specifically,

ACE = ZZ| |R\acc r1) —conf(1)], (F.6)

leL r=1

where R is the number of equal-frequency bins, €, is the r-th sorted bin which contains 2, /R pixels/voxels. 2, is the
subset of pixels/voxels for label [ in the r-th bin 2,

Avgerage Surface Distance (ASD). ASD is the symmetric average surface distance (usually in millimeter (mm)) between
each predicted segmentation label and the true segmentation label. The distance between a point p on a gold-standard or

A (1
ground-truth surface S and the predicted surface 95 2 with respect to label [ is given by the minimum of the Euclidean

. o . N .. . o . .
norm, i.e. d(p, 0S ( )) =min, .0 ||p—Dl||2, where D is a point on surface 0S5 *. Hence symmetric average surface distance

ASD = |Z < Y dpos)y+ 3 d(p,as@))) (E7)

lel <|8S l)| + |8S peds®) 13605(”

Surface Dice (SD). SD is the averaged Dice score between the segmented label surface and the true label surface at a given

is defined as

(1
tolerance (we use 1 mm). This tolerance captures that a point p may still be counted as being on the surface 0.5 ® if the

A (1
distance is at or below the tolerance, i.e. d(p, 0S5 ( )) < tolerance. Formally, the averaged surface Dice score is defined as

0y < gy <
SD = i 2|{p|d(p7 98 ) = Gvd(pa oS ) > 5}'

~ (1 ’
LU 1{pld(,05®) < &1+ Hpld(p,05") < ¢}
where e is the tolerance threshold, and | - | is the Cardinality of the set.

95% Maximum Distance (95MD). 95MD is the 95th percentile of the symmetric distance between the segmented label
volume and the true label volume. The definition is

(F.8)

9BMD = L|Z(95%Percentlle{ Ld(p, 5"

leL

)y oy d(p, SO, } vpe 5O p e s(”> (F.9)

Volume Dice (VD). VD is the average Dice score over segmented labels (excluding the background). This is a commonly
used metric to determine the success of segmentation in the field of medical image analysis. It is defined as

Z 2150 NS
E ez |SO| + |8

o (F.10)

|
G. Example of Boundary Region and All Region

Fig. [6] shows an example of the Boundary region and the All region for a 2D slice of a 3D MR brain image. The Boundary
region is created with boundaries of labels and voxels that are up to 2 voxels away from boundary voxels. The All region
contains label regions excluding the background and the Boundary region. Note that in the multi-atlas segmentation label
fusion experiment, the boundary region of the VoteNet+ ground-truth labels is very sparse and thin. Thus, we use the
Boundary region and the All region of the original segmentation labels of the magnetic resonance (MR) images instead. This
is the same evaluation approach as for the U-Net segmentation experiment.

H. Patch Size vs Metrics Results

Fig.[/|shows the results of Local-Avg for different metrics with different patch sizes. Note that the Local-Avg and Local-Max
results reported in Tab. |1 are for a patch size of 72x72 (or 72x72x72 in 3D). We observe that the probability calibration
performance tends to be worse for smaller patch sizes. This is expected as patch variations (also the differences of patch-
based multi-class probability distributions) are very significant across patches when patch sizes are small. LTS can improve
the calibration performance over TS and IBTS, because it can capture spatially varying effects.



Figure 6: Illustration of Boundary region and All region of an MR brain image from the LPBA40 dataset in 2D. Left two columns:
image and corresponding label map. Right two columns: Boundary region and All region. The Boundary region is usually where mis-
segmentations and mis-calibrations occur. The A/l region enlarges the label region to include the Boundray region, it thus captures an

evaluation region which excludes almost all background of an image.
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Figure 7: Local-Avg results LPBA40 and CamVid experiments for different patch sizes. UN denotes uncalibrated results. In general, the
smaller the patch size the worse the performance. Besides, LTS works best for most metrics.

I. Dataset Variations

Image variations are different for different datasets. Fig. [§] illustrates such variations. COCO using an FCN is the most
complex dataset, followed by CamVid using Tiramisu, LPBA40 using a UNet and finally LPBA40 combined with VoteNet+.
The quantitative results of the metrics in Tab. [I]| follows the same pattern: with the results for COCO using an FCN the
weakest and the results for LPBA40 using VoteNet+ the best.

J. Additional Quantitative Results

Additional quantitative results are provided in Tab.|3| The results are in line with the conclusions we obtain in ie. LTS
works significantly better than TS [20], isotonic Regression (IsoReg) [68]], ensemble temperature scaling (ETS) [69], vector
scaling (VS) [20], and Dirichlet calibration with off-diagonal regularization (DirODIR) [34].

K. Multi-atlas Segmentation and Joint Label Fusion

We give a brief overview of multi-atlas segmentation (MAS) [26] and label fusion. Let T represents the target image that
needs to be segmented. Denote the n atlas images and their corresponding manual segmentations as A' = (4%, A%), A2 =
(A3, A%),..., A" = (A7, A%). MAS first employs a reliable deformable image registration method to warp all atlas images

into the space of the target image 77, i.e. A= (2111, AZS)J = 1,...,n. Each A% is considered as a candidate segmentation
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Figure 8: An example of images and labels in different datasets for different experiments. COCO is the most complex dataset and contains
different kinds of natural images. CamVid is mainly focused on street scenes. LPBA40 is a dataset of 3D brain MR images. Note
that images for UNet are affine pre-registered to a common atlas space while images for VoteNet+ are registered to a target image via a
deformable registration. Thus image variations of VoteNet+ experiment are less than that for the UNet experiment.

for T7. Finally, a label fusion method ¢ is used to produce the final estimated segmentation T s for 17, i.e.
Te=9(A" A%, A" T)). (K.1)

The goal of label fusion is to use all the information from each individual candidate segmentation to generate a consensus
segmentation that is better than any individual candidate segmentation. One of the most common and popular approaches of
label fusion is weighted voting at each pixel/voxel of the target image, i.e.

Ts(x) = arg maxz w - ]l[;lls(x) =1, (K.2)
leL =

where [ € L = {0,..., K} is the set of labels (K structures; 0 indicating background), 1[] is the indicator function, and

w is the weight that associates with the i-th atlas candidate segmentation Als at position z. There are a lot of possible
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ETS[80]  3.71(3.65) 1628(6.08) [2(7):;22?23;)] 17.63(10.33)  23.06(9.25) [ﬂggggi’;‘;] 0.08(385) 1948(5.62) ég:ggﬁ%gg] 10.12(3.84)  19.30(5.67) [;‘9‘:;‘5‘8%@]
Tramiss | DIOPREH 66365 2532614 [g:g?ﬁzzgg’;] 1577(827)  34.92(11.45) [ggggggil 1242(7.33)  29.01(7.26) [gzigﬁgﬁgz] 12.37(7:34)  28.84(7.33) é;égg:g:gg;l
o TS 201 345(352)  12.66(543) [1;:2;27]7;1)] 16.0211.09)  23.57(12.88) énggggil 942390)  17.85(4.55) [;ﬁ%?zgi] 044392)  17.61(459) [;3522:?;3]
IBTS 363365 12.57(6.07) [1;2(5)316.;)1)] 1601(1021)  23.24(13.00) [522‘1‘83%; 947(3.89)  17.98(4.88) [;:238(1):;31 949391)  17.75(4.92) [5322:(1);2;]
LTS 3403.59)  11.80(5.20) [lgjg?gf_g)l)] 1244(7.48)  22.179.53) é;:ggggﬂ;] 876405)  17.77(426) [51333?1321 873403)  17.32(4.32) ég:géﬁ:?:ggl

MMCE B8] 445(4.03) - O 18.83(10.82) - 0 859(5.98) - 0 8.50(5.00) - 0

MMCE [8I+LTS  4.15(3.54) - O 17.98(10.69) - 0 7.28(3.80) - [:] 7.17(3.84) - 0
FL (521 347G.11)  8.68(5.45) [132%11.2%] 1477(1328)  17.62(13.53) ég;ggggg;l 746(343)  14.08(4.49) [21;6(3(1927183)] 743(345)  13.63(457) [213‘%;)26((192.?035))]
FLEZHLTS  3.13(3.64) 11.06(5.55) [12222?22.11;)7)] 14511107 19.619.82) 533333& 6.78(4.05)  15.28(4.76) éiﬁiﬁgﬁ?}] 6734.05)  14.76(4.84) [gﬁgﬁggz;}

Table 3: Calibration results for Tiramisu semantic segmentation model on CamVid dataset. Results are reported in mean(std) format. The
number of testing samples are listed in parentheses underneath the dataset name. UC denotes the uncalibrated result. | denotes that lower
is better. Best results are bolded and green indicates statistically significant differences w.r.t. FL+LTS. Note that due to GPU memory
limits, results of MMCE and MMCE+LTS are for downsampled images, thus can not be directly compared with other methods. The goal
of including them is to show that LTS can improve MMCE. LTS generally achieves the best performance on almost all metrics in the Al/
region, Boundary region and Local region.

weighting schemes. For example, majority voting (MV) and plurality voting (PV) [21} 24] are the simplest ones that assume
each atlas contributes with equal reliability to the estimate of the target segmentation, i.e. w, is a constant value for all 4
and z. Moving forward, spatially varying weighted voting (SVWV) 2,110, 61] relaxes the assumption to allow for spatially
varying weights, i.e. w;, can be different for ¢ and . One simple way to estimate the weight wj, is to set it as the probability

of Ag(x) = Ts(z),ie. wi = p(A s( ) = Ts(z)). Though SVWV significantly improves the performance over MV and PV,
it fails to consider the situation that atlases may make correlated errors. Thus, joint label fusion (JLF) [64] has been proposed
which down-weights pairs of atlases that consistently make similar errors. Specifically, JLF tries to find the optimal weights
w!, by minimizing the expected error between T's(x) and the true segmentation T (z):

B |(Ts(2) - Ts(@))?] (K.3)

Thus, label fusion weights can be computed from Eq. (K.4) by minimizing the total expectation of segmentation errors of
Eq. (K:3) constrained to Y, w’ = 1:
M, '1,

Wy =
1Pm;'1,

(K.4)

where 1,, is a vector of all 1 and ¢ is the transpose. W, is the vector of weights and w?, is its i-th entry (correspond to the
i-th atlas). MI isa pa1rw1se dependency matrix of size n x n where each entry M, (¢, 7) is the estimated joint probability

that atlas A" g (row) and Al s (column) both provide wrong label suggestions for the target image 77 at location x. M, (4, j) is
approximated as follows:

§(2) # Ts(2), Ag() # Ts(x))
() # Ts(2))p(As () £ Ts(x))
— p(Ag(w) = Ts()))(1 — p(A%(x) = Ts(x)).

Based on the above-mentioned label fusion approaches, the segmentation accuracy of MAS relies heavily on the accuracy of
Ts(z)). Estimation of

p(A

Q

(K.5)

p(A
(

estimating the probability of the ¢-th atlas having the same label as the target image, i.e. p(AZS(:v) =



p(Ag(x) = Tg(x)) is rarely explored. Typically, patch-based sum of squared differences (SSD) between image intensities
are used [2,/101161,164]. Recently, deep convolutional networks based approaches [[12}|13}166] have been proposed to improve
over the SSD intensity measures and have achieved great success. Here, specifically, we employ a deep convolutional
neural network called VoteNet+ [13] to estimate the probabilities. We then conduct experiments for probability calibration
to determine how much improving the calibration can improve the joint label fusion result and in turn the segmentation
accuracy.
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