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1 INTRODUCTION

Graphs are widely used structures that model net-
works consisting of nodes (or vertices, represent-
ing the entities in the system) and their inter-

i bumap Za?aelz]yg method whlch fcoHects fumre deliqs w'

A2P: Attention-based Memory Access Prediction for
Graph Analytics

1ane

2 Rajgopal Kannan>®®°, Anant V. Nori® and Viktor K. Prasanna
VUniversity of Southern California, U.S.A.
2ys Army Research Lab-West, U.S.A.
3Processor Architecture Research Lab, Intel Labs, U.S.A.

Attention, Memory Access Prediction, Graph Analytics.

Graphs are widely used to represent real-life applications including social networks, web search engines, bioin-
formatics, etc. With the rise of Big Data, graph analytics offers significant potential in exploring challenging
problems on relational data. Graph analytics is typically memory-bound. One way to hide the memory access
latency is through data prefetching, which relies on accurate memory access prediction. Traditional prefetch-
ers with pre-defined rules cannot adap/t to' complex graph analytics memory patterns. Recently, Machine
Learning (ML) models espemally L/ong Short TernY Memory (LSTM) have shown improved performance for
interleaved patterns in labels us{ng consecutlve deltas (dlfference between addresses), and large output dlmen—
sions. We propose A2P, a novel attention-based memory access predlctlon model for graph analytics. We
apply multi-head attentron’ to extract features, which are easrer to be trained:than LSTM. We desrgn a novel
'a«'spanalfr«ange and makes tPre patterns eas1er to
i .

’ output drmensron’/We further mtroduce ‘a n()Vel concept‘ of super page SR I OWS e el prédictron to

break the consﬁramt of a physical page. For the widely used GAP benchmark our results show that for the

o1 fop three: predlotrons -A2P outperforms the. Wrdely used state- Of the—art LST M- based model by 23 L% wrt
" Precision; 21.2% w.r.t. RecalL and 10 4% w.r.t. Coverage.
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J'::trons (Droso ‘et al., 2016).
Graj ,_.analytrcs are typically memory-
bound ‘Basak et al., 2019). Most frame-
works (Malewicz et al., 2010; Han and Daudjee,
2015; Low et al., 2012; Bulu¢ and Gilbert, 2011)

connections called edges (representing relationships
between those entities). Graphs have been exploited
to describe social media, WWW, bioinformatics, and
transportation (Lakhotia et al., 2020). To generate,
process, and understand real-world graphs, the term
Graph Analytics was introduced that refers to the
study of data that can be represented as graphs. Par-
ticularly, with the rise of big data, graph analytics of-
fers high potential in studying how the entities relate
or could relate over traditional relational databases
because of its virtue in explicitly representing rela-
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store the graph in a Compressed Sparse format (CSR
or CSC) (Siek et al., 2002) which allows efficient
sequential access to the edges of a given vertex.
However, acquiring values of neighboring vertices
requires fine-grained random accesses as neighbors
are scattered. For large graphs, such accesses
increase cache misses, becoming the bottleneck in
graph processing.

Data prefetching is a data access latency hiding
technique, which decouples and overlaps data trans-
fers and computation (Byna et al., 2008). In order
to reduce CPU stalls on a cache miss, data prefetch-
ing predicts future data accesses, initiates a data fetch,
and brings the data closer to the processor before it is
requested. A data prefetching strategy has to consider
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various issues in order to mask the data access latency
efficiently.

The most essential step for prefetching is accurate
memory access prediction. The goal of memory ac-
cess prediction is to exploit the correlation between
history memory accesses to predict future one or more
memory access addresses.

Traditional hardware data prefetchers use pre-
defined rules, based on spatial or temporal locality
of references (Kumar and Wilkerson, 1998), to pre-
dict future accesses. However, they are not powerful
enough to adapt to the increasingly complex memory
access patterns from graph analytics algorithms. For
prefetchers based on spatial locality (Michaud, 2016;
Shevgoor et al., 2015; Kim et al., 2016), the predic-
tion range is typically within a page, which limits
the diversity of prediction and shows low prediction
accuracy. For prefetchers based on temporal local-
ity (Wenisch et al., 2009; Jain and Lin, 2013), record
and replay are widely used, but the replaying mecha-
nism shows low generalizability of the prediction: *

Machine Learning (ML) algorithms haveyx{hown
tremendous success in domains including /s(equence
prediction, which have provided 1ns1ghtsz into mem-
ory access prediction. The memory . dccess stream
can Jb}e modeled as a tlme serles se/quence Pow—

memory addresses for an apphcatlon (Hashemi et al

201:8a),: prior’ works ‘(Hasheémi et al., 2_0:18a;,SrivaS'-'- S

-

tava et al., 2019; Zhang et al., 2021; Sr'rv.agtava’,ét al.,
2020) takes the memory access deltas (a delt is de-
dresses) as input sequence and predicts the next delta
through classification. LSTM-based delta prediction
has shown higher prediction performance than tradi-
tional prefetchers (Hashemi et al., 2018b; Srivastava
et al., 2019) due to its high accuracy and generaliz-
ability.

However, there are still shortcomings in existing
ML-based memory access prediction methods, espe-
cially when applying to complex memory patterns
in graph analytics. First, due to the large number
of parameters and the recurrent structure, training
an LSTM-based model is hard and its performance
is not stable (Zeyer et al., 2019). In comparison,
the Transformer (Vaswani et al., 2017), a sequence
model based on multi-head self-attention initially pro-
posed for machine translation, has achieved huge suc-
cess for sequence modeling tasks in many fields com-
pared to LSTM. Second, existing methods predict
only one next delta. Under fine-grained memory ac-
cesses of neighboring nodes, the deltas between inter-
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leaved patterns are labeled, which hinders the model
training. Also, in the prefetching context, one pre-
diction with a set of multiple predicted memory ac-
cesses regardless of the order is more practical (Van-
derwiel and Lilja, 2000; Zhang et al., 2022). Though
multiple predictions can be achieved by picking mul-
tiple outputs with top probabilities (Hashemi et al.,
2018Db), the accuracy drops because the model is still
trained with one next delta as the label. Third, ex-
isting ML-based methods discard the locality of ref-
erences (Kumar and Wilkerson, 1998) used in tradi-
tional prefetchers. The model output delta is in the
entire address space, which causes an extremely large
output dimension for diverse memory access patterns
in graph analytics.

To address the shortcomings of existing methods,
we propose A2P , a novel Attention-based memory
Access Predictor for graph analytics. First, through
tokenization (Webster and Kit, 1992), we map the
memory access deltas to tokens, which are numeri-

-+...__cal values that can be processed directly by a neural
hetwork Second, we propose a novel bitmap labeling

address from future accesses. In this way, we model
memory access predi'ction as a multi-label classiﬁca—

mance. Furthermore, We" 1ntr0duce'a'nove ConCept
super page, Wthh relaxes the spatlal range from the

terns beyond pagés Our contrlbutlon can be summa-
rized as follows:”

i 7. @ We develéif;"AZP anovel attention-based memory

: ACCesS predlctlon model for graph analytics. We
TS delta token sequences for model input and use
an attention-based network for feature extraction.

e We propose a novel bitmap labeling method to
collect multiple future deltas within a spatial
range as labels. Based on bitmap labeling, the
memory access prediction is reduced to a multi-
label classification problem, which enables multi-
ple memory access predictions in each inference.

e We introduce a novel concept super page to relax
the range of spatial region from the typical one-
page size to several bits larger, which enables the
model to be trained by patterns beyond page range
while still taking advantage of spatial locality.

e We evaluate our method using widely used graph
analytics benchmark GAP (Beamer et al., 2015).
Results show that for the top three predictions,
A2P outperforms the widely used state-of-the-art
LSTM-based model predicting the next delta by



23.1% w.r.t. Precision, 21.2% w.r.t. Recall, and
10.4% w.r.t. Coverage.

2 GRAPH ANALYTICS

2.1 Background

Real world problems arising in web and social net-
works, transportation networks, biological systems
etc. are often modeled as graph computation prob-
lems. Applications in these domains generate huge
amounts of data that require efficient large-scale
graph processing. However, with the rise of big data,
graph analytics is facing the challenge of high latency.
There are numerous studies in accelerating graph an-
alytics.

First, many distributed frameworks have been
proposed to process very large graphs on clus-

ters (Malewicz et al., 2010; Han and Daudjee, 20,15) .

However, because of the high communlcatlop/over-
heads of distributed systems, even single threaded im-
plementations of graph algorithms have pc/en shown
to outperform many such frameworks rurining on sev-
eral machines (McSherry et al. 2015)/'/

s Seeond; the ,grc;Wth ‘in DDR capacity atlowslarge: .

graphs xo ﬁt m the mam J’.nemoryzof a sn{gfe s*ewer

oped for high performancei’ graph analytics on mul—

ticore, platforms (Shug. andBlelIOCh 2013; Sundaram. - Singlé -SotiFce: Shortest ‘Path - (SSSP) - Fmds ‘the

et'al,, 2015; Nguyeén et al., 2013). However multl—
threaded graph algorithms may incur racé :condltlons

and hence, require expensive synchronlzatlon, (atons,.
ics or locks) primitives that can significantly decrease’

performance and scalability. Furthermore, graph
computations are characterized by large communica-
tion volume and irregular access patterns that make it
challenging to efficiently utilize the resources even on
a single machine (Lumsdaine et al., 2007).

Third, recent advances in hardware technologies
offer potentially new avenues to accelerate graph an-
alytics, in particular, new memory technologies, such
as High Bandwidth Memory (HBM) and scratch-
pad caches. However, many graph analytics frame-
works are based on the conventional push-pull Vertex-
centric processing paradigm (Shun and Blelloch,
2013; Zhang et al., 2015; Grossman et al., 2018;
Besta et al., 2017), which allows every thread to
access and update data of arbitrary vertices in the
graph. Without significant pre-processing, this leads
to unpredictable and fine-grained random memory
accesses, thereby decreasing the utility of the wide
memory buses and deterministic caching features
offered by these new architectures. Some frame-
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works and application specific programs (Roy et al.,
2013; Zhu et al., 2015; Zhou et al., 2017) have
adopted optimized edge-centric programming models
that improve access locality and reduce synchroniza-
tion overhead. However, these programming models
require touching all or a large fraction of the edges
of the graph in each iteration, and are not work op-
timal for algorithms with dynamic active vertex sets,
such as BFS, seeded random walk, etc. A work ineffi-
cient implementation can significantly underperform
an efficient serial algorithm if the useful work done
per iteration is very small.

In this work, we apply Machine Learning to de-
tect memory stream patterns in graph analytics appli-
cations and predict future memory accesses, which
is significant for studying the memory patterns of
graph analytics algorithms, developing graph process-
ing frameworks, and designing prefetchers for graph
applications.

2 2 Graph Analytics Applications

In th1s -work, we perform memory access prediction

and evaluate ol model on five popular graph analyt-

ics applications:

Breadth-First Searc;h (_BFS) Used for égpt;ed,gmph
e, . ds.t

shortest distancg/fo all the nodes in a weighted graph
from a given spflrce vertex. Using the same setting

77.. as GAP (Beamer et al., 2015), we use non-negative
”hedges in this; Work For unweighted graphs, BFS can

retum the shortest path considering all the edges with
unit Wélght

PageRank (PR) - A node ranking algorithm that de-
termines the “popularity” of nodes in a graph, orig-
inally used to sort web search results (Page et al.,
1999). PR is also an important benchmark for the
performance of Sparse Matrix-Vector (SpMV) mul-
tiplication, which is widely used in many scientific
and engineering applications (Asanovic et al., 2006;
Vuduc et al., 2005; Pingali et al., 2011).

Connected Components (CC) - Labels connected
components in a graph. A connected component
means a subgraph that all of its nodes are connected
to each other. Two nodes are connected if there is a
path between the two nodes. A connected component
is maximal, which means any nodes connected to the
component is part of the component.

Betweenness Centrality (BC) - Approximates the
betweenness centrality score for all the nodes in the
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graph by only computing the shortest paths from a
subset of the vertices. BC is a metric that attempts
to measure the importance of vertices within a graph.
BC can be computationally demanding as it requires
computing all of the shortest paths between all pairs
of vertices.

3 ML FOR MEMORY ACCESS
PREDICTION

3.1 Problem Formulation

The goal of memory access prediction is to exploit
the correlation between history memory accesses to
predict one or more future memory access addresses.
Due to the sparsity of memory address space for
an application, treating memory access prediction as
classification problem instead of regression is a better
option (Hashemi et al., 2018a). A
Figure 1 shows the fields in a physical gﬁmory
address. Data fetch operation is in the unit pf a block
(cache line). Thus, memory access predlc,ﬂon consid-
ers only the block address space, 1gn9r1ng the block
offset ﬁeld .

| Phy5|cal pageaddress | Pageoffset
VW,,/ \"‘\f’/

Phys;cal address i

Figure 1: Fields in a physical address e

Let X; = {x1,x2,...,xy} be the sequence of N his-
tory block addresses at time 7. Let ¥, = {y1,y2,..., 7k}
be a set of k outputs associated with future k block
addresses. Our goal is to approximates P(Y;|X;), the
probability that the future addresses Y; will be ac-
cessed given the history events X;.

Because memory access prediction is modeled as
a classification problem, the number of classes will be
extremely large when considering each unique block
address as a class. A commonly used technique to re-
duce the number of classes is to work on block deltas
instead of block addresses directly (Hashemi et al.,
2018b; Srivastava et al., 2019). A block delta is de-
fined as the block address difference between con-
secutive memory accesses. We use delta for short in
later sections because we only work on block address
space.

A Machine Learning (ML) model can be devel-
oped and trained to learn the probability P(Y;|X;). The
vector of history accesses X; is defined as input fea-
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ture, the actually accessed future addresses Y; is de-
fined as output label. Using samples of input fea-
tures and output labels in a long memory trace, an ML
model can be trained to adapt to the data and construct
an approximation of the true probability.

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are widely used
for the task of memory access prediction (Hashemi
et al.,, 2018a; Srivastava et al., 2019; Zhang et al.,
2020; Zhang et al., 2021). RNNs exhibit temporal
dynamic behavior by storing sequential information
in their internal states. By assuming the dependence
between the current input and previous inputs, RNNs
perform better in sequence processing than basic neu-
ral networks that consider the time steps as dimen-
sions without time-series information.

y(f)

output gate

Flgure 2: The structure of LSTM.

) -'.ff':LSTM {Liong Short-Term Memory) (Greff et al.,

20165 .rs,__}'varlant of RNN that overcomes gradient
vanishing and exploding problems of basic RNNs. An
LSTM block (different from the address block in Sec-
tion 3.1) is composed of an input gate i), a block in-
put gate z(*), a forget gate f), an output gate o("), an
memory cell ¢() and an output y®), as is shown in
Figure 2. The operation of each set of gates of the
layer is given by Equation 1.

i =g (Wix(t) SRy fpy ot 4 bi)
zY) = tanh (sz<‘) + Ryt Y+ bz>

f =5 (fo(t) + Ryt 4 ppoctl 4 bf)
0¥ =6 (Wox(¥ 4+ Roy ) 4 & ¢ + by
c® =i @z L £b) o clt=D

y(t) — O(t) ® tanh (c(t))
(H



where x(t) is the input vector at time step t; y(t~1)

is the output of the previous time step; ¢t~V is the
memory state of the previous time step; Wi, W, Wg,
W, are input weights for the input gate, block input
gate, forget gate and output gate, respectively; b;, by,
be, b, are input bias for the four gates respectively;
R;, Rz, Rf, R, are recurrent bias for the four gates
respectively; pi, Pz» Pf» Po are peepholes that con-
nects directly from the memory cell to the gates; ¢
and tanh are sigmoid and hyperbolic tangent functions
that serve as nonlinear activation functions. ©® is the
operation of Hadamard vector multiplication.

3.3 Attention Mechanism

Attention mechanism has shown powerful sequence
modeling capability without using recurrent struc-
tures. The Transformer (Vaswani et al., 2017), a se-
quence model based on multi-head self-attention ini-
tially proposed for machine translation, has achieyed

huge success for sequence modeling tasks in /H{afl'};.._..

fields compared to traditional recurrent models.
#

t

Add & Norm
..Fegd Forward

—

Multi-Head
Attention
1 ¥

((watmul )

::__}[__._,:_:_; '_:ff ;
Q== e g el R
\\,[ Linear ) [ tiear ![ Linear J
clikowf aan] e
Q K

Vooeoa kv
M -

Transformer Layer Multi-Head Attention 4 E"_JSeIf—A"ttention
e

Figure 3: The structure of a Transformer lziyéfi"if';fi"',:':"

The original Transformer uses an encoder-decoder

structure with a sinusoidal position encoding. A gen-
eral Transformer layer consists mainly of a multi-
head attention and a point-wise feed-forward, as is
shown in Figure 3.
Self-attention. Self-attention takes the embedding
of items as input, converts them to three matrices
through linear projection, then feeds them into a
scaled dot-product attention defined as:

T
Attention(Q, K, V) = softmax (QK> vV Q2

Vi

where Q represents the queries, K the keys, V the
values, d the dimension of layer input.
Multi-head Self-attention. One self-attention opera-
tion can be considered as one ’head”, we can apply
Multi-head Self-Attention (MSA) operation as fol-
lows:

;;;;;;

* enablés’ multlple detta predictions in’ one friference.
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MSA(Q,K,V) = Concat (heady, .. ., heady; ) W¢

head; = Attention (QWI.Q, K Wl-K , VW,-V)
3
where the projection matrics WiQ,W,-K WY e
R9%4 H is the total number of heads, i is the index
of heads from 1 to H.

Point-wise Feed-forward. Point-wise Feed-Forward
Network (FFN) is defined as follows:

FEN(x) = max (0,xW; + b1) Wa + by “

4 MODEL

In this section we describe A2P, a novel attention-
based memory access prediction model for graph an-
alytics. The overall model structure is shown in Fig-
ure 4. A2P takes the deltas of block addresses as

~input, tokenizes the deltas, and uses the delta to-

kens for neural network processing (see Section 4.1).
Then “we collect future deltas within a spatial range
using bitmaps fb’r»mg@el training labels (see Sec-
tion 4. 2) We formulate th’e memory access prediction

j_an attentmnubasedfneutgl network to ﬁt fhemapp1ng

from¥input delta:tokens: to :brtmap: }ﬁibels {see: Seéc-
tion 4.3). During mference the model predicts the
confidence (probablhty) of deltas in.a.bitmap which

e
Furthermore, wé’introduce the notion of super page
that enables the the model learning patterns in a larger

Confidence for Deltas

02 08 01 03 07 09 01 02

( MLP Head & Sigmoid )

I
NX [ Transformer Layer ]
Position + If
M D -0 m
( Linear Projection ]

Delta Delta .| Delta Delta
Token 0 Token 1 Token i-1 Token i

Figure 4: Overall structure of A2P.

4.1 Delta Token Input

The memory access address is vast and
sparse (Hashemi et al., 2018b), so it is common
to use deltas (address difference between consecutive
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accesses) instead of the raw address for memory
access prediction. However, the deltas are still not
appropriate for model input because of the large
range. By considering the deltas as classes, we can
tokenize the deltas: mapping deltas into numerical
values for model processing.

Raw Address Block Address “ Delta Token

d79e62a544c0 35e798a9513 N/A 1
5829a6f2f6c0 160a69bcbdb A -1fdd2eec938 / 2
5829a62f700 » 160a69bcbdc A 1 3
8ad3301cchbcO 22b4cc0732f A caa624a753 4
8ad3301ccc00 22b4cc07330 A 1 5

Figure 5: Preprocessing for delta token input.

Figure 5 illustrates the preprocessing steps for
model input using an example access sequence. First,
the raw address is shifted by a block offset (6-bit in the
example). Then the deltas are computed from consec-

utive block addresses. The delta values are in a large__

range, so we map the deltas to tokens, which Gan be
used for numerical calculation in a neural ne}Work

r
P

4.2 Delta Bitmap Labeling ///

=

Unlﬂ(e eX1sf1ng SRS pred’lchhg the ne%t one‘¢ons

set*uﬁve’dejlta (Hasheml pt al, QOle L Snvastava

deltas w1th1n a spatlal rangef A heuristic spat1a1 range
is-one-page: size; whichis c,ommonly used in state-of-. .
the-art spatial prefetchers (Michaud, 2016 Shevgoor
et al., 2015; Kim et al., 2016). We design & ‘novel
bitmap labeling method to collect the labels for: modcl
training.

Future Deltas:
1,2,1,0,-1,-2, -1

Bitmap
Labeling:

Valuee 90 1 1 0 0 O 1 1
lndex: ¢ 1 2 3 4 5 6 7

Mapping Rules:

Bitmap Size = Range of Deltas

If Delta > 0, Index = Delta - 1

If Delta < 0, Index = Bitmap Size + Delta
If Delta = 0, ho mapping

Figure 6: Delta bitmap labeling process and the mapping
rules from delta to bitmap index.

Figure 6 illustrates the delta bitmap labeling
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- quence. 1s processed by ;a dense lmear PI“QJ§3CHOII as

method. First, we scan a window of future memory
accesses to collect multiple future deltas to the cur-
rent block address. Then we define a bitmap with
the size as the range of deltas, which enables positive
and negative delta predictions. For example, given
the spatial range as a a-bit page offset with a b-bit
block offset, the delta range will be i2(“*b), leading
to the bitmap size as la=b)+1, Figure 6 shows a sim-
ple example with delta range of =4 and bitmap size at
8. By mapping both the positive and negative deltas
into the bitmap index, and setting the corresponding
locations as 1, we can construct a bitmap with multi-
ple labels for model training. Zero delta will not be
labeled or predicted because it means the same ad-
dress as the current request. Using bitmap labeling,
the model output dimension can be dramatically re-
duced from large delta range at entire address space
to a small page range, compared to predicting the next
consecutive delta.

-..4.3 Attention-based Network

With'the above well-defined input and output, we de-
velop an attent'ion-—.b_ased network to learn the map-
ping, as is shown in'Figure 4. First the delta se-

- Tranéformei’ 1ayers (Flgufe 3y arefused t0-extract-the
latent features._,_fﬁ&t last, using the features extracted
from the last T{féflsformer layer, a multi-layer percep-

7., tron (MLP) is; “ised for classification output. Through

" asigmoid acnvatlon function for each bit in output
bltmap, the ‘model predicts the probability for each

correspondlhg deltas, also referred to as delta confi-
dence.

4.4 Super Page

In Section 4.2 we set the spatial range as a page size
following existing prefetching methods. Considering
the high learning capability of neural network models,
we propose to relax the spatial range so that the model
can learn and predict patterns beyond a page.

We define the relaxed range as super page, as
shown in Figure 7. With n-bit relaxation from page
offset, we can have a super page range. Then we col-
lect bitmap labels and predict deltas within the super
page instead of a physical page range. For exam-
ple, for a 12-bit physical page with 2-bit relaxation,
we can collect labels in a 14-bit super page. Differ-
ent graph analytics applications can benefit variously



from the super page. Particularly, large graphs whose
nodes are stored beyond pages which are accessed in
a spatial pattern will benefit significantly from the su-

per page.

Block address  Super page
L
| Physical page address | Page offset |
S ——

]
Physical address  n-bit  Block  Block
relaxation index offset

Figure 7: Super page with n-bit relaxation.

S EVALUATION

5.1 Benchmark Suite

We evaluate A2P and the baselines using the applica- ..

tion traces generated from GAP (Beamer et al. /fOlS)
through simulator ChampSim (”ChampS1m”/ 2017).
The physical memory address configuration is shown
in Table 1. After skipping the first 1M instructions for
warm-up, we use the next 40M instruefions for exper-
iments: We: use/t?he first 20Mzm$}trudﬁons,formode-l
trarmng, the next 20M 1nstruct10ns for teﬁtmg The

Table I: Memory addrcss conﬁguratlon

’ Raw Address
64-bit

Page Offset
12-bit 6- blt

Table 2: Statistics of the benchmark suite.

Applications | # Addresses | # Deltas | # Pages
BC 218K 202K 5.1K
BFS 316K 165K 15.7K
cC 158K 262K 2.5K
PR 311K 683K 49K
SSSP 179K 201K 4.1K

5.2 Implementation

To evaluate the effectiveness of our model, we imple-
ment four models as below. We denote bitmap label-
ing for a page range by ”-BP”, bitmap labeling for a
super page range by ”-BSP”. Specifically, ”-BSP-n"
denotes bitmap labeling for super page with n-bit re-
laxation.

o L.STM-Delta. This is a widely used state-of-the-
art model for memory access prediction (Srivas-
tava et al., 2019; Hashemi et al., 2018b). It takes

Block Offset: ‘53" 'Me't'i'ic’sﬁi e
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delta tokens as input and uses the next delta as la-
bel. An LSTM model is trained and outputs deltas
with top-k confidence in prediction.

e LSTM-BP. An LSTM model takes delta tokens as
input and learns from delta bitmap labels within a
page. The output is deltas with top-k confidence
in the bitmap.

e Attention-BP. An attention-based model takes
delta tokens as input and learns from delta bitmap
labels within a page. The output is deltas with
top-k confidence in the bitmap.

e Attention-BSP (A2P). An attention-based model
takes delta tokens as input and learns from delta
bitmap within a super page. The output is deltas
with top-k confidence in the bitmap. We explore

the super page size with relaxation bitn = 1, 2, 3,
and 4.

For LSTM-Delta, the output dimension will be the
number of deltas in Table 2, up to 683K. By using

"---bitmap labeling within a page, we reduce the abso-

lutes.value of deltas to a page range shifted by block
offset: 21*279) = 64, leading to the output dimension
to be 128 accordifig- to the mapping rules in Figure 6.
Bitmap labeling provides:SKx compression for out-

..............................

-

Since the mo_d_:éfs can give multiple predictions with

:. .""',-:;_»top k confidesige, we use Precision@k, Recall @k, and
“Cdverage @k:to evaluate the prediction performance.

Thesé- jnetrj_cs are widely used to evaluate recom-
mender systems (Chen and Liu, 2017; Silveira et al.,
2019) and have a good fit for our problem.

e Precision@k: the proportion of correct predic-
tions in the top-k predictions. A correct prediction
refers to the case in which the predicted address is
requested in the following k accesses.

e Recall@k: the proportion of correct predictions
in the following k memory accesses. Repetitive
memory accesses Or incorrect repetitive access
predictions can lead to a difference between Re-
call and Precision.

e Coverage@k: the cardinality of the set of all pre-
dictions over the entire set of addresses in testing.
It measures a model’s ability in covering the entire
range of memory accesses for an application.
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Figure 8: Precision, Recall, and Coverage at k top predictions for A2P and baselines.

5.4 Results

Figure 8 shows the Precision, Recall and Coverage
at k top predictions for all the implemented models.
‘We can make several observations. First, models us-
ing bitmap for labeling generally achieve higher Pre-
cision and Recall than LSTM-Delta which learns only

from the next delta. Even for k = 1, bitmap labeling

models that learns only within a spatial range quitper-

form LSTM-Delta. This is because thouglyf:STM-
Delta learns from the entire address space,the model
is hard to be trained and the interleaved patterns even
hamper the model learning on patterp§ within a spa-
tla.l . range.: Sec}md mcreasmg k, the: Preeision-and,
Recall fifst 1ncrease and then dr,op whenje’} 7
is because wherrk = 1 a com‘ect predictioi:
exact match, when k 1ncrea$es to 3, more candidates
will be considered- and. therexls hlgher prQbablh,ty to
matéh the’ predlctlon “and future’ access;:s Howsver
more predictions with k > 3 will involve more predlc-

tions with low confidence, which leads to mosg: ngor
rect predictions. Third, the relaxation for super page™”

range contributes to the model performance on Pre-
cision and Recall. 1-bit and 2-bit relaxation shows
notable performance improvement, while larger su-
per page shows little contribution, or even nega-
tively impacts the model performance. For example,
the Precision@7 for super page with 4-bit relaxation
(Attention-BSP-4) shows lower Precision than phys-
ical page range without relaxation (Attention-BP). In
addition, from the Coverage plot, we observe that the
Coverage of LSTM-Delta does not outperform other
models for k < 7 though it learns from the entire ad-
dress space. Only when low-confidence predictions
are involved (k > 5), LSTM-Delta shows higher Cov-
erage.

Figure 9 and Figure 10 show the Precision@3
and Recall@3, respectively, for all the applications
in detail. We use the best-performing super page
size for each applications as the results in Attention-
BSP. Using geometric mean, LSTM-Delta, LSTM-
BP, Attention-BP, and Attention-BSP achieve Pre-
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cision of 0.212, 0.366, 0.390, 0.443, respectively;
achieve Recall of 0.211, 0.340, 0.368, 0.423, respec-
tively. Attention-BSP model outperforms the baseline
LSTM-Delta by 23.1% w.r.t. Precision and 21.2%
w.r.t. Recall. We also observe that Attention-based
model achieves higher Precision and Recall than the
LSTM-based model when using the same labeling
method (BP). Particularly, PR benefits the most from
the relaxation of page size. This is because the mem-
ory access of PR shows notable spatial patterns be-
yond pages. Super page successfully enables the
model to detect patterns in a larger range and con-
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tributes to the prediction performance of PR.

Figure 11 shows the Coverage @3 of all the mod-
els and for all the applications. It shows that LSTM-
Delta, LSTM-BP, Attention-BP, and Attention-BSP
achieve average Coverage of 0.802, 0.897, 0.898,

0.907, respectively. We observe that learning withina.. ..

bitmap does not significantly decrease the Coy‘érage
Though for applications BC, BFS, and C(/lf models
with bitmap labeling show slightly lower"Coverage,
for PR and SSSP these models show ever‘f higher Cov-
erage than LSTM Delta Also super rfage contrlbutes
10.4%

o

based on the model design and the evaluatlon Tésilts

Sptaio-Temporal Locality. A2P reads the consec-
utive history accesses and learns the temporal pat-
terns, then predicts future accesses within a spatial
region. By making use of the spatio-temporal local-
ity, A2P achieves higher Precision and Recall com-
pared to the baselines.

Parallelizability. The multi-head attention mecha-
nism is embarrassingly parallelizable. In contrast,
LSTM, as a variant of the recurrent neural network,
requires recurrent steps and hard to be paralleled. The
parallelizability of A2P facilitates its hardware imple-
mentation, serving as a predictor for a hardware data
prefetcher.

Accelerating Graph Analytics. By accurately pre-
dicting memory access using A2P, data can be loaded
into a cache from the main memory before being
requested, i.e. data prefetching. Either being ap-
plied to software prefetching or hardware prefetching,
AZ2P can benefit the acceleration of graph analytics.

A2P: Attention-based Memory Access Prediction for Graph Analytics

7 CONCLUSION

In this paper, we presented A2P, a novel attention-
based memory access prediction model for graph an-
alytics, which addresses the problems of unstable
LSTM models, interleaved patterns in labels using
consecutive deltas, and large output dimensions in ex-
isting models. The key ideas of our model are us-
ing an attention-based neural network for prediction,
delta bitmaps for multi-label model learning, and spa-
tial range within a super page to constrain the output
dimension. Experimental results show that A2P out-
performs the state-of-the-art LSTM-based model by
23.1% w.r.t. Precision, 21.2% w.r.t. Recall, and
10.4% w.r.t. Coverage, at top 3 predictions. Graph
analytics can be accelerated by using our model to
predict and prefetch future memory accesses before
actual reference. In future work, we plan to explore
the incorporation of more context information to im-
prove the performance of memory access prediction.
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