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ABSTRACT
We present FW-KV, a novel distributed transactional in-memory
key-value store that guarantees the Parallel Snapshot Isolation (PSI)
correctness level. FW-KV’s primary goal is to allow its read-only
transactions to access more up-to-date (fresher) versions of objects
than Walter, the state-of-the-art implementation of PSI. FW-KV
achieves that without assuming synchrony or a synchronized clock
service. The improved level of freshness comes at no signi�cant
performance degradation, especially in low contention workloads,
as assessed by our evaluation study including two standard OLTP
benchmarks, YCSB and TPC-C. The performance gap between FW-
KV and Walter is less than 5% in low contention scenarios, and less
than 28% in high contention.
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1 INTRODUCTION
Snapshot Isolation (SI) [3] is a widely adopted consistency level
often used as a practical alternative to Serializability [4], the gold
standard criterion for concurrency control implementations [18, 28].
Informally, one of the great advantages of SI is that a transaction
should not abort even though the set of values read (we name it
reading snapshot), and not written, during its execution has been
overwritten by a concurrent transaction [3]. By leveraging this
property, along with a multi-versioned data repository, major data-
base engines [26, 29] provide SI concurrency control on a single
node by de�ning the reading snapshot as all the versions available
at the time a transaction starts. An immediate consequence of this
design is that read-only transactions, which never modify the data
repository, can execute without the chance of aborting.
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In a centralized deployment, the reading snapshot is often de-
termined by assuming that time is measured by a shared atomic
counter that advances whenever any transaction starts or com-
mits [14]. In distributed systems where o�-the-shelf hardware is
assumed, nodes do not share a synchronized clock and the com-
munication among them is asynchronous, SI transactions cannot
simply de�ne an up-to-date reading snapshot at the time they start
because of the absence of a shared notion of time among nodes.

Walter [28] is a distributed transactional system whose concur-
rency control implements a relaxed variant of SI, called Parallel
Snapshot Isolation (or PSI). In PSI, the transaction reading snapshot
can be arbitrarily outdated in order to deal with the aforemen-
tioned absence of shared clocks among nodes (other relaxations are
overviewed in Section 6).

Walter logically assigns objects to so called preferred nodes. A
preferred node always stores the latest version of an object. The
object might also be replicated on other non-preferred nodes, which
might not always have the latest version of objects. If a transaction
begins on a node # and reads an object whose preferred node is
# (we name such a transaction local), then its reading snapshot is
guaranteed to be up-to-date. Otherwise, when a transaction begins
on a non-preferred node or any other node (for brevity, in both these
cases we refer to this transaction as non-local), the read operations
can return an outdated object version.

Walter attempts to patch the above issue by using asynchro-
nous messages, sent outside the transaction critical path, aimed at
periodically updating the logical clock of other nodes, including
the non-preferred ones. However, until asynchronous messages
are received, non-local read-only transactions can still return ar-
bitrarily old versions. Another side e�ect of this solution is that
non-local update transactions will be repeatedly aborted until the
above asynchronous messages are delivered.

In this paper we present FW-KV, a distributed concurrency con-
trol that uses logical (vector) clocks [20] to implement an enhanced
version of Walter’s concurrency control with the goal of improv-
ing data freshness for read-only transaction. FW-KV exploits the
fact that a common behavior for transactions is accessing mostly
local objects [5]. For the remaining accesses, Walter must adhere
to a possibly old reading snapshot. FW-KV improves this scenario
for read-only transactions. Every access to a new node made by
a read-only transaction is guaranteed to observe the most recent
and correct reading snapshot. The only case in which a read-only
transaction is prevented from accessing the latest reading snapshot
is when multiple accesses target objects stored on the same node.

A practical example in which FW-KV always returns the most
recent reading snapshot is when we consider the two transaction
pro�les Order-Status and Payment of the well-known benchmark
TPC-C benchmark [10]. The former queries the status of a cus-
tomer’s last order from a warehouse to retrieve information about
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related order lines. The latter processes the payment for the cus-
tomer and modi�es the balance of the warehouse where the order
took place. The read-only transaction Order-Status can see the
latest version of the accessed objects modi�ed by Payment since the
�rst access is to retrieve the warehouse, and the subsequent read
operations are on objects that have been committed along with that
warehouse, regardless of the preferred node of the warehouse.

The properties ensured by FW-KV �t the characteristics of mod-
ern social network applications. In fact, the traditional understand-
ing of those applications is that reading arbitrarily old values is
admissible for users. However, users nowadays increasingly de-
mand more stringent ordering requirements among updates (e.g.,
social media news).

The capability of FW-KV to observe fresh reading snapshots
comes at the expense of some performance overhead. As empiri-
cally shown in our evaluation study, when application workload is
dominated by read-only transactions, a typical case in many real
applications and services [2, 30], the overhead of FW-KV becomes
negligible. Such cases represent the practical sweet spot for FW-KV,
in which the great scalability and performance of PSI (and Walter)
are preserved while read-only transactions read up-to-date values.

The major algorithmic challenge in achieving FW-KV’s goals is
to deal with the (fast) technique used by Walter to update nodes’
logical clocks upon transaction commits. In fact, since Walter’s
transaction reading snapshot can be arbitrarily old, vector clocks
are updated without synchronously propagating causal dependency
with other transactions.

Unlike Walter, the reading snapshot of a read-only transaction in
FW-KV is established during its execution by means of attempting
to include the newest versions of an object stored by a node that has
not been contacted so far by this transaction. FW-KV ensures that
by e�ciently tracking some (but not all) transaction dependency
relations. Update transactions execute with similar guarantees as
in Walter, although FW-KV still attempts to improve data freshness
by deploying a technique, similar to the one used in SCORe [23],
where the reading snapshot is de�ned upon the �rst read operation.

To assess performance of FW-KV, we implement a distributed
key-value store with the FW-KV concurrency control at its core,
and contrast its performance against Walter and a well-known
baseline distributed transactional system, named 2PC-baseline. In
2PC-baseline, all transactions, including read-only, validate read
keys to ensure correct and the most recent reading snapshot, and
use the Two-Phase Commit protocol (2PC) to commit [4]. We use
two OLTP benchmarks, YCSB [8] and TPC-C [10], to generate
transactional workload.

Results show that FW-KV improves read-only transactions’ data
freshness with a performance penalty of less than 5% in case of
low contention, and it goes up to 20% and 28% in YCSB and TPC-
C, respectively, when contention increases. FW-KV’s capability of
reading fresher data than Walter allows its update transactions to
abort up to 3 times less in case asynchronous messages propagation
is delayed due to network congestion.

The paper makes the following contributions. The FW-KV im-
proves upon Walter’s concurrency control by:

• Increasing data freshness of read-only transactions;
• Reducing occurrence of long fork anomaly;

• Enhancing the performance robustness in terms of update
transactions’ abort rate, in case asynchronous messages are
delayed due to network congestion.

2 OVERVIEW, ASSUMPTIONS AND
PROPERTIES

2.1 System Model
FW-KV assumes a system made of a set of nodes that do not share
neither memory nor a global clock. Nodes communicate through
message passing over reliable asynchronous channels, meaning
messages are guaranteed to be eventually delivered unless a crash
happens at the sender or receiver node. There is no assumption on
the speed and on the level of synchrony among nodes.

2.2 Data Organization
Every node #8 maintains shared objects (or keys) adhering to the
key-value model [24]. The data repository is multiversioned, mean-
ing each shared object keeps a list of previous versions. Each version
stores the value and the commit vector clock of the transaction
that produced the version. In FW-KV, every shared key can be
stored in an arbitrary preferred site. For object reachability, FW-KV
implements a local look-up function using consistent hashing, a
commonly used technique to map keys to nodes. An object is local
with respect to a node if it is stored on that node, otherwise it is
remote.

To survive failures, FW-KV assumes each preferred site is highly
available, meaning the site is expected to implement a replication
technique to resist faults. For simplicity in the explanation of our
distributed concurrency control, we do not account for replication.
In literature, many e�cient techniques have been proposed to ad-
dress the problem of preserving availability of a site (often called
shard) [15, 19].

2.3 Transaction model
Wemodel transactions as a sequence of read andwrite operations on
shared objects (or keys), preceded by a begin operation, and followed
by a commit or abort operation. A client begins a transaction on the
co-located node and the transactions can read/write data belonging
to any node; no a-priori knowledge on the accessed keys is assumed.

Every transaction starts with a client submitting it to the sys-
tem, and �nishes its execution informing the client about its �nal
outcome: commit or abort. Transactions that do not execute any
write operation are called read-only, otherwise they are update
transactions. Read-only transactions are expected to be identi�ed
by the programmer.

A transaction is local if it begins on a node # and all its read op-
erations access objects whose preferred node is # itself. Otherwise
the transaction is non-local.

In terms of consistency level, FW-KV preserves Parallel Snapshot
Isolation as the original Walter [28] protocol.

2.4 Freshness Level of Reading Snapshot
FW-KV improves the level of freshness of read operations on the
original Walter’s distributed concurrency control. We de�ne the
level of freshness for a read operation$% issued by a transaction)
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on a shared object > as the metric that quanti�es the gap between
the version returned by $% and the latest version of > available
in the data store at the time $% is issued. A property known as
real-time order [22], often used in the de�nition of consistency
levels (e.g., Strict Serializability [9]), is an expression of the level of
freshness for read operations that mandates the access to at least
the latest version of an object available before the start time of
a transaction. Preserving real-time order is costly in distributed
settings due to the absence of a shared notion of time [18, 22].

In FW-KV, the level of freshness depends on whether the trans-
action issuing the request is read-only or update.

Let us assume a read-only transaction )'$ executing on #'$
and issuing a read operation $%8 to access object > stored on node
#> . Operation $%8 returns the latest version of > if it is the �rst
time for)'$ to access an object stored in #> . After that, subsequent
operations$% 9 of)'$ , needing to contact#> to read either > or any
other object @ stored in #> , will return a version consistent with
the version of > previously read, which might or might not match
the latest commit of @. That means, if all read operations of )'$
access either local objects or objects stored on di�erent nodes, the
reading snapshot of )'$ is guaranteed to be the freshest possible
(equivalent to guaranteeing real-time order).

An update transaction in FW-KV is guaranteed to return the
latest version of its �rst read operation. After that, the logical clock
associated with the node handling the �rst read is used to derive
the versions to be returned by subsequent reads, regardless of the
contacted nodes.

3 BACKGROUND & MOTIVATION
3.1 Walter & PSI
Walter [28] is a multi-version transactional key-value store that
provides a relaxed version of SI called Parallel Snapshot Isolation
(PSI). Walter uses a technique named preferred site where each ob-
ject is logically assigned to a speci�c site (or node) in the system.
The concept of preferred site is meant to favor transactions access-
ing objects maintained by the local nodes. With that, Walter can
quickly commit these transactions without checking other nodes
for write con�icts.

In other words, if a local transaction issues an operation on object
G , then it can access the latest version of G . However, non-local
transactions are still allowed to modify G on #8 but their updates
can be repeatedly aborted in case the accessed version of G is not
the latest one.

After a local transaction commits, the acknowledgment of its
successful commit should be propagated to other nodes in the sys-
tem. This propagation is done asynchronously and its goal is to
eventually allow non-local transactions to advance their reading
snapshot. As an example of the above propagation mechanism, sup-
pose the preferred site of object G is #1. Local transaction )1 starts
at #1 and creates a new version G1 of G . A non-local transaction
)2, started at node #2, cannot create another version of G (i.e., G2)
until #2 is being acknowledged about the commit of)1 in #1. After
#2 receives the propagation message of )1’s commit, )2 is able to
proceed its execution and successfully create G2.

3.2 The Challenge of Updating Reading
Snapshot in Walter

Walter does not update the reading snapshot of a transaction during
its execution. This is because, by doing that without leveraging
additional metadata, a well-known anomaly called Read Skew [3]
might occur. Read Skew happens if a transaction )1 reads a version
G1 for object G and concurrently a transaction)2 commits an update
on objects G and ~, which creates a new version G2 of G and ~2 of ~.
If )1 reads ~ after committing )2, by simply advancing its reading
snapshot it might return ~2, which is incorrect.

Solutions in literature, such as SSS [18], GMU [24], andNemo [21],
overcome the Read Skew anomaly by updating vector clocks in a
way that takes into account causal dependencies among nodes that
have been previously contacted by a transaction. Walter prefers a
simpler approach in which only the vector clock entry associated
with the node where the transaction executes is updated upon com-
mit. Such a decision is supported by the fact that read operations
in Walter can read arbitrarily old values, therefore there is no need
to account for causal dependency relations developed after the cho-
sen reading snapshot. FW-KV’s goal is to preserve the advantage
of Walter’s simpler concurrency control while adding additional
metadata to improve data freshness of read-only transactions.

3.3 Data Freshness and the Long Fork Anomaly
Figure 1 shows an example of an execution accepted by Walter in
which two read-only transactions are allowed to see the results of
two update transactions in di�erent order. Although this execution
is admitted by PSI (anomaly known as long-fork [28]), it introduces
an undesirable behavior at the application level, as described below.

Key=x,	value=x0 Key=y,	value=y0

2 7 6 13 2 7 6 132 7 6 13 2 7 6 13

T2:	Write(x,	x1)

T3:	Write(y,	y1)

2 8 6 13

2 7 7 13

T1:	 Read(x==x1)	
Read(y==y0)																										

13682T1.VC

Ti
m
e

Node	N1 Node	N2 Node	N3 Node	N4

Key=x,	value=x1

Key=y,	value=y1

T4:				Read(y==y1)	
Read(x==x0)																										

13772T4.VC

Figure 1: Dashed arrows represent the asynchronous propaga-
tion messages. The reading snapshot of )1 re�ects the times-
tamp of )2 in the second entry of )1’s vector clock ()1 .+⇠)
but it does not re�ect the timestamp of )3 in the third entry
of )1’s vector clock. The reading snapshot of )4 re�ects the
timestamp of)3 in the third entry of)4’s vector clock ()4 .+⇠)
but it does not re�ect the timestamp of )2 in the third entry
of )4’s vector clock.

In the example we assume four nodes, #1, #2, #3, #4, and four
transactions, )1, )2, )3, )4, each begins and executes on the respec-
tive node. By assumption,)2 and)3 are non-con�icting local update
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transactions; while )1 and )4 are non-local read-only transactions
both accessing objects from #2 and #3. As of Walter’s rule, each
read-only transaction starts its execution by acquiring the latest
vector clock of the node where it executes.

Both)2 and)3 after their commit on their preferred sites #2 and
#3 send a propagation message to all other nodes. Let us assume)1
starts its execution after receiving the propagation of)2 and before
receiving the propagation of )3. On the other hand, )4 starts its
execution after receiving the propagation of)3 and before receiving
the propagation of )2. Receiving propagate from di�erent nodes in
di�erent orders is a likely scenario in an asynchronous distributed
system.

Since )1 and )4 start after the commit of )2 and )3, their respec-
tive clients might have had the chance to interact with each other
outside the system (e.g., in a social media platform when a user
publishes a new post and alerts her/his friends about the new con-
tent so that they can read it). The consequence of this interaction
is that )1’s and )4’s clients will not expect to observe a snapshot in
which only some of the updates that they expected to be committed
are returned by their read-only transactions.

FW-KV overcomes the above issue by allowing)1 and)4 to read
the modi�cations made by )2 and )3, as long as i) no other reads
accessing objects on #2 and #3 are issued by )1 and )4, and ii) )2
and )3 commit before )1 and )4 start. Note that, in the case )1 and
)4 are concurrent with)2 and)3, both FW-KV and PSI allow)1 and
)4 to observe update transactions in di�erent order, therefore long
fork is still possible for FW-KV as well. However, the latter case of
long fork cannot trigger the behavior illustrated above at the client
side, and this is again thanks to FW-KV’s improve data freshness.

4 FW-KV: PROTOCOL DESCRIPTION
4.1 Metadata
Since FW-KV is built on top of Walter, we �rst list Walter’s meta-
data for completeness and then we show the additional metadata
required by FW-KV.

Transaction vector clock. A transaction ) holds a vector clock
T.VC whose size is equal to the number of nodes in the system.
T.VC encapsulates the knowledge of ) with respect to the logical
timestamps of other nodes. In practice, T.VC is used as visibility
bound for all versions accessible by ) .

Transaction write-set. Every transaction ) holds a private bu�er
called T.writeset, which contains the objects the transaction wrote,
along with their values.

Current sequence number . Every node #8 is assigned with a num-
ber ⇠DAA(4@#>8 representing the sequence number of the latest
transaction issued and committed at node #8 .

The following metadata is exclusive for FW-KV.
Transaction node access vector clock. A transaction) records the

sites where it reads from in a vector clock, called T.hasRead. Every
time ) reads from a node # 9 for the �rst time during its execution,
T.hasRead[j] is set to true. When T.hasRead[j] is set to true,
) ’s visible timsestamp with respect to # 9 is �xed and cannot be
advanced for ) ’s future accesses to # 9 .

Node vector clock. Each node #8 is associated with a vector clock,
called B8C4+⇠8 . The 9C⌘ entry of this vector clock represents the last
transaction from node # 9 that was committed at site #8 .

Transaction commit vector clock. When the commit decision for
transaction) issued by #8 is made, the⇠DAA(4@#>8 is incremented
and B8C4+⇠ of #8 is updated at the 8C⌘ position and the updated
value of B8C4+⇠ is assigned to transaction commit vector clock (i.e.,
) .2><<8C+⇠). In addition, the⇠DAA(4@#>8 is also sent to the other
nodes involved in the commit procedure to update their B8C4+⇠ at
the 8C⌘ position.

Version’s vector clock. As it is mentioned in Section 2, each object
> is associated with a set of versions where each version E is created
by an update transaction. The commit vector clock of each update
transaction is assigned to its created versions and is called version
vector clock (E .+⇠).

Version identi�er . Each version E of object > is associated with a
monotonically increasing scalar number, called E .83 .

Version access set. As shown in Section 3, by relying on the way
Walter establishes transactions’ commit vector clocks (i.e., without
tracing causal dependencies among involved nodes), advancing
transaction vector clock during execution without additional meta-
data violates PSI.

In order to advance the reading snapshot, given a transaction
)8 the concurrency control needs to be able to trace concurrent
transactions )9 that overwrite versions read by )8 . In this case we
say that )8 has an anti-dependency relation (i.e., a read-after-write
con�ict) with )9 . FW-KV does that by implementing a technique
called visible reads [22].

The visible reads technique is implemented in the following way.
Each version is associated with a set containing identi�ers of read-
only transactions that read that speci�c version. During the commit
phase of an update transaction, the set of identi�ers of concurrent
con�icting read-only transactions is collected. This set is propagated
to the version-access-sets of the newly created versions of this
update transaction since with its commit, it establishes transitive
anti-dependency relations with those read-only transactions.

If a read-only transaction ) contacts a node for the �rst time,
it can advance its reading snapshot unless it �nds that its own
identi�er exists in the version-access-set of the version to be read.
In that case, ) should select a previous version whose version-
access-set does not contain ) ’s identi�er.

Algorithm 1 Begin procedure of transaction ) in node #8
1: function B����T�()A0=B02C8>= ) )
2: ) .+⇠  B8C4+⇠8
3: for all () .⌘0B'403 [8 ]) do
4: ) .⌘0B'403 [8 ]  5 0;B4
5: end for
6: end function

4.2 Transactional Begin and Write Operation
Alg. 1 represents theway that transaction) vector clocks () .⌘0B'403
and ) .+⇠) are initialized once ) begins. When ) begins in node
#8 , it assigns the B8C4+⇠ of #8 , which shows the vector clock of the
latest committed/propagated transactions from all the sites in/to
#8 , to its own ) .+⇠ . At this point, since no read is issued yet, all
elements of ) .⌘0B'403 [ 9] are set to false.

In FW-KV update transactions implement lazy update, meaning
their written keys are not immediately visible and accessible at the
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time of the write operation, but they are bu�ered in the transaction
FA8C4B4C .

4.3 Transactional Read Operation
Alg. 2 describes the steps of a read operation for key: by transaction
) . If : has been already written by transaction ) , then the written
value of : is returned (Lines 2- 4 of Alg. 2). Otherwise, a read request
(ReadRequest) is forwarded to the node that stores : , which might
be the same node where ) executes (local read) (Line 6 of Alg. 2).

The read is handled di�erently depending on the type of the
issuing transaction. Importantly, for avoiding concurrent modi�-
cations while the read logic is processed, the read handler should
be executed in mutual exclusion with respect to message handlers
from other concurrent con�icting update transactions. However,
read-only transactions are still allowed to operate simultaneously
on read handlers.

Algorithm 2 Read operation
1: function ����()A0=B02C8>= ) , :4~ :)
2: if < :, E0; >2 ) .FA8C4B4C then
3: return E0;
4: end if
5: C0A64C  B8C4 (:)
6: send '403'4@D4BC [) ,: ] to C0A64C
7: wait Receive '403'4CDA= [E0;,<0G+⇠ ] from C0A64C
8: ) .⌘0B'403 [C0A64C ]  CAD4
9: ) .+⇠  <0G () .+⇠,<0G+⇠)
10: if (T is read-only) then
11: ) .A403 4~B  ) .A403 4~B [ {: }
12: end if
13: return E0;
14: end function

Read operations by Read-only Transactions. Lines 2-10 of Alg. 3
describes the read policy for a read-only transaction ) . The �rst
step is to identify the set of versions for : that are visible according
to ) .+⇠ . We say a version E is visible for a transaction ) if all the
entries of) .+⇠ , for which) .⌘0B'403 is true, have values greater or
equal to the values of the respective entries in E .+⇠ (Alg. 3 Lines 4).

Algorithm 3 Version selection logic in node #8
1: upon Receive '403'4@D4BC [) ,: ] from # 9 in #8 do
2: if () 8B A403->=;~) then
3: get lock(:4~ = : , >F=4A = ) .83)
4: +8B81;4(4C  {E 2 : .E4AB8>=(4C : 8B8C4 2 B8C4B :

) .⌘0B'403 [B8C4 ] = CAD4 ) E.+⇠ [B8C4 ] <=
) .+⇠ [B8C4 ] }

5: ⇢G2;D343(4C  {E 2 +8B81;4(4C : ) .83 2 E.0224BB(4C }
6: +8B81;4(4C  +8B81;4(4C\⇢G2;D343(4C
7: E4AB8>=  E4A 2 +8B81;4(4C : 8E 2 +8B81;4(4C )

E4A .83 >= E.83
8: E4AB8>=.0224BB(4C  E4AB8>=.0224BB(4C [ {) .83 }
9: release lock(:4~ = : , >F=4A = ) .83)
10: end if
11: if () 8B D?30C4) then
12: get lock(:4~ = : , >F=4A = ) .83)
13: +8B81;4(4C  {E 2 : .E4AB8>=(4C : 8B8C4 2 B8C4B :

) .⌘0B'403 [B8C4 ] = CAD4 ) E.+⇠ [B8C4 ] <=
) .+⇠ [B8C4 ] }

14: ⇢G2;D343(4C  {E 2 +8B81;4(4C : 8B8C4 2 B8C4B :
) .⌘0B'403 [B8C4 ] = CAD4) E.+⇠ [B8C4 ] = ) .+⇠ [B8C4 ]
^9B 2 B8C4B : ) .⌘0B'403 [B ] = 5 0;B4 . ^ E.+⇠ [B ] > ) .+⇠ [B ] }

15: +8B81;4(4C  +8B81;4(4C\⇢G2;D343(4C
16: E4AB8>=  E4A 2 +8B81;4(4C : 8E 2 +8B81;4(4C )

E4A .83 >= E.83
17: release lock(:4~ = : , >F=4A = ) .83)
18: end if
19: send ReadReturn [E4AB8>=, E4AB8>=.+⇠ ] to # 9
20: end

From the latter set (+8B81;4(4C in the Alg. 3), those versions
whose version-access-set include ) ’s identi�er, should be excluded
because that means ) has already established an anti-dependency
(directly or transitively) with the transactions that committed those
versions. Among the remaining versions, the one with the highest
identi�er (meaning the freshest among them) is selected as the
result of the read operation.

Figure 2 illustrates an example of how read-only transactions
establish their reading snapshots. Transaction)1 starts its execution
at node #1 and reads G0, the latest version of object G , when it
accesses node #2 (Lines 2-10 of Alg. 3). Note that the ExcludedSet
in Line 5 of Alg. 3 is empty. Upon reading G0, the identi�er of )1
is inserted into the corresponding version-access-set of G0 (Line 8
of Alg. 3). )1 also updates )1 .+⇠ [2] to the latest timestamp of #2
which is “7” (Line 9 of Alg. 2). After that, a concurrent update
transaction)3 commits an update on G and ~ on #2 and increments
B8C4+⇠2 [3] to timestamp “7” (Line 21 of Alg. 5). Later, after )3
commits at #2, )1 issues another read on ~. At this point, since
~1’s version-access-set includes )1’s identi�er, because it has been
inserted by the commit procedure of )3 (done in Line 19 of Alg. 5 –
see Section 4.4), ~1 cannot be returned by )1’s read operation due
to the anti-dependency relation already established between)1 and
)3 (ExcludedSet includes )3’s identi�er in Line 5 of Alg. 3).

After committing, a Remove message to #2 is sent for notifying
the completion of )1 (see Section 4.5). A read-only transaction
should also record the accessed keys in a set called readkeys, used
only to dispatch Remove messages.

T3:	Write(x,	x1)
Write(y,	y1)

T1:	Read(x	==	x0)

Read(y	==	y0)

62T1.VC
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62T1.VC 7 Commit

62 5 62 7 62 7
Key=x:		value=x0,	x0.VAS={}
Key=y:		value=y0,	y0.VAS={}

Key=x:	value=x0,	
x0.VAS={T1}							

Read
Read	
Return

Key=x,	value=x0,	x0.VAS={T1}
value=x1,	x1.VAS={T1}

Key=y,	value=y0,	y0.VAS={}
value=y1,	y1.VAS={T1}

Read

Read	
Return

Remove

Key=x,	value=x0,	x0.VAS={T1}
value=x1,	x1.VAS={T1}

Key=y,	value=y0,	y0.VAS={	}
value=y1,	y1.VAS={T1}

72 7

Node N2 Node N3Node N1

Figure 2: Example of execution where a read-only transac-
tion advances its reading snapshot and still reads consistently.
VAS is the version-access-set. Bold vector clock entries show
where ⌘0B'403 is true. The red crossed entries of VAS repre-
sent their elimination upon Remove.

Read operations by Update Transactions. Update transactions do
not insert their identi�er in the version-access-set of their read keys.
However, upon their �rst read operation, they still advance their
reading snapshot to be able to observe the accessed object. Subse-
quent read operations will use the same reading snapshot without
updating it.

Lines 11-18 of Alg. 3 show the pseudo code for handling read
operations by an update transaction ) . The +8B81;4(4C is deter-
mined as follows. First, the versions that are visible according to
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) .+⇠ are selected. From them, the versions produced by concur-
rent transactions with anti-dependency with ) should be excluded.
However, since the version-access-set cannot be leveraged to pre-
cisely identify anti-dependency relations, as the case of read-only
transactions, we adopt a more conservative condition for version
exclusion, inspired by [23], which over-approximates the existence
of an anti-dependency by just comparing ) ’s vector clock against
the candidate version’s commit vector clock.

A version should be excluded if it has a vector clock in which,
in all the positions where ) .⌘0B'403 is true, the value is equal
to the value of the same entry in ) .+⇠ (Lines 13-15 of Alg. 3)
and there exist at least one position in ) .+⇠ whose corresponding
entry in ) .⌘0B'403 is false and in the same position the version
vector clock has a greater value than ) .+⇠ . The latter clause of
the above condition allows an update transaction to also exclude
a version committed by a concurrent transaction, or a transaction
whose acknowledgment has not been received yet, without an anti-
dependency with) , which is a false positive case since that version
could be read without compromising PSI.

Key=x,	value=x0

2 7 6

T3:	 Write(x,	x1)
Write(y,	y1)

2 7 7

T1:	 Read(x==x0)

Read(y==y0)

Write(z,	z1)

62T1.VC
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m

e
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5

62T1.VC 7

2 7 62 5 6

Key=x,	
value=x0,x1

Key=y,	value=y0

Key=y,	
value=y0,y1

Key=z,	value=z0

Node N2 Node N3Node N1

Figure 3: Example showing how an update transaction estab-
lishes its reading snapshot.

After that, the version with the highest identi�er in the resulting
+8B81;4(4C is returned as the result of the read operation (Line 16
of Alg. 3), along with its vector clock.

When the response for ) ’s read operation is returned to #8 , an
entry-wise maximum between) .+⇠ and the version vector clock is
performed to advance the reading snapshot of ) (Line 9 of Alg. 2).

Figure 3 shows an example of how update transactions establish
their reading snapshot. We have two update transactions )1 and
)3. )1 reads G0, the latest version of object G at its �rst access to
node #2 (Line 11- 18 of Alg. 3). At this stage, the ExcludedSet in
Line 14 of Alg. 3 is empty. )1 then advances its reading snapshot
by updating the second entry of )1 .+⇠ to “7” (Line 9 of Alg. 2).
Concurrently )3 updates both objects G and ~, stored on #2, and
commits by advancing #2’s vector clock at its third entry to “7”
(Line 21 of Alg. 5).

After that, )1 performs its second read operation on ~. Here,
)1 cannot read version ~1. This is because )1 .+⇠ [2] is equal to
~1.+⇠ [2] and)1 .⌘0B'403 [2] is true. In this case, since)1 .+⇠ [3] is

less than ~1.+⇠ [3], it might mean that ~1 has been committed by a
concurrent con�icting transaction. In fact the ExcludedSet disallows
)1’s second read operation from accessing version ~1 because ~1
includes timestamp “7” at ~1.+⇠ [3] (Line 14 of Alg. 3). However,
due to the way vector clocks are incremented upon commit, )1
does not have enough knowledge to verify if ~1’s committer was
a con�icting transaction. Therefore the read operation returns a
safe snapshot for )1, which in this case is ~0 because ~0’s vector
clock (i.e., ~0 .+⇠) is visible by )1. Note that in this case even if )3
only updates ~ (which means no con�ict between)1 and)3),)1 still
cannot return ~1.

4.4 Commit protocol
The commit phase of transaction) is performed through the COMMIT
function in Alg. 4. If) is a read-only transaction, the commit phase
only consists of a clean up step to remove traces of its execution
on the version-access-set of its read versions. To do that, Remove
messages are sent to the nodes where ) read from (Lines 2-8 of
Alg. 4).

Algorithm 4 Commit of transaction T in node #8
1: function C�����(Transaction T)

// Check if T is a read-only transaction
2: if (T.writeset=q ) then
3: for (: 2 ) .A403 4~B) do
4: Send Remove [) .83,: ] site(k)
5: end for
6: ) .>DC2><4  CAD4
7: return) .>DC2><4
8: end if

// Start 2PC if T is an update transaction
9: 2><<8C+⇠  ) .+⇠
10: ) .2>;;42C43(4C  q
11: ) .>DC2><4  CAD4
12: send Prepare [) ] to all # 9 2 B8C4B () .FA8C4B4C )
13: for all (# 9 2 B8C4B () .FA8C4B4C )) do
14: wait receive Vote [2>;;42C43(4C 9 , A4BD;C 9 ] from # 9 or timeout

// Check if T’s 2PC commit decision is successful
15: if (¬A4BD;C 9 _ C8<4>DC ) then
16: ) .>DC2><4  5 0;B4
17: break;
18: else

// Collect all existing anti-dependencies in) .2>;;42C43(4C
19: ) .2>;;42C43(4C  ) .2>;;42C43(4C [ 2>;;42C43(4C 9
20: end if
21: end for
22: 2DAA(4@#>8  2DAA(4@#>8 + 1
23: ) .B4@#>  2DAA(4@#>8

// Finalize T’s commit vector clock
24: ) .2><<8C+⇠  B8C4+⇠8
25: ) .2><<8C+⇠ [8 ]  ) .B4@#>
26: send Decide [) ,) .>DC2><4 ] to all # 9 2 B8C4B () .FA8C4B4C [ #8 )
27: send Propagate [) ,) .B4@#> ] asynchronously to all

# 9 2 B8C4B\B8C4B () .FA8C4)
28: return) .>DC2><4
29: end function

If ) is an update transaction, similar to Walter the Two-Phase
Commit (2PC) protocol is used to accomplish the commit phase and
install new versions into the data repository. The node in which )
executes (i.e.,) ’s coordinator) starts the 2PC by sending a Prepare
message to the (preferred) nodes that store the objects written by
) (Line 12 of Alg. 4). When a 2PC participant node #8 receives a
Prepare message for ) , all the written objects by ) and stored by
#8 are locked. If the locking acquisition succeeds, then versions are
validated to certify that they have not being overwritten meanwhile.

At this point, the existing read-only transactions’ identi�ers in
the versions-access-set of ) ’s written objects are retrieved by the
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2PC participants and sent back to the 2PC coordinator with the Vote
message (Lines 3-12 of Alg. 5). Once the coordinator receives all the
Vote messages from participants, it merges all the received trans-
actions’ identi�ers and include them into ) .2>;;42C43(4C (Line 19
of Alg. 4).

In the case all participants vote for committing ) , meaning they
were able to acquire locks on the written objects and validate their
version, then #8 ’s sequence number (⇠DAA(4@#>8 ) is incremented
and the commit vector clock of ) is established. This vector clock
is then sent along with the Decidemessage to the 2PC participants
(Line 22-26 of Alg. 4).

Algorithm 5 Commit message handlers received by node #8 for
transaction T issued by node # 9
1: upon receive Prepare [)A0=B02C8>= ) ] from # 9 do
2: 2>;;42C43(4C  q

// Check if T passes lock acquisition and validation
3: boolean A4BD;C  64C!>2:B () .FA8C4B4C,>F=4A = ) .83)

^E0;830C4 () )
4: if (¬A4BD;C ) then
5: A4;40B4!>2:B () .FA8C4B4C,>F=4A = ) .83)
6: send Vote [2>;;42C43(4C, A4BD;C ] to # 9
7: else
8: for all : 2 ) .FA8C4B4 do
9: 2>;;42C43(4C  2>;;42C43(4C [ : .E4AB8>=.0224BB(4C
10: end for
11: send Vote [2>;;42C43(4C, A4BD;C ] to # 9
12: end if
13: end
14: upon receive Decide [) ,>DC2><4 ] from # 9 do
15: if (>DC2><4) then
16: wait until B8C4+⇠8 [ 9 ] = ) .B4@#> � 1
17: D?30C4 () .FA8C4B4C, ) .B4@#>, 9)
18: for all (: 2 ) .FA8C4B4C ) do
19: : .;0BC+4AB8>=.0224BB(4C  : .;0BC+4AB8>=.0224BB(4C[

) .2>;;42C43(4C
20: end for
21: B8C4+⇠8 [ 9 ]  ) .B4@#>
22: A4;40B4!>2:B () .FA8C4B4C ,>F=4A = ) .83)
23: else
24: A4;40B4!>2:B () .FA8C4B4C ,>F=4A = ) .83)
25: end if
26: end
27: function validate()A0=B02C8>= ) )
28: for all (: 2 ) .FA8C4(4C ) do
29: if (: .;0BC+4AB8>=.+⇠ [;0BC*?30C4A(8C4 ] >

) .+⇠ [;0BC*?30C4A(8C4 ]) then
30: return false
31: end if
32: end for
33: return true
34: end function

Lines 14-26 of Alg. 5 show the steps taken by a 2PC participant
#8 when it receives the Decide message from the coordinator exe-
cuting on node # 9 . In order for #8 to commit ) , #8 must wait for
all already decided/propagated transactions by # 9 . #8 can easily
detect if this wait condition should occur by looking at the gap
between the node vector clock in position 9 and the commit vector
clock of ) at position 9 (e.g., ) .B4@#>). When ) �nally commits,
the B8C4+⇠ of each 2PC participant is updated in the 9C⌘ position.

Similar to Walter, after sending the Decide of ) FW-KV sends
the asynchronous Propagate message to all other nodes in the
system in order to allow them to advance their reading snapshot
with respect to #8 . Note that, although FW-KV requires Propagate
messages to commit non-local update transactions, it does not abort
these transactions as Walter does due to late delivery of Propagate
messages. In fact, in Walter if a Propagate message from a node
# 9 is not delivered by a node #8 , a non-local update transaction

from #8 will repeatedly fail its validation step causing an abort that
will be solved only after receiving the Propagate message.

FW-KV does not abort the update transaction in such a case.
However, although it still needs the Propagate message to be de-
livered in order to �nalize the commit, i) it is able to overlap the
transaction execution with the delivery of the Propagate message,
which is likely to arrive meanwhile; and ii) it reduces network
tra�c due to saving multiple transaction retries.

Figure 4 pictures an example of an update transaction that can
commit in FM-KW but that would be aborted by Walter due to
reading outdated versions. Transaction )1 is an update transaction
that starts its execution on node #1. Upon contacting node #2 for
reading object G , )1 is able to access G1, the latest version of G . In
order to commit, )1 performs the steps shown in Lines 1- 12 of
Alg. 5. It is able to successfully pass the validation procedure in
Lines 27- 34 because of the value of )1 .+⇠ , which was updated
upon reading G1 (Line 9 of Alg. 2). Without that update, )1 would
need to abort, as the case of Walter.

4.5 Handling Asynchronous Messages
Alg. 6 shows how node #8 handles asynchronous messages, namely
Propagate and Remove. When #8 receives a Remove message be-
cause a read-only transaction) committed at node# 9 ,) ’s identi�er
is removed from the version-access-sets of) ’s read versions whose
preferred site is # 9 , and from all other version-access-sets in # 9
in which ) ’s identi�er has been propagated by concurrent update
transactions that committed meanwhile (Lines 5-10 of Alg. 6).

Key=x, value=x0, x0.VC=<2,4>
Key=x, value=x1, x1.VC=<2,7>

2 7

T1:   Read(x = x1)

Write(x, x2)

2T1.VC 
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e

5   

2 5

2T1.VC 7   

Node N2Node N1

Commit

Key=x, value=x0, x0.VC=<2,4>
Key=x, value=x1, x1.VC=<2,7>
Key=x, value=x2, x2.VC=<3,7>

3 7

Figure 4: Example of saving aborts due to reading fresher
snapshots in update transactions. For the sake of simplicity,
version-access-sets have been omitted. Update of )1’s vector
clock is shown in bold square.

Upon receiving a Propagatemessage by node #8 for the commit
of an update transaction) from node# 9 ,#8 can advance its reading
snapshot with respect to # 9 to ) .B4@#> .

In PSI the outcome of all committed transactions that update
some objects whose preferred site is # 9 should be observed in the
same order by #8 . For this reason, ) should wait for all previously
committed transactions in # 9 with a lesser sequence number than
) .B4@ to be received by #8 (Line 2 of Alg. 6). After that, B8C4+⇠ of #8
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Algorithm 6 Remove & Propagate messages from transaction )
issued by # 9 to node #8
1: upon receive Propagate [) ,) .B4@#> ] from # 9 do
2: wait until B8C4+⇠8 [ 9 ] = ) .B4@#> � 1
3: B8C4+⇠8 [ 9 ]  ) .B4@#>
4: end
5: upon receive Remove [) .83, : ] from # 9 do
6: : .E4AB8>=.0224BB(4C  : .E4AB8>=.0224BB(4C\{) .83 }
7: for all (:

0
: E 2 :0 .E4AB8>=(4C ^) .83 2 E.0224BB(4C ) do

8: E.0224BB(4C  E.0224BB(4C\{) .83 }
9: end for
10: end

can be updated with ) .B4@#> at the 9C⌘ position of B8C4+⇠ (Line 3
of Alg. 6).

4.6 Correctness Arguments
We assess the correctness of FW-KV by discussing how our modi�-
cations on top of the Walter distributed concurrency control still
preserve PSI.

The major di�erence between FW-KV andWalter lies on the fact
that in FW-KV every transaction can read the latest version of its
�rst accessed object, even if an asynchronous propagate message
has not being delivered yet. Our approach is to focus on the nec-
essary and su�cient condition to assess if an execution satis�es
the Generalized Snapshot Isolation (GSI) correctness level [6]. GSI
generalizes SI by allowing reading snapshots to be arbitrarily old,
but still disallows PSI’s long fork anomaly. Showing the equiva-
lence to GSI is enough since we have already shown that FW-KV
does not eliminate the long fork anomaly of Walter, as discussed in
Section 3.3. Without considering this anomaly, PSI is equivalent to
GSI [6, 28].

For a schedule to be accepted by GSI, if a transaction history has a
cycle, then this cycle includes at least two adjacent anti-dependency
edges in the Directed Serialization Graph [6].

Our correctness discussion shows that as soon as a transaction
detects an anti-dependency with respect to a concurrent update
transaction, a direct dependency, including a transitive one, cannot
occur. This can be achieved by relying on either the content of the
version-access-set (populated through the visible reads technique)
for read-only transactions (Lines 4- 8 of Alg. 3), or the selection of
a safe snapshot for update transactions (Lines 13- 16 of Alg. 3). As a
consequence of this observation, only transactions executions with
two adjacent anti-dependency edges can be committed by FW-KV,
which is needed to satisfy GSI (and PSI by including the long fork
anomaly). In fact, concurrent update transactions that are candidate
to establish a direct dependency are excluded. In our algorithms,
Line 5 of Alg. 3 refers to the case in which a read-only transaction
excludes a concurrent update; while Line 14 of Alg. 3 refers to the
case where an update transaction exclude a concurrent update.

Regarding the reading policy of read-only transactions, since
a transaction )'$ that reads a version >E of object > is included
in the version-access-set (Line 8 of Alg. 3) of >E , when an update
transaction creates a new version >E+1, the write-after-read (anti-)
dependency is established and can be detected by any other reading
transaction after that. That means, if a con�icting transaction, di-
rectly or transitively, produces a new version, that version cannot be
returned by any subsequent read operation from)'$ because of the

way the version-access-set is propagated to con�icting transactions,
including those transitive (see Lines 18-20 of Alg. 5). By doing that,
there cannot be a read-only transaction involved in a loop with an
outgoing anti-dependency edge preceded by an incoming direct de-
pendency edge. In the presence of an established anti-dependency,
our concurrency control reads previous versions, which transforms
the above direct dependency into an anti-dependency, as demanded
by PSI.

The argument for an update transaction) is simpler since it can-
not always attempt to access the latest version of an object. In fact,
after the �rst read operation, a safe reading snapshot is established
for) . This safe snapshot is established as follows. After the �rst read
operation served by node =, for any subsequent operation requiring
access to a node B , with= < B , the following check in Line 14 of Alg. 3
(i.e., 9B 2 B8C4B : ) .⌘0B'403 [B] = 5 0;B4 . ^ E .+⇠ [B] > ) .+⇠ [B]}) ex-
cludes the versions E for which +⇠ [B] has a value greater than
) .+⇠ [B]. Such a reading snapshot guarantees that if a concurrent
transaction) 0 overwrites a read version by) , since) ’s vector clock
will be strictly lesser than ) 0’s vector clock, ) cannot include that
newer version in its reading snapshot. (Recall that this conservative
rule might produce false con�icts that can unnecessarily order )
before ) 0 as mentioned is Section 4.3).

5 EVALUATION STUDY
FW-KV’s distributed concurrency control has been embedded into
an in-memory distributed transactional key-value store. We use
the code base of Walter available at [18] and we modify it to inte-
grate FW-KV’s metadata and reading/writing policy. We recall that
our performance assessment for FW-KV aims at showing how its
algorithmic modi�cations, which ensure higher level of freshness
than Walter, can still provide comparable performance with respect
to Walter, and retain signi�cant performance improvement over a
serializable distributed concurrency control [16].

We conduct the performance evaluation using two well-known
OLTP benchmarks, YCSB [8] and TPC-C [10], both ported to the
key-value data model. For YCSB, we have two transaction pro�les:
update, where two keys are read and written, and read-only trans-
actions, where two keys are accessed. YCSB is con�gured to use
keys of 4 bytes and values of 12 bytes. TPC-C is a more complex
benchmark that simulates an order-entry environment with several
warehouses. It includes �ve transaction pro�les, three of them are
update transactions and the remaining are read-only transactions.

We con�gure the benchmarks to explore di�erent runtime sce-
narios. First, YCSB transactions are shorter than TPC-C’s trans-
actions; also, since update transactions in YCSB write the same
keys they read, the �nal execution is equivalent to an execution in
which the concurrency control ensures Serializability. This is done
to particularly stress the importance of reading a fresh snapshot
for update transactions. In fact, FW-KV will be able to reduce the
number of aborts of update transactions due to outdated reading
snapshot in Walter. On the other hand, TPC-C transactions’ logic
allows for reading and writing di�erent shared objects, showing a
favorable case for Walter since an outdated reading snapshot still
su�ces to commit while preserving PSI.

We compare the performance of FW-KV against Walter, which
guarantees PSI, and 2PC-baseline (2PC in the plots), a serializable
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key-value store where all transactions execute optimistically and
rely on the Two-Phase Commit protocol to commit both update
and read-only transactions, thus without needing multiversioning.
We also included a version of Walter and FW-KV in which the asyn-
chronous propagate messages are intentionally delayed to show
the e�ect of such an event on the abort rate of update transactions.

In all the experiments there are �ve application threads (i.e.,
clients) per node injecting transactions in a closed-loop (i.e., a client
issues a new request only when the previous one has returned). In
terms of transaction mix, we evaluate our competitors using 20%
and 50% read-only transactions. We do not include the test with
80% read-only transactions because performance of both Walter
and FW-KV are almost identical using this con�guration, especially
when the contention is low. This is expected since most of the al-
gorithmic di�erences between the two competitors are related to
the propagation of anti-dependency developed with update trans-
actions. If version-access-sets are almost empty, the performance
of read-only transactions in both competitors will be similar.

In both benchmarks, transactions select keys to be accessed using
a uniform distribution, which entails accesses might or might not
be to the local data repository. We do not test the case of a skewed
access distribution to highlight the performance impact of FW-
KV design. In fact, if accesses target local nodes, data freshness is
already guaranteed to be the highest level. In this scenario, FW-KV
performs equally to Walter since no protocol modi�cation has been
made to Walter to improve freshness of local accesses. In terms of
data distribution, keys are evenly distributed across nodes.

As test-bed, we use CloudLab [27], a cloud infrastructure avail-
able to researchers. We selected 20 nodes of type c6320 available
in the Clemson cluster. This type is a physical machine with 28
Intel Haswell CPU-cores and 256GB of RAM. Nodes are intercon-
nected using a 10Gb/s network, which delivers a message in about
20 microseconds without saturation. Considering that, we set the
timeout on lock acquisition to 1 ms. All the results are the average
of 5 trials.

5.1 YCSB
Figure 5 shows throughput (: transactions committed per second) of
all competitors using YCSB and a total of 50k and 500k shared keys
while increasing the total number of nodes. Recall that more nodes
means more clients injecting transactions in the system, therefore
an increasing level of contention. In all these con�gurations, the
measured abort rate is below 10% at the highest contention level
(i.e., 50k keys and 20 nodes).

The performance and scalability of FW-KV match Walter’s in
the cases where contention is low, namely up to 10 nodes in all
tested cases and in the 500k con�guration. When contention in-
creases (e.g., due to higher number of clients), the gap between
FW-KV and Walter becomes more visible. This is because of two
factors: the additional synchronization steps needed by FW-KV’s
read operations, and the increasing size of version-access-sets (see
Figure 6). Quantifying, for 20% read-only workload the highest gap
measured between FW-KV and Walter is 20% and 16% with 50k and
500k keys, respectively. At 50% read-only workload, the gap is 15%
at 50k keys, and such a gap is annulled at 500k keys.
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Figure 5: Throughput using YCSB and by varying % of read-
only transactions, total keys, and number of nodes.

PSI competitors substantially improve performance over 2PC-
baseline because its read-only transactions undergo an expensive
commit phase using the 2PC protocol, which is skipped by FW-
KV and Walter since their read-only transactions are abort-free.
Achieved speedup of PSI competitors against 2PC-baseline is con-
stantly more than 3x.

As observed earlier, the size of version-access-set impacts the gap
in performance between FW-KV and Walter when the contention
increases. Figure 6 con�rms that. In this �gurewe report the average
number of collected anti-dependency while an update transaction
in FW-KV undergoes the prepare step of its commit phase. We
explored the con�gurations with 20%, 50%, and 80% of read-only
transactions, with 50k, 100k, and 500k shared objects.
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Figure 6: Average size of anti-dependency collected by update
transactions in FW-KV during prepare phase for di�erent %
of read-only transactions and keys.

Increasing the percentage of update transactions increases the
number of anti-dependencies. The sharp jump from 80% to 50%
read-only at 50k keys is due to the transitive propagation of those
anti-dependencies. In fact, if an update transaction reads a key
whose version-access-set includes a number of read-only transac-
tion identi�ers, this set will be propagated to the version-access-set
of the new written versions of the update transaction upon its
commit.

In Figure 6, we also test the cases of 100k and 500k keys to show
how the size of collected anti-dependencies gradually decreases
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to zero, as with 500k. YCSB transactions are short, therefore the
chance for an anti-dependency to occur at the low contention case,
such as using 500k keys, is low. Figure 6 also helps assessing the
space overhead of FW-KV compared toWalter. The dominant factor
in this case is recording the transactions’ version-access-sets. It is
clear from the �gure that unless contention is high (e.g., 50k objects)
and the workload is dominated by update transactions, the version-
access-sets are likely empty or storing very few items. As a result, in
these con�gurations FW-KV and Walter have comparable storage
cost.

Another conclusion that can be drawn by analyzing the results
of Figure 6 is that transaction latency for read-only workload is
comparable with the one in Walter. In fact, querying and manipulat-
ing version-access-sets might add latency to read-only transactions.
However, under read-only heavy workload and low contention,
version-access-sets are e�ectively empty, which minimizes FW-
KV’s latency overhead with respect to Walter.

To show the e�ectiveness of a fresher reading snapshot for read
operations of update transactions, in Figure 7 we measure the abort
rate (of update transactions since read-only transactions cannot
abort) using 20 nodes in case we intentionally delay the asynchro-
nous propagate messages (by 1 ms) in both FW-KV and Walter.
We select 1 ms because, in our testbed it mimics around 5x slow-
down of network delay, which might be due to congestion at high
utilization.
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Figure 7: Abort rate using 20 nodes and varying number of
keys while delaying propagate messages.

Without delaying the asynchronous propagate messages, the
abort rate of FW-KV and Walter is comparable, below 10% and
even less in low-contention scenario. Enabling the delay, Walter’s
abort rate is on average twice the one of FW-KV. The reason of
such signi�cant increase for Walter is because update transactions’
reading snapshot in our con�guration of YCSB should be the fresh-
est since the same read keys are also written, therefore they need
to be validated. Slowing down the propagate messages forces up-
date transactions in Walter to repeatedly abort before being able to
commit when �nally the node’s vector clock is updated. Another
interesting aspect to be observed is that in general the abort rate
does not decrease while the contention decreases at 500k keys. This
is due to the fact that, even if contention is absent, a transaction in
Walter may not be able to read the latest version of a key because
of an outdated node vector clock.

Abort rate increases in Walter and FW-KV compared to the case
where asynchronous messages are not delayed because update

transactions still need to receive the propagate messages in order
to �nally commit. While they wait for such a message, they hold
the locks on their written keys. Holding locks for longer increases
the probability of abort.

5.2 TPC-C
TPC-C transactions are much longer than YCSB’s, especially the
read-only ones. Generally, the performance at 50% read-only work-
load is slower than the one at 20%. Because of the hierarchical object
access pattern of TPC-C, the contention in the system is modi�ed
by varying the number of warehouses (the warehouse object sits at
the top of this access hierarchy).

����� ������� ��

	�� ������ ���� �������
����� ������� ��

	�� ������ ���� �������
������� 

����

������� ������

0

10

20

30

40

50

60

5 10 15 20

Th
ro
ug

hp
ut
(K
Tx
s/
se
c)

Number	of	nodes

(a) 20%

0
5
10
15
20
25
30
35

5 10 15 20

Th
ro
ug

hp
ut
(K
Tx
s/
se
c)

Number	of	nodes

(b) 50%

Figure 8: Throughput using TPC-C and by varying % of read-
only transactions, the number of warehouses per node (W/n),
and the number of nodes.

Figure 8 shows the results for all competitors varying the num-
ber of nodes and the number of warehouses per node. As opposed
to YCSB benchmark, in TPC-C transactions do not necessarily read
the same keys that they write. This allows an update transaction
to commit even if the reading snapshot is not the freshest. The
consequence of this characteristic is that PSI competitors are much
faster than 2PC-baseline, and both Walter and FW-KV have similar
growing trend. In fact, with 50% read-only transactions, the perfor-
mance of the two PSI competitors is within 5% of each other. At
20% read-only workload, the maximum observed gap is 28%.

Figure 9(a) includes the abort rate measured at 20 nodes deploy-
ing 16 and 32 warehouses per node in the case where the propagate
messages have been intentionally delayed. Without delaying them,
abort rate of Walter and FW-KV is comparable. Walter shows an
average of almost 4x higher abort rate than FW-KV. This is because
of the way the safe snapshot is selected by update transactions in
FW-KV. In fact, according to TPC-C logic, the warehouse is often
the �rst accessed key, which is guaranteed to be the latest version
by FW-KV’s concurrency control, subsequent accesses to objects
will be likely related to that warehouse. This pattern ensures that all
the objects updated along with that warehouse will be accessed by
reading the latest version. Because of that, FW-KV’s degradation in
abort rate is less than Walter’s. In terms of throughput (not shown
in the plots), results of the delayed version of both FW-KV and
Walter are consistent with the trends observed in Figure 8.
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(b) Slowdown

Figure 9: Performance of FW-KV and Walter varying the
number of warehouses per node.

Finally, in Figure 9(b) we show the slowdown in throughput be-
tween FW-KV andWalter when we vary the number of warehouses,
using 20 nodes. In TPC-C, every read-only transaction needs to be
added to the read-access-set of the accessed warehouse. As a result,
when the number of warehouses is only 8 per node, contention
is high and the size of read-access-sets increases along with the
number of read-only transactions. Managing large read-access-sets
introduces overhead, which is whywith 8 warehouses, performance
at 20% read-only workload is slightly better than at 50%. The trend
reverses as the number of warehouses increases and contention
decreases.

6 RELATEDWORK
Many distributed transactional repositories providing either SI or
its weaker variants have been proposed in literature; examples
include [1, 5, 12, 13, 25, 28]. Among those, Jessy [1], Clock-SI [12],
Percolator [25], and the Incremental approach [5] will be discussed.

Jessy [1] provides transactions with reading snapshots that can
include causally dependent versions committed after the transac-
tion starting time. Jessy uses per-version dependence vectors. Each
vector re�ects all the versions read or written by the transaction
that created that speci�c version. FW-KV and Jessy both aim at
improving data freshness; however, unlike FW-KV, the amount of
metadata required to support execution can grow signi�cantly. In

fact, if transactions access random objects, the size of each depen-
dence vector becomes comparable to the number of objects in the
system.

Clock-SI [12] provides SI using a loosely synchronized clock
scheme that might lead to unavailability of the reading snapshot
because of skews across distributed clocks, with a consequence low
performance. Google Percolator [25] provides SI using a centralized
source of synchronization to timestamp distributed transactions
for Bigtable [7].

Elnikety et. al in [13] extend SI to replicated databases. It allows
transactions to use local snapshots of the database on each replica
and relaxes the level of data freshness.

The solution in [5] proposed the Incremental Snapshot method
as an e�cient solution to implement Distributed Snapshot Isolation.
In this method, a local transaction only interacts with the local
clock to establish the reading snapshot. A non-local transaction
interacts with the remote node to obtain an appropriate reading
snapshot. For validating the remote accesses, a global clock is still
required. The validation requires maintaining the mapping between
each local clock and the global clock.

Among the proposed distributed systems relying on special pur-
pose hardware for synchronization or communication, Spanner [9],
Farm [11] and FaSST [17] can be considered state-of-the-art. Span-
ner [9] relies on TrueTime API which uses a combination of a very
fast dedicated network, GPS, and atomic clocks to provide a fresh
reading snapshot. FaRM [11] and FaSST [17] are distributed comput-
ing platforms which use RDMA to directly access data in a shared
address space, and for fast messaging between the nodes. FW-KV
is designed to not leverage special purpose hardware.

7 CONCLUSION
We presented FW-KV, a distributed concurrency control that im-
proves upon Walter’s PSI concurrency control by increasing the
level of data freshness of read-only transactions. With FW-KV, we
empirically show that is possible to retain the high performance en-
abled by PSI while preventing transactions from reading arbitrarily
old versions, a signi�cant drawback of current state-of-the-art PSI
solutions.
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