IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2022 1

A Sequential MPC Approach to Reactive Planning
for Bipedal Robots using Safe Corridors in Highly
Cluttered Environments

Kunal S. Narkhede, Abhijeet M. Kulkarni, Dhruv A. Thanki and Ioannis Poulakakis

Abstract—This letter presents a sequential Model Predictive
Control (MPC) approach to reactive motion planning for bipedal
robots in highly cluttered environments with moving obstacles.
The approach relies on a directed convex decomposition of
the free space, which provides a safe corridor in the form
of an ordered collection of mutually intersecting obstacle-free
polytopes and waypoints. These are subsequently used to define a
corresponding sequence of MPC programs that drive the system
to a goal location avoiding static and moving obstacles. This
way, the planner focuses on the free space in the vicinity of
the robot, thus alleviating the need to consider all the obstacles
simultaneously and reducing computational time. We verify the
efficacy of our approach in high-fidelity simulations with the
bipedal robot Digit, demonstrating robust reactive planning and
trajectory realization amidst static and moving obstacles.

Index Terms—Humanoid and bipedal locomotion, motion plan-
ning, safe corridors, sequential model predictive control.

I. INTRODUCTION

AVIGATING in the presence of obstacles is a prereq-

uisite for bringing robots into human-populated spaces.
Owing to their morphological and functional traits, humanoids
and bipedal robots like Digit' (cf. Fig. 1) are ideally suited for
such spaces. To bring such robots a step closer to navigating
highly cluttered environments, this letter proposes a sequential
Model Predictive Control (MPC) approach, which enables
reactive trajectory planning and realization so that static and
moving obstacles in the robot’s vicinity can be avoided.

At its core, the problem of bipedal robot navigation involves
finding suitable footstep sequences and consistent desired tra-
jectories that transfer the robot to a desired location, avoiding
obstacles on the way. Prior work in the area is extensive, and
addresses several important facets of the general problem. For
example, [1], [2] deal with footstep planning amidst static
obstacles, [3], [4] focus on translating footstep plans to desired
Center of Mass (COM) trajectories, [5], [6] emphasize track-
ing user-specified velocity or orientation commands online, [7]
examines robustness in a similar setting, while [8], [9] focus on

Manuscript received: April, 27, 2022; Revised July, 25, 2022; Accepted
August, 17, 2022. This letter was recommended for publication by Editor
Dr. A. Kheddar upon evaluation of the Associate Editor and Reviewers’
comments. This work was supported in part by NSF MRI-2018905.

Kunal S. Narkhede, Abhijeet M. Kulkarni, Dhruv A. Thanki, and Ioannis
Poulakakis are with the Department of Mechanical Engineering, University
of Delaware, Newark, Delaware 19716, USA (e-mail: kunalnk@udel.edu;
amkulk @udel.edu; thankid@udel.edu; poulakas@udel.edu).

Digital Object Identifier (DOI): see top of this page.

Digit is designed and manufactured by
https://www.agilityrobotics.com/robots#digit

Agility  Robotics

Polytopic Decomposition

Within Step Reactive Planning & Control
Inputs
-

Operational Sequential-MPC
Space-QP

<— Q-------- .
= N\ - !
K] <

States
\’/\/ COM States

Figure 1. Overview of the proposed framework. An RRT-guided sequential
decomposition of the workspace to obstacle-free polytopes is used to formu-
late a sequence of MPC programs that drive the LIP to the goal and avoid
collisions with static and moving obstacles. The suggested LIP-based plan is
then realized on Digit using a QP-based operational space controller.

locomotion stability guarantees [10]-[12] for bipedal walkers
navigating cluttered spaces by switching among limit-cycle
gait primitives. Yet, autonomous planning of reactive walking
motions that enable bipedal robots to respond in real time to
changes in their surroundings cannot be addressed simply by
combining available methods. Indeed, [1] computes desired
footsteps for obstacle avoidance, but the resulting plan cannot
be altered online to account for changing environments. Sim-
ilarly, [2] relies on human input and is not suitable for online
implementation. On the other hand, [3]-[7] either require pre-
specified footsteps or input from a kinematic planner or an
operator, while [8], [9] also do not address changes in the
workspace. These observations set the stage for our work,
which aims at reactive motion planning for bipedal robots in
highly cluttered environments.

Several related methods adopt reduced-order models such
as the Linear Inverted Pendulum (LIP) [13] as predictive
models in the context of MPC schemes that incorporate
obstacles via distance-based constraints [14], [15]. However,
such constraints become active in the optimization only when
the robot comes close to an obstacle [16]. An alternative
approach for taking obstacles into account relies on the notion
of a discrete-time Control Barrier Function (CBF) [17], which
was recently used within MPC to expand the nodes of a
Rapidly-exploring Random Tree (RRT) to plan paths for the
LIP [18]. However, these methods employ one constraint
per static obstacle, which may result in unnecessarily large
optimization programs, hindering the system’s ability to react
in real time to changes in its vicinity.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2022

Treating each obstacle separately by (generally non-convex)
distance or CBF constraints can be avoided by bounding
the robot’s motion inside pre-computed convex regions of
obstacle-free space. Dividing the free space into convex
regions can be done using Iterative Regional Inflation by
Semidefinite (IRIS) programming [19]. This method requires
an obstacle-free seed point and proceeds with greedily con-
structing a large free convex region. Using user-supplied seed-
ing, IRIS programming has been employed in [2] to formulate
a mixed-integer convex program that assigns footsteps to
safe convex regions. IRIS programming was also combined
with automatic seeding in [20] to cover the free space by a
small number of large safe polytopic regions; a mixed-integer
program was solved to generate collision-free trajectories for
a quadrotor. This method requires longer computational times
to approximate the free space and solve the associated mixed-
integer program, making it difficult to implement online.

To enable online computation of collision-free trajectories,
several methods start by carving out a Safe Corridor (SC),
i.e., a collection of overlapping obstacle-free convex regions
connecting the initial and goal locations [21]-[24]. While,
as [20], these methods have been developed for quadrotors, the
underlying ideas are relevant to our approach and are discussed
here. The methods in [21], [23] generate online a sequence
of axis-aligned cubes in free space. However, this form of
SCs may result in poor free-space utilization, particularly in
highly cluttered environments. As a result, the solution space
can be significantly limited, which is an important concern
in our sequential MPC approach. To utilize the free space
more efficiently, [22], [24] use polyhedron-shaped SCs. More
relevant to our method is [22], which creates the SC by
“inflating” polytopes around the chords of a seed path with
the explicit requirement that consecutive polytopes mutually
intersect. The overall process is faster than [20] and can be
used for re-planning at 2 — 3 Hz. However, since this method
does not optimize over the maximum ellipsoid inscribed in
each polytope (as IRIS does [19]) the resulting SCs are nar-
rower than those generated by IRIS. These methods effectively
plan open-loop desired trajectories inside SCs and rely on re-
computing the SC and the trajectory to achieve reactivity to
changes in the environment.

We adopt some ideas from these approaches and propose an
efficient method that enables reactive collision-free navigation
for bipedal robots like Digit. Akin to [22], our method uses a
seed path to construct a safe walking corridor in the form of
sequentially intersecting polytopes connecting the starting and
goal locations. However, as our approach relies on IRIS [19] it
captures more free space in the SCs than [22], albeit in a com-
putationally more efficient way than [20]. The resulting SCs
are used to define constraints (via discrete-time CBFs) and
objectives (via suitable waypoints) to a sequence of LIP-based
MPC programs that drives the robot to the goal. The method
is implemented in high-fidelity simulations with Digit using
Operational Space Control (OSC) formulated as a weighted
Quadratic Program (QP) akin to [25], demonstrating robust
realization of LIP-based plans in the presence of static and
moving obstacles. The main contribution of our approach is
that reactivity to changes in the environment is infused within

the SC, allowing the robot to respond to moving obstacles and
disturbances without re-planning the corridor. This is possible
because of the significant computational benefits offered by the
proposed method, even for highly-cluttered spaces comprising
tens of obstacles, allowing us to solve the MPCs multiple
times within each step Digit takes.

II. A 3D LIP MODEL FOR BIPEDAL MOTION PLANNING

In its common configuration, the 3D LIP consists of a point
mass atop a massless prismatic leg (cf. Fig. 2). Let (z,y) € R?
be the location of the mass with respect to an inertia frame
and (&,7) € R? the corresponding velocity. It is assumed that
the mass is constrained to move in a horizontal plane located
at constant height H. We use u* and u¥ to denote the distance
between the Center of Pressure (COP) of the stance foot and
the COM in the = and y directions.

The continuous-time evolution of the LIP along the x axis
is governed by & = —(g/H)u”, where g is the gravitational
acceleration. This expression can be integrated to result in

lx(t)] [1 isinhwt] [x(O)] [1 - coshwt] .
. = . + . u® (D
x(t) 0 coshwt | |%(0) —wsinh wt
where x(0), ©(0) are initial conditions and w = +/g/H. The
motion along the y axis is governed by identical dynamics.
To plan motions for Digit using the 3D LIP, we will
approximate the reachable region of the swing foot with a
rectangle as in [18] (cf. Fig. 2). The orientation of this region
relative to the vertical axis of a body-fixed frame {x., y., 2.} is
denoted by 6. We assume that 6 is updated instantaneously at
the exchange of support and that =0 during a step. Thus, if
6(0) is the angle of the rectangle of the leg providing support,

the corresponding angle for the swing foot when it becomes
the support foot in the forthcoming step is
o(t) = 0(0) + u’ 2)
where u? is a step change assumed to satisfy (6% < u? < ub?
for suitable lower and upper bounds b and ub?.
Next, we assume that each step has duration 7' and that

[kT, (k + 1)T) is the interval spanned by the k-th step. If
. . T T
X = [:vk T Yk Uk Gk] and ug = [ui uy uZ]

denote the state and input at the beginning of the k-th step,
the state of the system at the (k + 1) step is given by

Xk+1 = Axy, + Buy, 3)

Or+1

o

(l" k+1> Yk+1 )
1bve
X \ yc/ /ua
ub¥e et ‘\

Figure 2. Reachable spaces for the left (green) and right (yellow) feet, defined
with bounds relative to the frame {xc, yc, 2c} attached at the COM.



NARKHEDE et al.: A SEQUENTIAL MPC APPROACH TO REACTIVE PLANNING FOR BIPEDAL ROBOTS 3

where A = diag{/l, A, 1}, B = diag{B, B, 1} and A, B
are block diagonal matrices obtained by (1) by setting ¢t = 7.
To plan motions in the (x,y)-plane we define the output

v = COxi 4

where C' is the 2 x 5 matrix so that Cx = [33 y]T

To avoid LIP motions that challenge the robot’s capabilities,
we introduce the following time-dependent constraint set for
the state and inputs

XUy, = { (xk,up) | g < R(O) + uf) "uy, < uby,

and 5min S \/m S 6max} (5)

where 1b, = [lbic leC lbg]T (resp. uby) includes lower
(resp. upper) bounds of the reachability constraints and R(6y+
uZ) is the corresponding 3D rotation matrix (cf. Fig. 2), dmin
and 6.y are lower and upper bounds on the COM travel
distance between steps, and Az = xp11 — Tk, Ayp =
Yk+1—Yk- The first part of (5) corresponds to constraints on the
reachability rectangles and their orientation, while the second
part to constraints on the COM travel distance; the latter is
included to avoid infeasible motions, effectively bounding the

average speed.

III. LIP REACTIVE PLANNING VIA MPC

This section presents our method for planning LIP paths to
a goal position, avoiding obstacles in the workspace V.

A. Safe Corridors via Path-Guided Free Space Decomposition

Consider first the static obstacles W*® in WW. We “inflate”
the obstacles to account for the nontrivial dimensions of
Digit, which is assumed to be enclosed in a disc of radius
0.5 m. We also assume that all the obstacles forming WW* are
convex. While this assumption does not entail a significant
loss of generality [19], it will allow us to compute efficiently
a sequence of free polytopes H;, + = 0,1,...,M — 1, along
a pre-computed obstacle-free path; these polytopes constitute
a SC within which the LIP can be steered to the goal via a
chain of MPC programs.
We begin with generating a sequence of points in W\ W*
that connect an initial location with a final desired one. This
can be done using any sampling-based planning algorithm;
here, we use RRT" to find a sequence of such points IT =
{p1,..-,Pr} in W\ W*. While generating II, we make sure
that the line segment joining any two consecutive points in
II does not intersect any static obstacle. With the availability
of II, we implement Algorithm 1 to construct a chain of free
polytopes; Algorithm 1 calls the following functions.
o Generate_Polytopes: Given W* and a “seed” point p in
the free space W\ W*, this function creates a polytope
H C W\ W= This is done using IRIS [19]; here,
the algorithm is terminated so that the seed point p is
included in the interior of the returned polytope .

o Chebyshev_Center: This function takes a pair of poly-
topes H;, and H;, and returns the Chebyshev center’ w

2Terminology: The Chebyshev center of two intersecting polytopes is the
center of the largest ball inscribed in their intersection.

of their intersection H;, () H;,, or an empty list if they
are disjoint. Determining whether two polytopes intersect
and computing the corresponding Chebyshev center is
done via a linear program.

o Intersecting_Polytopes: This function takes two seed
points p;, and p;, from II together with the cor-
responding polytopes H;, and H;, generated by
Generate_Polytopes, and returns an ordered sequence

G={H' w")|t=1,.,L+1}

where HE*TY = H,;,. The chain {H;,, H', ..., H* Hi,}
is constructed as in Fig. 3 so that it includes sequentially
pair-wise intersecting polytopes connecting H;, and H,,.
The points w! € H;, H' and w* € H "' \H* for
¢ =2, ...,L+1 are the corresponding Chebyshev centers.
When #H;, and H,;, intersect, L = 0 and the function
returns (H!,w') where H! = H,,.

o Poly_Line_Intersect: This function takes a polytope H, a
point p; € H and a point py ¢ H and returns the point at

Algorithm 1 PolyFsGen algorithm

1: Given: yo, I = {p1,...,pr }, Wg, W*

2: Ho = Generate_Polytopes(W?, y)

3: Initialize list: i = 0, j = 0, G = {(Ho, yo0)}
4: Po = Yo, PKk+1 = Wg

s: while w, ¢ H; OR j < K 41 do

6

7

8

9

j—j+1
if p; € ‘H; then
continue

else
10: Hnew < Generate_Polytopes(W?, p;)
11 G = Intersecting_Polytopes(H;, pj—1, Hnew, Dj)
12: G+ GuUG
13: i < length(G)
14: H; <+ Huew
15: end if
16: end while
17: return G
18:

19: function Intersecting_Polytopes(#;,, Dj, , His, Pjs)
20: Wnew = Chebyshev_Center(H;,, Hi,)

21: if Wpew 1s empty then

22: {= 0, p0 = DPj1> 7‘[0 = Hil

23: while w,.,, is empty do

24: p‘™! = Poly_Line_Intersect(H*, p*, pj,)
25: H'*! = Generate_Polytopes(W?, p‘*1)
26: w!*! = Chebyshev_Center(H*, H!T1)
27: Wnew = Chebyshev_Center(H/T! H,,)
28: l+—10+1

29: end while

30: G« {(H', wh),...,(H:, w"), (Hiy, Wnew) }
31: else

32: G {(Hiys Wnew) }

33: end if

34; return §

35: end function




4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2022

(b)

Figure 3. (a) The workings of function Intersecting_Polytopes. The function
takes a pair of non-intersecting polytopes H;, and H;, generated by the seed
points p;, and pj,, respectively, and computes the point p! at which the line
segment from p;; to pj, intersects H;, . This point is then used as a new seed
point to obtain a new polytope H'. Then, the point p? at which the segment
from p! to Pjo intersects the new polytope H' is computed and used as a
new seed to obtain H2. The process continues until HY intersects Hiy. (b)
Given (Hi, w;41), ¢ = 0, ...,4 obtained by Algorithm 1 based on an RRT
plan II (black), a sequence of MPCs is defined that outputs a collision-free
path (red) connecting the initial yo and goal wg locations.

which the line segment connecting p; and po intersects
the boundary of H.

Algorithm 1 begins with calling Generate_Polytopes to cre-
ate a polytope Ho in W\ W that contains the initial location
yo = Cxq. The algorithm then checks if the goal w, € H,,
and, if not, it runs through the points p;, j = 1,..., K, of
the plan II to find the first point p;, that is not contained
in Ho. The pairs (Ho,yo) and (Hnew,Pj,) are then passed
to Intersecting_Polytopes. If Ho () Huew # 0, the function
returns (', w') where H' = H,ew and w' is the Chebyshev
center of the intersection Hg () Hnew. If, on the other hand,
Ho () Hnew = 0, the function produces a sequence of pairs of
polytopes and Chebyshev centers G connecting Ho and H ey -
The end result is a SC consisting of a sequence of pairwise
intersecting polytopes {Ho, Hi, ..., Har—1} with yo € Ho and
waypoints {wi, ..., wps} such that

wi € Hia[ \Hi for i=1,.,M—1 (6)

and wy; = Wg € Hyr—1.

Remark 1: In general, if the initial yo and/or goal wg
locations change, Algorithm 1 must be executed anew. This
is not necessary, however, when yg, w, are in the union of
an available sequence of polytopes. For example, if a SC
{Ho, ..., Har—1} is available and yg, w, change so that yo €
‘H,, and wy € H,, for some m and n, then the given sequence
can be “rewired” to a new sequence {H,,, Himt1, -y Hp} if
m < n ot {Hm,Hm-1,..., Hn} if m > n without the need
to execute Algorithm 1 again.

B. Sequential Model Predictive Control

In what follows, we assume that an ordered collection of
pairs (H;, wit1), ¢ =0,..., M — 1, satisfying (6) is available.

1) Static obstacles: Each polytope H;, ¢+ = 0,...,M — 1
is free from collisions with the static obstacles, and can be
represented as a finite collection of /; closed half-spaces H; =
{y € R? | P;y < b;}, where P is an [; x 2 matrix and b; € R,
As usual, Py < b; is the shorthand notation for the system of

inequalities (r;)]y < (b;);, j = 1,...,Li, where (r;)] is j-th
row of P; and (b;); the j-th element of b;. To each H; we can
then associate /; smooth scalar-valued functions h;; : R? - R,

hij(X) = (bz)j - (’I"i);!—CX, j = 1, ,lz (7)
so that the intersection of the corresponding O-superlevel sets
Cij = {x €R’ | hyj(x) 20}, j=1,...1; (8)

contains the states of the 3D-LIP (4) that are mapped via the
output (4) onto the free polytopes H;. Let C; = ﬂ;;l Cij be
the intersection of the (unbounded) polyhedra (8).

With these definitions, collision-free evolution is achieved
by selecting the input of the 3D-LIP so that its state is
constrained to evolve in the corresponding C; when it starts
in C;. If for some state xo we have h;;(xo) > 0 for all
7 = 1,..,1; (that is, xg € C;), future evolution in C; can
be ensured by choosing uy so that the following inequalities
are simultaneously (over j) satisfied

hij (Axp + Bug) > (1 —v)hij (xx), j=1,...,1; (9

where 0 < v < 1. The existence of an input value uy that
satisfies (9) implies that h,;; is a discrete-time exponential
CBF [17] for the 3D-LIP dynamics (3). Note that for each
it =20,..,M —1 and each j = 1,...,1;, the constraint (9) is
affine in uy and will be incorporated in an MPC program
defined for each i = 0, ..., M — 1 to ensure the system is safe
with respect to collisions with static obstacles.

2) Moving obstacles: We consider n? moving obstacles
v =1,...,n? of elliptical shape, suitably inflated as in [26] to
account for the robot’s dimensions. At time k, each moving
obstacle can be represented by a pair (pS ., Py (¢.1)), where
pg’ « 18 the center of the v-th ellipse, ¢, . its orientation, and
the matrix Pd(y, 1) captures its shape [26]. Assuming that
pj‘,’k and ¢, are known at each k, collision with the v-th
obstacle is avoided by imposing the barrier constraint

g i1 (Axp + Bug) > (1= )hS i (xx), v =1,...,n% (10)
where 0 < v, <1 and

hf})k(xk) = (ka — pgyk)TPS(go,,’k)(ka — pg,k) —1.(@1n

3) Sequential MPC: Given a SC represented as an ordered
collection (H;,w;y1), ¢ = 0,..,M — 1, of free polytopes
and waypoints satisfying (6), we define here a corresponding
sequence MPC(i), ¢ = 0,...,M — 1, of MPC programs. In
this sequence, the objective of the ¢-th MPC is to drive the
output (4) of the 3D-LIP towards the (i + 1) waypoint w;;
while keeping it within H;, avoiding moving obstacles, and
satisfying the relevant state and input constraints (5). Then,
composing the MPCs according to the sequence

o MPC(i) L MPC(i 4 1) — -
for + = 0,..., M — 1 results in a sequence of control values
that drives the 3D-LIP to the goal location wy, = was € Hay.
Switching from MPC(7) to MPC(i + 1) is triggered when the
output Cxy, enters the polytope H;y1.
The objective of MPC(#) is captured by the desired state

es T
SX?+1:[W1‘T+1 0ir1 O1x2] (12)



NARKHEDE et al.: A SEQUENTIAL MPC APPROACH TO REACTIVE PLANNING FOR BIPEDAL ROBOTS 5

where S is the 5 x 5 selection matrix that re-organizes the state
of the 3D-LIP so that Sx = [x y 0 y]T, and w; 41 18
the target waypoint. The desired orientation ;1 is set to be
the angle of the vector that connects the position Cxy of the
3D-LIP at step k with w; 1.

The terminal cost of MPC(7) can now be defined by

Jin(xn) = [15xn — Sx555 i, (13)

where W is a 5 x 5 diagonal weighting matrix. The running
cost is constructed similarly to (13) with the modification of
including an additional term that penalizes the magnitude of
the 3D-LIP input at each step; that is,

Jik (X ue) = [[Sxx — SxI0 5y, + luelfy, (14

where W5 and W3 are 5 x 5 and 3 x 3 diagonal weighting
matrices, respectively. Note that, by (12), minimizing (13)-(14)
also penalizes the velocity of the LIP, effectively introducing a
damping effect which is necessary since the barrier polyhedra
C; do not bound the LIP velocity. This effect facilitates the
execution of the plan by Digit.

To summarize, the i-th MPC is defined as:

k+N—-1
mll’}l(l%lle E Ji’,ﬂ(xm UK) + Ji’k+N (Xk+N)
’ r=k
subject to X1 = Ax, + Bu,

Xk = Xinit, (Xnaun) S Xun
Ahjj(Xﬁ,u,g) —’}/hij(X,ﬁ), j = 1, ,ll

>
Ahgﬁ(xmum) > —VUhS,N(Xm), v=1,..nd

where XU is the constraint set (5), h;; and hﬂyn are the bar-
rier functions (7) and (11), and Ah;; (%, Uk) = Rij(Xug1) —
hij(xx) and Ahg,n(xmun) = hg,n+1(xn+1) - hg,m(xn)~
Given Xijpit, the solution of MPC(i) returns the sequences
X = {Xk+17~-~;Xk+N} and U = {uk, ...,uk+N_1}. We then
apply the first element u; in U and proceed with solving
MPC(i) at the next step based on the new initial condition
Xinit- The process is repeated until Cxy € H;41 for some k,
where we switch to MPC(i 4+ 1) and continue until the goal.

Before proceeding with numerical experiments to evaluate
the performance of the method, a few remarks are in order.

Remark 2: The MPC programs described above effectively
“drive” the evolution of the LIP away from the boundaries of
the SC in a feedback fashion. This is different from methods
such as [21]-[23], which plan open-loop trajectories inside the
SC and achieve reactivity to changes in the environment by
re-planning the SC and updating the desired trajectory. While,
as detailed below, online re-planning of the SCs is certainly
possible using our method, an additional layer of reactivity
is infused within a given SC, thus allowing the system to
respond to disturbances and moving obstacles without the need
to compute a new SC.

Remark 3: For the MPC programs to be well defined,
the intersection between two successive polytopes in the SC
must be nonempty. Depending on the size of the Chebyshev
discs that can be inscribed in the nonempty intersections, the
choice of the parameters «y in the definition (9) of the CBFs

and dp,;, in the constraint set (5) can affect the feasibility
of the associated MPCs. First, note that choosing ~ close to
zero “pushes” the system away from the polytope boundaries,
resulting in safer but more conservative evolution [16]. Thus,
choosing a small v makes it more difficult for the system
to reach the intersection, particularly when the size of the
Chebyshev balls is small. In practice, however, we found
this rarely to be a problem, and can always be resolved by
choosing larger values for 7, even for very small Chebyshev
balls. Regarding iy, positive values force the system to move
forward by a minimum distance and may interfere with the
satisfaction of the CBF constraints for narrow intersections.
This can always be avoided by setting 0, =0.

C. Numerical Experiments and Performance Evaluation

In this section, we numerically investigate the effectiveness
of our approach. The quality of realizing the plans on Digit is
discussed in the following section. We consider three sets of
randomly generated environments containing (i) rectangular
obstacles with different sizes, (ii) rectangular obstacles with
different sizes and orientations, (iii) general polytopic obsta-
cles; see [27, Fig. 4]. In each case, we generate 50 random
environments with 30,40, 50 and 60 obstacles in a confined
50m x 50m space; hence, 150 environments are considered
for each obstacle population, giving a total of 600 maps. The
obstacle coverage is roughly 40% in all maps, and the starting
and goal locations are kept the same. All computations in
this section were performed on an Intel PC with i7-9750H
processor (2.60 GHz) and 16GB RAM.

1) Safe Corridors: We employ Algorithm 1 to generate
SCs and computes the Chebyshev centers of the associ-
ated polytopes. For IRIS, we use the implementation on
GitHub [28], which relies on Mosek to perform the requisite
semidefinite optimizations. We compare the results in terms of
free-space utilization and runtimes with the method in [22],
which is also used for comparisons with other methods in the
relevant literature; see [24] for example. For the method in [22]
we use the implementation on GitHub [29]. Note here that this
method requires a point-cloud representation of the obstacles.
To do this, we discretize the randomly generated maps with a
resolution of 0.25m and use a bounding box set at (5m x 5m)
to limit collision checking as in [22]. Both methods are seeded
with the same skeleton paths II computed using RRT*. We
note first that, given the seed path, both algorithms were able
to compute SCs in all the 600 environments considered.

2 1000
2
—_ v - 1
_100f T — i ] £ 800
x® 1 i 1 1 T
1 1 =
= R=R=R=
3 T ! £ 400
& ' 1 : 1 Z
< 60 . o 4 g
4 Z 200
8
40 a o
30 40 50 60 30 40 50 60
Number of Obstacles Number of Obstacles
(@) (®)
Figure 4. Size of SCs computed by [22] as a percentage of those by

Algorithm 1. (b) Average runtimes for [22] (blue) and Algorithm 1 (orange).



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2022

Figure 4 summarizes our findings. It can be seen from
Fig. 4(a) that the proposed method utilizes the relevant free
space more efficiently, generating larger SCs than [22]. This
is not surprising, given the fact that IRIS optimizes over
the volume of the ellipsoids that can be inscribed in the
returned polytopes. This is important in the context of our
sequential MPC approach since larger polytopes correspond
to larger solution spaces and provide more flexibility to the
robot in the presence of moving obstacles or disturbances.
Furthermore, as Fig. 4(b) shows, the average computation
time required using our method is almost less than half than
the one needed by [22], requiring times that are on average
less than 400 ms. This is an indication that the proposed
polytopic decomposition can be used online. Although we
do not explore this feature here, as we focus on reactivity
without recomputing the SC, it is still reassuring to know that
re-planning the SC is still possible every 2-3 steps Digit takes.

2) MPC Computations: Here, we use the SCs obtained by
Algorithm 1 to define the sequential MPC programs, which
are then solved using the interior point solver shipped with
CasADi [30]. The LIP parameters are selected to (approx-
imately) match Digit and are given in the accompanying
video. Figure 5(a) shows the average time required to solve
the MPC for horizons N = 2,3,4 while Fig. 5(b) presents
the percentage of the 600 environments for which a safe
path is computed using our method. For a given horizon, the
runtime does not vary significantly with the number of static
obstacles. This is because the MPC does not consider the full
environment at once; rather, it focuses on the free space in the
vicinity of the robot, capturing it in a polytope described by a
small number of constraints. This is beneficial, particularly in
highly cluttered spaces containing large numbers of obstacles.
Finally, as expected, Fig. 5(a) shows that the time required to
solve the MPCs increases with N while the success rates for
N =3 and N = 4 are comparable, as indicated in Fig. 5(b).
Thus, in what follows, we use N = 3 as a reasonable trade-off
between success rates and computational time.

IV. REALIZING 3D-LIP PLANS ON DIGIT

We apply the proposed approach on Digit (cf. Fig. 6)
walking amidst static and moving obstacles. Digit weighs
47.9kg and it is approximately 1.58m tall when standing
up. Each leg features 8 Degrees of Freedom (DOF), two of
which correspond to passive leaf springs. Furthermore, Digit
incorporates a pair of 4 DOF arms. Thus, the robot has a total
of 30 DOFs: 20 actuated, 4 passive and 6 corresponding to
the position and orientation of a body-fixed frame.

25 100

IN]
=]
®
=]

o
N @
o S

Success Rate (%)

o

MPC run time (ms)
B

N

o

o
o

30 40 50 60 30 40 50 60
Number of Obstacles Number of Obstacles
(a) (b)
Figure 5. (a) Average MPC runtimes per iteration for horizons N = 2
(purple), N = 3 (green), N = 4 (red). (b) Corresponding success rates.

(Pb, Qp
Shoulder - ® Actuated
Torso - : O Passive
@® Compliant
- Hamd L N \_) ____Distance
. Y ®— o Constraint
bl Ty
Thigh - 'ﬂumul 1 T Jnmu
| F f
Shin - L— | J
. Tarsus i i
5
I‘ o i
Foot . |
i ko g’** Gtr

Figure 6. The bipedal robot Digit and relevant coordinates. (a) Side view; the
kinematic loops actuating the tarsus and foot are highlighted with the dotted
magenta lines. (b) Back view. (c) Ground contact constraints.

A. Digit Dynamics: Notation and Assumptions

Digit’s configuration can be described with respect to an
inertia frame by the position py, € R? and the unit quaternion
Qyp, € H associated with the orientation of a body-fixed frame
{p, yb, zp} attached at Digit’s torso (cf. Fig. 6). The config-
uration of the free-floating model is ¢ = (pb, Qb, ", qR) €
R? x H x QF x QF, where ¢*€1l:Bb ¢ gre{l:R} include
the variables for the left and right leg/arm pairs of the robot.
For our controller design, we will focus on the single support
phase and assume that the deflections of the leaf springs
are negligible. Under these assumptions, the single-support
dynamics of Digit are

D(g) J(@T|| @| [-clav)+STT 16)
Ja@ 0 | [=A | —dlgvw
where v = (P, b, ¢", ¢%), QU is the angular velocity

of the body-fixed frame, D(q) is the inertia matrix, ¢(q,v)
contains the velocity-dependent and gravitational forces, S
is the input selection matrix and 7 € R2?° are the motor
torques. Due to space limitations, we do not provide a de-
tailed account of how the kinematics loops are treated. We
only mention here that the Jacobian J(gq) incorporates all
the holonomic constraints associated with the single-support
phase and A € R' are the corresponding constraint forces.
Finally, contact limitations are satisfied by requiring the con-
tact wrench (A%, AY, N2, A \™Y A% to lie in a linearized
Contact Wrench Cone (CWC) £, as in [31].

B. Digit Control: Weighted Operational Space QP

A weighted QP controller akin to [25] is used to command
suitable inputs to Digit’s actuators so that the following
locomotion objectives are achieved; see [27] for more details.

1) 3D-LIP following: The first objective is twofold; first,
to realize the suggested foot placement uy obtained by the
most recent solution of the MPC, and second, to impose the
trajectory of the LIP on Digit’s COM. The MPC is solved
within the k — 1 step, t € [tx—1,1x), by using feedback from



NARKHEDE et al.: A SEQUENTIAL MPC APPROACH TO REACTIVE PLANNING FOR BIPEDAL ROBOTS 7

Digit to predict the state x;j,j; of the LIP at the beginning of
the next step. Given the result u;, = [uj‘g uy uZ]T of the
MPC, we define the desired trajectory for the position of the
swing foot as in [32]. For the orientation of the swing foot,
the desired trajectory is defined in quaternion coordinates by
interpolating between the initial and final orientations of the
foot using spherical linear interpolation as in [27].

Next, we define the desired trajectory for Digit’s torso
based on updated predictions of the continuous-time trajectory
of the LIP. At time f;_;, we use robot data and (1) to
predict the LIP’s trajectory within the step, which defines the
desired trajectory for the torso’s COM. Note that the LIP
trajectory prediction can be updated within the current step
[tk—1,tk), €.g., each time the MPC is solved; this way, more
recent information from Digit is incorporated, resulting in
improved robustness. Finally, to maintain Digit’s torso upright
and pointing towards the direction of the motion, we command
zero pitch and roll angles, and the desired yaw angle is given
by (¢, + ¢%,)/2, where ¢Z, and ¢Z, are the yaw angles of
the support and swing feet, respectively.

Then, if 7 € R!2 is the error from the desired
trajectory [27], we define the performance index associ-
ated with following the LIP-based trajectory as ¥; =
[l + Kpmi + KP?71||2, where Kp and Kp are gains.

2) Angular momentum: Due to its point mass, the LIP
cannot capture the effect of the angular momentum on Digit.
To mitigate this effect, we compute the angular momentum
about Digit's COM 1, = AZ®v, where AG® is the angu-
lar part of the centroidal momentum matrix, and minimize
Wy = |12 + Kanz||?, where K¢ is a gain matrix.

3) Arms desired configuration: Given that ¥y does not
impose any restriction on the motion of the robot’s arms,
minimizing the angular momentum according to ¥, may result
in undesirable arm movements. To avoid this, we define the
cost Uy = Hng + Kp.af3 + Kp.a(ns — nges)’ 2, where 73 is
the configuration of the left and right arms, 1S its desired
value, and Kp ,, Kp , are suitable gains.

4) Input effort: To attenuate occasional spikes in the control
signal, we minimize ¥4 = |7 .

5) Weighted OSC-QP: As in [25], [33], the afore-
mentioned performance indices are combined in a sin-
gle cost function with weights that reflect their respec-
tive level of importance, resulting in the following QP:

minirr}\ize Y10y + PeWo + 13 W3 + 14Uy
subject to  (16) (Dynamics)

Ib, <1 <ub,
(AT, AY, N2, A2 AW \M7) € |

(Torque Limits)
(CWC)

In the cost, higher priorities are assigned larger weights. This
QP is solved given (g, v) at every step of the control loop.

V. RESULTS

We use MuJoCo as our simulation environment with sim-
ulation loop running at 2kHz and test our method in various
scenarios. Here, due to space limitations, we report results

for the (10m x 10m) map with 10 static obstacles shown
in Fig. 7; the accompanying video contains more examples.
We also consider a moving circular obstacle of radius 0.5m,
the motion of which is assumed to be known (cf. Fig. 7(a)).
We begin by obtaining an ordered collection (H;, w;41),
i = 1,...,M — 1 of free polytopes and waypoints using
Algorithm 1. Then, we proceed with solving the corresponding
sequence of MPCs and the low-level QP. As in Section III-C,
we use the interior point solver shipped with CasADi [30]
with the same parameters as those used to obtain Fig. 5 and
horizon N = 3. The average runtimes are of the order of
10ms (cf. Fig. 5). Thus, uy can be updated frequently within
each step in the light of more recent information from Digit,
greatly improving robustness to external forces and model
mismatch, and drastically reducing the tracking error. We limit
the frequency of MPC to 15Hz owing to the good tracking
performance of the QP, which is solved using a pre-shipped
solver with CVXPY [34] at 400Hz.

Figure 7(a) shows Digit successfully avoiding static and
moving obstacles in the environment considered. Note that
the moving obstacle constraint is taken into account in the
corresponding MPC when the obstacle is less than 5m away
from the robot. This slightly increases the average time for
solving the MPC to ~ 12ms. We also observe that the
tracking error remains small (cf. Fig. 7(b)); the error increases
when turning is required to avoid the moving obstacle, but
never exceeds 3.5cm. Additionally, we tested robustness to
unexpected external forces applied at Digit’s torso. The x, y
and z components of the force were sampled uniformly over
[—50,50] N and the force was applied for 100ms at random
time instants separated at most 2s. We conducted 30 trials,
one out of which resulted in a failure; Fig. 7(c) shows the
remaining 29 successful trials. Owing to the ability to solve
the MPCs at sufficiently high frequency, the robot was able to
maintain balance and complete the objective of reaching the
goal without collisions.

Figure 7(d) considers the same scenario as Fig. 7(a) but with
a SC computed using the method in [22]. The SC is narrower
than the one obtained using Algorithm 1, causing the MPC to
become infeasible. This illustrates the importance of effective
free-space utilization, as larger SCs provide more free space
for the robot to maneuver while avoiding moving obstacles.

VI. CONCLUSION

We presented a sequential MPC framework for bipedal
robots navigating through complex environments with moving
obstacles. The main idea was to decompose the relevant free
space as a sequence of mutually intersecting polytopes. This
way a safe walking corridor was created and used to define
a sequence of MPC programs, where collision avoidance is
certified via discrete-time CBFs. We tested our framework in
high-fidelity simulations with the bipedal robot Digit, demon-
strating robust reactive obstacle avoidance in highly cluttered
environments with moving obstacles. Finally, disadvantages
of the proposed approach in its current form are that, first,
our formulation of the MPC programs is nonconvex due
to reachability and moving obstacles constraints, second, the



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2022

Avoiding Moving Obstacle
’ I

20 t(s) 25

(b)

MPC Failed

Figure 7. (a) Snapshots of Digit (blue circle) traversing an obstacle course while avoiding an obstacle moving at 0.3m/s (red circle). For clarity, the middle
tiles present the top view of only part of the environment. The full environment and the SC obtained by Algorithm 1 are shown in (c). (b) Tracking error
between the MPC path and Digit’s COM; errors in the =, y and z axes are in red, green, and blue, respectively. Black dots show the times at which an MPC
solution becomes available. (c) Digit’'s COM paths under randomly applied 3D forces for the same environment and SC as in (a) but without the moving
obstacle. (d) Same scenario as in (a) but with a narrower SC computed using [22] showing failure of the robot to complete the task.

resulting paths are suboptimal, and, third, collision avoidance
does not extend to the full continuous motion. Future work
will focus on addressing these issues.

(1]

[2]

[3

—

[4

=

[5

—

[6]

[71

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Anytime
search-based footstep planning with suboptimality bounds,” in Proc.
IEEE Int. Conf. Humanoid Robots, 2012, pp. 674-679.

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in Proc. IEEE Int. Conf. Humanoid
Robots, 2014, pp. 279-286.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proc. IEEE Int. Conf. Robot. Autom.,
vol. 2, 2003, pp. 1620-1626 vol.2.

R. Tedrake, S. Kuindersma, R. Deits, and K. Miura, “A closed-form
solution for real-time ZMP gait generation and feedback stabilization,”
in Proc. IEEE Int. Conf. Humanoid Robots, 2015, pp. 936-940.

S. Faraji, S. Pouya, and A. Ijspeert, “Robust and agile 3D biped walking
with steering capability using a footstep predictive approach,” in Proc.
Robot. Sci. Syst., 2014.

S. Xin, R. Orsolino, and N. Tsagarakis, “Online relative footstep
optimization for legged robots dynamic walking using discrete-time
model predictive control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2019, pp. 513-520.

A. Tanguy, D. De Simone, A. I. Comport, G. Oriolo, and A. Kheddar,
“Closed-loop MPC with dense visual SLAM - stability through reactive
stepping,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 1397-1403.
M. S. Motahar, S. Veer, and I. Poulakakis, “Composing limit cycles for
motion planning of 3D bipedal walkers,” in Proc. IEEE Conf. Decis.
Control, 2016, pp. 6368-6374.

S. Veer, M. S. Motahar, and 1. Poulakakis, “Almost driftless navigation
of 3D limit-cycle walking bipeds,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2017, pp. 5025-5030.

S. Veer and 1. Poulakakis, “Safe adaptive switching among dynamical
movement primitives: Application to 3D limit-cycle walkers,” in Proc.
IEEE Int. Conf. Robot. Autom., 2019, pp. 3719-3725.

S. Veer, Rakesh, and I. Poulakakis, “Input-to-state stability of periodic
orbits of systems with impulse effects via Poincaré analysis,” IEEE
Trans. Autom. Control, vol. 64, no. 11, pp. 4583-4598, 2019.

S. Veer and 1. Poulakakis, “Switched systems with multiple equilibria
under disturbances: Boundedness and practical stability,” IEEE Trans.
Autom. Control, vol. 65, no. 6, pp. 2371-2386, 2020.

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D
linear inverted pendulum mode: a simple modeling for a biped walking
pattern generation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2001, pp. 239-246.

M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and
P. Soueres, “A reactive walking pattern generator based on nonlinear
model predictive control,” IEEE Robot. Automat. Lett., vol. 2, no. 1, pp.
10-17, 2017.

X. Xiong, J. Reher, and A. D. Ames, “Global position control on
underactuated bipedal robots: Step-to-step dynamics approximation for
step planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2021, pp. 2825—
2831.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

(32]

(33]

(34]

J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in Proc. Amer.
Control Conf., 2021, pp. 3882-3889.

A. Agrawal and K. Sreenath, “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal
robot navigation,” in Proc. Robot. Sci. Syst., 2017.

S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “Toward safety-aware
informative motion planning for legged robots,” arXiv:2103.14252,
2021.

R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Algorithmic Founda-
tions of Robotics XI, H. L. Akin, N. M. Amato, V. Isler, and A. F.
van der Stappen, Eds. Springer, 2015, pp. 109-124.

——, “Efficient mixed-integer planning for UAVs in cluttered environ-
ments,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 42-49.

J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,” in
Proc. IEEE Int. Conf. Robot. Autom., 2016, pp. 1476-1483.

S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-D complex environments,” IEEE Robot.
Automat. Lett., vol. 2, no. 3, pp. 1688-1695, 2017.

F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polyno-
mial,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 344-351.

F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-Repeat-
Replan: A complete and robust system for aggressive flight in complex
environments,” IEEE Trans. Robot., vol. 36, no. 5, pp. 1526-1545, 2020.
I. Mordatch, M. de Lasa, and A. Hertzmann, “Robust physics-based lo-
comotion using low-dimensional planning,” ACM Trans. Graph., vol. 29,
no. 4, p. 71, 2010.

B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic
environments,” IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 4459-
4466, 2019.

K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis,
“A sequential MPC approach to reactive planning for bipedal robots,”
arXiv:2205.00156, 2022.

R. Deits, “iris-distro,” https://github.com/rdeits/iris-distro, 2015.

S. Liu, “Decomputil,” https://github.com/sikang/DecompUtil, 2017.

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi-A software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1-36, 2019.

S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts
for humanoid robots: Closed-form formulae of the contact wrench cone
for rectangular support areas,” in Proc. IEEE Int. Conf. Robot. Autom.,
2015, pp. 5107-5112.

Y. Gong and J. W. Grizzle, “Zero dynamics, pendulum models,
and angular momentum in feedback control of bipedal locomotion,”
arXiv:2103.14252, 2021.

T. Apgar, P. Clary, K. R. Green, A. Fern, and J. W. Hurst, “Fast online
trajectory optimization for the bipedal robot Cassie,” in Proc. Robot.,
Sci. Syst., 2018.

S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 83,
pp. 1-5, 2016.



