
Fine-Grained Address Segmentation for
Attention-Based Variable-Degree Prefetching

Pengmiao Zhang
University of Southern California
Los Angeles, California, USA

pengmiao@usc.edu

Ajitesh Srivastava
University of Southern California
Los Angeles, California, USA

ajiteshs@usc.edu

Anant V. Nori
Processor Architecture Research Lab,

Intel Labs
Bangalore, India

anant.v.nori@intel.com

Rajgopal Kannan
US Army Research Lab-West
Los Angeles, California, USA
rajgopal.kannan.civ@army.mil

Viktor K. Prasanna
University of Southern California
Los Angeles, California, USA

prasanna@usc.edu

ABSTRACT
Machine learning algorithms have shown potential to improve
prefetching performance by accurately predicting future memory
accesses. Existing approaches are based on the modeling of text
prediction, considering prefetching as a classification problem for
sequence prediction. However, the vast and sparse memory address
space leads to large vocabulary, which makes this modeling im-
practical. The number and order of outputs for multiple cache line
prefetching are also fundamentally different from text prediction.

We propose TransFetch, a novel way to model prefetching. To
reduce vocabulary size, we use fine-grained address segmentation
as input. To predict unordered sets of future addresses, we use
delta bitmaps for multiple outputs. We apply an attention-based
network to learn the mapping between input and output. Predic-
tion experiments demonstrate that address segmentation achieves
26% - 36% higher F1-score than delta inputs and 15% - 24% higher
F1-score than page & offset inputs for SPEC 2006, SPEC 2017, and
GAP benchmarks. Simulation results show that TransFetch achieves
38.75% IPC improvement compared with no prefetching, outper-
forming the best-performing rule-based prefetcher BOP by 10.44%
and ML-based prefetcher Voyager by 6.64%.

CCS CONCEPTS
• Computer systems organization→ Processors and memory
rchitectures; Neural networks; • Information systemsa →

Data mining.

KEYWORDS
prefetching, machine learning, attention, address segmentation
ACM Reference Format:
Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Rajgopal Kannan,
and Viktor K. Prasanna. 2022. Fine-Grained Address Segmentation for
Attention-Based Variable-Degree Prefetching. In 19th ACM International

CF’22, May 17–19, 2022, Torino, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9338-6/22/05.
https://doi.org/10.1145/3528416.3530236

Conference on Computing Frontiers (CF’22), May 17–19, 2022, Torino, Italy.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3528416.3530236

1 INTRODUCTION
Memory latency is becoming an overwhelming bottleneck in com-
puter performance due to the "memory wall" [4, 72] problem, espe-
cially with the advent of GPUs [43], TPUs [28], and heterogeneous
architectures [17, 52] that accelerate computation. Prefetching is
critical in reducing program execution time and improving instruc-
tions per cycle (IPC) by hiding the latency. It looks at patterns
of memory accesses sequences and uses the past information to
forecast the near future accesses so as to start fetching the data
before the miss occurs [13, 65]. Existing prefetchers are mainly
heuristic, predicting via pre-defined rules, based on the observa-
tion from the locality of references [1, 6–9, 14, 19, 20, 22, 23, 25–
27, 32, 34, 37, 42, 44, 49, 55, 57–59, 69–71]. With the rise of new
workloads, such as graph analytics [2, 38, 54], data mining [29, 63],
and AI applications [21, 64, 67], rule-based prefetchers are not pow-
erful enough to adapt to the increasingly irregular, indirect, and
complex memory access patterns.

Machine learning-based data prefetchers are gaining increasing
attention to pursue higher performance for memory access pre-
diction [15, 16, 61] and prefetching [3, 45, 46, 56, 61, 73]. Prefetch-
ing is commonly modeled as classification for sequence predic-
tion [3, 15, 16, 46, 56, 61, 74, 75], which is analogous to the prob-
lem setting of text prediction [15] in natural language process-
ing (NLP) [39]. However, this analogy is not perfect. First, the
unique memory addresses for an application can be tens of mil-
lions, which is orders of magnitude larger than natural language
vocabulary and exceeds the capability of machine learning mod-
els. This problem is known as class explosion [56]. Existing ap-
proaches partly solve this problem by working on memory access
address deltas [15, 16, 61] or splitting an address by page and off-
set [56]. Second, tokenization [68], as a commonly used technique
in NLP that maps a meaningful word into nonsensitive numerical
data for model processing, is also borrowed by existing ML-based
prefetching models for preprocessing. Tokenization results in extra
storage to save the mapping tables (token dictionaries) in hard-
ware implementation, but the cost has been neglected by previous
works [3, 15, 16, 46, 56, 61, 74, 75]. Third, unlike text prediction

103

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

CF’22, May 17–19, 2022, Torino, Italy Pengmiao, et al.

with a ground truth of future words in a fixed order, in prefetch-
ing there is no ground truth of a certain memory address that
should be prefetched. This is know as the labeling problem [56].
Any access address following the current access could be a poten-
tial label. For a prefetcher that can prefetch multiple blocks for
each trigger (prefetch degree > 1), the order of predicted block
addresses for one prefetch is also insignificant. Lastly, the latency
overhead of ML-based prefetcher is also ignored under this setting.
LSTM (Long short-term memory) [18] is a commonly used predic-
tion model [16, 56, 61, 62, 74, 75] due to its advantage in sequence
modeling. However, the recurrent structure of LSTM is hard to be
parallelized and the inference latency increases linearly with the
input time step length. Recent success of attention-based models,
e.g. the Transformer [66], provides insight into solving this problem
by the virtue of high parallelizability.

To solve the problem of class explosion, tokenization, labeling, and
latency, we propose TransFetch (Transformer for prefetching), an
attention-based prefetcher that supports variable-degree prefetch-
ing.Wemodel prefetching as amulti-label classification problem. To
overcome class explosion for memory address input, we propose an
address segmentation method to reduce the vocabulary without in-
formation loss. It avoids tokenization as the processed value can be
directly fed into a neural network. For labeling, we use delta bitmaps
that collects unordered sets of future deltas to the current address,
which paves the way for multiple block (cache line) prefetching.
In inference, an optimal threshold that maximizes the F1-score is
adapted to adjust the prefetch degrees (the number of blocks to be
prefetched) and balance prefetch aggressiveness. We apply a pow-
erful and embarrassingly parallelizable attention-based network to
learn the mapping between the input segmented addresses and the
delta bitmap labels. The model also supports incorporation of more
context features (program counters, page distances) to enhance
the prediction performance. Besides, we further offset the model
inference latency by artificially introducing estimated latency in
training and then performing distance prefetching.

Overall, our main contributions are:

• We propose TransFetch, an ML-based prefetcher that mod-
els prefetching as multi-label classification. Our model uses
address segmentation for input, delta bitmap for labeling,
attention-based network with context enhancement for pre-
diction, optimal-threshold confidence throttling mechanism
for variable-degree prefetching, and distance prefetching for
hiding inference latency.

• We demonstrate the effectiveness of address segmentation,
attention-based network, and context enhancement in pre-
diction experiments. Results show that address segmentation
achieves 26% - 36% higher F1-score than delta inputs and 15%-
24% higher F1-score than page & offset inputs. Attention-
based model achieves 10% - 13% higher F1-score than LSTM
and Temporal Convolutional Networks (TCN) [33]. Context
enhancement raises the F1-score by 3.1% - 9.1%.

• We evaluate the performance of TransFetch using accu-
racy, coverage, and IPC improvement. Results show that
our method achieves 88.56% prefetch accuracy and 60.54%
prefetch coverage. It improves IPC by 38.75% compared with

no prefetching, outperforming the best-performing rule-
based prefetcher BOP by 10.44%, and ML-based prefetcher
Voyager by 6.64%.

2 BACKGROUND AND RELATEDWORK
In this section, we provide background for data prefetching, atten-
tion mechanism, along with the related prior works.

2.1 Data Prefetching
A prefetching process is a form of speculation that aims to predict
the future data addresses and fetch the data before it is needed.
Prefetch degree is the number of fetching blocks for each prefetch-
ing operation, which indicates the aggressiveness of a prefetcher.
While a higher degree is likely to bring more useful data into cache,
it may introduce cache pollution due to wrong predictions.
Rule-based prefetching. Traditional prefetchers learn from pre-
defined rules, usually exploiting spatial or temporal localities. For
example, Spatial Memory Streaming (SMS) [59] prefetcher identifies
code-correlated spatial patterns to predict future accesses. Spatial
prefetcher BOP [37] and VLDP [55] learn from history access page
offsets or deltas and predict future accesses within a spatial re-
gion. Temporal prefetchers like Irregular Stream Buffer (ISB) [23]
and Domino [1] predict temporally correlated memory accesses
by recording and replaying the history access sequences. Most
rule-based prefetchers require manually configured prefetch de-
gree [1, 23, 37, 55]. Signature Path Prefetcher (SPP) [30] uses a path
confidence-based lookahead mechanism to balance the prefetching
aggressiveness and achieves variable-degree prefetching.
ML-based prefetching. Several prior works have explored the
application of machine learning on data prefetching. Rahman et
al. [50] use logistic regression and decision tree for pattern classifica-
tion. Hashemi et al. [16] present an extensive evaluation of LSTM in
learning memory access patterns. Some other works [3, 46, 73] also
demonstrate the effectiveness of LSTM in memory access predic-
tion. Srivastava et al. [61, 62] use compact LSTM to address the class
explosion problem. RAOP [74] leverages LSTM-based models for
virtual address predictions. C-MemMAP [75] combines clustering
and meta-models to reduce the model size. Seq2seq modeling [40]
based on LSTM encoder-decoder structure has been applied for
memory sequence prediction. Shi et al. [56] propose Voyager that
predicts both page sequence and page offsets using two LSTM
models along with a dot-product attention mechanism. Existing
ML-based prefetchers use history memory access sequence to pre-
dict the next memory access address [3, 16, 46, 56, 61, 62, 73–75],
which leads to a prefetch degree as one. These models require recur-
rent greedy/beam search or accepting low-probability candidates
to realize higher degree prefetching.

2.2 Attention
Transformer [66] suggested a sequence model based on multi-head
attention mechanism and feed-forward network, dispensing with
recurrent structures.
Self-attention. Self-attention takes the embedding of items as
input, converts them to three matrices through linear projection,

104

Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching CF’22, May 17–19, 2022, Torino, Italy

Figure 1: Overall architecture of TransFetch. We have an input sequence of history memory accesses 𝑋𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } and
output a set of desired block deltas 𝑌𝑡 = {𝑦1, 𝑦2, ..., 𝑦𝑘 } to the current address. The final block address predictions 𝑌𝑡 are the
addition of the current block address and the predicted deltas.

then feeds them into a scaled dot-product attention defined as:

Attention(𝑄,𝐾,𝑉) = softmax
(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (1)

where 𝑄 represents the queries, 𝐾 the keys, 𝑉 the values, 𝑑 the
dimension of layer input.
Multi-head attention. One self-attention operation can be consid-
ered as one "head", we can apply multi-head self-attention (MSA)
operation as follows:

MSA(𝑄,𝐾,𝑉) = Concat (head1, . . . , headH)𝑊𝑂

headi = Attention
(
𝑄𝑊

𝑄
𝑖 , 𝐾𝑊

𝐾
𝑖 ,𝑉𝑊

𝑉
𝑖

) (2)

where the projection matrics𝑊𝑄
𝑖 ,𝑊

𝐾
𝑖 ,𝑊

𝑉
𝑖 ∈ R𝑑×𝑑 and H is the

number of heads.
Point-wise feed-forward. Point-wise feed-forward network (FFN)
is defined as follows:

FFN(𝑥) = max (0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (3)

Previous ML-based prefetchers widely use recurrent neural net-
works (mainly LSTM) [3, 16, 46, 56, 61, 62, 73–75]. However, the
recurrent structure of RNNs makes the model less practical due to
high inference latency. A virtue of attention-based network is high
parallelizability. Without recurrent steps, all input positions, hidden
representations, and output dimensions can be computed in paral-
lel [36]. In this work, we will explore using only attention-based
networks suggested by [66] as a predictor for data prefetching.

3 APPROACH
In this sectionwe describe TransFetch, an attention-based prefetcher
that uses segmented address as input and achieves variable-degree
prefetching through delta bitmap labeling. We formulate the mem-
ory access prediction task as a multi-label classification problem
and design a neural model to fit the mapping. Since a prefetch must
be in the unit of a block, we can consider only the block address
space, the address configuration is shown in the left top of Figure 1.

ProblemFormulation. Let𝐴𝑡 = {𝑎1, 𝑎2, ..., 𝑎𝑁 } be the sequence of
𝑁 history block addresses at time 𝑡 , where𝑎𝑡 = {𝑏1𝑡 , 𝑏2𝑡 , ..., 𝑏

𝑝
𝑡 , ..., 𝑏

𝑝+𝑐
𝑡 }

represents the block address in binary with 𝑝-bit page address and
𝑐-bit block (cache line) index at time 𝑡 . Let 𝑃𝐶𝑡 = {𝑝𝑐1, 𝑝𝑐2, ..., 𝑝𝑐𝑁 }
be the sequence of 𝑁 history program counters at time 𝑡 . Let
𝑋𝑡 = {(𝑎1, 𝑝𝑐1), (𝑎2, 𝑝𝑐2) ..., (𝑎𝑁 , 𝑝𝑐𝑁)} be the input of the predic-
tionmodel. Let𝑌𝑡 = {𝑦1, 𝑦2, ..., 𝑦𝑘 } be the set of𝑘 outputs associated
with the unordered future 𝑘 block deltas to the current block ad-
dress. Our goal is to construct meaningful𝑋𝑡 to𝑌𝑡 that are helpful in
data prefetching. The final address predictions 𝑌𝑡 = {𝑦1, 𝑦2, ..., 𝑦𝑘 }
are the addition of current block address and the predicted deltas.

3.1 Overview of TransFetch
Figure 1 illustrates the overall architecture of TransFetch and how
the model is applied in a hardware system. History block addresses
are processed using address segmentation for model inputs, which
solves class explosion and avoids tokenization, as is described in
Section 3.2. As a solution for labeling, we take future deltas in
the form of delta bitmap as training labels. In inference, optimal
thresholds for output bitmaps are adapted to adjust the number
of outputs (prefetch degree), as in Section 3.3. To reduce inference
latency, a powerful and parallelizable attention-based network is
designed for learning the mapping between input and output, as
is described in Section 3.4. To further offset the latency, a distance
prefetching scheme is discussed in Section 3.5.

3.2 Address Segmentation
We propose a simple approach called address segmentation (AS)
to solve the class explosion problem in memory access prediction,
keeping all the information in an address and avoiding tokenization.

Considering a block address with 𝑝-bit page address and 𝑐-bit
block index, we can split this block address to 𝑆 = ⌈𝑝+𝑐𝑠 ⌉ segments,
each with 𝑠 bits. In this way, each segment can be represented in
an integer within [0 − 2𝑠). This range can be tuned appropriately
for direct model input. One address then can be represented as a
vector in dimension 𝑆 .

105

CF’22, May 17–19, 2022, Torino, Italy Pengmiao, et al.

(a) Address segmentation (b) Examples of memory access patterns visualized in segmented addresses.

Figure 2: Address segmentation approach and memory access pattern cases visualized under segmented addresses.

There are two special cases. The first is when 𝑠 = 1, the model
input is a binary of an address. This case reveals the detail of an
address in the highest granularity but requires a model to learn the
correlation of each bit. The other case is when 𝑠 = 𝑐 , which means
using the block size 𝑐 as the segmentation basis and split the block
address to 𝑆 = ⌈𝑝𝑐 ⌉ + 1 segments, the segment vocabulary is 2𝑐 , 64
for 𝑐 = 6. This case keeps the feature of internal page patterns and
reduces the input dimension compared with binary inputs.

Figure 2a illustrates address segmentation for case 𝑠 = 𝑐 . Fig-
ure 2b visualizes three example pieces of memory access sequences
from SPEC CPU 2017 [10] in form of this case, which illustrates the
advantages of AS for preprocessing. While in application 654.roms,
the pattern lies mainly within a page (the column of segment 9),
623.xalancbmk shows memory access skipping beyond the page
limit. Furthermore, 607.cactuBSSN shows more complex patterns,
e.g., skippings between pages. AS keeps the information of an ab-
solute address compared with solely delta, offset, or page inputs.
In addition, AS avoids token dictionaries, saves storage space, and
can process unknown input classes.

3.3 Variable-Degree Prefetching
3.3.1 Delta Bitmap Labeling. We use delta bitmaps as the format
of labels and outputs. We aim to predict multiple unordered future
deltas to the current block, as is shown in the bottom part of Figure 1.
The labels are acquired from offline traces for training. First, future
deltas yd are collected within a look forward window𝑊 . Then, a
delta bitmap at size 𝐵 is filled to label the appearance of deltas by an
arbitrary mapping rule 𝑓 : yd → yb, where yb is the labeled bitmap,
which can be used for multi-label model training. By designing the
delta bitmap size 𝐵 to be larger than a page, our model can learn
and predict inter-page patterns, which addresses the weakness
rule-based spatial prefetchers like BOP [37] and VLDP [55].

3.3.2 Optimal-Threshold Confidence Throttling. A neural network
can be designed to output the probability of each bit being positive
in a bitmap. We define this probability as prefetch confidence for the
corresponding deltas in bitmap. Instead of using a fixed threshold,
e.g. 0.5, to binarize the model output, we find the optimal threshold
that maximizes the F1-score [53] in the step of model validation,
between model training and testing. In inference, the output vector

Figure 3: Attention-based memory access predictor with con-
text enhancement.

of prefetch confidence can be binarized using the optimal threshold,
which forms the output delta bitmap. Then, the inverse mapping
𝑓 −1 converts the output delta bitmap to the predicted delta vectors.

Using delta bitmap and optimal-threshold confidence throttling
together for inference, our approach enables variable-degree prefetch-
ing: a model can predict and request prefetching variable number
of future cache lines in one inference step.

3.4 Attention-Based Predictor
With the abovewell-defined input and output, we design an attention-
based network to learn the mapping from the input segmented ad-
dresses to the delta bitmap labels. The model structure is depicted
in Figure 3. First, we describe the basic model. Then we introduce
context enhancement that utilizes more context information to
boost the model performance.

3.4.1 Basic Model. Our model input is a 2D sequence of segmented
addresses: a𝑆 = [a1𝑆 ; a2𝑆 ; ...; a𝑁𝑆] ∈ R𝑁×𝑆 where 𝑁 is the number of
history addresses and 𝑆 is the dimension of a segmented address.

We flatten the input sequence and map to 𝐷 dimensions using
an input embedding layer, where 𝐷 is the hidden dimension of
Transformer layers. Inspired by BERT [11] and ViT [12], a trainable
"classification token" denoted as x𝑐𝑙𝑠 is prepended to the input
sequence, whose state is a comprehensive representation of the
input sequence. We apply learnable 1D position embeddings [12]

106

Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching CF’22, May 17–19, 2022, Torino, Italy

to incorporate temporal information to input vector. The addition
of input embeddings and position embeddings are fed into a the
Transformer layers, which can be expressed as:

z0 =
[
x𝑐𝑙𝑠 ; a1𝑆E; a

2
𝑆E; · · · ; a𝑁𝑆 E

]
+ Epos (4)

where z0 represents input sequence to the Transformer layers, E is
the input embedding and Epos is the position embedding.

The Transformer layer is based on multi-head attention and feed-
forward network as described in Section 2.2. The output of 𝐿 stacked
Transformer layers will be fed into a multi-layer perceptron (MLP)
head for multi-label classification, which is the same dimension
as the delta bitmap size 𝐵. A sigmoid activation is applied to each
output dimension and outputs the probability of this dimension
being positive, which we use as the prefetch confidence for deltas.

3.4.2 Context Enhancement. The model can incorporate richer
input features to boost the model performance using the same
method as position embedding.

First, we incorporate program counters (PC), which are com-
monly used to help detecting memory patterns [23, 59]. To avoid
tokenization, we use a 𝐻𝐴𝑆𝐻_𝐵𝐼𝑇𝑆 bit length folding method [35]
as the hash function to compress the PC value 𝑝𝑐𝑛 . The hashed
value is divided by 2𝐻𝐴𝑆𝐻_𝐵𝐼𝑇𝑆 for normalization, the processed
PC input vector is cpc = [𝑐1𝑝𝑐 ; 𝑐2𝑝𝑐 ; ...; 𝑐𝑁𝑝𝑐], 𝑐𝑛𝑝𝑐 is defined as:

𝑐𝑛𝑝𝑐 =
ℎ𝑎𝑠ℎ(𝑝𝑐𝑛)
2𝐻𝐴𝑆𝐻_𝐵𝐼𝑇𝑆 (5)

Second, we incorporate page distance (PD) based on the hypoth-
esis that adding weights to input addresses through the inversion
of page distances can improve the model prediction performance:

𝑐𝑛𝑝𝑑 =
1

|𝑝𝑎𝑔𝑒𝑛 − 𝑝𝑎𝑔𝑒1 | + 1 (6)

where 𝑝𝑎𝑔𝑒𝑛 is the page address at history 𝑛, 𝑝𝑎𝑔𝑒1 is the current
page address, the PD input vector is cpd = [𝑐1

𝑝𝑑
; 𝑐2
𝑝𝑑

; ...; 𝑐𝑁
𝑝𝑑

].
The context input is the concatenation of cpc and cpd. A linear

projection Ece is applied for context embedding that maps the
context input vector to the same dimension of the Transformer
input. Therefore, the input embedding, position embeddings and
the context embedding can be added as described in Equation 7.

z′0 = z0 + [cpc; cpd]Ece (7)

3.4.3 Loss Function. For our multi-label classification problem, we
use binary cross-entropy loss defined as below:

L = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log (𝑝 (𝑦𝑖)) + (1 − 𝑦𝑖) log (1 − 𝑝 (𝑦𝑖)) (8)

where𝑦𝑖 is the label and 𝑝 (𝑦𝑖) is the predicted probability for sample
𝑖 being𝑇𝑟𝑢𝑒 . For multi-label training, each dimension is considered
independent and the loss is summed.

3.5 Distance Prefetching
A real hardware implementation will incur some latency. Attention-
basedmodel is feasible for high parallel implementations. According
to Equation 1 - 3 and Figure 3, the network inference latency under

a fully paralleled implementation can be estimated as:
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑚𝑚𝑒 +𝑇𝑎𝑑𝑑︸ ︷︷ ︸

Embeddings

+𝑇𝑚𝑚ℎ +𝑇𝑎𝑣︸ ︷︷ ︸
Output head

+

𝐿 × [4𝑇𝑚𝑚𝑎 + 3𝑇𝑎𝑣︸ ︷︷ ︸
Multi-head attention

+𝑇𝑚𝑚𝑓 + 2(𝑇𝑎𝑑𝑑 +𝑇𝑛𝑜𝑟𝑚)]

︸ ︷︷ ︸
Transformer layer

(9)

where 𝑇𝑚𝑚𝑒 is the latency of matrix multiplication for the input
embeddings, 𝑇𝑎𝑑𝑑 is the vector addition latency, 𝑇𝑚𝑚ℎ is the MLP
head latency, 𝑇𝑎𝑣 is the latency for activation functions, mask, and
scale operations,𝑇𝑚𝑚𝑎 is the latency of multi-head attention,𝑇𝑛𝑜𝑟𝑚
is the normalization latency. 𝐿 is the number of Transformer layers.

While attention-based network reduces inference latency, we
can further offset the latency by skipping the inference slot and
predict the future memory accesses in a distance. The model for
distance prefetching can by easily trained through distance labeling,
i.e., collecting labels by skipping the estimated inference latency.

4 EXPERIMENTS
4.1 Benchmarks
We evaluate TransFetch and the baselines using the application
traces generated from benchmarks SPEC CPU 2006 [24], SPEC CPU
2017 [10], and GAP [2] using SimPoint [47]. After skipping 1M in-
structions for warm-up, we use 100M instructions for experiments.
We use the first 40M instructions for model training, the next 10M
instructions for validation, tuning, and generating optimal thresh-
olds, and the last 50M instructions for evaluation1.

Table 1: Benchmark statistics

BMKs # PCs # Addresses # Pages # Deltas

SPEC 06 23∼893 60.0K∼2.21M 2.51K∼88.9K 23.6K∼2.01M
SPEC 17 26∼1126 62.1K∼1.78M 7.99K∼ 0.26M 3.18K∼0.72M
GAP 63∼118 0.56M∼1.25M 8.27K∼ 27.2K 0.30M∼1.20M

Table 1 shows the number of unique program counters (PCs),
addresses, page addresses, and deltas. If using tokenization, a token
dictionary needs to store themapping of the unique values to tokens,
which is consumes storage. Our method discards tokenization and
saves up to table of length 2.01M compared with delta inputs, and
up to table of length 0.26M compared with page & offset inputs,
given the same level of model complexity.

4.2 Prediction Evaluation
We evaluate the prediction performance of the model by comparing
the predicted deltas to the labels. With fixed labels, we vary the
model backbones (feature extractor) and inputs to understand the
advantages of TransFetch.

4.2.1 Implementation. The configuration of TransFetch is shown
in Table 2. The models are trained using ADAM [31] optimizer with
decayed learning rate. We set the delta bound as ±128 that can skip
the page boundary of 64, which determines the bitmap size as 256.
1The code is available at: https://github.com/pgroupATusc/TransFetch.git

107

CF’22, May 17–19, 2022, Torino, Italy Pengmiao, et al.

Table 2: Model configuration

Configuration Value Configuration Value

Input/output Delta bound ±128 Delta bitmap 𝐵 256
History 𝑁 9 Look-forward𝑊 128

Attention Dimension 𝐷 128 MLP head layer 1
Head number 4 Layer 𝐿 2

4.2.2 Backbones. To evaluate the contribution of attention layers,
under the same input and output configuration in Table 2, we im-
plement three neural networks as the backbones of our framework:

• LSTM [18] with hidden dimension = 256, number of layers
= 1, and output dimension = 256, indicated as (256, 1, 256).

• TCN [33] with hidden dimension same as input sequence
length 𝑙𝑖𝑛 , channel = 1, filter size = 4, and output dimension
= 256, indicated as (𝑙𝑖𝑛 , 1, 4, 256).

• Attention [66] as in Table 2, with hidden dimension = 128,
number of heads = 4, depth = 2, and output dimension = 256,
indicated as (128, 4, 2, 256).

4.2.3 Inputs. To evaluate the contribution of address segmentation,
we implement three input methods:

• Delta input uses the jumps between consecutive memory
access addresses. A value-to-token dictionary is required;
this requires extra storage space.

• Page & offset splits an address only to page address and
page offset. The page addresses also need tokenization and
use extra storage for token dictionary. The offsets can be
directly fed into the model.

• Address segmentation (AS) splits an address to segments
and avoids tokenization. Particularly, when the segmentation
bit = 6, the segment size is same as the block index.

4.2.4 Metrics. We use precision, recall, and F1-score [48] to evalu-
ate the memory access prediction performance of the models.

4.2.5 Output threshold. For all the implemented models, we deter-
mine the optimal threshold through a grid search to achieve the
highest F1-score in validation.

4.2.6 Results. Table 3 shows the prediction performance of the
implemented backbones under various inputs. For a fair comparison,
the models are tuned with the same order of complexity, except
the TCN whose model size is influenced by the input format. For
each backbone, the trend is clear that 1-bit AS and 6-bit AS as
inputs result in higher performance than delta input, page & offset
inputs, and other AS methods. Specifically, LSTM is stronger in
bit-wise input while attention shows higher performance in 6-bit
segmentation. Address segmentation achieves 0.26 - 0.36 higher
F1-score than delta inputs and 0.15 - 0.24 higher F1-score than page
& offset inputs. Comparing among different backbones, we observe
that attention-based models typically acquire higher recall than
LSTM and TCN, which leads to 0.10 - 0.13 higher F1-score.

4.2.7 Effectiveness of Context Enhancement. To evaluate the influ-
ence of context enhancement (CE), we conduct ablation studies on
program counter (PC) and page distance (PD). When we introduce

both PC and PD, the enhanced model achieves the highest precision
and F1-score for all the three benchmarks. The F1-score improves
by 3.1% - 9.1% when context enhancement is introduced.

4.3 Prefetching Evaluation
We evaluate the prefetching performance of TransFetch by compar-
ing with the state-of-the-art rule-based prefetchers and ML-based
prefetchers. Both the input methods and the labeling methods can
be different among these prefetchers. We follow their original de-
signs and compare the overall contributions to the improvement of
IPC under the same data set and simulation environment.

4.3.1 Simulator. We evaluate our approach using the simulation
framework released by the 2021ML-Based Data Prefetching Compe-
tition, which is based on ChampSim [5]. The simulator parameters
are shown in Table 5. We simulate all prefetchers at the last-level
cache (LLC). There is no prefetching for other cache levels.

4.3.2 Baseline Prefetchers. We compare TransFetch with state-of-
the-art rule-based prefetchers and ML-based prefetchers:

• Rule-based prefetchers including spatial prefetchers BOP [37],
VLDP [55], and SPP [30] with variable degree; temporal
prefetchers ISB [23] and Domino [1].

• ML-based prefetchers including Embedding-LSTM [15]
with delta inputs, Clustering-LSTM [15] with address space
clustering, and Voyager [56].

4.3.3 Metrics. We use prefetch accuracy, coverage, and IPC im-
provement [60] to evaluate the prefetching performance. Defining
a useful prefetch as the prefetched line being referenced by the
application before it is replaced, we have:

• Prefetch accuracy as the ratio of useful prefetches to the
overall prefetches;

• Prefetch coverage as the ratio of useful prefetches to the
overall cache misses;

• IPC improvement as the percentage increase of instruc-
tions per cycle.

(a) Optimal threshold (b) Mean prefetch degree

Figure 4: Optimal threshold and mean prefetch degree.

4.3.4 Prefetch Degrees. Figure 4a shows the adapted optimal thresh-
olds for TransFetch. The average thresholds are 0.448, 0.296, and
0.323 for benchmarks SPEC 06, SPEC 17, and GAP, respectively.
The overall average threshold is 0.355. Figure 4b shows the mean
prefetch degrees after throttled from optimal thresholds. The over-
all average degree is 10.271 across all applications. According to

108

Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching CF’22, May 17–19, 2022, Torino, Italy

Table 3: Comparison of model backbones and input methods

SPEC 06 SPEC 17 GAP

Backbone Input # Params (K) Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Delta∗ 477 0.5877 0.4218 0.4911 0.6017 0.4215 0.4957 0.5618 0.0670 0.1197
Page & offset∗ 625 0.6323 0.4356 0.5158 0.6208 0.4257 0.5051 0.5994 0.1372 0.2233

1-bit AS 812 0.7158 0.5039 0.5914 0.6763 0.4519 0.5418 0.5835 0.3594 0.4448
LSTM 4-bit AS 451 0.6122 0.4712 0.5325 0.6177 0.4364 0.5115 0.4281 0.3361 0.3765

(256,1,256) 6-bit AS† 394 0.6291 0.4520 0.5260 0.6172 0.4383 0.5126 0.6096 0.3403 0.4368
8-bit AS 394 0.6513 0.4938 0.5617 0.6160 0.4457 0.5172 0.5762 0.3311 0.4206
12-bit AS 369 0.6110 0.4510 0.5190 0.6072 0.4397 0.5101 0.5106 0.3467 0.4130
16-bit AS 361 0.6022 0.4147 0.4911 0.6519 0.4407 0.5259 0.5406 0.3393 0.4169

Delta∗ 889 0.5633 0.4179 0.4798 0.5833 0.4101 0.4816 0.3618 0.1350 0.1966
Page & offset∗ 1679 0.6871 0.4921 0.5735 0.6110 0.4433 0.5138 0.5219 0.2024 0.2917

1-bit AS 8153 0.6992 0.5298 0.6028 0.6231 0.4833 0.5444 0.5639 0.3451 0.4282
TCN 4-bit AS 436 0.7027 0.5173 0.5959 0.6679 0.4623 0.5464 0.4522 0.3530 0.3965

(𝑙𝑖𝑛 ,1,4,256) 6-bit AS† 201 0.7135 0.5134 0.5971 0.6169 0.4892 0.5457 0.5877 0.3551 0.4358
8-bit AS 132 0.6033 0.4138 0.4909 0.6265 0.4335 0.5124 0.4425 0.3223 0.3730
12-bit AS 43 0.6005 0.4127 0.4892 0.5989 0.4328 0.5024 0.3976 0.3213 0.3554
16-bit AS 29 0.5908 0.4079 0.4826 0.5972 0.4316 0.5011 0.3966 0.3250 0.3572

Delta∗ 431 0.5112 0.4338 0.4693 0.5623 0.3947 0.4638 0.1956 0.1986 0.1971
Page & offset∗ 431 0.5989 0.5637 0.5808 0.5699 0.5123 0.5396 0.2676 0.4012 0.3211

1-bit AS 433 0.6856 0.7439 0.7136 0.6025 0.6484 0.6246 0.4020 0.8418 0.5442
Attention 4-bit AS 433 0.6637 0.7337 0.6969 0.6020 0.6118 0.6069 0.3876 0.7337 0.5072

(128,4,2,256) 6-bit AS† 432 0.6997 0.7565 0.7270 0.6018 0.6901 0.6429 0.4170 0.8429 0.5580
8-bit AS 432 0.6869 0.6918 0.6893 0.5331 0.5701 0.5510 0.3174 0.7068 0.4381
12-bit AS 432 0.6799 0.6865 0.6832 0.5796 0.5443 0.5614 0.3431 0.7162 0.4639
16-bit AS 432 0.6693 0.6935 0.6812 0.5424 0.5215 0.5317 0.3097 0.7020 0.4298

∗ Delta input and page & offset input need tokenization and require extra storage for token dictionaries.
† 6-bit AS is when the segment size equals the block index size, i.e. 𝑠 = 𝑐 .

Table 4: Ablation study of program counter (PC) and page distance (PD)

SPEC 06 SPEC 17 GAP

Method PC PD Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Basic 0.6997 0.7565 0.7270 0.6018 0.6901 0.6429 0.4170 0.8429 0.5580
+cpcEce ✓ 0.7430 0.7777 0.7599 0.8080 0.5314 0.6412 0.6245 0.6268 0.6256
+cpdEce ✓ 0.8493 0.7117 0.7744 0.7556 0.5881 0.6614 0.5856 0.6377 0.6105

+[cpc; cpd]Ece ✓ ✓ 0.8638 0.7217 0.7864 0.8144 0.6496 0.6735 0.6634 0.6344 0.6486

Table 5: Simulation parameters

Parameter Value

CPU 4 GHz, 4-wide OoO, 256-entry ROB, 64-entry LSQ
L1 I-cache 64 KB, 8-way, 8-entry MSHR, 4-cycle
L1 D-cache 64 KB, 12-way, 16-entry MSHR, 5-cycle
L2 Cache 1 MB, 8-way, 32-entry MSHR, 10-cycle
LL Cache 8 MB, 16-way, 64-entry MSHR, 20-cycle
DRAM 𝑡𝑅𝑃 = 𝑡𝑅𝐶𝐷 = 𝑡𝐶𝐴𝑆 = 12.5 ns, 2 channels,

8 ranks, 8 banks, 32K rows, 8GB/s bandwidth per core

the degree results, we set the overall degree of rule-based baseline
prefetchers as 10 for a fair comparison. For ML-based prefetchers,
we prefetch predictions with the 10 top probabilities.

4.3.5 Simulation Results. Figure 5 illustrates the prefetch accuracy.
Voyager achieves the highest average accuracy at 95.37% among all
prefetchers. SPP achieves accuracy at 91.63%, the highest among
rule-based prefetchers. TransFetch has accuracy at 88.56% that is
the third highest among all prefetchers. VLDP, BOP, ISB, Domino,
Embedding-LSTM, and Clustering-LSTM achieve lower accuracy
at 85.08%, 75.69%, 46.49%, 22.70%, 70.79%, and 67.54%, respectively.

Figure 6 shows the prefetch coverage. In an average, Trans-
Fetch achieves the highest coverage at 60.54%, compared with Voy-
ager at 51.80%. BOP achieves 35.74%, which is the highest among
rule-based prefetchers. VLDP, SPP, ISB, Domino, Embedding-LSTM,
and Clustering-LSTM achieve lower coverage at 28.09%, 35.47%,
12.80%, 16.57%, 31.86%, and 39.16%, respectively.

Figure 7 shows the IPC improvement of the prefetchers, which
indicates the overall contribution of a prefetcher to the system

109

CF’22, May 17–19, 2022, Torino, Italy Pengmiao, et al.

Figure 5: Prefetch accuracy of TransFetch and baselines.

Figure 6: Prefetch coverage of TransFetch and baselines.

Figure 7: IPC improvement of TransFetch and baselines.

speedup. In the average, TransFetch achieves the highest IPC im-
provement at 38.75%, which is 10.44% higher than BOP and 6.64%
higher than Voyager. VLDP, SPP, ISB, Domino, Embedding-LSTM,
and Clustering-LSTM achieve lower IPC improvement at 19.50%,
22.59%, 8.01%, 5.64%, 19.46%, and 21.99%, respectively.

There are cases when TransFetch significantly outperforms other
prefetchers. For 410.bwaves, TransFetch achieves 77.44% IPC im-
provement, compared with Embedding-LSTM at 52.89% and BOP at
46.12%. For bfs, TransFetch ahieves 78.5% IPC improvement, com-
pared with the second highest Voyager at 51.14% and the highest
rule-based prefetcher SPP at 48.8%.

4.4 Distance Prefetching Evaluation
In ideal implementation, assuming full parallelism in our model,
the estimated latency 𝑇 ≈ 100 cycles according to Equation 9 and
Table 2, with dimensions 𝐷 = 64, layer 𝐿=2, matrix multiplication
𝑇𝑚𝑚 = 1+ log2 𝐷 , and 1 cycle lookup table implemented activations.
Recent works have explored more efficient implementations, e.g.,
replacing matrix multiplication by lookup tables [51] and combina-
tional logic [41]. In future implementations, the range of 𝑇 < 200
can be a reasonable target.

Figure 8: Effectiveness of distance prefetching. "L" means low
throughput (1/T); "H" means high throughput (1).

We train and simulate TransFetch with induced latency𝑇 from 0
to 200 cycles, under bounds of throughput 1/𝑇 and 1 inference per
cycle. The average prefetching performance is shown in Figure 8.
With 200 cycles latency, the high throughput model with distance
prefetching (DP) achieves 36.29% IPC improvement, higher than
the model without DP at 34.67%, both are still highest compared
with the baselines in Figure 7. Even for the low throughput models,
DP shows the IPC improvement at 28.39% for 200 cycles latency,
slightly higher than BOP at 28.31, while the models without DP
drop to 25.78%. Overall, distance prefetching effectively decelerates
the performance drop caused by inference latency.

5 CONCLUSION
In this paper, we presented TransFetch, a novel way to model
prefetching and to solve the problem of class explosion, tokeniza-
tion, labeling, and latency. The keys to our approach are using
fine-grained address segmentation for model input to reduce vo-
cabulary and avoid tokenization, using delta bitmap for labeling,
and using powerful and parallelizable attention-based network
for prediction. TransFetch achieves 26% - 36% higher F1-score
than delta inputs and 15%- 24% higher F1-score than page & off-
set inputs. TransFetch achieves 38.75% IPC improvement in simu-
lation, outperforming the best-performing rule-based prefetcher
BOP by 10.44% and ML-based prefetcher Voyager by 6.64%. We
believe TransFetch offers a new paradigm for modeling prefetch-
ing toward high performance and practicality. In future work, we
plan to explore the incorporation of software hints to improve
prefetching performance.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation (NSF)
under award number CCF-1912680.

110

Fine-Grained Address Segmentation for Attention-Based Variable-Degree Prefetching CF’22, May 17–19, 2022, Torino, Italy

REFERENCES
[1] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2018.

Domino temporal data prefetcher. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 131–142.

[2] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[3] Peter Braun and Heiner Litz. 2019. Understanding Memory Access Patterns
for Prefetching. In International Workshop on AI-assisted Design for Architecture
(AIDArc), held in conjunction with ISCA.

[4] Carlos Carvalho. 2002. The gap between processor and memory speeds. In Proc.
of IEEE International Conference on Control and Automation.

[5] "ChampSim". 2017. https://github.com/ChampSim/ChampSim.
[6] Chi F Chen, S-H Yang, Babak Falsafi, and Andreas Moshovos. 2004. Accurate and

complexity-effective spatial pattern prediction. In 10th International Symposium
on High Performance Computer Architecture (HPCA’04). IEEE, 276–287.

[7] Tien-Fu Chen and Jean-Loup Baer. 1995. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE transactions on computers 44, 5 (1995),
609–623.

[8] Trishul M Chilimbi. 2001. Efficient representations and abstractions for quanti-
fying and exploiting data reference locality. ACM SIGPLAN Notices 36, 5 (2001),
191–202.

[9] Yuan Chou. 2007. Low-cost epoch-based correlation prefetching for commercial
applications. In 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 2007). IEEE, 301–313.

[10] "SPEC CPU2017". 2017. The Standard Performance Evaluation Corporation.
https://www.spec.org/cpu2017/.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[13] Michel Dubois, Murali Annavaram, and Per Stenström. 2012. Parallel computer
organization and design. cambridge university press.

[14] Keith I Farkas, Paul Chow, Norman P Jouppi, and Zvonko Vranesic. 1997. Memory-
system design considerations for dynamically-scheduled processors. ACM
SIGARCH Computer Architecture News 25, 2 (1997), 133–143.

[15] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
memory access patterns. arXiv preprint arXiv:1803.02329 (2018).

[16] Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
Memory Access Patterns. CoRR abs/1803.02329 (2018). arXiv:1803.02329 http:
//arxiv.org/abs/1803.02329

[17] Anakhi Hazarika, Soumyajit Poddar, and Hafizur Rahaman. 2020. Survey on
memory management techniques in heterogeneous computing systems. IET
Computers & Digital Techniques 14, 2 (2020), 47–60.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[19] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. 2003. TCP: Tag corre-
lating prefetchers. In The Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings. IEEE, 317–326.

[20] Ibrahim Hur and Calvin Lin. 2006. Memory prefetching using adaptive stream
detection. In 2006 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’06). IEEE, 397–408.

[21] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
and Luc Van Gool. 2018. Ai benchmark: Running deep neural networks on
android smartphones. In Proceedings of the European Conference on Computer
Vision (ECCV) Workshops. 0–0.

[22] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level Parallelism 13,
2011 (2011), 1–24.

[23] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory accesses for
improved correlated prefetching. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 247–259.

[24] Aamer Jaleel. 2010. Memory characterization of workloads using instrumentation-
driven simulation. Web Copy: http://www. glue. umd. edu/ajaleel/workload (2010).

[25] Teresa L Johnson, Matthew C Merten, and Wen-Mei W Hwu. 1997. Run-time spa-
tial locality detection and optimization. In Proceedings of 30th Annual International
Symposium on Microarchitecture. IEEE, 57–64.

[26] Doug Joseph and Dirk Grunwald. 1997. Prefetching using markov predictors. In
Proceedings of the 24th annual international symposium on Computer architecture.
252–263.

[27] Norman P Jouppi. 1990. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. ACM SIGARCH
Computer Architecture News 18, 2SI (1990), 364–373.

[28] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1–12.

[29] Karthik Kambatla, Giorgos Kollias, Vipin Kumar, and Ananth Grama. 2014. Trends
in big data analytics. Journal of parallel and distributed computing 74, 7 (2014),
2561–2573.

[30] JinchunKim, SethH Pugsley, Paul VGratz, ALNarasimha Reddy, ChrisWilkerson,
and Zeshan Chishti. 2016. Path confidence based lookahead prefetching. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1–12.

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[32] Sanjeev Kumar and Christopher Wilkerson. 1998. Exploiting spatial locality in
data caches using spatial footprints. In Proceedings. 25th Annual International
Symposium on Computer Architecture (Cat. No. 98CB36235). IEEE, 357–368.

[33] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.
2017. Temporal convolutional networks for action segmentation and detection.
In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
156–165.

[34] Wei-Fen Lin, Steven K Reinhardt, Doug Burger, and Thomas R Puzak. 2001.
Filtering superfluous prefetches using density vectors. In Proceedings 2001 IEEE
International Conference on Computer Design: VLSI in Computers and Processors.
ICCD 2001. IEEE, 124–132.

[35] Ward Douglas Maurer and Ted G Lewis. 1975. Hash table methods. ACM
Computing Surveys (CSUR) 7, 1 (1975), 5–19.

[36] Julian Richard Medina and Jugal Kalita. 2018. Parallel attention mechanisms in
neural machine translation. In 2018 17th IEEE international conference on machine
learning and applications (ICMLA). IEEE, 547–552.

[37] Pierre Michaud. 2016. Best-offset hardware prefetching. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 469–480.

[38] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.

[39] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. 2011.
Natural language processing: an introduction. Journal of the American Medical
Informatics Association 18, 5 (2011), 544–551.

[40] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li
Zhang. 2018. Deepcache: A deep learning based framework for content caching.
In Proceedings of the 2018 Workshop on Network Meets AI & ML. 48–53.

[41] Mahdi Nazemi, Arash Fayyazi, Amirhossein Esmaili, Atharva Khare, Soheil Nazar
Shahsavani, and Massoud Pedram. 2021. NullaNet Tiny: Ultra-low-latency DNN
Inference Through Fixed-function Combinational Logic. In 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 266–267.

[42] Kyle J Nesbit, Ashutosh S Dhodapkar, and James E Smith. 2004. AC/DC: An
adaptive data cache prefetcher. In Proceedings. 13th International Conference on
Parallel Architecture and Compilation Techniques, 2004. PACT 2004. IEEE, 135–145.

[43] Tesla NVIDIA. 2017. V100 GPU architecture. The world’s most advanced data
center GPU. Version WP-08608-001_v1 1 (2017).

[44] Subbarao Palacharla and Richard E Kessler. 1994. Evaluating stream buffers as
a secondary cache replacement. In Proceedings of the 21st annual international
symposium on Computer architecture. 24–33.

[45] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic locality
and context-based prefetching using reinforcement learning. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA). IEEE,
285–297.

[46] Leeor Peled, Uri Weiser, and Yoav Etsion. 2018. A neural network memory
prefetcher using semantic locality. arXiv preprint arXiv:1804.00478 (2018).

[47] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. 2003. Using SimPoint for accurate and efficient simulation. ACM
SIGMETRICS Performance Evaluation Review 31, 1 (2003), 318–319.

[48] David MW Powers. 2020. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061
(2020).

[49] SethH Pugsley, Zeshan Chishti, ChrisWilkerson, Peng-fei Chuang, Robert L Scott,
Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev Balasubramonian. 2014.
Sandbox prefetching: Safe run-time evaluation of aggressive prefetchers. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 626–637.

[50] S Rahman, M Burtscher, Z Zong, and A Qasem. 2015. Maximizing Hardware
Prefetch Effectiveness with Machine Learning. In 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. 383–389.

[51] Mohammad Samragh Razlighi, Mohsen Imani, Farinaz Koushanfar, and Tajana
Rosing. 2017. Looknn: Neural network with no multiplication. In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 1775–1780.

111

CF’22, May 17–19, 2022, Torino, Italy Pengmiao, et al.

[52] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,
and Jeremy Kepner. 2019. Survey and benchmarking of machine learning acceler-
ators. In 2019 IEEE high performance extreme computing conference (HPEC). IEEE,
1–9.

[53] Takaya Saito and Marc Rehmsmeier. 2015. The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on imbalanced
datasets. PloS one 10, 3 (2015), e0118432.

[54] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael Jones, Edward Kao,
Sanjeev Mohindra, Paul Monticciolo, Albert Reuther, Steven Smith, William Song,
et al. 2018. Graphchallenge. org: Raising the bar on graph analytic performance.
In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE, 1–7.

[55] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex
address patterns. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 141–152.

[56] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A hierarchical neural model of data prefetching.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 861–873.

[57] Alan Jay Smith. 1978. Sequential program prefetching in memory hierarchies.
Computer 11, 12 (1978), 7–21.

[58] Yan Solihin, Jaejin Lee, and Josep Torrellas. 2002. Using a user-level memory
thread for correlation prefetching. In Proceedings 29th Annual International Sym-
posium on Computer Architecture. IEEE, 171–182.

[59] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2006. Spatial memory streaming. ACM SIGARCH Computer
Architecture News 34, 2 (2006), 252–263.

[60] Viji Srinivasan, Edward S Davidson, and Gary S Tyson. 2004. A prefetch taxonomy.
IEEE Trans. Comput. 53, 2 (2004), 126–140.

[61] Ajitesh Srivastava, Angelos Lazaris, Benjamin Brooks, Rajgopal Kannan, and
Viktor K Prasanna. 2019. Predicting memory accesses: the road to compact
ML-driven prefetcher. In Proceedings of the International Symposium on Memory
Systems. 461–470.

[62] Ajitesh Srivastava, Ta-Yang Wang, Pengmiao Zhang, Cesar Augusto F De Rose,
Rajgopal Kannan, and Viktor K Prasanna. 2020. MemMAP: Compact and Gen-
eralizable Meta-LSTM Models for Memory Access Prediction. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 57–68.

[63] Chun-Wei Tsai, Chin-Feng Lai, Han-Chieh Chao, and Athanasios V Vasilakos.
2015. Big data analytics: a survey. Journal of Big data 2, 1 (2015), 1–32.

[64] Raju Vaishya, Mohd Javaid, Ibrahim Haleem Khan, and Abid Haleem. 2020. Arti-
ficial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic
Syndrome: Clinical Research & Reviews 14, 4 (2020), 337–339.

[65] Steven P Vander Wiel and David J Lilja. 1997. When caches aren’t enough: Data
prefetching techniques. Computer 30, 7 (1997), 23–30.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[67] Brian Wahl, Aline Cossy-Gantner, Stefan Germann, and Nina R Schwalbe. 2018.
Artificial intelligence (AI) and global health: how can AI contribute to health in
resource-poor settings? BMJ global health 3, 4 (2018), e000798.

[68] Jonathan JWebster and Chunyu Kit. 1992. Tokenization as the initial phase in NLP.
In COLING 1992 Volume 4: The 14th International Conference on Computational
Linguistics.

[69] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal streams in commercial server applications. In
2008 IEEE International Symposium on Workload Characterization. IEEE, 99–108.

[70] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo, Akanksha Jain,
and Calvin Lin. 2019. Temporal prefetching without the off-chip metadata. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 996–1008.

[71] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin.
2019. Efficient metadata management for irregular data prefetching. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1–13.

[72] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[73] Yuan Zeng and Xiaochen Guo. 2017. Long short term memory based hardware
prefetcher: a case study. In Proceedings of the International Symposium on Memory
Systems. 305–311.

[74] Pengmiao Zhang, Ajitesh Srivastava, Benjamin Brooks, Rajgopal Kannan, and
Viktor K Prasanna. 2020. RAOP: Recurrent Neural Network Augmented Offset
Prefetcher. In The International Symposium on Memory Systems (MEMSYS 2020).

[75] Pengmiao Zhang, Ajitesh Srivastava, Ta-Yang Wang, Cesar AF De Rose, Rajgopal
Kannan, and Viktor K Prasanna. 2021. C-MemMAP: clustering-driven compact,
adaptable, and generalizable meta-LSTM models for memory access prediction.
International Journal of Data Science and Analytics (2021), 1–14.

112

