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ENERGY-STABLE NUMERICAL SCHEME FOR THE Q-TENSOR
FLOW OF LIQUID CRYSTALS*
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Abstract. We present a fully discrete convergent finite difference scheme for the Q-tensor flow of
liquid crystals based on the energy-stable semidiscrete scheme by Zhao et al. [Comput. Methods Appl.
Mech. Engrg., 2017, pp. 803-825]. We prove stability properties of the scheme and show convergence
to weak solutions of the Q-tensor flow equations. We demonstrate the performance of the scheme in
numerical simulations.
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1. Introduction. Liquid crystals constitute a state of matter that is interme-
diate between solids and liquids. On one hand, they have properties that are typical
for fluids—in particular they have the ability to flow—and on the other hand, they
exhibit properties of solids—as an example, their molecules are oriented in a crystal-
like manner. A common characteristic of materials exhibiting a liquid crystal phase
is that they consist of elongated molecules of identical size. They may be pictured as
“rods” or “ribbons” and are subject to molecular interactions that make them align
alike [11].

Liquid crystals play an important role in nature: As an example, phospholipids,
which constitute the main component of cell membranes, are a form of liquid crystal.
They also appear in many daily applications, such as soaps, shampoos, and deter-
gents. Further applications include displays of electronic devices (LCD), where one
makes use of the optical properties of liquid crystals in the presence or absence of an
electric field, thermometers, optical switches [6, 16], and biotechnological applications.
One generally distinguishes three types of liquid crystals: nematics, cholesterics, and
smectics. We focus here on the numerical discretization of a liquid crystal model for
nematic liquid crystals, the so-called Q-tensor model.

1.1. Q-tensor model. In the Q-tensor model by Landau and de Gennes [5],
the main orientation of the liquid crystal molecules is represented by the Q-tensor, a
symmetric, trace-free matrix that is assumed to minimize the Landau—de Gennes free
energy

Erc(Q) = /Q]:B(Q) + Fe(Q)

in equilibrium situations. Here Q € R%, d = 2,3, is the spatial domain occupied by
the liquid crystal molecules, Fp is a bulk potential, and F is the elastic energy given
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by
a 2 b 3 c 2112
Fp(Q) = 5“"(@ ) — gtl"(Q )+ Z(tY(Q )7
d
Fe(@Q) = %WQ\Q + %| div Q[ + % 0;Q 10k Q s,
i k=1

where a, b, ¢, L1, Lo, L3 are constants with ¢, L1, Lo, Lz > 0.
Nonequilibrium situations can be described by the gradient flow [1, 9],

0Qij

ot
(1.1)

Lo+ Ls
2

d d
2

E (0ikQjk + 0k Qir) — g E OreQredij

=1 k=1

=M (LIAQij +

where M > 0 is a constant, and one approach to obtaining equilibrium states is to
follow this gradient flow. Adding the dynamics of the mean flow of the liquid crystal
fluid to this, one obtains the Beris—Edwards system [2].

Analysis of the Q-tensor flow has been done (e.g., [7, 4, 15]), and numerical
methods for the Q-tensor flow have been constructed in [17, 10, 8, 13]. To the best
of our knowledge, none of these methods has been shown to be convergent to a weak
solution of (1.1). An exception is the work by Cai, Shen, and Xu [3], where under the
assumption of smallness of the initial data, convergence of a time discretization in two
dimensions (2D) is proved. Our goal is to show convergence to weak solutions of a
fully discrete method for (1.1) in 2D and 3D under only the natural assumption that
the initial energy is bounded. Our numerical method is based on the invariant energy
quadratization idea by Zhao et al. [17], which we combine with a finite difference
discretization in space.

This method takes as a basis the reformulation of the Q-tensor flow using the
auxiliary variable r:

(12) "@Q) = \/ 2 (5 (@) - § (@) + 5@ + 4 ).
where Ag > 0 is a constant ensuring that r is positive. Defining
(13 5(Q) = aQ 1 |Q* — Jur(@)1] + en(@)e
it follows that

or(@Q) _ 5@ _
(1.4) 50 Q) P(Q)

for symmetric, trace free tensors (). Then one can formally write the gradient
flow (1.1) as a system for (Q,r):

Ly + L3
-

(150) Q=M <L1AQ Lt

(1.5b) re = P(Q) : Qr,

Q - rP<Q>) — MH,
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where

d
2
(0ikQjk + 0k Qir) — p Z Ot Qredij -

1 k=1

M=

a(Q)ij =

~
Il

It is easy to see that this reformulation comes with a formal energy law: Multiplying
the first equation (1.5a) with —H and (1.5b) with r, adding and integrating, and
integrating by parts, we obtain

d1

(1.6) = 5/ (Li|VQP + (L2 + L3)| divQ[* + r°) dz = —M/ |H|?d.
Q Q

In [17], a time discretization of the system (1.5) is proposed that retains a discrete
version of the energy law (1.6). Based on this prior work, we propose a fully discrete
finite difference method for (1.5) and prove its convergence to weak solutions of (1.5)
as defined in Definition 2.3.

We then proceed to showing that weak solutions of (1.5) are in fact weak solutions
of (1.1) and so achieve convergence to the original system (1.1). To the best of our
knowledge, this is the first convergence proof for a fully discrete numerical scheme
discretizing (1.1). The proof is based on the derivation of discrete energy stability
of the fully discrete scheme, then using this to derive the existence of a precompact
sequence that allows us to pass to the limit in the approximations. We proceed to
showing Lipschitz continuity of the function P and use a Lax—Wendroff type argument
to show that the limit of the approximating sequence is a weak solution of (1.5). The
last step is to show that weak solutions of (1.5) are in fact weak solutions of (1.1).
We achieve this through showing that a weak form of the chain rule holds in this case.
We conclude with numerical experiments in 2D. Our scheme and analysis is for the
three-dimensional case but adaptations to 2D can be made easily.

2. Preliminaries.

NOTATION 2.1. We introduce the following gemeral notation for matriz-valued
functions A, B : R% — R4x4;

d
A N B = Zi,j:l AijBij7
(A,B) = [, A: Bdz,
|A| :2: [Alrp =VA: A,
[Allz2 = [y |Al} d=,

&A = (aiAjk)jk, 81 = aﬂcw
VA= (04,...,0;A),
VA2 =YL 0:Al2,
IVA|7. = [ I VAP da.

We assume © C R? is a bounded, connected domain with Lipschitz boundary and
Qo : Q@ — R ¢ (H1(Q))4*4 takes values in the symmetric trace-free d x d matrices
and satisfies Qoly, = 0. Fix T' > 0 an arbitrary time horizon. We then define weak
solutions of (1.1) as follows.

DEFINITION 2.2. By a weak solution of (1.1), we mean a function @ : [0, T]xQ —
RI*4 that is trace-free and symmetric for every (t,z) and satisfies

QGLOO(OaT;Hl(Q))v QtELQ([OaT] XQ)?
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and
T
/ Q : Oypdadt — | Q(T,z) : o(T,z)dx+ | Qo(x): p(0,z)dx
0o Ja Q Q
T d
:M/ / Ly Z VQij - Vi
0o Ja Pyt
(2.1)
d
Lo+ L 2
+ =2 3 > Z (aijkaiSOij + 0k Qir0jpi5 — daiQkiak@jj) dxdt
i k=1

+ M/OT/Q <aQ —b <(Q2) - é tr(Q2)1> + ctr(Q2)Q> s pdrdt

for all smooth ¢ = (pij)§ ;=1 : [0,T] x Q — R4 that are compactly supported within

d
1,]=
QO for almost every t € [0,T]. Furthermore, Q satisfies the energy inequality

1

(2.2) §/QL1|VQ(t,x)|2+(L2+L3)|din(t7x)|2+2}'B (Ot 2)) da

1 t
< 5/L1|VQO|2+(L2+L3)|dino|2+2JTB (Qo) dx—M/ /|H(s,x)|2dmds
Q 0 Q

for every t € [0,T].
Similarly, we define weak solutions of the reformulation (1.5).

DEFINITION 2.3. By a weak solution of (1.5), we mean a pair of functions Q :
[0,T] x Q = R and r: [0,T] x @ — R, with Q(t,z) trace-free and symmetric for
every (t,x), and satisfying

Q€ L0, T; HY(Q)), Q¢ L2([0,T] x Q), r€ L¥(0,T; L*(Q))

and
T
/ / Q : Oypdadt — / Q(T,x) : (T, x)dx —|—/ Qo(z) : ¢(0,x)dx
0o Ja Q Q
T d
=M/ / L1 Y VQij- Vi
0o Ja =
(2.3)
d
Lo+ L 2
+ 2 5 2 Z <aijkai<Pij + 0k Qir0jpi5 — d@'Qkﬁk%’j) dxdt
ig, k=1
T
+ M/ / rP(Q) : ¢ dxdt,
0o Ja
and

(2.4)

T T
/0 /quﬁtdacdt—/ﬂ r(T,z)p(T, x)dx—i—/ﬂ ro(z)p(0, z)dx = —/0 /QP(Q) : Q¢ ¢ dadt,
where ro = 1(Qo) and P(Q) is defined in (1.4) for all smooth p = (goij)f)j:l [0, 77 x

Q — R and ¢ : [0,T] x Q — R that are compactly supported within Q for every
t € [0,T]. Furthermore, (Q,r) satisfies for a.e. t € [0,T] the energy inequality

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/20/22 to 128.2.149.108 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2154 V. M. GUDIBANDA, F. WEBER, AND Y. YUE

(2.5) %/QLl|VQ(t,x)|2+(L2+L3)|din(t,x)|2+\r(t,x)|2dx

1 t
< 5/L1|VQO\2+<L2+L3>|dino|2+|r0|2dgc—M/ / H (s, 2)[2 dz ds.
Q 0 Q

3. The numerical scheme. We start by introducing notation to define our
numerical scheme. We let At > 0 be a time step size and t" := nAt time levels at
which we intend to compute approximations. For the ease of notation, we present
the scheme for the case Q = [0,1]® and h > 0 is a uniform grid size in each spatial
dimension. Extensions to square prisms of different side lengths and nonuniform
grid sizes are not hard but notationally cumbersome, and therefore we restrict our
analysis to the cube in R3 and uniform mesh sizes. The two-dimensional case can
easily be derived from the three-dimensional scheme presented here. We let x;;, =
(x4, Y5, 25) = (ih, jh, kh) be grid points, 4, j,k =0,...,N+1, with N+1=1/h e N.
For approximations ( fijk)f.\;,j:lo on this grid, we define the averages

n+1 n
n+d _ Tige T f " +3 3. 1,
)

fije? = - 5 = 5lijk — ifijk;
and difference operators
(3.1)
nt1 _ n
+m ijk ijk
Détae ="K
n _ fn fn _ fn n _ fn
pE o g iEgk T gk pen JijELk wk  pEgn g Jigkl ijk
1 Jijk — ’ 2 Jijk — ’ 3 Jijk — ’
h h h
n n n n n n
Defn gk~ Jis1gn Defn - fiie = Fl-an Do — Jiier — i e
1Jigk 2%h ) 2Jigk 2%h ’ 3Jijk 2%h

for i,5,k =1,...,N. We will also need the discrete gradient, Laplacian, and diver-
gence operators:

Vi fiik = (DY fijhs D5 fiji, DE fisn) T

3 3
Anfise =Y DaDE fiji,  (diva fizr)s = Y DSfijk)ap,
a=1 a=1
where (fijk)ap is the (o, §)-entry of the 3 x 3-matrix f;;,. We approximate the initial
data using cell averages,

1 1

ijk = 33 /Cijk Qo(z)dz, Tijk = ﬁ/c r(Qo(z))dz, i,5,k=1,...,N,

where C;;, = [x; — 0.5k, z; + 0.5h) x [y; — 0.5k, y; + 0.5h) x [z — 0.5k, 21, + 0.5h), for
Zijk = (¢4,Yj, 2x), and use Dirichlet boundary conditions

(3.2)

Qojk=OQnNt14k= Qiokr = Qint1k = Qijo=Qijny1 =0, i,5,k=0,1,..., N, N+1.

For ease of notation throughout, we will also impose boundary conditions on ghost
nodes

(3.3) Q-1jk=QNt2,jk = Qi—1.k = QiNt2.k = Qij—1 = Qijny2 =0,
i j k=01, N,N+1.

ijk
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We then propose the following method:

+ _ +3 n+2 "+2 L2+L3 n+ n+2
(3.4) Dy Quk_ (LlAhQUk ~ Tijk Piji” + gk MHka ’
’ n+1 n+2 . n+1
Tz]k - rz_]k: - uk (Quk l]k)

Here, @7}, is an approximation for ¢ and 77}, is an approximation of r at spatial point

n+1 n
(xi,y;, 2) and time step n. We defined az]—;"‘ =2o —to

( ”“‘)1 = ah(QZJ,gl) and ay, is a discretization of a(Q):
3.5

3
(an(Q751)) Z[DCDL% Z‘k)s@JFD?DE( k) } Z D5D5 ( Zk) Ows»

B,y=1

, where ™ = oy, (Q7},) and

where the notation (Q}};)ws indicates the element in row w and column s of the

matrix QZ K

4. Analysis of the numerical scheme. For the proof of the energy stability of
this scheme, we will need the following useful lemma, which is proved in the appendix
(as Lemma A.1).

LEMMA 4.1. Let Aiji and B;ji, be scalar quantities at grid point (x;,y;, zy) such
that A, = 0 at boundary values, i.e., boundary conditions (3.2), (3.3). Then

N+1 N+1 N+1 N+1
> AiDiBij=— Y BijxDj Ak, Y AijgDyBijk =— Y BijD} Aijn,
i,7,k=0 i,7,k=0 i,7,k=0 4,7,k=0
and
N+1 N+1
> AijpD§Bijk = — Y BijxD§Ai
i, k=0 i, k=0

for 6=1,2 or 3.

4.1. Energy stability. We start by defining the following norms and semi-
norms for difference approximations. For sequences of approximations { fi;x}, {gijk};
{Aijr}, and {B;;1} of scalar- or vector-valued functions f,g : @ — R? and matrix-
valued functions A, B : @ — R¥*?, defined on our grid, we let

N41 N1
(A,B), = h* Z Aiji © Bijr, (f,g)n =h* Z fijk * Gijhs
i, k=0 4,4, k=0
N+1 N+1
2 2
AR =02 > Ageld,  IflE =0 D 1fil
,5,k=0 ,5,k=0

d
IVRAlZ = 3" DAl

m=1

We start by using Lemma 4.1 to show some simple summation by parts identities that
will be useful later in the proofs of the energy stability of the scheme.
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LEMMA 4.2. Let {A;jx} and {B;jr} be grid functions satisfying homogeneous
Dirichlet boundary conditions (3.2). Then

(A, ApB)p, = —(VaA, Vi B)p.

Proof. We write

N+1 3
<A AhB hS Z ZA”k D D, Bz]k)

4,5,k=0 a=1
N+1 3

=—h® Y > (D Aijk) : (Dg Bijr) = —(VaA, ViB)p,

4,j,k=0 a=1
where we used Lemma 4.1 and the boundary conditions for the second equality. 0O
For the a-term, we have the following.

LEMMA 4.3. Let {A;jr} and {Biji} be symmetric and trace-free grid functions
satisfying homogeneous Dirichlet boundary conditions, (3.2). Then

<A, ah(B)>h = 72<divh A, divh B)h
Proof. We compute (denoting ;i = an(Bijx))

N+1 3

<A ozh h =h? Z Z L]k ws at]k‘)

4,7,k=0 w,s=1
N+1

3
e (Z S [ (Aiit) e DD (Biji) 5+ (Aiie) o DED (Bigh) 5

JkOwsl:

YYD G DD (B, )

w,s=1 B,y=1

Focusing on the last term of the inner sum and using that dys =1 S w==s

Z Z zgk (szk Z Z z]k (Bijk)ﬂ,y

w,s=13,y=1 B, 'y—l w=1
(4.1) 3
- Z DﬁDc ”k Z (A1) s
B,y=1 w=1
=0,

where in the last equality we used that A;; is trace-free. For the first two terms, we
use Lemma 4.1 and the symmetry assumption to obtain

N+1

(A, an(B))n = —h* Y Z { Aijk) s D (Bijk) o5 + Ds (Aijk) s Df (Bijk)wﬂ}
4,5, k=0w,s ﬂ 1
N1

=_p3 Z Z |:D 'ij D; (Bijk?)sB + D; (Aijk)ws DE (Bijk)wﬁ}
i,7,k=0w,s,f=1

=-2 <dth A7 dth B>h,
which completes the proof. 0
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Next, we show that the scheme preserves the trace-free and symmetry property
of Q. To this end, we rewrite the scheme (3.4) as A(Q"™!) = F(Q™), where
(4.2)

n+1
+1y _ Qi ML +1, M n+ +1 ”+ L +L +1
A(QZk ) - lAJ: - L AhQ;nk + 5 ( z]k2 Q?jk ) ij?2 M= Sah(Q?jk )7

ijk At itk ijk ijk
Lo+Ls
+M =2 o (QF )

F(Q) = %+ M nQu, + % (Phit - Qu) Pk — Mty P

where we have used that

nty _ Lgnty —n+2

n+1 . n n
Tigk” = 5k Qi — 5Pk 1 Qik + ik

PROPOSITION 4.4. IfQ™ and Q"' are tmce—free and symmetric, then Q™! com-
puted by the scheme (3.4) is also trace-free and symmetric.

Proof. Since we assume that Q7 Q7 J; are trace-free, it follows that also P” k
is trace-free. Moreover, a;,(Q) is trace-free without any assumptions on (. Hence,
we find that tr(F(Q7;;)) = 0. But since A(Q?ﬂ;l) = F(Q7;), then we must have
tr(A(Q™1!)) = 0. Hence,

ijk

n+1
tr(A(QZng)) — tr(CiiZk ) ML1

Taking the inner product of this with tr(Q"H) we then find

Aptr(QEY) = 0.

t n+1
H r(QAt )Hh . M4Ll (Aptr(Q™H), tr(Q™)), = 0.

We use Lemma 4.1 for the second term:

N+1 3 3
(Antr(Q ), tr(Q"))n = h* Y Z<D+D Z QL w )Z Q1 N)ss
i,7,k=0 £=1 s=1
N+1 3 3
3 (o ) (o S
i,7,k=0 ¢=1 w=1 s=1
=~ [|[Vatr (@],

Thus we must have that tr(QZJ,gl) =0 for all 4,5,k = 1,..., N and we see that the

trace-free condition is preserved.

For the symmetry, we notice that if @7, and Q% i ! are symmetric, then also PZJ &

) are symmetric. Hence F( ij) (IF( ”k)) and therefore A(Q™1!) =

and o, (QF ijk

(A(Q5") - Denoting V5" = Quit* — (QU54Y) . this implies

n+1
Viik ML1A yrtl ML2+L3

At 2 ijk 4 n(Vii) = 0.

ijk

Note that Vg;rl is skew-symmetric and trace-free. We take the inner product with

V’n+1

ik and obtain

[veiy ML
At 2

Ly + L3

0=
4

<Ahvn+l’vn+1>h _ M <ah(vn+1)7v’n+1>h.
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Using Lemma 4.2, this can be rewritten as

V7L+1 2 ML N
H X Hh + 1 Hv v +1Hh

The term involving « on the right hand side (RHS) is

L2+L3<
2

(4.3) 0= ah(vn+1)7vn+l>h.

N+1

e =nt S (305 (), pens (v

i,7,k=0 w,s=1 =1
n+1 c e n+1
<V;3k ) DsDﬁ (‘/ij )w5:|

3 3
-3 3, 2 (), mans ("), )

w,s=1B,y=1
3 3
_ n+1 c c n+1
- Z |:(V;jk ) DwD,B (V;jk )
i,j,k:Ow s=18=1 ws s6
—+1 DCDC (Vn+1>
ik )ws 58 ijk wp ’

(v

using that V"*! is trace-free, as in (4.1) (replacing A and B by V"*!). Using
Lemma 4.1 and the skew-symmetry of V"*!, the remaining terms are

2

%3

N+1

(VL ap (V) = =k S ii{ (viet), D (V/};;”)sﬁ

4,j,k=0w,s=1 g=1

c n+1 n+1
() o ),
N+1 3 3
—p3 n+1 n+1
= 3030 3o (i), o (v,
i,4,k=0 w,s=1 B=1
n+1 n+1 _
D (v, s (i), =0
Plugging this into (4.3), we see that Vl’;,jl =0 for all 7,4, k. d

The next theorem guarantees the existence of a unique solution of the system of
equations (3.4) (or (4.2)).

THEOREM 4.5. The operator A is symmetric and positive definite for grid func-
tions that are symmetric and trace-free.

Proof. Let Q! = (Q}jk)ijk and Q% = (Q?jk)ijk, and then

ML M —nyl sl
(A@), @2 =1 (Q1 Q% — T AR Q)+ (P QU ),
—M%wh@l),@%.

By Lemmas 4.2 and 4.3, we have

<AhQ17 Q2>h = *<VhQ17 VhQ2>h7 <ah(Q1)a Q2>h = 72<dlvh Qla dth Q2>h~
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Therefore,
1 ML M — +1 —n+1
(AQY Q% =1 (@1 @0 + — (V@ Vi@ + o (P77 QL P2 Q%)
M (Lo + L
M) i @ divy @2,
which we see is symmetric in Q' and Q2. Moreover,
1 2 MLl 2 M —n+i 2
w10~ 101+ 2 i 4 o
(@), Qn = 1 QI + =2 194Q1 + Qf,
M (Ly+ L )
$ ML) 5, )2 > 0,
with equality if and only if Q = 0. O

By the previous two results, we conclude there is a unique solution Q™! to
A(Q™H) = F(Q™) that is trace-free and symmetric.
Next, we will prove an energy estimate for the scheme.

THEOREM 4.6. Define the energy

Ly + L3

mn L n
(4.4) B" = 2 [VaQ [ + =5

1
. 2 2
v @"[l), + 5 7" lh»

where Q™, ™ solve (3.4). Then

1 2
El B = _AtM HH"*E

h

1
Proof. We take the inner product of the first equation in (3.4) with fAtHZZQ,

multiply by k¢, and sum over all grid points,

1 1 2
(4.5) QU = QU H = At ||

h

1
Taking the inner product of the second equation with r?jzz, multiplying by A%, and
summing over all grid points gives

— 1
<7,n+1 . rn,rn+%>h _ <T,n+%Pn+2

QM = Q™)

(4.6) o
+3 , Qn—i-l _ Qn>h

1 L e I Ty

1
2
Next we shall work with the term (Q"*! — Q", H”"’%)h.

(4.7)
1 L2 + L3 an_,'_%

<Qn+1 . Q",H"+%>h :<Qn+1 . Qn7L1AhQn+% _ qn+%ﬁ"+2 + >h

I QL QT QY — Q7 - Qg P,
Ly + L
4
We shall deal with these terms individually. Using bilinearity, we have
(@ = Q" AnQ™ + ARQ™)n = (Q", ARQ™ ) + (@, ARQ™)n
—(Q", AnQ")n = (Q", ArQ")

<Qn+1 _ Q7L,CY7L+1 4 an>h'

(4.8)
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We shall focus on the first term of the RHS. Using Lemma 4.2 and the boundary
conditions, we have

<Qn+1;AhQn+1>h _ _thQn-HHIQL'

Similarly, we see that (Q", AyQ™)n = —[VaQ"|}, (Q" AwQ™ 1)) = —(V4Q",
YWRQ™M L, and (Q" T ALQ™), = —(VpQ" 1, V,Q™),. Hence putting all these re-
sults into (4.8) we find

<Qn+1 _ Qn Qn+1 4 AhQn>
S\ Q"HHh (ViQ" M, V@™ + (VaQ™, ViQ" ), + | VAQ™ 1}
- thQnHHh +[IVaQ"I5 -

Next we consider the term (Q"*! — Q", o™t + ™), in (4.7):

<Qn+1 _Qn7an+1 +an>h _ <Qn+17an+1>h + <Qn+17an>h _ <Qn7an+1>h _ <Qn7an>h'
Using Lemma 4.3 for each of these terms, we obtain
. n 2 . n
Q" — Q" o™ + o), = -2 Hdlvh Q 'HHh + 2 ||div, Q ||i .

Overall we have shown that

@t = @ ) = 5 (< [V 19,0717

L2+L3
+ 2=

7<Qn+1 Qn n %

Combining this with (4.5) and (4.6), we obtain

(= v @1 + diva Q117

n+ >h'

[N

L n I +
71 (HV}LQ - thQnHi) =5 2 : (Hdlv QU — div, Q| )
5 (I = 1emi2) = —aear || o

Based on the energy estimate, Theorem 4.6, we can derive further stability bounds

on the approximations {Q};;.} and {r], }. Specifically, it follows from the bound on
{H"4} that DF Q" = MH['+* is bounded:

COROLLARY 4.7. We have

Nr—1 9
Ay [prer} < B
n=0
where Nt is such that T = NpAt.

Using this corollary and the energy estimate, we can also derive a uniform (in At
and h) bound on ||Q"|],,.
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LEMMA 4.8. The following estimate holds for any At,h > 0:

m—1 %
m 1 12
Q™ <73 (AtZ 1D Q ||h> + QI < o
n=0
for any 0 < m < Np, where Nt is such that NpAt =T
Proof. Note that

N+1 N+1
Q™ —lQeh =n* > 1QuE -1 Y Q3
1,5,k=0 i,7,k=0
N+1
=1 > (QE Q) (Q5E - Q)
%,7,k=0
1 1
N+1 2 N+1 2
< Z |QZJIZI zgk'F h3 Z ‘QZ? ka|F
1,5,k=0 1,5,k=0
1 1 1
N+1 2 N+1 2 N+1 Qn+1 2
S A SNCE I R S I M VA S LI L Y
i,5,k=0 i,5,k=0 i,5,k=0 2

= ("I, + Q") 1DF Q" [I» At,

and so

@], — Q™I < 1D Q" ln At

for any 0 < n < Np. Summing over n on both sides, we obtain that for any 0 < m <
NT7
0

1
m—1 m—1 2 m—1 2
Q™ < Y IDF Q™ In At + 1Q°In < (Z At) <Z IID?Q"II?LN> + Q%I

n=0 n=0 n=0

T3 (Z ||D+Q“||hAt> +11Q° |-

n=0

4.2. Lipschitz continuity of P(Q). In order to derive a stability bound on

{D; 77}, we need an auxiliary result, which is the Lipschitz continuity of P(Q).
Recall that we can write P(Q) as P(Q) = ‘:((8)), where S and r have been defined

n (1.3) and (1.2). Note that we can express the Frobenius norm as

1Qlr = V1tr(Q?) =

where ); is the ith eigenvalue of matrix Q.
We start with a few preliminary lemmas. First, note that r(Q) is bounded from
below by some constant A > 0 (see also [17, Theorem 2.1]). We will also need an
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upper bound. Since ¢ > 0, there exists constant K7 > 0 such that for any @ for which
|Q|F Z K17

atr(Q?) — 2Ebtr(Qd) + 240

C, 2,12
SZtT(Q)-

Then
Q) > \/;tr2(Q2) — latr(Q2) — %btr(Q?’) + 24, > \/; tr2(Q2) — gtrz(QQ)
_ Ve
=5 tr(Q?),
and
c 2b c c
(@) < \/ Q%) + |atr(Q?) — 5tr(Q%) + 240| < \/ tr?(Q%) + 7 tr*(Q?)

So whenever |Q|r > K1, we can bound r(Q) by

VEIQR = Y2 (@?) < r(Q) < Vetr(Q?) = VeIl

On the other hand, when @ is bounded by constant K7, we have

(4.9)

r(Q) < \/2 |:|; tr(Q?) + @ [tr(Q3)] + 2‘51"2(@2) + A0:|

< \/2 (';'K%+ %war ZK;‘+A0> 2 Ko,

where we have used the fact that

and then

Combining the two results, we obtain that

(4.10) r(Q) < K+ velQJ%

for some constant Ko > 0. This bound will be used subsequently. The following
lemmas are important steps toward our Lipschitz estimate for P(Q).

LEMMA 4.9. For any Q, there exist constants Cy, Cs, and Cs such that

1 1Q|F Q%
0) <, Q) < Oy, Q)

< Cs.
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Proof. The first estimate follows from the fact that r(Q) is bounded from below.
For the third estimate, we split it into two cases. When |Q|r < K3, we have

QB _ K3

r@ A
When |Q|r > K3, by (4.9), we know that

2 2
Q% _ QB _ 2

@) = g =

2 2
Define C3 £ max {%7 %}, and then ‘TQ(?C‘QF) < (5. To prove the second estimate, we
note that if |Q|r < 1, then

Else, we have that

Defining Cy £ max{C7,C3}, we obtain ( 5 < < (5, which completes the proof of the
lemma. o

LEMMA 4.10. For any matriz Q, | (Q)Z’ |F is uniformly bounded.

Proof. Note that

1S(@)|F =

a@Q — b {QQ - Clltr(Qz)I} + ctr(QHQ

< lallQlr + 61Q%5 + 1 1Qf% + il 1.

F

Since
Q% F = Vtr(Q4) < \/tr?(Q?) = tr(Q*) = |Q|F,
we obtain
d+1)b
s@lr < lall@le + g e

Then from Lemma 4.9, we obtain that
S@) | _ lallQlr + P 10 + c|QfF
(@)% p r(Q)*
ol |Qlr DB g2 (|Q|%)3
S0 r@ T @ @)

(d+1)|b| -
lal oy @+ DB L od 2 g
At gas  atets =

which proves the lemma. 0
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Now we are in a position to prove that P(Q) is Lipschitz continuous with respect
to the Frobenius norm.

THEOREM 4.11. There exists a constant L > 0 such that for any matrices @, 0Q €
R3X3,

|P(Q+0Q) — P(Q)|r < L|6Q|p.
Proof. We will split the proof into two cases.

Case 1. §Qissolarge such that [6Q|r > 2|Q|F and [0Q|F > max{2K;, K3V K2}
£ @G. In this case, we can see that

1
0Q +Qlr 2 [0Q]F ~ |QlF 2 5 16Q|F 2 K1,
and therefore, by (4.9), we have

(4.11) (@ + Q) < VAIQ + Q1 < VA(Qlr +16Q]r) < Y

We use this to compute the difference between P(Q + §Q) and P(Q),

[P(Q+6Q) = P(Q)lr < |P(Q+Q)|r +[P(Q)|r

0Q|F

S(Q+0Q) S(@)
rQ+0Q) |p  |7(@Q)|r
_|8@+0Q) | oo [SQ)]
Qi V@ Q)+‘T(Q)§,F @
Lem 4.9

< K3 /r(Q+6Q) + K3/r(Q)

(410)(411 K
<IN 501+ K/ + HGl)

3K3\/> KgC

16Q|F + [0Q|F +
3K Kse1
:( 3\/E+1+?)2€>5Q|F7

10Q[r

2

which proves the result in this case.

Case 2. [0Q|r <2|Q|F or |0Q|r < G.
In this case, we write the difference of P(Q + 0Q) and P(Q) as

P@Q+3Q) - PQ)r = [Ha 58 - 28
15(Q +6Q) - S(Q) !
“ Q) +5Q+4Q) (r(@+6@> r<Q>>F
3 ‘S(Q+6Q)—S(Q) S(Q+5Q) @ TQ) 1@+ Q) — r(Q)]
= Q) p o |1(Q+0Q)} r(Q) -
I 11

To compute I, we expand S(Q + 6Q) by plugging (Q + 6Q) into (1.3):
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S(Q +5Q) =S(Q) +a6Q — b(QIQ +5QQ) ~ b (5Q) + 2 tr(QQ) I

—tr ((6Q)*) I + ctr((5Q)*)0Q + 2¢tr(Q 6Q)Q
tr(Q 6Q)6Q + ctr(Q*)5Q + ctr ((6Q)%) Q.

Then by Lemma 4.9, we have

5Qlr 20+ 1 [QlelsQlr | @+ 1) [5Q1%
r(Q) d r(Q) d Q)
L QL% + 3IQIF 1001 F + 315QIF|Qlr
r(Q)
2(d+ 1)02

(4.12) I<|ql

50, (@ 1Bl QL
AT
|5Q|F QeI
Q@ T

We still need to bound |f(%§, ‘f%i, and ‘Q‘f(g?lé in terms of 6Q). Based on our

assumption in this case, if |0Q|r < 2|Q|F, then
5QI% _21Q1r6Q|r
() (®)
5QIE _4IQI316Qlr
Q) — (@)

QIFISQEE _ 21Q315lr
()N ()

Hence, plugging this into (9), we obtain

<la| Cy [0Q|F +

+3cC5|0Q|F + ¢

<202 [0Q|F,

<403 [6Q|F,

and < 203|6Q|F

d
1< <a| Ch+ @\m Cy + 13ccg> 16Q|r-

On the other hand, if |0Q|r < G, then we can bound 0QLE 10QLE 9 % by

r(Q)’ r(Q)’
0QI% 16Q1% 2 1QIr16QI%
Q) < GC116Q|F, Q) < G*C4110Q|F, Q) <G Co|0Q|F.

Plugging these into (9), we arrive at

I < <|a01 + (‘” Yo, + @macl 4 3¢Cs+eGRCy +30GC2) 16Q) 5.

Therefore, I < Z1]6Q|r for some constant Z; depending on C;, ¢ = 1,2,3, G, a, b, and
c. To bound term II, note that

(Q+6Q) V7r(Q +0Q)|r(Q +6Q) — r(Q)
r(Q +6Q)? 7(Q)
Lem 4,10 \/W ) [(Q +6Q) — 7(Q)|

r(Q)
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x V@ +3Q) Ir(Q +6Q)* — r(Q)?
(@) [r(Q +9Q) +r(Q)]
r(Q+0Q)% - r(Q)?

r(Q)?

)

where we have used the fact

Q4 6Q) +r(Q) > 2/r(Q + Q) r(Q) > /r(Q + Q) r(Q).
Expanding r(Q + 0Q) by plugging (Q + 6Q) into (1.2), we have
H(@+5Q)° =r(Q) +20tx(Q5Q) + atr(Q)?) — 5 tx((5Q)°) - 20tx(Q? Q)
— 2tr(Q (6Q)?) + gtrg(((SQ)z) +2e:2(Q 6Q)
+ 2¢tr(Q?) tr(Q 6Q) + ctr(Q?) tr((0Q)?) + 2¢tr((5Q)?) tr(Q 4Q).

We plug this into (4.13),

1y 20al1QIrI0QLr + |al [0QIF: + 25 15QIE + 2[bl| QI3 r + 2[bl|Q1 Q1%
Ks r(Q)?
| $10QI% + 3c|QIZ|9QIF + 2¢|QIE10Q1r + 2c|5QIH|Qlr

r(Q)?
In a similar way as for term I, we can find constant Zs such that II < Z5]6Q|r. To
1
sum up, if we choose L = max{%‘/E +1+ £3¢2 7, Z,}, then
|1P(Q+0Q) — P(Q)|r < L|6Q|F

for any @ and Q). O

Using the Lipschitz continuity of P(Q), it is now easy to prove the following
bound on {Djr;‘jk}.

LEMMA 4.12. We have

m N
ALY [ D IDFriyl | <C <o
n=0 i,7,k=1

for 0 < m < Np, where Np is such that NpAt = T and C > 0 is a constant
independent of h and At.

Proof. We take absolute values of the scheme for 777 , the second equation in (3.4)
divided by At,

n+
|D+ z]k ’Pzng D+Qz]k
and sum over i, j, k = 1, ... N, then multiply by k3, square and sum over n = 0,...,m,

and use Holder’s inequality:
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2 2
m N m N
Z 3 Z + _ Z 3 n+3 +n
h ’D ij - h ‘P’ij‘ Dt Qijk
n=0 i,7,k=1 n=0 i,7,k=1
m N N
< S+ 3 +
<3 (n P nt > |D; Qi |’
n=0 ,]k: 1 i,7,k=1

Next, we use the Lipschitz continuity of P(Q), and then Lemma 4.8,

2

m N N
(> o) <SS > (ol o) 3 poran
n=0 i,7,k=1 n=014,j,k=1 i,7,k=1

<oy |Ipfeny max (1],

<t<m
n=0

Lem. 4.8 m
R Sael gl Forgeld i

n=0
Multiplying by At and using Corollary 4.7, we obtain the result. 0

5. Convergence of the scheme. Using the estimates established in the previ-
ous section, we proceed to proving convergence of the scheme (3.4) to a weak solution
of (1.5). To do so, we deﬁne piecewise constant interpolations of the grid functions

EQU)k} {rl]k}} and {Pmk }7

N+1 N+1 N+1
Qh AT E Qz]k XCijkr Th, hoat(T) = E zyk XCijks Py At E szk XCijk+
1,5,k=0 1,5,k=0 i,7,k=0

where Cige = [(i — o), (i + Yo)h]  [(j — /2)h, (j + 1/2)h] X [(k — 1/2)h, (k + 1/2)R]
and x 4 is the characteristic function of the set A. Then, we define piecewise constant
interpolations in time,

Npr—1

(5.2) @nae(t, ) Z Q. ac(z)xs, (1),
(5.3) rnar(t,r) = > i ad@)xs, (1),

(5.4) Pt ) = Z Py a()xs, (1),

where T = NrAt and S, = [nAt, (n + 1)At). We will show that a subsequence of
these converges to a weak solution of (1.5).

THEOREM 5.1. The piecewise constant interpolations (5.2)—~(5.4) computed using
scheme (3.4) converge up to a subsequence to a weak solution of (1.5) (as in Defini-
tion 2.3) as h, At — 0.
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Proof. Step 1: Compactness. We apply the first order finite difference operator
D on Qp.ar and 7 ar,

Nr—1
S Qriae(@) — Qp arl2)

Df Qnac(t,x) = Z At XS, and
n=0
) + R TZE(JJ) — 5 ae(7)
Dy Th’At(t,CC) = Z 2 AL : XS, -
n=0

From the energy stability of the scheme, Theorem 4.6, it follows that {V;,Qpn At} C
L>(0,T; L3($2)) and {rp a¢} C L*°(0,T; L*(9)) uniformly in At, h > 0. Corollary 4.7
yields {D;" Qn.a¢} C L2([0,T] %) uniformly in h, At > 0. Moreover, from Lemma 4.8,
we get

1
1Qn, 2t 20y < T2 1D Qn,aellzzo,11x0) + 1Qn,a6(0)[| 22 () < o0,

and hence {Qnat} C L>*([0,T]; L*(Q)). Therefore, we can apply a discretized
version of the Aubin—Lions lemma [14, Lemma A.1] to conclude that there exists
Q € L*([0,T], H(Q)) and a subsequence {Qn,, at,, }m such that Qu, Az, — Q in
L2([0,T] x£2) as m — oo. Due to the uniform bounds, we also obtain V,, Qn,. ¢, —
VQ in L%([0, T] x Q) and we can extract a weakly convergent subsequence of { D;" Q. .
Aty tr and {rp,, At }m, for simplicity still indexed by m. In summary, we have the
following:

(5.6)
Qn,, At,, = Q in L*([0,T] x Q), D} Qn,, A, — Qi in L2([0,T] x Q),
ViQn,, at,, — VQ in L2([0,T] x Q),

and

(5.7) Tho A, —g in L=([0,T]; L*()).

Since we have shown that P(Q) is Lipschitz continuous with respect to @ in Theo-
rem 4.11, we obtain from the strong convergence of {Qp,, At,, }m that

(5-8) P(Qn,,.at, ) = P(Q)  in L2([0,T] x Q).

Step 2: Passing to the limit m — oo. Next, we show that the sequences
{@n,..At, Yms {Thon.At,, }m converge to a weak solution of (1.5), that is, that the limit
(Q,r) is a weak solution in the sense of Definition 2.3. We start with the equation for
the variable r. From the numerical scheme (3.4), it follows that

(59) Dz_"”h,At = thAt(t,JZ) . Dth,At

For any smooth test function ¢ with compact support in [0, 7] x 2, we have P(Q) ¢ €
L2([0, T]x Q). Therefore, using the weak convergence D; Q.. a¢,, — Q¢ in L2([0,T] x

ms m

) we find that

T T
. Dt m—go .
(5.10) /O/QP(Q).Dt Qn,, v, ¢ dudt =3 /O/QP(Q).thﬁdxdt.

Moreover, by the strong convergence of Py, ¢, in L2([0,T] x ), we have
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(Pn,,.at, —P(Q)) : Df Qn,, at,, ¢ dudt

m— o0

<9l e @x (0,77 | Prm, At — P@) | L2i0,71%9) 1DF Qo tn | L2(j0,11500) — 0.

Therefore, we can multiply ¢ on both sides of (5.9), integrate over both space 2 and
time interval [0, 7], and apply (5.10) to obtain

T T
/ / Dy, at, ¢ dvdt = / / Ph,, at, : D Qn,, At ¢ dvdt
0 Q 0 Q

T
= / (Pn,..at, — P(Q)) : D Qn,, at,, ¢ dadt
0 Q

T
+/0 /QP(Q) : D Qn,, At ¢ dudt

=y ' | P@): Quodat

For the LHS of (5.9), we combine the definition of the piecewise constant functions,
(5.1) and (5.5), and rename the integration variables so that the difference operator
acts on the smooth test function:

(5.11)
Nr—1 n+1 n
- T X
LHS = Z / / Tl At (7 X o )¢(t,x)da;dt
Np—1

oz, t — Aty,) — &(t, x
Z / / Th. At Al ) (¢, 2) dxdt
1
/ / Tt A, Ot ) dzdt — / / T?Lm Az, O(t, x) dadt
SNy " Aty So JQ ’

—_A _
:/ /Thn“Atm x?t Atm) ¢(t,$) dl‘dt

/ / T at,, Ot ) da:dt——/ / Th,. At,, O(t, ) drdt.
SN 1 JQ SO

When ¢ has compact support in [0,T) X €2, the second term on the RHS vanishes,
and we can use the weak* convergence of {r a:}, (5.7), to pass the limit h, At — 0,

T
LHS miio—/ /g¢tdxdt—/ro(x)¢(0,x)dx.
0o Ja Q

Using [12, Lemma 1.1, p. 250], this implies that r is weakly continuous in time
on LY(Q), since P(Q) : Q; € L3([0,T]; L*(Q)) by the Lipschitz continuity of P.
Lemma A.2 then implies that also [ 74 as(t, 2)¢(t, x)dz — [ g(t,z)d(t, z)dx for every
t € [0,T] up to a subsequence as h, At — 0, and hence we can pass to the limit
in the LHS (5.11) when ¢ is compactly supported in [0,T] x €. Thus the limit g
satisfies (2.4).

Next we show that the limit @ satisfies (2.3). We take the inner product of
the first equation in (3.4) with a smooth matrix-valued function ¢ = (¢a5)z7ﬂ:1 :
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[0,T] x © — R integrated over Sy, x Ciji, i.e., [[s .o _pdzdt, and then sum over
X Cliji,
n and i, j, k. We obtain

Nrll N QM — on
D S R
n=0 ijk=1"5n 7/ Cijk
Nr—1 N
n+2 nti—=n+i Lo+ L3 nti
- Z Z / / M(LlAhQijk2 _riijPijkz + Taijkz) D dadt.
n=0 ijk=1"5n /Cijk

We rewrite this in terms of the piecewise constant functions (5.1):

(5.12)
NTfl NTfl +1 +1 +1
n+s n+s —n+3
Z /S /QD?QZWAM Do drdt = Z /S /QM(LlAthm?Atm - rhm,2Athhm,2Atm
n=0 n n=0 n
Lo+ L 1
#2080 (Qua, ) ) s ot

1 . .
(Here o (Qn.at)" 2 = i(ah(Qz,At) + an( Z'th))) Since {D; Qp.a¢} is weakly con-

vergent in L? (c.f. (5.6)), we can pass to the limit m — oo in the LHS and obtain

Nr—1

T
> / /DjQZm’mm :apdwdt—)/ /Qtchdxdt.
0 /Sn JQ o Ja

Integrating by parts, we obtain the LHS of (2.3). To deal with the RHS of (5.12),
we introduce the discrete forward and difference operators D,j and D, for matrix
functions ¢ = (paglag, 1 < @, B < d. Similar to (3.1), D{ denotes the forward
difference in the coordinate direction k. For example, for x = (x1,z2,23) and k = 1,
we define

Yap(t, 1 £ h,x2,23) — Pap(t,x1, 22, x3)
(DEp()), 5 =+ =22 e .

In addition, we introduce the discrete gradient and divergence operators for smooth
@:

d
(Vi@)ap = (DF@)as, (D5 )as, (D5 )as) »  ([divae)s = > (Dig)as,

where @ is the (a, 8)-entry of the matrix ¢. Renaming the integration variables
such that the difference operators act on the test functions in the RHS of (5.12) and
then using (5.6) and (5.7), the RHS of (5.12) satisfies

Npr—1 L
ris =ity 3 [ [ Vi 0 Vi
n=0 Sp JQ
- M Z / /TZ:,EAthhm?Atm pdrdt
n=0 v 5Sn /O
Npr—1 d
(L2+L3) . .
7Mf Z Z (D’Yth,Atm)ﬁ.y (Da%p)aﬁ
n=0 7S 7o 5 y=1
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Npr—1

Lo+ L -
- MLQ«%) 3 /S " /Q > (DSQh, ar)., (Di@)as

n=0 a,B,y=1
Npr—1

M(Ly + L d
f MR S (D50 ), (D50
n=0 n

aB,y=1

T d
m1>’°—ML1/ / Z VQup - Vipup da dt
0 Q

a,f=1

m— 00

Lo+ Ls [T d
Y 2+ 3// Z
2 0 Q

a,B8,7=1

T
— M lim / /Thm,Atm Py, At pdzdt

0o Ja
(87Qﬂvaa@aﬂ + 6762&78590045

2
_ daaQ’yaa’ywﬁﬁ> dxdt,

n 1 — — n 1 — .

where V,:th;i Vo= Zi,5:1 A% (thi)aﬁ - (V}, ¢)ap- It remains to show

T T
(5.13) lim / / Thon Aston Phon Aty - @ dadt = / / gP(Q) : pdxdt.
0 Ja 0o Ja

m—r oo

To prove (5.13), we take the difference of the two terms, that is,

T T
/ /rhmymm Py, A, s pdrdt —/ /gP(Q) Dpdxdt
0o Ja o Ja

T T
/O /Q v st (P e, — P(Q)) : pdadt — /O /Q (9~ rh,.00,) P(Q) : dudt

< +

T T
/ / vyt (Pa an, — P(Q)) : pdr dt / / (9~ rh,a0,) P(Q) : odudt
0 Q 0 Q

1 I
By Cauchy—Schwarz inequality, (5.8), and the energy estimate, Theorem 4.6,

I < [lellzee@x[0,7]) P, Atm — P(@)L2(10,71%2) TR At | 22(j0,71x0) — O-

Note that P(Q)¢ € L*([0,T] x Q) and rp,, at,, — ¢ in L?, and therefore II — 0.
This proves (5.13). Combining the estimates for the left and the RHS, we see that @
satisfies (2.3). The trace-free condition and the symmetry are linear constraints and
therefore conserved under the L2-convergence of Qj a:. The energy inequality is a
direct result by passing the limits in Theorem 4.6 and using Fatou’s lemma. Hence
the limit (@, r) is a weak solution in the sense of Definition 2.3. |

5.1. Equivalence of weak formulations (r = 7(Q)). Now that we have
established that the scheme converges to a weak solution of (1.5), it remains to show
that such a weak solution is in fact a weak solution of (1.1). To do so, we show that
the limit g established above in (5.7) satisfies g = r(Q) weakly, where @ is the limit of
Qh,,.At,, and 7(Q) is defined in (1.2). Plugging this into the weak formulation (2.1),
we see that @) is in fact a weak solution in the sense of Definition 2.2. We thus need
to prove the following lemma.
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LEMMA 5.2. Assume that (Q,g) is a weak solution in the sense of Definition 2.3.
Then for any smooth v with compact support in (0,T) x Q (compactly supported in
both time and space), we have

/OT/ngdxdt:/OT/Q r(Q) ¥ dzdt,

where r(Q) is defined in (1.2).
Proof. Since (Q, g) is a weak solution of (1.5), we have that

(5.14) —/()T/ngtdxdt:/OT/QP(Q):Qtz/;dxdt

for ¢ smooth and compactly supported in (0,7") x Q. For the RHS, if @ is a smooth
function, we can use chain rule and integration by parts to get

/OT/QP(Q):QthfoT/Qr@w:—/oT/Qr(

Since Q € L2([0,T], HY(Q)) and Q; € L?([0,T]x ), we can find a sequence of smooth
function {Q,}, with @, — @ in L*([0,T], H'(Q2)) and (Q,)¢ — Q: in L*([0,T] x ).
We note that by mean value theorem,

r(Q) = r(@n) = P(Q): (Q = Qn)

for some Q = M\ Q + A\2Q,, where A\, Ay € [0, 1] and A\; + A2 = 1. Noting that P(Q)
Lipschitz continuous with respect to @, so |P( )|r < L|Q|F for some constant L > 0.
Therefore,

1(Q) = 7(@n)lr = [PQ): (@~ Qu)| < L(1Qlx +1@nlr) 1Q ~ @l

Integrating it over time and space we obtain
17(Q) = (@n)ll L o.11x2) < L (I1QlI L2 (0, 11x )
+H@nll2(0,77x92)) 11Q — QnllL2(j0.71x2) = 0,

since @ and @,, are both bounded in L?([0,7] x ). So if we use smooth functions to
approximate (Q, we obtain

= 7(Qn)) Yt| < [[¥tllLo=(o,11x0) [IT1(Q) = T(Qn)ll 11 (0, 7)x0) = O

On the other hand, using the Lipschitz continuity of P(Q), we arrive at

Q): QY — P(Qn) : (Qn)t¢)|

Q

—P@):( / / H(Qn)e = P(Qn): (Qu))Y
< P@)l1ez [l 1Q: = (Qu)ellzz + 1P(Q) = P(@u)llz= ] 1(@nillz "=570.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/20/22 to 128.2.149.108 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NUMERICS FOR THE Q-TENSOR FLOW 2173

Therefore, we have for any Q € L2([0,T], HY(Q)) with Q; € L*([0,T] x )

[/Q PQ): Qe = Jim [ ) | P@u: @

—— lim /OT/Q F(Qu)th = — /0 T/Q Q).

We use this in equation (5.14) to obtain

/OT/Q gwt:_/oT/QP(Q):QW:/OT/Qr(Qm.

From [12, Lemma 1.1, p. 250], we obtain that g as well as r(Q) are absolutely
continuous and satisfy for every test function ¢ € L>°(Q2) and almost every ¢ € [0, 7]

/Q olt, 2y(z) do = /Q HQ(t )b (x) dr + /Q Fayb(e) de

for some f € L?(Q). However, since g satisfies (2.4), by letting T" be 0 in (2.4), we
find

[ s0a0ta) s = [ 1@y d.

Q
and so f = 0 in L?(£2). This proves the lemma. o

This lemma shows that

/OT/QQP(Q)iwdxdt:/OT/QT(Q)P(Q)demdt

for any smooth and compactly supported ¢ : [0,7] x Q — R4 Plugging this
into (2.3), we see that the identity becomes (2.1) and hence any weak solution in the
sense of Definition 2.3 is in fact a weak solution in the sense of Definition 2.2. Hence
we have shown the following.

THEOREM 5.3. Approzimations computed by the numerical scheme (3.4) converge
as At,h — 0, up to a subsequence, to weak solutions of (1.1) as in Definition 2.2.

6. Numerical results in 2D. We shall now present some numerical experi-
ments in 2D. In this case, the term «(Q) in (1.5a) simplifies to a(Q) = AQ. We

1
therefore denote L := Lq + §(L2 + L3). We will use the parameters

(6.1) a=-03, b=-4, c=4, Ay=500, M=1,

unless specified otherwise. The scheme has been implemented in MATLAB and the
code used to run the following numerical examples can be found at github.com/
VarunMG /Liquid-Crystal-Energy-Stable.

6.1. Numerical example 1: Convergence test. First we check whether the
formal second order of accuracy of the scheme manifests in practice when simulating
a numerical example with smooth solution. We consider the domain Q = [0, 2]?,
L = 0.001 and the initial condition

2
g
(62) QO = Il()l’lér — ‘ 2|

127
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TABLE 1

Errors and rates for spatial refinement in example (6.2), (6.3).

h Error for Q11 Order for Q11 Error for Q12 Order for Q12 Error for r Order for r
0.2 1.3509 x 102 NaN 2.3646 x 10~ 2 NaN 6.7561 x 10~ ° NaN
0.1 3.7509 x 103 1.8486 6.4006 x 103 1.8854 1.2878 x 1073 2.3912
0.05 9.9049 x 10~ % 1.9210 1.6690 x 10~ 3 1.9392 3.8885 x 1074 1.7277
0.025 2.6162 x 10~4 1.9206 4.4341 x 104 1.9123 1.5189 x 10— 4 1.3562
where

(6.3) no(x, y) = < 2(2 —x)y(2 —y) > .

sin(mx) sin(0.57y)

6.1.1. Refinement in space. We compute up to time 7' = 0.4 using 400 time
steps and we will use a reference solution (Q™f,7f) to show the spatial accuracy of
our scheme. The reference solution is computed with 400 grid points in each spatial
direction and 4000 time steps. All the errors are measured in L?-norm

£, = QAT ) = @Was T Moy €= T = 1T

where a, § € {1,2}. We compute the numerical solutions with n = 10, 20,40, 80 grid
points in each spatial direction. The L?-errors and convergence rates for Q11, @12,
and r are reported in Table 1. (Note that due to the symmetry and the trace-free
property, Q11 = —Q22 and Q12 = Q21.) We note that for the components of @ the
expected second order convergence rate is almost achieved whereas the convergence
rate for the variable r is lower. We suspect that more mesh refinement may be needed
to see the optimal order for the variable r.

Figure 1 shows the decay of the discrete energy for n = 80 and Np = 400 up to
time 7" = 0.4. As predicted by the theory, the energy decays monotonically.

6.1.2. Refinement in time. We use the same setting (initial value and param-
eters) as for the spatial accuracy test and compute up to time T'= 0.4 with 100 grid

Ei . Til
1960 nergy v. Time
&

1959 |- B
1958 i
1957 1+ -

1956 8
!

Energy

1955 [~ 8
1954 |- ‘«\ B
1953

1952

1951 L I I I |
0 005 01 015 02 025 03 035 04
Time

Fic. 1. Energy decay when T = 0.4 with 400 time steps and 80 grid points in each spatial
direction.
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TABLE 2
Errors and rates for time refinement in example (6.2), (6.3).
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F1G. 2. Simulation for initial data (6.4), (6.5).
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— 1
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1 1 026 1 0.2
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0.24 018
0.45 .
15 15 15 0.16
0.44 0.22
0.14
2 2 2
0 1 2 0 1 0 1
(a)t=0 (b) t=0.5 (c)t=1
0 0 0.92 0
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o 02 0.18
05 05 05 .
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0.18 0-16
- 0.16
k 0.16 1 ! o
0.14 o 012
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0.12 o4
0.12
01 0.08
2 2 2
0 1 2 0 1 0 1
(d)yt=1.5 (e) t=2 (f)t=2.5
O 02 Om 02 Opp 02
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0.16 0.18 :
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1 0.14 1 1 ' o
012 0.12 .
15 01 15 01 45 01
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2 Pl= 0.06 o % 0.06
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(g)t=3 (h) t=3.5 (it=4
F1G. 3. The largest eigenvalue of Q in the simulation for initial data (6.4), (6.5).
where

_ (log(x? + 1) (x — 2)% sin(Z2) (!5 — e”)
(6.5) no(2,y) = <<y ~9) (y — 3) sin(%) sin(2) (0.7 - y>> ‘

We use 40 grid points in space in each dimension and 4000 time steps up to 7' = 4.
As we can see from Figure 2, initially, there is only one defect, which is located at
(1.5,0.7). This configuration is not stable and generally splits into two different de-
fects. They move away from each other and toward the boundary. Figure 3 depicts the
largest eigenvalue of matrix ) at different times. We observe that as the two defects
move, the largest eigenvalue decays in a neighborhood of the defects rapidly to 0. The
eigenvalue is generally decreasing and tends to 0 everywhere as time evolves. This be-
havior is a consequence of the boundary condition and the energy dissipation property.

6.3. Numerical example 3: “Disappearing hole”. We consider {2 = [0, 1] x
[0,1] and use the parameters a = —0.2,b = 1,¢ = 1,L = 0.0025. As an initial
condition, we use (6.4) with

(6.6) ﬁo(ﬂf,y) _ (x(l - x)y(l - y) ) . 1o 1y

sin(27z) sin(27y); - |m0|”
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and 50 grid points in space in each dimension and 100 time steps. The simulation
is displayed in Figure 4. We observe that the initial misalignment disappears first
along the axes and then propagates in a shrinking circle toward the center of the
domain and eventually disappears. This behavior was stable with respect to mesh
refinement. The discrete energy (4.4) decays at first rapidly and then approaches a
constant state corresponding to the alignment of the director field along the y-axis as
seen in Figure 5.

(b) t =0.2 (c)t=04

(d)t=06 (&) t=0.8

F1G. 4. Simulation for initial data (6.4), (6.6).

Energy v. Time
481 T 9y T

480.95

480.9

480.85

480.8

Energy

480.75

480.7

480.65

480.6

480.55 I I I ! I I I I !

Fic. 5. Energy when T = 10 with 100 time steps and 50 grid points in each spatial direction.
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Appendix A. Some lemmas.

LEMMA A.l. Let A;ji and Byji be scalar quantities at grid point (x;,y;, z,) such
that A, = 0 at boundary values, i.e., boundary conditions (3.2), (3.3). Then

N+1 N+1 N+1 N+1
+ _ - - _ +
Z AijDg Biji = — Z BijkDg Aij, Z AijDg Biji = — Z Bijik Dy Aiji,

1,j,k=0 1,j,k=0 1,J,k=0 i,5,k=0
and

N+1 N+1

> AijpD§Bijk = — Y BijxD§Aij

1,J,k=0 i,5,k=0

for 6=1,2 or 3.

Proof. We shall prove this for the case where S = 1; the other cases follow simi-
larly. Note that

N+1 (X N
+ _
E Aiji DY Biji = 7 E AijiBit1yk — E AijkBijk
%,5,k=0 i,9,k=1 i,j,k=1
1 N+1 N+1 N+1 N
=5 > Au—nieBigr — > Y AijkBij
k=0 i=2 k=0 i—1
AR N+1
=5 > Au—nrBijk — Y AijeBijk
1,J,k=0 1,j,k=0
N+1
=— Y BijDi Aijp,
i, k=0

where we used the boundary conditions (3.2) and (3.3) for A;j;. For the second
identity, using the same trick, we obtain

N1 1 N N
Z Aijr Dy Biji, = 7 Z AijkBijr — Z AijrB(i-1)jk
1,7,k=0 %,7,k=1 1,5,k=1
| [N N N+1 N-1
=5 Z ZAijkBijk - Z Z Aiv1)jeBijk
k=0 i=1 k=0 i=0
W N+1
=3 Z AijiBiji — Z Agiv1)jkBijr
i,4,k=0 i,4,k=0
N+1
=- Z Biji DY Ayji.
i,5,k=0
For the third identity,
N+1 L [N N N+l N
Z Aije DI Bijr = o Z ZAijkB(i+1)jk - Z ZAijkB(iq)jk
i,5,k=0 k=0 i=1 k=0 i=1
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A RER N+1 N-1
~ 9 Z Z Agi—1)jkBijk — Z Z Aiv1)jrBijk
J,k=0 i=2 j.k=0 i=0
1 N+1 N+1
= oh Z A(i—l)jkBijk - Z A(i+1)jkBijk
i,j, k=0 i,j, k=0
N+1
= - Z Bijk DY Aijk,
i,J,k=0
where we have used boundary values of A;j, and Biji. ]

We believe the following lemma is a standard result from real analysis but we
did not find a suitable reference to refer to and therefore provide the proof here for
completeness.

LEMMA A.2. Assume that {gn,at}thar i a sequence of piecewise constant func-
tions converging weak*, as h, At — 0, in L> ([0, T]; L?(Q2)) to some limit g € L>(]0,T);
L*(Q)) that is weakly continuous in time in L'(2), i.e., [g(s,z)¢(zx)dz — [g(t, x)
¢(x)dr when s — t for ¢ € L=°(Q). In addition, assume that

HDtJrghaAtHLZ([O,T];LI(Q)) <G

where C' is a constant independent of h and At. Then, up to a subsequence,

[ onsot@as "5 [ gt po(a)do
Q )
for allt € [0,T] and ¢ € L (Q).

Proof. Let ¢ € L°°(Q). As {gn.a¢} is weak* convergent in L>([0,T]; L3()) we
can find a dense set T := {t;}32, C [0,7] such that for a (diagonal) subsequence
{hm> Atm}?nozl

/ghm’Atm (tiyx)o(x)dx m=ee / g(ti, x)p(x)dxz  for all t; € T.
Q Q

Fix € > 0 arbitrary and ¢ € [0,7]. Then since g is weakly continuous, we can find an
interval T C [0, 7] such that ¢ € I and for all s € I,

[ stt.rotarda = [ g(s.aote)is

Q

< £
3
Next, we pick M; € N large enough, such that for all m > M; and all t; € T N1,

<6
3.

/Q G a0, (13, 2)b(a)d — / oty 2)p(x)dz

Q

We observe that we can write for s > ¢ € [0, T7,

| £
[ sitsa) = nsults o) oot = ot [
Q

J—l
D gi(x) | ¢(z)da.
¢ J

=%
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Thus,

/Q (gn.(5,2) — gn.ae(t,2)) () da

o)1
<At / S Dfgh@)] | lé(@)lda
? =l
[4]-1
<A Y DF gk ey 9]l
[ %)
2
e N e
<at| 3 1otoilin (21 |5]) oton
[%]-1 o\ »
<|at > DFatlg | (=t A0V 6]
= [ %)
S ||Dt+gh,At||L2([07T];L1(Q)) (S —t+ At)1/2 H¢||L°°

<C(s—t+At)Y2,

So we pick My > M; large enough and J C I such that for m > M, and t; € J,

<Ot —t+2At,)% < %

[ (650 = gn.s0(t,2) o)
Q
Then we have for m > M (and t; € J),

<

/Q (9(t,2) — g an, (£:2))6 (@) da

/ (9(t,2) — g(t;, 2))b(z)dz
Q

+

/Q (9t,2) — g, (6, 2))bla)de

| [ 020052 = g1, s )00
Q

<e

— )

which proves the result. 0
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