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ABSTRACT
Many IoT devices today talk to each other via Bluetooth Low En-
ergy (BLE) which is a wireless communication technology often
being used to exchange data between a paired central and periph-
eral. These peripheral devices include not only firmware-defined
bare-metal Bluetooth peripherals but also software-defined periph-
erals (e.g., mobile app-defined Bluetooth peripherals where a mobile
app turns a smartphone into a peripheral instead of the central that
a phone mostly serves). However, this role reversal increases the
attack surface and brings vulnerabilities in bare-metal Bluetooth
peripherals to mobile apps where relevant security and privacy
have not been well studied. To take the first step towards filling
this knowledge gap, this paper presents PeriScope, an automated
tool to unveil the security and privacy vulnerabilities at the link
layer of app-defined Bluetooth peripherals in the procedures of
broadcasting, pairing, and communication by systematically ana-
lyzing their companion mobile apps. PeriScope has analyzed 1,160
Bluetooth peripheral apps from Google Play and identified 69.13%
of them that broadcast device or personal identifiable information
in cleartext, and, in addition, there are 95% pieces of data managed
by these apps (e.g., personal health data and digital keys to unlock
doors) to exchange with connected devices can be accessed without
authentication. Finally, a set of guidelines for secure app-defined
Bluetooth peripherals development is provided.

CCS CONCEPTS
• Security andprivacy→ Security protocols;Mobile andwire-
less security; Software reverse engineering; Privacy protec-
tions; Access control; Mobile platform security.
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1 INTRODUCTION
Bluetooth Low Energy (BLE) is ubiquitous today, especially among
small Internet-of-Things (IoT ) devices (e.g., Apple AirTag), because
it allows a pair of devices to exchange data consuming extremely
low energy. In particular, communications between two connected
BLE devices are typically operated in a client-server mode, where
one device called central acts as the client and the other device
called peripheral functions as the server. When being disconnected,
the peripheral constantly broadcasts advertising packets to declare
its existence, and the central keeps scanning for advertising packets
to discover nearby peripherals, and then establishes a connection
with them if necessary (e.g., smartphone requesting heart rate data
from a fitness tracker).
App-definedBluetoothPeripheral (AdBP).While Bluetooth pe-
ripherals are often referred to as firmware-defined bare-metal IoT
devices (e.g., AirTag), they can also be software-defined Bluetooth
peripherals. We call these peripherals that are enabled via mobile
apps with support from both the hardware (i.e., the Bluetooth chip
in the smartphone) and the operating system (no bare-metal any-
more) as app-defined Bluetooth peripherals (AdBP). In particular,
to ease the development effort, mobile operating systems (e.g., An-
droid) hide all low level details of BLE communications, such as the
management of the operations at both BLE link layer and physical
layer, and provide system APIs for developers to configure a smart-
phone as a BLE peripheral. Its development convenience as well
as the rich sensors and the ubiquity of smartphones bring AdBP
promising potentials in many scenarios. For instance, most recently,
AdBP has been used for automated contact tracing to fight against
COVID-19 pandemic in many countries.

Unfortunately, AdBP arises serious security and privacy con-
cerns because of its enlarged attack surface which is discovered
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in bare-metal Bluetooth peripherals. However, there only exist a
few relevant studies that either focused on a particular problem
(e.g., MAC address based tracking [8]) or vulnerabilities in a spe-
cific application (e.g., digital contact tracing [2]), and there lacks
a unified perspective on the security and privacy in AdBP leav-
ing this field largely unexploited. In particular, it is unknown that
how many mobile apps are able to define Bluetooth peripherals,
what are their security and privacy practices, and to which extent
their consequent issues would impact normal users. For example,
whether these peripherals would suffer similar vulnerabilities as
those in bare-metal peripherals (e.g., AirTag) including broadcasting
device identifiable information (i.e., static service UUIDs) [11, 53]
and leaking sensitive data [15, 16, 50].

These aforementioned concerns are not hypothetical. In our pre-
liminary study, we have identified an industry leading app, Lyft
Driver, that places the driver ID in its advertising packets when
it turns the smartphone into a BLE peripheral. This driver ID rep-
resents the identity of a driver and allows attackers to track the
movements of a driver which may reveal fine-grained personal
identifiable information. We also have discovered an account un-
locking app that configures no security protection on a piece of
its sensitive data, i.e., the keys to unlock user accounts. Such a
vulnerable configuration makes these credentials accessible to any
connected centrals without authentication.
Objectives. To shed light on these aforementioned questions, this
paper takes the first step towards unveiling the security and pri-
vacy in AdBP . To this end, this paper first develops a threat model
including unique attack surfaces and adversarial objectives par-
ticular in the link layer of an AdBP , and then presents the design
and implementation of an automated tool, PeriScope, to automati-
cally uncover the vulnerabilities by systematically analyzing the
companion apps. First, considering there is no specific category of
the companion apps of AdBP in public markets, PeriScope takes a
mobile app as input and scans its system API usages which endorse
the presence of a unique and essential functionality of a Bluetooth
peripheral (i.e., broadcasting service UUID) to recognize an AdBP .
Next, it combines inter-procedural static backward slicing alongside
forward string value analysis to capture the generation procedures
of a piece of data that is involved in an AdBP communication at the
link layer, and then resolve its associated value to obtain its con-
tent, semantic, and applied security protections. Finally, PeriScope
inspects both the semantic and content of a piece of data and its
associated security protections to identify potential vulnerabilities
according to the threat model. Moreover, after systematizing vul-
nerabilities in real-world applications at scale, this paper aims to
propose a set of guidelines for secure development with the hope
to prevent severe security and privacy impacts at the early stage.
Our Findings. PeriScope has recognized 1,160 AdBP companion
apps after scanning all free apps in Google Play as of the end of
September 2021 and identified vulnerabilities at the link layer in
the procedures of broadcasting (i.e., broadcasting device or per-
sonal identifiable information in cleartext) and communication (i.e.,
sensitive data access without authentication). Specifically, in the
broadcasting procedure, PeriScope has identified 799AdBP compan-
ion apps that broadcast device identifiable information, i.e., static
UUID, which makes them subject to the device (and in this case

app) fingerprinting attacks [11, 53], three apps that even use user
identifiable information as their broadcast UUIDs, and 537 apps that
also broadcast another potential of user identifiable information,
i.e., the user customized phone name (e.g., Alice’s pixel).

On the other hand, in the communication procedure, PeriScope
has identified a total of 662 apps managing 1,752 pieces of data in
exchange between a pair of connected devices. Specifically, 1,430
pieces of data are configured to allow read operations and 1,233
of them are set to accept write operations. However, these apps
configure no protection on 95.10% of those data that allow reading
and 94.81% of them that accept writing. After manual inspecting the
readable data without protection, we have identified an improper
access control that can leak a wide range of sensitive data, which
include but not limited to personal health data, digital identifiers of
users, and even digital keys to unlock doors.

In addition to the identified vulnerabilities, this study also presents
an overview of the ecosystem of AdBP . As of this writing, AdBP
has been in presence of 28 categories labelled by Google Play, and
the leading categories include “Tools”, “Lifestyle”, and “Education”,
according to the number of apps in a category. In addition, based
on the manufacturer ID which is a unique number assigned by the
Bluetooth SIG, this ecosystem currently involves 61 manufacturers
(at least) that contribute to 501 apps. To our surprise, among these
apps, this study discovers 351 of them that violate the manufac-
turer ID usage policy defined by Bluetooth SIG. Specifically, there
are 243 apps that place IDs belonging to other manufacturers in
their advertising packets, 91 apps that use unassigned IDs, and 17
apps that even use the preserved ID for internal testing in shipping
products, which is disallowed [32].
Contribution. Our study makes the following contributions:

• Novel Problem. This paper conducts the first comprehen-
sive security analysis on an emerging category of mobile
apps that configure smartphones to be Bluetooth peripherals
to understand the current security and privacy practice and
present a set of guidelines for secure development of mobile
app-defined Bluetooth peripherals with the hope to prevent
severe security impacts at the early stage.

• New Tool. We design and implement PeriScope to auto-
matically demystify Bluetooth configurations in mobile app-
defined Bluetooth peripherals by uncovering their link layer
configurations via reverse engineering Bluetooth peripheral
apps, and detect their vulnerabilities that are subject to pas-
sive eavesdropping and active man-in-the-middle attacks.

• Empirical Evaluation. PeriScope has recognized 1,160Blue-
tooth peripheral companion apps, in which it has detected
69.13% apps that are subject to passive eavesdropping at-
tacks in the broadcast procedure leaking device or personal
identifiable information and around 95% of GATT attributes
have been assigned with weak protections leading to active
MITM attacks leaking sensitive information. In addition, it
has also discovered a severe manufacturer ID abuse that
many app-defined Bluetooth peripherals violate the policy
defined by Bluetooth SIG of using unassigned manufacture
IDs, manufacturer IDs belonging to others, and a preserved
ID that is disallowed to appear in shipping products.



2 BACKGROUND
2.1 Bluetooth Low Energy
Bluetooth Low Enery (BLE), initially released within the Bluetooth
4.0 specification, is a special version of the Bluetooth technology.
Compared to Bluetooth Classic, BLE maintains essential Bluetooth
functionality with extremely lower power consumption (e.g., up to
1% of power usages in Bluetooth Classic). To communicate with
connected devices, BLE devices follow the Generic Access Profile
(GAP) [41] and make use of the Generic Attribute Profile (GATT)
to transfer data between them [29].

GATT Profile

Service A 

Characteristic A1 

Descriptor 

Characteristic A2 

Descriptor 

Service B 

Characteristic B1 

Descriptor 

Figure 1: Illustration of GATT Architecture.

Generic Access Profile (GAP). The GAP defines two commu-
nication mechanisms for BLE devices: broadcasting and connect-
ing [41]. Specifically, broadcasting is a one direction communication
in which a BLE device only transfers information to other devices
by constantly broadcasting advertising packets. In addition, a BLE
device can also connect to another device to transfer data in two di-
rections. In this mechanism, there are two roles, i.e., Peripheral and
Central. In particular, a peripheral device will constantly broadcast
advertising packets to declare its existence if disconnected. The
broadcasting will be terminated when it is connected with a central,
and a central device will periodically scan nearby advertising pack-
ets to search for the specific peripheral. If wishing, it will initiate a
connection request to the peripheral.
GATT. The GATT specifies how a piece of data is stored in a local
device and accessed by a remote device. In particular, the GATT has
three attributes: service, characteristic, and descriptor, and they are
organized hierarchically (illustrated in Figure 1) where a service can
contain several characteristics and each characteristic can consist of
several descriptors. Additionally, each attribute is addressable with
a fixed-length universally unique identifier (UUID), and a piece of
data is stored in a characteristic or a descriptor, both of which are
specified with security permissions to enforce the access control.

The UUID is a 128-bit number that makes each GATT attribute
addressable. There are two types of UUIDs: the standard and the
custom UUIDs. Standard ones are specified by the Bluetooth SIG for
dedicated services and custom ones are created by developers for
their own usages. Particularly, a standard UUID is specified in short
(16-bit or 32-bit), and its full length (128-bit) is reconstructed by
concatenating a fixed base (0000-1000-8000-00805F9B34FB) to its
short version. Additionally, custom UUIDs are all 128-bit in length
and they cannot share the same value with any standard UUID.

GATT permissions specify the security requirement for a remote
device to access a piece of data that is stored in a GATT attribute. In
total, GATT defines three permissions [29]: (𝑎) Access permission
that specifies whether the data stored in an attribute is readable,

Broadcasting Scanning
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Central
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Error: Insufficient Permission

Pairing

Bonding
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Figure 2: Workflow of Mobile App Defined Bluetooth Peripherals.

writable, neither or both, to a remote device; (𝑏) Encryption per-
mission that enforces the data of an attribute to be accessed or
transferred to a remote device through an encrypted channel; and
(𝑐) Authentication permission that protects the data from being
accessed by unauthenticated devices.

Moreover, the data transmission is between a GATT server and a
GATT client. The server manages GATT attributes and responses to
remote requests sent by a client. It is worth noting that GAP roles
(i.e., central and peripheral) are essentially independent to GATT
roles (i.e., server and client).

2.2 App-defined Bluetooth Peripherals
An app-defined Bluetooth peripheral,AdBP , is a BLE-enabled smart-
phone that is configured by a mobile app to function as a peripheral.
Specifically, it acts as a normal BLE peripheral. In Android, defining
a peripheral requires the app has to use the system APIs to imple-
ment its application logic and configure the security requirements
for a remote device to access to its data.
Defining AnAdBP . To support the above two working modes, the
operating system provides an app with two types of configurations :
(𝑎) the configuration of broadcasting behaviors (for beacons) and (𝑏)
the configuration of the GATT server (for connectable peripherals).
(A) Broadcasting Configuration.. It is an essential functionality
for a BLE peripheral to broadcast advertising packets. These pack-
ets in an AdBP can be configured by its companion Android app
invoking relevant system APIs including the properties of emitting
packets and custom data in these packets.

In particular, Android apps can configure three broadcasting prop-
erties: mode, timeout, and the transmission power. Specifically, the
mode determines the time interval between two adjacent advertis-
ing packets, the timeout limits the duration of each broadcasting
session, and the transmission power (TxPower) controls the power



to emit packets. On the other hand, Android apps can also cus-
tomize several data fields in the advertising packets. First, apps
can customize the fields for specific services including the service
UUID, service data, the manufacturer ID, and manufacturer specific
data. Second, apps can also choose to place additional information
about the peripheral in the packets, e.g., device name. Third, apps
also can declare its connectivity in the packets.
(B) GATT Server Configuration.. A GATT server is required to
be maintained by an app-defined Bluetooth peripheral if it supports
the connectable mode since it manages the data transmissions. In
particular, only attributes that have been registered to a GATT
server can be accessed by remote devices. To work properly, all
attributes should be well configured and Android provides different
configuration options for each attribute based on its unique nature:

• Service: An Android app can configure a service as either a
primary or a secondary service. A primary service represents
a main functionality such as the Blood Pressure service which
is defined by the SIG [39], while a secondary service should
be included within a primary service to provide complemen-
tary functionality [1].

• Characteristic:A characteristic contains a piece of informa-
tion of a service. For example, Blood Pressure Measurement is
one characteristic of the Blood Pressure service [39]. An An-
droid app can specify both the property and the permission
of a characteristic. Specifically, the property defines actions
that can be performed by remote devices and the permission
declares security requirements for the data access [33].

• Descriptor:A descriptor is contained within a characteristic
to provide additional information [23]. Unlike characteristics,
descriptors only have permissions allowing configuration.

 1 private void bleAdvFunc(DriverRide arg2) {
 2     . . . 
 3  String userId = this.a(arg2.getUser().getUserId());
 4     String uuid = getUserUuid(userId);
 4  ParcelUuid pUuid = new ParcelUuid(UUID.fromString(uuid)) 
 5  AdvertiseSettings$Builder v1 = new AdvertiseSettings$Builder()
                                         .setAdvertiseMode(0)

    .setConnectable(true)
                                         .setTxPowerLevel(3).build();

 6     AdvertiseData$Builder v2 = new AdvertiseData$Builder()
                                  .addServiceUuid(pUuid).build();
 7     bleAdvertiser.startAdvertising(v1,v2,((AdvertiseCallback)v3)); 
 8     . . .

public String getUserUuid(String arg3) {
    . . .
    String uBase =  
                  "00000123-0123-0123-0123-00000"
    return uBase + arg3;
}

public User(...) {
    ...
    String userId;
    ...
}

Figure 3: PII Broadcast in Cleartext by Lyft Driver.

The Workflow of AdBP . Figure 2 illustrates the workflow of an
AdBP , which contains three procedures:

• (I) Broadcasting and Connection: At the start, an AdBP
will constantly broadcast advertising packets, which contain
device identifiable information (e.g., service UUID and device
name). Meanwhile, a central device keeps scanning nearby
packets and extracts such identifiable information from these
packets to discover the specific peripheral of interest. Next,
if the peripheral allows the connection, then the central

may initiate a connection request. The connection will be
established when such a request is accepted.

• (II) Pairing and Bonding: The paring and bonding proce-
dures are optional to create a secure channel for two devices
to transfer data [29]. Specifically, these procedures will be
initiated by a central in response to a data access request
error due to insufficient authentication (due to the peripheral
configuration). The pairing procedure starts by exchanging
security features between the two devices to negotiate the
pairing protocol, i.e., “Just Works”, “Numeric Comparison”,
“Passkey Entry”, and “Out of Band (OOB)” [31]. After the ex-
change, both devices generate and synchronize a temporary
key to encrypt the communication channel [7]. After the
pairing, the central can start the bonding procedure to let a
paired devices remember each other for subsequent connec-
tions. To this end, both devices will negotiate a long term
key (LTK) through the channel encrypted by the temporary
key and store such a LTK locally to finish the bonding.

• (III) Communication: After the connection is established,
even without pairing and bonding, the central can try to
access a piece of data stored in the peripheral. Since such a
piece of data is stored in a GATT attribute (e.g., character-
istic) on which the GATT server enforces access control. As
such, only access from qualified central would be accepted.
Otherwise, a corresponding error message will be responded.
Having the error message, the central may need to initiate
the pairing and bonding procedures to satisfy the declared
security requirements for access (step II).

3 OVERVIEW
In this section we present an overview of PeriScope. We motivate
our design with two real world examples (§3.1).Based on these
examples, we develop the threat model (§3.2) so we can identify the
attack surface of AdBP and possible adversary objectives. Finally,
defines the scope (§3.3) of this study.

3.1 Motivating Examples
As presented in §2.2, an app can customize the data in advertising
packets, which usually stores data in cleartext, and configure the
permissions on characteristics and descriptors to enforce access
control. Unfortunately, these two capabilities can both result in
vulnerabilities. In the following, we use two real world examples to
illustrate their presence.
PII in Advertising Packets. An AdBP will constantly broadcast
advertising packets if it is disconnected. These packets store data in
cleartext by design. Unfortunately, there are several data fields in
advertising packets that can be customized by developers, and they
may mistakenly place sensitive data in any of these fields. In the fol-
lowing, we use an industry leading app, LyftDriver, to illustrate how
it mistakenly broadcasts the personal identifiable information (PII ).

In particular, as shown in Figure 3, we notice this app adds the
pUuid into its advertising packets at line 6. This uuid is generated
from method getUserUuid at line 3, which takes the userId as
input to produce the uuid by concatenating such an input value to
a fixed string 00000123-0123-0123-0123-00000. Next, by tracing
the input value of userId, we can understand that it is a unique ID



for each driver. As such, the service UUID in advertising packets is
actually the user ID that can be used for user identity recognition
and, even worse, location tracking.
Credentials Leakage From GATT Server. An AdBP that sup-
ports the mode of connectable peripheral has to maintain a GATT
server which enforces access control on GATT attributes to en-
sure the secure data transmission. Consequently, if such a security
mechanism is vulnerably implemented on the sensitive and private
data, it can lead to severe privacy leakages. In the following, we
use a popular account unlocking app, which allows users to auto-
matically unlock the account to log into a desktop or laptop using
a mobile phone, as an example to demonstrate how it exposes user
credentials to attackers without protection in Figure 4.

Specifically, we can observe that this app declares itself as a
connectable device at line 2, and invokes the method prepareAnd
AddService at line 5 to configure the GATT server right after broad-
casting advertising packets. In the invoked method, this app reads a
device list at line 9, and then iterates such a list to create a character-
istic for each device at line 14. When creating a characteristic, the
app specifies the PERMISSION_READ permission and stores the de-
crypted key that can unlock the account in such a device at line 16.
Since the PERMISSION_READ has no security requirement, each cen-
tral connecting to such a peripheral can read the list of keys used to
unlock accounts of the user. Therefore, the improper access control
in this peripheral can leak sensitive data, i.e., user credentials.

3.2 Threat Model

Attack Surface. According to the aforementioned real-world ex-
amples and the nature of an AdBP , an attack can succeed during
procedures (I) Broadcasting and Connections, or (III) Communica-
tion. In the latter case, the attack must go through all workflow
procedures of an AdBP . Therefore, this study defines the attack
surface of an AdBP in respect of its workflow.

(I) Broadcasting and Connections.When being disconnected,
an AdBP would broadcast advertising packets to declare its exis-
tence, and the data carried in these packets are in cleartext by
design. Therefore, if developers mistakenly place sensitive data in
such packets, a nearby attacker can sniff and interpret such sensi-
tive information, and conduct consequent attacks. Additionally, an
attacker can also establish connection to the victim device.

(II) Pairing and Bonding. In this procedure, attackers launch
the downgrade attack [51] that forces a pair of devices to use inse-
cure pairing and bonding protocol (i.e., “Just Works”). In this way,
attacker can bypass the encryption protection assigned to a GATT
attribute and access its stored data in the next procedure.

(III) Communication. Since the connection procedure can be
done without victim involvement and the procedure of pairing and
bonding is triggered when there is an request without sufficient
permission, an attacker can access a piece of data stored in an un-
protected or ill-protected GATT attribute without victim’s notice.
Specifically, if developers place inappropriate permission on sensi-
tive data stored in a GATT attribute, an attacker secretly connect
to a victim’s device and steal that sensitive data to finish the attack.
Adversarial Capabilities and Objectives. In our threat model,
an attacker is equipped with BLE-enabled devices that can passively

 1 public void startAdvertise() { 
 2     AdvertiseSettings v2 = new AdvertiseSettings$Builder()
                                             .setAdvertiseMode(2)
                                             .setTxPowerLevel(3)
                                             .setConnectable(true).build();
 3     UUID v4 = UUID.fromString(this.getAdvertiseUUID());
 4     AdvertiseData v0 = new AdvertiseData$Builder()
                               .addServiceUuid(new ParcelUuid(v4)).build();
       . . .
 5     this.prepareAndAddService(v4);
       . . .
 6 }

 7 private void prepareAndAddService(UUID arg9) {
 8     this.mGattService = new BluetoothGattService(arg9, 0);
 9     List v2 = this.getDevicesList();
10     if(v2 != null) {
11         Iterator v4 = v2.iterator();
12         while(v4.hasNext()) {
13             Object v1 = v4.next();
14             BluetoothGattCharacteristic v0 = 
                                           new BluetoothGattCharacteristic(
                                               (Device)v1).getUuid()), 2, 1);
15             if(((Device)v1).getKey() != null) {
16                 v0.setValue(this.decryptDeviceKey(((Device)v1).getKey()));
17             }
18             this.mGattService.addCharacteristic(v0);
19         }
10     }
21     this.mGattServer.addService(this.mGattService);
22 }

Figure 4: Credentials Leakage in an Account Locking App.

sniff BLE packets and actively establish connections with BLE pe-
ripherals. Additionally, the attacker is able to reverse engineer mo-
bile apps to retrieve the UUIDs that are placed in advertising packets
or used to label GATT attributes. Also, the attacker is capable of
uncovering the permissions assigned on each GATT characteristic
and descriptor. On the other hand, the primary objective of an at-
tacker is to steal sensitive data either from advertising packets or
GATT attributes, and then conduct specific attacks based on the
type of sensitive data, such as using PII for movement tracking.

3.3 Scope
We focus on unveiling security and privacy practices in AdBP that
are defined during Bluetooth peripheral creation (i.e., configuration
of broadcasting and GATT server). While there are other types
of vulnerabilities of Bluetooth peripherals in the link or physical
layer (e.g., eavesdropping [22, 45]), since related configurations in
these two layers are hidden to the apps and handled by the mobile
operating system which is assumed to not be compromised, such
vulnerabilities are excluded from this work. Additionally, while the
proposed approach scales to apps working in other mobile oper-
ating system, we focus on Android AdBP as the first step towards
understanding security and privacy in this emerging category of
devices. In particular, we focus on the peripheral behaviors that are
defined by an app using system APIs at the Java bytecode level, and
such behaviors that are implemented with custom APIs or other
techniques (e.g., native libraries and JavaScript in WebView) are
out of the scope. Moreover, the analysis is based on the BLE 4.𝑥
specifications and above.

3.4 PeriScope Overview
Based on the presented motivating examples (§3.1), threat model
(§3.2), and the scope (§3.3), PeriScope needs to: (I) detect the com-
panion app of an AdBP , (II) uncover the components in the advertis-
ing packet and (III) reveal the configuration of the GATT server of
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this AdBP , and (IV) finally identify vulnerable security and privacy
practices. Specifically,

PreciseAdBP CompanionAppRecognition: Since there does
not exist a central public repository of these specific category of
apps and there is also no explicit label assigned to them by public
app markets (e.g., Google Play), we perform the first attempt to
recognize AdBP companion apps in the literature, PeriScope has to
propose a new solution to precisely recognize them.

Accurate Programming Value Resolution: After recogniz-
ing a companion app of an AdBP , PeriScope next has to uncover the
components of its advertising packet and reveal its GATT server
configuration. While these two tasks can be accomplished by resolv-
ing the input values to corresponding system APIs, these values
may not always be defined statically (as shown in Figure 3. As
such, it demands for an algorithm to resolve such values generated
through complicated procedures.

Effective Vulnerability Identification: PeriScope finally has
to identify vulnerabilities from the results obtained in previous
tasks. Unfortunately, given the different nature of components in
an advertising packet and attributes in a GATT server, it is unre-
alistic to use a unified rule to identify vulnerabilities in all of them.
Therefore, PeriScope has to design different strategies to identify
vulnerabilities specific to each of them.

4 DESIGN OF PERISCOPE
This section presents the detailed design of PeriScope to accom-
plish the above listed tasks. As shown in Figure 5, PeriScope first
leverages a unique invocation feature of system APIs to recognize
AdBP companion mobile apps (§4.1). Next, it performs an inter-
procedural program analysis to resolve values an app used to define
an AdBP to uncover its advertising packets (§4.2) and reveal GATT
server configuration (§4.3). Finally, PeriScope designs a series of se-
curity rules to identify vulnerabilities from different attack vectors
in advertising packets and GATT attributes (§4.4).

4.1 Recognizing An AdBP Companion App
PeriScope starts from detecting whether an app is capable of turn-
ing a phone into a Bluetooth peripheral. Considering it requires
invoking relevant system APIs, and an app should have the permis-
sions to use them, PeriScope first checks the permissions requested
by an app and then examines the presence of relevant system APIs.
Checking Bluetooth Permissions. An app of AdBP should re-
quest for the Bluetooth related permissions, e.g., BLUETOOTH and
BLUETOOTH_ADMIN. Since such requests have to be declared by an

app in itsManifest file, its capability of using Bluetooth can be under-
stood by inspecting such a file. As such, PeriScope uses apktool [4],
a tool to reverse engineer APK files, to decompile an app to extract
itsManifest file and check the existence of the required permissions.
DetectingPeripheral Functionality. Previous step excludes apps
that cannot use Bluetooth, which is insufficient to recognize AdBP
companion apps because an app may use Bluetooth to define a
central device. As such, this step further excludes apps that can-
not perform the unique and essential functionality of a Bluetooth
peripheral, i.e., broadcasting advertising packets. To broadcast, an
app has to invoke corresponding APIs. While such APIs might
be custom APIs, third-party APIs, and system APIs, without loss
of generality in this large scale study, PeriScope only focuses on
system APIs defined by Android (e.g., startAdvertising). Accord-
ingly, PeriScope depends on dex2jar [18] to detect the presence of
these APIs to find AdBP companion apps

4.2 Uncovering Advertising Packets
Having detected whether an app is capable of defining Bluetooth
peripherals, the next task for PeriScope is to uncover the custom
data that have been placed in advertising packets. While it seems
plausible to uncover such data by dynamically running the app and
sniffing its advertising packets in the air, the unique requirement
for each specific app (e.g., user registration and navigation to a
specific interface) to trigger such functionalitymakes it hard to scale.
For the sake of scalability, PeriScope depends on static analysis to
uncover the custom data in advertising packets by resolving the
input value to the dedicated system APIs that are used to customize
corresponding data fields.
Target System APIs. Android provides a variety of system APIs
to customize data carried in advertising packets. Specifically, APIs
that customize service UUID, service data, manufacturer ID, man-
ufacturer data, and device name include addServiceData, add
ServiceUuid, addManufacturerData, and setIncludeDeviceNam
e (the full list is shown in Table 6 in Appendix A).
Resolving Customized Data. PeriScope uncovers the customized
data in advertising packets by resolving the input value to afore-
mentioned system APIs. Unfortunately, not all input values could
be resolved in the way that is as straightforward as the value of
advertisement mode in the example of Hideez Lock (shown in line 2
in Figure 4) which can be resolved directly at place of usage. These
values also could be generated in a similar way as the service UUID
generation processes in Lyft Driver (§3.1) which has gone through
a series of computations. Therefore, PeriScope has to capture all



computations associated to an input value and then repeat these
procedures to resolve its value.

Specifically, PeriScope first leverages FlowDroid [6] and EdgeM-
iner [10] to construct the inter-procedural control-flow graph (ICFG)
that contains both explicit (i.e., direct-call) and implicit (i.e., call-
backs of Android components) edges. Upon the ICFG, its then builds
an inter-procedural data-flow graph (IDDG) where each node repre-
sents an instruction and each edge is a control-flow transfer. Next,
by backward traversing the IDDG, PeriScope traces every input
to target APIs from where it is used to where it is initialized, and
records associated computations of each value. According to the
recorded procedures, for each input value, PeriScope performs the
same computations in the same order (in reverse to the recording or-
der) to resolve each input value.While it can resolve concrete values
of those static one, such as the static service UUID, manufacturer
ID, and boolean value indicating whether to include device name in
advertising packets, it may not produce concrete values if the value
cannot be resolved without real execution (e.g., getDeviceId). In
the latter case, PeriScope collects all related text information in
the corresponding data-flow path such as the name of a variable, a
method, or a class, for the convenience of further analysis in §4.4.

4.3 Revealing GATT Server Configuration
If an app-defined peripheral works as a connectable peripheral,
it has to maintain a GATT server, which can be configured us-
ing relevant system APIs. For example, developers can invoke the
BluetoothGattDescriptorAPI to initiate an instance of a descrip-
tor with specified UUID and permissions. In addition, such an in-
stance can use setValue to store or update its data. In particular,
all APIs like this that initiates an instance of an attribute or places
values in an attribute are of our interest because they could be the
(𝑎) the UUID of an attribute, (𝑏) its permissions, and (𝑐) its stored
values (the full list is presented in Table 7 in Appendix A).
Revealing Configurations. To reveal configurations of a GATT
server, PeriScope has to resolve the input values to the configura-
tion APIs. Similar to resolving input values in APIs that customize
data in advertising packets, PeriScope applies the same algorithm
but focuses on different APIs. Additionally, since the GATT server
may contain several GATT attributes that are labelled by UUIDs
and they are constructed hierarchically, to comprehensively reveal
the server configuration, PeriScope also reconstructs the hierarchy
from the data dependencies among those attributes. That is, an
instance of a GATT service can use addCharacteristic to add
an instance of a GATT characteristic, and an instance of a GATT
characteristic can leverage on addDescriptor to add an instance
of a GATT descriptor. Therefore, by traversing the IDDG, PeriScope
can identify such dependencies and reconstruct the hierarchy.

4.4 Security and Privacy Analysis
Once both the advertising and GATT server configurations have
been uncovered, the final step of PeriScope is to conduct security
and privacy analysis to identify related vulnerabilities. Considering
different data fields may result in different vulnerabilities, either
passive eavesdropping or active MITM, PeriScope designs a series
of policies for their detection.

Passive Eavesdropping Vulnerability Detection. Since a BLE
peripheral broadcasts advertising packets to all nearby devices, the
passive eavesdropping vulnerability focuses on whether such pack-
ets contain sensitive data. Due to the different nature of the data
stored in each customizable field, their vulnerabilities are deter-
mined by different policies.

• Identifiable Service UUID: The service UUID, can be a
static value (i.e., hardcoded value), a dynamic value, or a hy-
brid one. Unfortunately, the static UUIDs could be used for
device fingerprinting [11, 53] (i.e., device identifiable infor-
mation) and the hybrid one could lead to user tracking (§3.1),
i.e., personal identifiable information. Therefore, PeriScope
identifies these two types of identifiable information by in-
specting the generation of each UUID, which is achievable
in the process of advertising value resolution in §4.2.

• Identifiable Device Name: This field carries the name of
a smartphone (i.e., Alice’s Pixel) by default if not been spec-
ified with a customized name. As such, it could be a PII
resulting in identity tracking. To understand which value is
carried in this data field, PeriScope depends on the system
API (i.e., setName) which is used to specify a customized
name. Therefore, PeriScope identifies this vulnerability by
inspecting whether an app has declared to include device
name in advertising packets without invoking this API.

• Sensitive Data in Specific Fields: The two specific data
fields, i.e., advertising data and manufacturer specific data,
are highly customized by each companion app for service
purposes, which makes them possible to carry sensitive data.
Since sensitive data may come from system APIs or app
custom APIs which lack documentation, without loss of
generality, PeriScope identifies this vulnerability if a piece
of data in such fields are from sensitive system APIs (e.g.,
Location.getLatitude).

In addition, in respect of the manufacturer ID which is uniquely
assigned to a specific manufacturer by the SIG and publicly avail-
able, while its security risk is relatively low since there is no known
attacks on it in the literature and in the preliminary study, its usages
will also analyzed in this study because it must comply with the
SIG policy that has not been well studied.
Active MITM Vulnerability Detection. The active MITM vul-
nerability can be detected by resolving the permissions assigned to
each GATT attribute. Both access permission and encryption per-
mission are vulnerable to the active MITM attack. In Android, it as-
signs the access permission to an attribute using PERMISSION_READ
or PERMISSION_WRITE and the encryption permission via assigning
PERMISSION_WRITE_ENCRYPTED or PERMISSION_READ_ENCRYPTED.
Therefore, PeriScope uses these four Android permissions to detect
the corresponding active MITM vulnerability.

In addition, to further evaluate the impact of activeMITM attacks,
it requires to understand the functionality of each weak protected
GATT attribute, and PeriScope uses two strategies for this purpose.
First, PeriScope leverages the UUID to understand the functional-
ity. Since a GATT attribute is assigned with either a standard or a
custom UUID and its usages of standard UUIDs are well defined,
the functionally of an attribute labelled by a standard one can be
understood by checking the documentation of such a UUID. Second,



with respect to the attributes labelled by custom UUIDs, since these
UUIDs are rarely documented, PeriScope intends to depend on the
data generation to infer the functionality of these attributes. While
it had been studied in previous works to infer the meaning of a
data structure from the code through applying natural language
processing (NLP) techniques on the semantics-rich program ele-
ments such as the name of variables, constants, and methods (i.e.,
ClueFinder [28]), the fundamental limitation of such approaches
is the incapability of handling code obfuscation or if there is lim-
ited semantic information, which have been observed prevalently
in peripheral apps. Therefore, PeriScope partially depends on the
system APIs (i.e., getDeviceId) since they are rarely obfuscated.
Moreover, with respect to the data generated from custom methods,
PeriScope requires human experts involvements.

5 EVALUATION RESULTS
5.1 Evaluation Setup

AppCollection.The dataset is built atop the apps that are collected
from AndroZoo [3] by the end of September 2021. While there are
more than 10 million apps available in AndroZoo, many of them
are duplicated and outdated. To filter such duplication, we inspect
the metadata of these apps and found 4 million unique apps based
on their package name. In addition, after cross-checking them with
the Google Play, we finally find 2.4 million apps.
Environment Setup. This study has two parts. First, we use a
server which is quipped with the Intel Xeon E5-2695 CPU with 256
GB memory running Ubuntu 16.04 to collect apps from AndroZoo.
Second, the program analysis is conducted on another server that
is equipped with the AMD EPYC 7251 CPU with 128 GB memory
running Ubuntu 18.04.

Item Value

App Defined Bluetooth Peripherals 1,160
Google Play Categories 28
Advertising Packets Customization

Service UUID 802
Service Data 228
Manufacturer ID & Data 501
Device Name 650
Connectivity 662
GATT Servier Configuration

Service 786
Characteristic 1,266
Descriptor 486

Table 1: Overall Statistics of Experimental Results.

5.2 Overall Results
We present the overall results of our analysis in Table 1. In total,
PeriScope has identified 1,160 AdBP companion apps. Specifically,
there are 802 apps that broadcast static or hybrid service UUIDs,
228 app that also place service Data in advertising packets, 501 apps
that contain manufacturer IDs and manufacturer specific data in
their advertising packets, and 650 apps that broadcast their device
names. Moreover, it has also identified 662 apps that allow other

devices to connect. In addition, the GATT servers of these apps
contain 786 services, 1,266 characteristics, and 486 descriptors.

5.3 Ecosystem Analysis
Based on our best knowledge, this paper is the first study to sys-
tematically analyze the mobile app-defined Bluetooth peripherals
at scale. As such, we would like to present a measurement study
on the current ecosystem. To this end, we need to combine the
metadata of the corresponding apps and the results from program
analysis. At a high level, our ecosystem analysis involves the app
distribution and the involved manufacturers.
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Figure 6: Distribution of the Apps that define BLE peripherals.

App Distribution. First, we use the metadata of apps to under-
stand their distribution based on the category provided by Google
Play. As presented in Table 1, 1,160 apps in our dataset come from
28 categories, and Figure 6 shows their distributions according
to the number of apps in a category, which highlights categories
accounting for more than 2.5% and puts the rest in “others”. In
particular, the top 5 categories are “Tools” (193), “Lifestyle” (104),
“Education” (101), “Health” (99), and “Business” (86). Additionally,
there are another two categories “Productivity” (76) and “Travel”
(71) that contain more than 5% apps. In addition to the categories
shown in Figure 6, there are 8 categories that contain less than 1%
apps, such as “Shopping”, “Dating”, and “Parenting”.

Manufacturers

Ericsson Nokia Intel Qualcomm
IBM Microsoft ST Micro. Syntronix
MediaTek Marvell Apple Avago
Nordic MiCommand Band XI Zomm
Belkin Quuppa Typo Pro. Swipp
Samsung Nike Alpwise ARP
Quuppa Oy Google Comodule GMBH. Unikey
Disney WiSilica Trividia Typo
Enlighted LINKIO SAS BlueUp Xiaomi
Huawei Currant Bestechnic Powercast
Grundfos MEGA-F LEMONJOY Withings
Frogblue MIWA LOCK Engineered Audio OnAsset
Minew SmartAction Intellithings Noodle
Wernher von Braun Center for ASdvanced Research Kroger
Automotive Data Solutions Inc Seitec Elektronik LG
Bruel & Kjaer Sound & Vibration GL Solutions K.K.

Table 2: List of Manufacturer Associated with Indentified IDs.

Participated Manufacturer. A manufacturer can be identified by
its manufacturer ID, which is a unique number assigned by the
Bluetooth SIG. To understand how many manufacturers have been



involved in this ecosystem, we first convert the manufacturer ID
uncovered from an app to the company to which such an ID belongs
according to the public database provided by Bluetooth SIG [32].
In total, we have identified 61 manufacturers (shown in Table 2).

Unfortunately, we also noticed a severe manufacturer ID abuse
problem. A manufacturer ID is uniquely assigned to a manufacturer
by the Bluetooth SIG, manufacturers can temporarily use the pre-
served ID (i.e., “65535”) for internal testing when their requested
IDs have not been assigned. In particular, the preserved ID is also
disallowed to appear in shipping products [32]. By comparing the
developer information of an app and the company associated with
its used ID, we have identified three types of manufacturer ID
abuses: (𝑎) using manufacturer ID assigned to other companies, (𝑐)
using an assigned ID, and (𝑏) using the preserved one for internal
usages in the shipping product.

Specifically, our analysis has revealed that 351 out of 501 apps
that include manufacturer ID in their advertising packets actually
abuse such ID usages. As shown in Table 3, in total, we have iden-
tified 98 unique manufacturer ID from 501 apps that place this ID
in their advertising packets. In particular, we only identified 28
apps that are developed by ID compliant manufacturers (20 in total)
such as Samsung, Huawei, and Xiaomi use their own manufacturer
ID. In addition, we also discovered 129 apps use the ID of Apple
(i.e., “76”) in order to comply with the iBeacon protocol [5]. Finally,
(𝑎) there are 91 apps use IDs that have not been assigned to any
manufacturer, (𝑏) 243 apps that are developed by the groups that
are inconsistent to the companies to which their manufacturer ID
belongs, and (𝑐) 17 apps that use the preserved ID for temporary
testing in shipping products.

5.4 Security Analysis
5.4.1 Passive Eavesdropping Vulnerability Analysis. According to
the detection policies in §4.4, there are four data fields in the ad-
vertising packets will be evaluated to understand the impacts of
the passive eavesdropping vulnerability, i.e., service UUID, service
data, manufacturer specific data fields, and device name.
(I) Identifiable Service UUID. This study has identified that a
service UUID can be a piece of device identifiable information or
personal identifiable information. Specifically, in respect of being a
piece of device identifiable information, in total, we have identified
799 apps that broadcast static service UUIDs. Based on previous
studies [11, 53], these apps are vulnerable to device fingerprinting
attacks. On the other hand, there are 3 apps that broadcast per-
sonal identifiable service UUIDs, all of which have been verified by
manually code reviewing. In particular, Sendai Broadcasting and
ORIGOSafeDriver commit the same mistake to that in Lyft Driver
(in §3.1) that generate their service UUID by concatenating a fixed
string value to the user ID.
(II) Identifiable Device Name. There are 537 apps that put the
custom phone name in device name field in advertising packets.
These device names can be used as personal identifiable information
for user identification and tracking.

5.4.2 Active MITM Vulnerability Analysis. As shown in Table 4,
we summarize the type of service and the security permissions
(i.e., read and write) that assigned to characteristics and descriptors.

Item Value

Peripherals w/ Manufacturer ID 501
Unique Manufacturer ID 98
Legitimate Usage

Compliant ID Usage 28
Protocol Usage 129
Abuse Usage

Incompliant ID Usage 243
Unassigned Manufacturer ID 91
Internal Manufacturer ID 17

Table 3: Experimental Results of Manufacturer ID Abuse.

Specifically, most of service (98.73%) are declared as primary ser-
vice. Surprisingly, we found that the majority of both characteristics
and descriptors is configured with access permission. In particular,
94.44% characteristics as well as 96.59% descriptors are only spec-
ified with read permission without further security requirement,
and 94.78% characteristics along with 94.71% descriptors declare
the lowest security level of the write permission. With respect to
these vulnerable attributes, we further investigate them based on
their functionality to identify whether they contain sensitive data.

We first inspect whether sensitive data generated from system
APIs has been contained in attributes with access or encryption
permission, and we have not identified a single case. Therefore, we
next need to manually analyze these apps to identify whether their
not well-protected attributes contain any sensitive data. While we
wish to confirm all improper access controls on sensitive data for
all apps, this turns out challenging because of the missing docu-
mentation, the limited information available in the app, and limited
man power. Instead, we primarily focus on the apps belong to the
top 5 categories and present the details of the top 5 apps in each of
these categories in Table 5 with our best understanding.

Access Permission

Attribute Total P S Ac. En. Au.
Service 786 776 10 — — —

Characteristic 1,266
R 990 — — 935 28 27
W 760 — — 721 19 20

Descriptor 486
R 440 — — 425 12 3
W 473 — — 448 12 13

Table 4: Evaluation of GATT Attribute Configurations: P for pri-
mary, S for secondary, R for read,W for write, Ac. for access, En. for
encryption, and Au. for authentication.

VulnerableAttributesWith StandardUUIDs.Our analysis have
discovered 11 service, 30 characteristic, and 6 descriptor that are
labelled by standard UUIDs. After reviewing their functionality, we
have identified that many of them contain insensitive data, such
as current time (the full list of the identified standard UUIDs are
presented in Table 8 in Appendix A). We have identified 3 stan-
dard services and their associated 6 characteristics are privacy
sensitive. Specifically, these sensitive services and characteristics



include (𝑖) Running Speed and Cadence (RSC) (0x1814) service that
contains two characteristics: RSC Measurement (0x2A53) and RSC
Feature (0x2A54), (𝑖𝑖) Heart Rate (0x180D) service that contains
Heart Rate Measurement (0x2A7A), and (𝑖𝑖𝑖) Cycling Speed and Ca-
dence (CSC) (0x1816) service that contains three characteristics:
CSC Measurement (0x2A5B), CSC Feature (0x2A5C), and Sensor Lo-
cation (0x2A5D). In addition, these sensitive attributes belong to
two apps in the “Health” category. Specifically, as shown in Table 5,
one app contains two services: the RSC and Heart Rate, which al-
lows any connected centrals to the running speed and hear rate
of the user, and another app provides the CSC service allowing a
connected device to access the cycling data, which includes the
wheel and crank revolution.
Vulnerable Attributes With Custom UUIDs. Unlike standard
UUIDs, customUUIDs are rarely documented. As such, wemanually
review the code to understand the service and functionality these
attributes provide. As shown in Table 5, there are 7 apps that put
identifiers in a vulnerable characteristic that is subject to device and
user identity recognition, 7 apps that store app specific commands
that should be well protected as business secrets, 7 apps can leak a
variety types of private information (i.e., communication messages,
personal preferences, fitness data, email address, and WIFI ssid and
password), and the rest 4 apps could leak the credentials related to
their safety. Specifically, while there are overlaps, apps from differ-
ent categories manage different types of data. In particular, apps
from the category of “tools” could store digital keys to open doors
or unlock accounts, education apps would contain the digital iden-
tifiers for class attendance check-in, apps monitoring health and
fitness record related private data, and apps from the rest two cate-
gories manage their application specific data such as configuration
metadata and private commands to retrieve desired data.

6 DISCUSSION
6.1 The Good, The Bad, and The Ugly
Mobile operating systems (e.g., Android) provide a number of sys-
tem APIs for an AdBP companion app to flexibly define a Bluetooth
peripheral. The good aspect of this practice is that mobile operating
systems take over the configuration of the link layer information in
the advertising packets including the automatic rotation of MAC ad-
dress, which is usually a fixed value in firmware defined Bluetooth
peripherals leading to tracking vulnerabilities. On the other hand,
AdBP developers have not been found in this study to mistakenly
place sensitive data in the fields for specific data in advertising
packets (i.e., service data and manufacturer specific data), which
has also been partially verified by manually inspecting the apps
belong to the top 5 categories with our best understanding.

Unfortunately, it also impedes the secure development for mo-
bile operating systems to entirely handle some critical security
enforcement processes (e.g., negotiating the pairing and bonding
policy) in the link layer. While this implementation may ease the
development effort, AdBP companion apps cannot enforce secure
pairing policies and expose themselves to the MITM or downgrade
attack [51] if forcing the “Just Works” pairing policy by connect-
ing devices. Moreover, it may also let developers entirely neglect
the potentials risks resulted from such processes. In this study, it
has been identified that around 95% pieces of data stored in GATT

U. Type Opr. Perm.

Cat. App Name St. Cu. R W No. En. Au. Sensitive Data

To
ol
s

T1 #     # # Door unlock key
T2 #     # # Door unlock key
T3 #     # # Device control commands
T4 #   #  # # WIFI SSID and password
T5 #   #  # # User accounts unlock keys

Ed
uc
at
io
n E1 #   #  # # User check-in ID

E2 #   #  # # User check-in ID
E3 #   #  # # User check-in ID
E4 #   #  # # Personal preferences
E5 #   #  # # Personal preferences

Li
fe
st
yl
e L1 #     # # Device control commands

L2 #     # # Vehicle diagnostics commands
L3 #     # # Vehicle diagnostics commands
L4 #     # # Vehicle diagnostics commands
L5 #     # # Vehicle diagnostics commands

H
ea
lth

Aarogya Setu #   #  # # Contact tracing User ID
H2 #   #  # # Communication Tokens
H3 #   #  # # Device control Commands
H4  #  #  # # Fitness data
H5  #  #  # # Fitness data

Bu
sin

es
s B1 #   #  # # User ID

B2 #   #  # # IoT device ID
B3 #   #  # # User ID
B4 #   #  # # Configuration metadata
B5 #   #  # # Private messages

Table 5: Evaluation of Improper Access Control of Top App-
Defined Bluetooth Peripherals: Cat. for category, U. Type ofr UUID
type, St. for standard, Cu. for custom, Opr. for operation, R for read,
W for write, Perm. for access permission, No. for no protection, En.
for encryption protection, and Au. for authentication protection.

attributes are subject to the active MITM attack, some of which
have been found leaking sensitive data including but not limited to
personal health data, digital identifiers of users, and even digital
keys to unlock doors.

On the other hand, while turning mobile phones as Bluetooth pe-
ripherals can provide a variety of services, developers may need to
double-thought whether it is necessary for this implementation. In
particular, an arbitrary usage of such a functionality may interfere
the normal functionality of other apps since only one app is allowed
to function at each time. Moreover, a large number of developers
have been identified to violate the manufacturer ID usage policy.

6.2 Limitations and Future Works
Though PeriScope has identified a great number of vulnerabilities
in app-defined Bluetooth peripherals, it still has limitations that
require further improvements. First, its program analysis focuses
on system APIs at the Java bytecode level, and thus may miss the pe-
ripherals that are defined using other techniques such as JavaScripts
in WebViews, which might raises false negatives. Therefore, one fu-
ture work to extend the ability to cover additional implementations
using other sets of APIs. Second, while PeriScope can automatically
identify many types of sensitive data such as static UUIDs and the
custom name of the phone, it still requires manual efforts to identify
certain cases such as recognizing the types of data that are placed
in GATT characteristics and descriptors. As such, another future
work is to explore the feasibility to use machine learning expertise
to automatically recognize the functionality of a custom UUID.



6.3 Ethics and Responsible Disclosure
We take ethics seriously and only launch such attacks on our own
devices for the proof of concept prove purposes and never intend
to exploit any vulnerability on other users’ devices.
Responsible Disclosure. We immediately contacted developers
of the vulnerable apps according to their contact information pro-
vided in Google Play. At the time of this writing, we have received
confirmation and bug bounty from Lyft. We will keep in touch with
developers and coordinate with them to fix our identified vulnera-
bilities. In addition, names of vulnerable apps are redacted unless
being fixed or unavailable in Google Play.

6.4 Guidelines Of Secure AdBP Development
This study is motivated by a wish to identify the potential vulnera-
bilities and prevent associated severe security and privacy impacts
in the emerging category of AdBP applications at their early stage.
In order to improve the security of these applications, we propose
a set of guidelines for secure AdBP development.
Excluding Identifiable Information.This study has identified a
large number of AdBP companion apps carrying either device or
personal identifiable information, or both. In any case, it has been
demonstrated to result in privacy leakages. In fact, fields in adver-
tising packets containing such sensitive identifiable information
are entirely customized by developers. Therefore, the guideline for
AdBP secure development is to exclude any identifiable information
in advertising packets, especially being in cleartext.
Assigning Appropriate Permissions.Another common mistake
made in the process of development that is identified in this empir-
ical study is that the vast majority of GATT attributes have been
assigned no protection and a small portion of the rest attributes has
been assigned with encryption permission. Unfortunately, either of
these two protection exposes pieces of sensitive data (if they were)
stored in an attribute to attackers. As such, another guideline in
secure AdBP development is that always assign the highest level of
security permission (i.e., authentication permission in Android) to
GATT attributes that might store sensitive pieces of data. Further
to this, developers should be careful when assigning read and write
permissions to attributes, as these may not always be necessary for
the required functionality.
Enforcing Secure Pairing Policies. While it eases the develop-
ment of an AdBP that the mobile operating system handles the
pairing and bonding procedure including the exchange of I/O infor-
mation to negotiate paring protocol, priori work has demonstrated
that this mode is subject to the downgrade attack [51]. This attack
not only shows the ineffectiveness of encryption permission in
certain circumstances but also indicates an additional requirement
for secure development: enforcing secure pairing policy before any
access to any GATT attribute, if at least one attribute might contain
sensitive information.

7 RELATEDWORK

BLE and IoT Security. There has been a large body of works
that analyze BLE vulnerabilities in IoT devices. Some of them fo-
cus on vulnerabilities in the protocol, such as leaking credentials

in the pairing procedure [16] and the unencrypted channel [50],
eavesdropping vulnerability in the passkey pairing protocol in
both BLE 4.0 and 4.1 [30], bruce-force attacks on the long term
key [49], reusable passkey to break the Passkey Entry paring pro-
cedure [35, 37], enforceable insecure pairing methods [51], and the
consequent privacy violations [12, 20] . In addition, some other
works also focus on vulnerabilities in BLE-enabled IoT devices
with conclusions that most wearable devices are subject to privacy
disclosure [15], IoT devices are subject to the misconfiguration of
privileges [21, 24, 45], unchanged MAC addresses [9, 17, 45], and
fingerprintable static UUIDs [11, 45, 53]. In addition, many efforts
also focus on other attack surfaces may also compromise Bluetooth
in smartphones, such as AT commands [25, 40], reconnecting be-
tween two paired devices [47], and interactions between OS [48]
and co-located apps [36]. Unlike works analyzing security in BLE
protocols and IoT devices, our study focuses on the security and
privacy in app-define Bluetooth peripherals.
MobileAppsAnalysis.There is a large body ofworks that analyze
mobile apps to identify vulnerabilities using static or dynamic anal-
ysis. For example, TaintDroid [19] uses taint analysis dynamically
to identify user privacy data leakages. With respect to the static
analysis, Flowdroid [6] and Amandroid [44] are designed to track
security-related data flows to identify data leakage, WARDroid [27]
and Extractocol [14] target at network relevant data flows to identify
related issues, and PlayDrone [43] is capable of extracting static se-
cret keys to analyze vulnerabilities in cloud-based services. Comple-
mentary to these works, we use static analysis to uncover link layer
configurations of a Bluetooth peripheral defined by mobile apps.
Contact Tracing Analysis. Contact tracing apps can turn a smart-
phone into a Bluetooth peripheral, and there are several works [26,
34, 38, 46, 52] that present empirical studies inspecting the privacy
issues in these apps. Additionally, some efforts also provide in-depth
studies on specific apps. For instance, Cho et al. [13] focus on Trace-
Together and Veale [42] targets the NHS COVID-19 App. Compared
to previous works that primarily analyze privacy problems in a
relatively small set of apps, our study focuses on the security and
privacy practice in app-defined Bluetooth peripherals at scale.

8 CONCLUSION
This paper presents PeriScope, an automated tool that unveils the
security and privacy vulnerabilities at the link layer of mobile app-
defined Bluetooth peripherals. Specifically, it introduces a series
of automated program analysis techniques in precise recognition
of companion apps, accurate program value resolution to uncover
their link layer functionality implementations, and effective vulner-
abilities identification. PeriScope has recognized 1,160 Bluetooth
peripheral apps from Google Play, and identified 69.13% of them
that broadcast device or personal identifiable information in cleart-
ext and 95% pieces of data stored in all recognized apps that can be
accessed by any connected devices without authentication, which
leads to sensitive data leakages. In addition, it also discovered a se-
vere manufacturer ID abuse in current ecosystem violating the asso-
ciated usage policy. Finally, a set of guidelines for secure app-defined
Bluetooth peripheral development is provided with the hope of pre-
venting the potential severe security impacts at the early stage.
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A APPENDIX

Class Name Method Name Parameters

setAdvertiseMode int advertiseMode

AdvertiseSettings setConnectable boolean connectable

.Builder setTimeout int timeoutMillis

setTxPowerLevel int txPowerLevel

addManufacturerData int manufacturerId,
byte[] manufacturerSpecificData

addServiceData ParcelUuid serviceDataUuid,
AdvertiseData byte[] serviceData

.Builder addServiceUuid ParcelUuid serviceUuid

setIncludeDeviceName boolean includeDeviceName

setIncludeTxPowerLevel boolean includeTxPowerLevel

Table 6: List of System APIs to Configure BLE Advertising

Class Name Method Name Parameters

BluetoothGattServer addService BluetoothGattService service

BluetoothGattService
<init> UUID uuid, int serviceType

addCharacteristic BluetoothGattCharacteristic ch

addService BluetoothGattService service

BluetoothGattCharacteristic

<init> UUID uuid, int properties,
int permissions

addDescriptor BluetoothGattDescriptor desc

setValue String value

setValue int value, int formatType,
int offset

setValue byte[] value

setValue int mantissa, int exponent,
int formatType, int offset

BluetoothGattDescriptor <init> UUID uuid, int permissions

setValue byte[] value

Table 7: List of System APIs to Configure GATT Server

A.1 Android System APIs Configuring AdBP
Android provides a set of system APIs for developers to configure
an AdBP . In particular, an AdBP and other types of BLE peripherals

can work in two modes to provide services. One is to work as a non-
connectable device (i.e., beacon) and the other one is to function as
a connectable device. Similar to normal BLE peripherals, an AdBP
should be able to work in two modes as well. In this regard, as
shown in Table 6, Android system APIs allow Android developers to
configure (𝑎) broadcasting behaviors (for beacons) and (𝑏) the GATT
server (for connectable peripherals). In addition, as mentioned in
§4.3, an AdBP also uses system APIs to construct the hierarchy. The
full list of these APIs are shown in Table 7.

Attri. UUID Semantic

se
r v
ic
e
U U

ID

00001802-0000-1000-8000-00805F9B34FB Immediate Alert
00001805-0000-1000-8000-00805F9B34FB Current Time Service
0000180A-0000-1000-8000-00805F9B34FB Device Information
0000180F-0000-1000-8000-00805F9B34FB Battery Service
00001814-0000-1000-8000-00805F9B34FB Running Speed and Cadence
0000180D-0000-1000-8000-00805F9B34FB Heart Rate
00001800-0000-1000-8000-00805F9B34FB Generic Access
00001812-0000-1000-8000-00805F9B34FB Human Interface Device
00001816-0000-1000-8000-00805F9B34FB Cycling Speed and Cadence
00001818-0000-1000-8000-00805F9B34FB Cycling Power
00001826-0000-1000-8000-00805F9B34FB Fitness Machine

ch
ar
ac
te
ris

tic
UU

ID

00002A28-0000-1000-8000-00805F9B34FB Software Revision String
00002A29-0000-1000-8000-00805F9B34FB Manufacturer Name String
00002A2B-0000-1000-8000-00805F9B34FB Current Time
00002A0F-0000-1000-8000-00805F9B34FB Local Time Information
00002A24-0000-1000-8000-00805F9B34FB Model Number String
00002A25-0000-1000-8000-00805F9B34FB Serial Number String
00002A26-0000-1000-8000-00805F9B34FB Firmware Revision String
00002A06-0000-1000-8000-00805F9B34FB Alert Level
00002A19-0000-1000-8000-00805F9B34FB Battery Level
00002A23-0000-1000-8000-00805F9B34FB System ID
00002A53-0000-1000-8000-00805F9B34FB RSC Measurement
00002A54-0000-1000-8000-00805F9B34FB RSC Feature
00002A7A-0000-1000-8000-00805F9B34FB Heart Rate Measurement
00002A2A-0000-1000-8000-00805F9B34FB IEEE 11073-20601
00002A4A-0000-1000-8000-00805F9B34FB HID Information
00002A4B-0000-1000-8000-00805F9B34FB Report Map
00002A4C-0000-1000-8000-00805F9B34FB HID Control Point
00002A4D-0000-1000-8000-00805F9B34FB Report
00002A5D-0000-1000-8000-00805F9B34FB Sensor Location
00002A63-0000-1000-8000-00805F9B34FB Cycling Power Measurement
00002A65-0000-1000-8000-00805F9B34FB Cycling Power Feature
00002A76-0000-1000-8000-00805F9B34FB UV Index
00002A00-0000-1000-8000-00805F9B34FB Device Name
00002A01-0000-1000-8000-00805F9B34FB Appearance
00002A02-0000-1000-8000-00805F9B34FB Peripheral Privacy Flag
00002A03-0000-1000-8000-00805F9B34FB Reconnection Address
00002A04-0000-1000-8000-00805F9B34FB Peripheral Pref. Conn. Para.
00002A05-0000-1000-8000-00805F9B34FB Service Changed
00002A08-0000-1000-8000-00805F9B34FB Date Time
00002A09-0000-1000-8000-00805F9B34FB Day of Week
00002A0A-0000-1000-8000-00805F9B34FB Day Date Time
00002A0C-0000-1000-8000-00805F9B34FB Exact Time 256
00002A31-0000-1000-8000-00805F9B34FB Scan Refresh
00002A38-0000-1000-8000-00805F9B34FB Body Sensor Location
00002A4E-0000-1000-8000-00805F9B34FB Protocol Mode
00002A4F-0000-1000-8000-00805F9B34FB Scan Interval Window
00002A55-0000-1000-8000-00805F9B34FB SC Control Point
00002A5B-0000-1000-8000-00805F9B34FB CSC Measurement
00002A5C-0000-1000-8000-00805F9B34FB CSC Feature

de
cr
ip
to
rU

UI
D 00002902-0000-1000-8000-00805F9B34FB Client Char. Configuration

00002901-0000-1000-8000-00805F9B34FB Char. User Description
00002900-0000-1000-8000-00805F9B34FB Char. Extended Properties
00002904-0000-1000-8000-00805F9B34FB Char. Presentation Format
00002908-0000-1000-8000-00805F9B34FB Report Reference
00002907-0000-1000-8000-00805F9B34FB External Report Reference

Table 8: Uncovered Standard UUIDs.

A.2 Uncovered Standard UUIDs in AdBP
This paper has discovered 11 service, 30 characteristic, and 6 de-
scriptor that are labelled by standard UUIDs. These UUIDs as well
as their semantics are listed in Table 8.

https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
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