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Abstract

We develop a theoretical foundation for the application of Nesterov’s accelerated gradient
descent method (AGD) to the approximation of solutions of a wide class of partial differential
equations (PDEs). This is achieved by proving the existence of an invariant set and expo-
nential convergence rates when its preconditioned version (PAGD) is applied to minimize
locally Lipschitz smooth, strongly convex objective functionals. We introduce a second-order
ordinary differential equation (ODE) with a preconditioner built-in and show that PAGD is
an explicit time-discretization of this ODE, which requires a natural time step restriction
for energy stability. At the continuous time level, we show an exponential convergence of
the ODE solution to its steady state using a simple energy argument. At the discrete level,
assuming the aforementioned step size restriction, the existence of an invariant set is proved
and a matching exponential rate of convergence of the PAGD scheme is derived by mim-
icking the energy argument and the convergence at the continuous level. Applications of
the PAGD method to numerical PDEs are demonstrated with certain nonlinear elliptic PDEs
using pseudo-spectral methods for spatial discretization, and several numerical experiments
are conducted. The results confirm the global geometric and mesh size-independent conver-
gence of the PAGD method, with an accelerated rate that is improved over the preconditioned
gradient descent (PGD) method.
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1 Introduction

The purpose of this work is to broaden the context in which a well-known and efficient algo-
rithm for unconstrained convex minimization, the so-called Nesterov’s accelerated gradient
descent (AGD) scheme, can be utilized and, further, to shed some light on its convergence
properties. This method iteratively finds approximations to the solution of the following
optimization problem: given G : H — R, find

x* = argmin {G(x) | x € H}.

Here, and in what follows, H is a real, separable Hilbert space with inner product (-, - )g
and the so-called objective functional, G, is assumed to be strongly convex and locally
Lipschitz smooth; see Sect. 2 for definitions and notation. We immediately comment that the
assumptions on the objective guarantee the existence and uniqueness of a minimizer (e.g.,
[16, Theorem 7.4—4, Theorem 8.2-2]).

Convex minimization is ubiquitous, and our main interest in this problem comes from the
fact that many important nonlinear partial differential equations (PDEs) can be viewed as the
Euler equations of certain convex objective functions. For example, the classical minimal
surface problem (see [ 18]) and the p-Laplacian equation (see [7]) have this structure. The main
scheme of this paper, which we call the preconditioned Nesterov accelerated gradient method
(PAGD), can be used for any problems to which the gradient descent method can be applied
since it is a two-fold generalization of the latter, including preconditioning and acceleration
(see Remarks 2.2 and 3.1). However, it is particularly powerful for semilinear PDEs, where the
highest order linear differential operator can be “absorbed” into the preconditioner, leading,
in the best case scenario, to a convergence rate that is independent of the dimensionality of
the problem, that is, it takes the same number of iterations to approximate the solution even if
the grid spacing is refined. For example, semilinear elliptic equations coming from a convex
energy [19] can be solved efficiently with the PAGD, provided the linear term is sufficiently
strong. Another useful application of the PAGD is associated with solving parabolic PDEs,
where the diffusion term can be either local or nonlocal [11]. Time discretizations of many
important models in materials science often yield semilinear PDEs, e.g., via the convex
splitting technique (see, e.g., [20]). In fact, this is one of the biggest motivations for choosing
our numerical experiment, and we discuss this in detail in Sect. 6. In a related context, the
current explosion of interest in statistical learning has drawn the attention of practitioners to
so-called first order schemes, i.e., those that only require knowledge of first order derivatives,
which s suitable in dealing with large data sets. These considerations are important for solving
nonlinear PDE as well. One of the main thrusts of this research is to show that Nesterov’s
accelerated schemes, which are popular in statistical learning, can be utilized as fast solvers
for nonlinear PDE once we resolve some nontrivial, technical difficulties specific to such
problems.

The first and most naive approach to find x* would be to appeal directly to the first order
necessary (and, in this context, sufficient) optimality condition, namely, the Euler equation:

G'(x*) =0, (1.D)

where G’ denotes the Fréchet derivative of G. In the examples that we have in mind, however,
this requires the simultaneous solution to a very large number of nonlinear equations, and
the direct solution of the system is not feasible in practice. Other approaches better suited
for minimization must be constructed. According to [10], iterative methods for minimizing
functionals date back in 1847 when Cauchy proposed the so-called gradient descent method
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(GD). The solution to (1.1) can be seen as the steady state of the gradient flow
X(0) = xo, X(t) = -G (X(1)), t > 0. (1.2)

Here xp € H is arbitrary and, in the second equation, we are implicitly identifying the dual
space of H, denoted by H', with H itself. Under the assumptions we have imposed on the
objective G, it is possible to show that this flow satisfies X (1) — x™ as t — o0, see [34,
Theorem 2.4]. The idea of GD is to approximate the solution to this flow via a forward Euler
time discretization with a fixed step size s: given xg € H, for k > 0, find x4 satisfying

X1 = X — SG'(xp). (1.3)

While this idea seems straightforward, more in-depth discussions on this method started
only in the 1960s, where some practical step size rules and convergence analyses were
established. It was shown that if the objective functional is convex and Lipschitz smooth,
then GD converges to the minimizer, x*, and it exhibits a first order rate of convergence
in the objective. Here, and in what follows, by an nth order (algebraic) convergence in the
objective, we mean that G(x;) — G* < O(l/k”), as k — oo, where G* = G(x*) is the
minimum of G. By an exponential or a geometric convergence in the objective we mean that
Gxy) —G* < O(rk), as k — oo, for some r € (0, 1). In the latter case, we call r the rate
of (exponential) convergence. It can further be shown that, if the objective is, in addition,
strongly convex, then the rate of convergence is exponential, and that it matches the rate
of convergence of the solution of (1.2) to x*. (See [26, Theorem 2.1.15] or Remark 5.11).
Some physical intuition for the evolution of the solution to (1.2) is provided in Sect. 4. See,
in particular, Remark 4.1.

Evidently, all considerations regarding convergence are subject to the norm || . ||H. Itis
possible to improve the convergence rate by using an equivalent norm, through which the level
sets of the objective G look “more circular.” In the numerical linear algebra and numerical
PDE communities, this is commonly known as preconditioning. In the context of (1.2) and
GD, this is achieved by introducing an operator £ : H — H’ and considering the evolution
of X(1) = —L7'G’(X(1)). Notice that we no longer implicitly identify H' with H. The
time-discrete counterpart of (1.3) is known as the preconditioned gradient descent method
(PGD) and is as follows: given xo € HI, for k > 0, find x4 such that

Xea1 = xx — sLTIG (xp). (1.4)

If the preconditioner is suitably chosen, then the convergence rate of GD can be substantially
improved (see [19]). Note that we will tacitly assume in the sequel that £ is independent of the
iteration index k. We remark that Newton’s method may be viewed as a kind of generalized
preconditioned gradient descent method if we assume that G is twice Fréchet differentiable
and allow for the possibility that the preconditioner can change at each iteration. In particular,
Newton’s method is expressed as

G" (x1) (Xkg1 — x) = =G (xg) =t 1y, (1.5)

where G” (x;) is the second Fréchet derivative of G, and ry is the so-called residual. Then,
Newton’s method is a generalized preconditioned gradient descent method for which the
preconditioner satisfies s £ = G” (x;). One of the difficulties with Newton’s method is that
the preconditioner constantly changes, in general, and must be recomputed and re-inverted
at each iteration step, which can prove quite costly. Furthermore, G’ may not exist in all
applications of interest. Indeed, in the sequel, we will not assume that G” exists.
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To improve the convergence rate of GD, Nesterov [25] suggested a scheme that accelerates
the GD method. For convex and Lipschitz smooth objectives the Nesterov’s accelerated
gradient descent (AGD) scheme achieves a second order convergence rate. Later, he showed
that if the objective is, in addition, strongly convex, then AGD achieves a faster exponential
convergence rate than GD (see [26, Theorem 2.1.15]).

However, while the GD scheme has a strong physical intuition behind it, it is not com-
pletely clear what mechanism is at play to provide an acceleration in the AGD scheme. Some
attempts have been made to understand this in the literature. Attouch et al. [6] studied asymp-
totic behaviors of the solutions to a heavy ball system (similar to (4.1)) and showed their
convergence to minimizers (if they exist) of locally Lipschitz objectives that are bounded
below at the continuous time level. Goudou and Munier [21] looked into a similar system
with quasiconvex, locally Lipschitz objectives at the continuous time level and the conver-
gence of its implicit discretization, what they call proximal inertial algorithm. Apparently,
[33]1is the first work that explains the acceleration happening in AGD both quantitatively and
intuitively and inspired many researchers including us. For convex, Lipschitz smooth objec-
tives, they were able to show that the solutions to a second order ODE X+ %X +VG(X)=0
converges to the set of minimizers of G quadratically fast, as 1 — oo, and a matching, dis-
crete convergence rate was established for a version of AGD. Wibisono et al. [34] took a
similar approach in more generality in the language of Bregman Lagrangian flow. However,
these two works did not explain the exponential acceleration for the strongly convex objec-
tives. This limitation was one of the motivations of our work and removing it is one of the
goals of this paper. Recently, there have appeared more works that address the same issue
and provide more general or unifying frameworks. For (globally) L-smooth, z¢-strongly con-
vex objectives (see Sect. 2 for definitions and notation), the best known convergence rates
of AGD and the associated ODE are G (x;) — G* < O((1 — M)k) as k — oo and
G(X(1)) — G* < O(e™VF!) as t — oo respectively. Similarly, for (globally) L-smooth,
convex objectives, G (x;) — G* < O(l/kz) as k — oo and G(X(t)) — G* < O(l/tz) as
t — oo are the best known convergence rates respectively. Within the same framework as in
[34], but using a different Lyapunov function, Wilson et al. [35] showed the best convergence
rates for both convex and strongly convex cases at both continuous and discrete level. Shi et
al. [31] looked into what they call high-resolution ODE and provided a finer understanding
about the momentum-type schemes and obtained similar results. The convergence rates for
the strongly convex case that they derived were not the best. However, they were able to
explain the difference in the performance of Polyak’s momentum method and AGD at the
continuous level. Siegel [32] also analyzed a system of ODE:s to study a version of AGD and
obtained the best known rate of convergence for the strongly convex case at both continu-
ous and discrete levels. He also studied non-smooth but still strongly convex objectives and
stochastic versions. Luo and Chen [24] obtained the same best convergence rates for all the
four cases mentioned above using a single ODE system but using a time rescaling argument
when dealing with the convex case. Laborde and Oberman [23] studied perturbed ODE sys-
tems and the corresponding version of AGD in the stochastic framework. As a byproduct,
they obtained the same best convergence rates for the perturbed version of AGD with strongly
convex objectives in the deterministic setting. There are also related works from a PDE point
of view rather than convex optimization. Schaeffer and Hou [29] studied accelerated meth-
ods for nonlinear elliptic operators, which may not have a variational structure, i.e., the PDE
may not have an appropriate objective. They also proposed similar methods for viscosity
solutions. Benyamin et al. [9] and Calder and Yezzi [13] studied PDE accelerations that are

@ Springer



Journal of Scientific Computing (2021) 89:17 Page50f37 17

similar to [34] in spirit and applied them to image processing and minimal surface obstacle
problems respectively.

The work contained herein includes the following important contributions, in particular,
from a numerical PDE point of view, which can be seen more clearly from the literature
comparison of “Appendix 3”. See Table 2.

1. We prove all of our results under the more general assumption that the objective functional
is locally Lipschitz smooth. Almost all earlier works assume that the objective is globally
Lipschitz smooth (see e.g., [4,23,24,26,29,31-35]). This is too restrictive to approximate
solutions of nonlinear PDEs. If the objective functional associated with the PDE of interest
grows just a bit faster than quadratic functionals (i.e., those of very mild nonlinearity),
it violates the global Lipschitz condition and is beyond the theoretical guarantee. On the
other hand, the local condition does not require anything outside of a certain bounded set
so that much more nonlinear PDEs can be dealt with. Only a few works from a dynamical
system point of view (e.g., [6,21]) assume local Lipschitz condition. However, those
works address only convergence itself at the continuous time level and did not discuss
discrete level analysis. To the best of our knowledge, this is the first work that provides
convergence rates under the local Lipschitz smoothness assumption at the continuous or
discrete level.

2. We prove the existence of an invariant set 8 of the PAGD method. That is, every sequence
generated by the scheme stays in a certain bounded set. The local Lipschitz assumption
is meaningful when it is furnished with an invariant set so that we have no restriction
in exploiting the Lipschitz condition. We emphasize that this is not a trivial technicality.
Unlike the gradient descent method, the accelerated methods are not descent methods.
In fact, they oscillate. Thus, a simple sublevel set argument does not work. Even worse,
they involve extrapolations of the main iterates. Consequently, a naive attempt to obtain
an invariant set leads to an impasse: to control the extrapolations, one wants to use the
Lipschitz condition, but under the local Lipschitz condition, one cannot use it before
proving that they are in a fixed bounded set. Again, to the best of our knowledge, our
work is the first that addresses and resolves this issue.

3. We provide a detailed discrete analysis for a nonlinear PDE. All existing works mentioned
before either did not discuss numerical examples or did not explain how concrete numerical
examples fit the abstract framework, and they omitted whether their numerical examples
satisfy the assumptions that they imposed. In contrast, we show that our examples satisfy
all the necessary assumptions.

4. We provide an intuitive explanation for the acceleration mechanism behind AGD for
strongly convex and locally Lipschitz smooth objectives. Inspired by [33], we view AGD
as a discretization of a certain second order ordinary differential equation (ODE)—we
present how to discretize this ODE to obtain AGD—and show that the solution to this ODE
converges exponentially fast to its stationary point, which is the minimizer of G. We also
provide an energy based proof of the exponential convergence rate of PAGD. This proof
mimics the analysis of the continuous counterpart that is previously developed and shows
what dissipation mechanisms are at play to achieve the aforementioned acceleration. We
also show that the rates of convergence of the ODE model and AGD match and those
rates at the continuous and discrete level are both the best known rates.

5. We build a preconditioner into the problem itself (even at the continuous time level) to
analyze the scheme with a preconditioner in an explicit way. This seems deceptively sim-
ple. After all, preconditioning is nothing but using a different norm, hence a numerical
analysis in one norm implicitly suggests the possibility of a similar analysis in another
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norm. On the other hand, determining an effective preconditioning strategy is a nontrivial
matter. Furthermore, it is our observation that preconditioning in the classical optimization
setting, especially for problems related to data analysis and machine learning, is under-
utilized and is a potential growth area in the future. Likewise, preconditioning strategies
related to spectral collocation methods applied to nonlinear PDE are uncommon, but, as
we shall see, are effective and efficient solver tools.

This paper is organized as follows. In Sect. 2, we summarize the notation, assumptions,
and main tools that we will use. In Sect. 3, we introduce several numerical schemes that are
closely related to our discussion and summarize their convergence rates. In Sect. 4, we explore
the connection between PAGD and a second order ODE and how this connection can help
understand the acceleration behind PAGD intuitively. In Sect. 5, we prove the existence of an
invariant set for the PAGD scheme and its exponential convergence. We take an ODE inspired
approach, whose intuition lies in the developments of Sect. 4. In Sect. 6, we illustrate the
application of the PAGD method to the solution of some numerical PDEs. These numerical
experiments show the improvement in convergence by both acceleration and preconditioning.
Finally, in the Appendices, we provide the derivation of the initial value problem (IVP) which
corresponds to the limiting case of PAGD and a specific discretization of the IVP that leads
to PAGD.

2 Preliminaries

Let us begin by introducing the setting, assumptions, and some basic properties of the objects
that we are interested in. By H|, we denote a real and separable Hilbert space with inner product
(-, -)m and associated norm H . ”H Since we will use other inner products and norms on H,
for clarity, we will refer to (-, - ) and | - HH as the canonical inner product and canonical
norm, respectively. The dual of H is denoted by H'. Its canonical operator norm is denoted
by H . HH,. Forv € Hand f € H, the symbol < f, v) represents their duality pairing, that is,
(f, v) = f(v) e R

A preconditioner is defined by a linear operator £ : H — H'. Such an operator induces
a bilinear form: for x, y € H,

)z = (Lx, y) = LX) 2.1)

We further assume that the bilinear form defined in (2.1) satisfies the following properties:
there exist Cy, C, > 0 such that, for any x, y € H,

@ye=0.0c @y sClxlglyly ClxlhsGoe. @2

Let us state some immediate, but important consequences without proof for the sake of
brevity.

Proposition 2.1 [properties of L] Let H be a real, separable Hilbert space with inner product

(+, *)m, and suppose that L : H — H is a linear mapping that satisfies (2.2). Then, (-, - ).
is an inner product on H and the object

”x”z:m, VxeH,
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is a norm, which is, in fact, equivalent to the canonical norm, ! . H - By the Riesz Represen-
tation Theorem, L is invertible. The inverse is continuous and, in fact, it is just the Riesz Map
with respect to the L-inner product, denoted R . We write L7 =R, H — H. The object

(f8)p1=(f.LTg), Vf.geH, (2.3)

is an inner product on the Hilbert space H' and the object

| £l oo = Do = (£ L7V), Vel 24)

is a norm. The new norm on H' is an operator norm in the sense that

] o = Osqu<”J;’”x) = s (f.x), VfeH. (2.5)
AR e

Finally, we have

||£’lfH£ =|fll 0. YFeW and |Lxlp =llxlc, VXeH.  (26)

Remark 2.2 (no preconditioning) By setting £ = 9%]511, we can remove the preconditioning,
where Ry : H' — H is the canonical Riesz map. Hence, PAGD is a generalization of AGD.
O

Our objective G : H — R will be assumed to be Fréchet differentiable at every point
in H. We denote by G’(x) € H’ the Fréchet derivative of G at the point x € H. Since the
definition of Fréchet differentiability involves a norm, the actual derivative is possibly norm
dependent. The following result shows that, actually, the definition is invariant as long as the
norms are equivalent.

Proposition 2.3 (equivalent norms) Let Hl be a real and separable Hilbert space with norm

|| . ”IHI’ and G : H — R be Fréchet differentiable at x € H. Assume that || - |||z is another
norm on H. If ||| - |||m is equivalent to || : ”H’ then G is also Fréchet differentiable at x with
respect to ||| - |||z Furthermore, the derivatives coincide.

Notice that nothing is said about continuity in the previous statement. For convex functions,
the continuity of the derivatives is automatic once the Fréchet differentiability is guaranteed
(see [27, p. 20 Corollary]).

Proposition 2.4 (continuity) Let H be a real and separable Hilbert space and D C H be
open and convex. If G : D — R is convex and Fréchet differentiable, then x + G’(x) is
norm continuous on D.

The following two definitions provide a framework to describe the geometry of the graph
of our objective functional.

Definition 2.5 (Lipschitz smoothness) Let H be a real and separable Hilbert space, and G :
H — R be Fréchet differentiable at every point. We say that G is locally Lipschitz smooth
(with respect to £-norm) iff, for every bounded, convex set B C H, there exists a constant
Lp > 0 such that

(G'@) = G' (. x —y) < Lp|y —x|3 Yx.yeB. 2.7
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For brevity, we say that G is L g-smooth on B. If the constant Ly = L > 0 can be chosen to
be independent of B, then we say that G is globally Lipschitz smooth with a constant L, or
simply L-smooth.

Remark 2.6 (terminology) The above definition is a weaker notion than the local Lipschitz
continuity of the Fréchet derivative of G, which is given by

|G'x)—G'W| 1 < Lp|x—y|, Vx.yeB, (2.8)

for some Lp > 0. Of course, this implies the local Lipschitz smoothness of G (2.7). In
this paper, to avoid confusion, whenever (2.8) holds, we will say that G is locally Lipschitz
smooth in the strong sense or that G’ is locally Lipschitz in the strong sense. We need this
stronger condition when we conduct the continuous level analysis (Sect. 4). Note, however,
for convex functions, the global versions of the two definitions are equivalent. That is, if
B =H, (2.7) implies (2.8) (see [26, Theorem 2.1.5 (2.1.8)]). O

Definition 2.7 (strong convexity) Let G : H — R be Fréchet differentiable. We say that G
is u-strongly convex (with respect to £-norm) iff there exists a constant ;& > 0 such that

2
(') =G (. x—y)=u|y—x|; Vx.yeH (2.9)
‘We now state an equivalent characterization of these notions.

Theorem 2.8 (equivalence) Let H be a real and separable Hilbert space, and G : H — R
be Fréchet differentiable. G is L g-smooth on the bounded convex set B C H if and only if

, Lg 2
Gy —Gx)—(G'(x),y—x) < 7||y —x|, Vx,yeB. (2.10)
Similarly, G is pu-strongly convex if and only if

G(y)—Gx) —(G'(x),y —x) =

Sly=x|7 vy e @11

Proof These results follow from Taylor’s Theorem with integral remainder. See also [26,
Theorem 2.1.5, Theorem 2.1.9]. |

Among the two characterizations of Lipschitz smoothness and strong convexity stated
above, we will call (2.10) and (2.11) the upper and the lower quadratic trap of G, respectively.
The constant % is called the (local) condition number of the objective functional G with
respect to the £-norm. In what follows, we will use its reciprocal, denoted by p = ﬁ € (0, 1],
to quantify rates of convergence. Note that the condition number crucially depends on the
norm that is used to describe the geometry of the graph of G. Choosing a good preconditioner,
L, is at the heart of much of scientific computing.

We conclude this section by stating a pair of well-known identities which we will use
frequently. For any A, B € H,

1 2 1 2 1 2
4B = LA+ Ls - Lac a2 2n)

1 2 1 2 1 2
= 5la+ Bl —5lal — 518l 2.13)
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3 Optimization Schemes

Here we briefly review several algorithms that are closely related to our main algorithm of
interest. To focus on the main differences between the schemes of interest, we will not pay
attention to choices of step size and stopping criteria of the algorithms. For those readers
who are interested in these details, we refer, for instance, to [8,12,15,26].

Data: G: The objective
Data: s > 0: The step size
Data: x( € H: The initial guess
Result: The sequence {xy };> that approximates x*, the minimizer of G
for k > 0 do

X1 = X — sLTLG (xp);
end

Algorithm 1: Preconditioned gradient descent method (PGD)

We begin by presenting the PGD scheme in Algorithm 1 and describing its convergence
properties. To do so, we introduce

B={xecH|Gx) < G(xg)},

which is a bounded, convex set containing the minimizer. Then, assuming that G is Lp-
smooth on B and p-strongly convex, and that the step size satisfies s € (0,2/(Lp + p)], itis
possible to show that x; € B for all k > 0. Moreover, in this setting, the scheme converges
exponentially fast to the minimizer (see [15,19,26]). In particular, if s = 2/(Lp + 1), then

1—

k
* p *
="l = (752) ho=xl o

Data: G: The objective

Data: n > 0: The friction coefficient

Data: s > 0: The step size

Data: x( € H: The initial guess

Result: The sequence {x;}x>1 that approximates x*, the minimizer of G

Define: 6 = /s and 1 = 1-¢

1$6°
Set: x_| =vy =x9 € H;
for k > 0 do
Yk =X + A —xp—1), (3.2)
Xert =k —SL1G (). (3.3)
1

Vg1 = X + g(xk—o—l = Xg)- 3.4)

end

Algorithm 2: Preconditioned accelerated gradient descent method (PAGD)

To improve on the convergence of GD (Algorithm 1 with £ = iﬁﬁl), Nesterov [25]
devised an algorithm, which “accelerates” the rate of convergence of GD. The improved
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algorithm is commonly known as Nesterov’s accelerated gradient descent method (AGD).
The preconditioned version of this scheme, PAGD, is presented in Algorithm 2. Roughly
speaking, it computes an extrapolation, (3.2), takes a gradient step there, (3.3), and repeats
the same process. Notice that an actual implementation does not need to compute the sequence
{vk }k>0. We need it for the theoretical analysis. As we will see in Sect. 5, for convergence,
the algorithm must satisfy the conditions < 1/Lpg and n < /i where L > 0 is the (local)
Lipschitz smoothness constant of G with respect to a bounded convex neighborhood of the
minimizer, B, and pu is the strong convexity constant.

It must be noted that PAGD, as presented in Algorithm 2, is practical only if the objective
functional is p-strongly convex (i > 0). Otherwise, a convergence result may not be avail-
able. There exists a more general scheme, which one may call accelerated gradient descent
method with variable weights (see [26, p. 78]), that is applicable to merely convex objectives.
‘We do not discuss this case here.

Let us now compare the performances of GD and AGD (Algorithms 1 and 2 with £ = ER;
respectively) by comparing G (x;) — G*, where k is the number of iterations and G* = G (x*)
is the minimum of G. To the best of our knowledge, the existing results on AGD are established
under the assumption that the objective is globally Lipschitz smooth. Thus, for the rest of
the summary of this section, the objective G is assumed to be (globally) L-smooth. If GD
is applied to a (merely) convex, L-smooth objective functional with a step size condition
0 < s < 1/L, then we have a first order convergence in the objective functional, i.e.,
Gxy) — G* < O(l/k) as k — oo (see [26, Corollary 2.1.2]). On the other hand, AGD
with variable weights (the more general version mentioned above) provides a second order
convergence, that is, G (x¢) — G* < O(1/k?) as k — ooc. If the objective is, in addition, -
strongly convex, the convergence rates of the two schemes become exponential. Specifically,
estimate (3.1) and the quadratic traps show that the convergence rate of GD is G (x;) — G* <

O((i;—ﬁ)zk) as k — oo, where we recall that p = /L. This is in contrast to AGD, which

converges with a rate of G(xx) — G* < O((l - ﬁ)k) as k — oo; see [26, Theorem 2.2.3].
If p « 1, this acceleration can be significant. As we will see later, PAGD achieves the same
rate of exponential convergence even if the objective is locally Lipschitz smooth instead of
the Lipschitz smoothness being imposed globally.

Remark 3.1 (The PAGD as a generalization of the PGD) Setting n = 1/./s in the PAGD
leads to the PGD. Therefore, the PAGD can be viewed as a generalization of the PGD. 0O

4 An ODE Model for PAGD

We study a continuous time analogue of PAGD, a second order ODE, inspired by [33]. As
we will see, the discussion in this section turns out to be informative. It not only provides
an intuitive understanding of Nesterov’s acceleration, but also guides us to important results
at the discrete level. As mentioned in the introduction, there are recent works that arrive at
the same conclusion for some parts of our results using similar ideas. However, our unique
contributions rely on our specific layout of various quantities and calculations. Thus, we
include such details in a condensed manner while referring to existing work otherwise.

To streamline the discussion, we start by directly introducing the initial value problem
(IVP) whose certain discretization leads to PAGD:

XO+2XO+L7'6' (X)) =0,1>0, X0 =x5, X(0)=0. 4.1
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Fig.1 A rolling ball system. The IVP (4.1) describes a ball of unit mass rolling down a bowl-shaped potential
landscape with a constant friction coefficient

Interestingly, this is the same system as what Poljak [28] had in mind when he proposed the
heavy ball method. See “Appendix 17 for its derivation. Conversely, PAGD can be viewed
as a discretization of this IVP although not every choice in the process can be seen as
natural or intuitive. It is given in Fig. 2. Note that it involves some ingredients appearing in
Sect. 4.2.

Remark 4.1 (physical interpretation) This IVP (4.1) describes the motion of a ball of unit
mass in the potential G with friction coefficient 25 which starts from the initial position xq
at rest; see Fig. 1. Our physical intuition suggests that the ball will converge to its minimal
point as it exhausts the initial energy under the action of friction. If the friction, quantified by
1, is too small it will oscillate much as it reaches the minimal point and will converge only
after a long travel. On the other hand, if the friction is too large, it will not move sufficiently
rapidly, and this, in turn, will also lead to a slow convergence.

Let us compare this with another physical system. We can interpret the physics of the gra-
dient flow as a limiting case of the same dynamics. The gradient flow X)) =-L7'G/(X1))
can be viewed, up to a constant factor 27, as a massless limit of the IVP (4.1). That is, a
physical thought experiment suggests that the surroundings hold the ball back as soon as it
gets accelerated since it is so light. A real life example of this kind is a very viscous fluid, such
as honey, flowing down a bowl. Our physical experience suggests that it will not oscillate
and will flow along the steepest descent direction every moment. However, it will reach the
bottom slower than the rolling ball will if the friction is appropriately strong. O

4.1 Analysis of the IVP

As one can expect from the fact that the IVP (4.1) describes a concrete physical situation,
its solution possesses good properties. In this and the following section, however, we need a
slightly stronger Lipschitz condition on G’ than in the discrete level discussion.

Lemma 4.2 (existence and uniqueness) Suppose that G : H — R is p-strongly convex and
locally Lipschitz smooth in the strong sense, i.e., (2.8) holds. Then, for any T > 0, there
exists a unique solution X € C 2(0, T; H) to the initial value problem (4.1) and the solution
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obeys the following energy identity

L. '
SIx® |7+ G(X(1) - G* = G(x) — G* — 2nfo |X@|7de vi=0. @2

Consequently, the solution exists for all t € [0, oo) and it is twice continuously differentiable.

Proof See [6, Theorem 3.1 and Proposition 4.2] for the existence, uniqueness, and smooth-
ness. For the energy law, take the £-inner product of the first equation of (4.1) with X and
integrate over time 7 € [0, 7]. O

Remark 4.3 (smoothness of the solution) The fact that X € C2((0, oco); H) N C ([0, co); H)
justifies the manipulations we will carry out when we derive the IVP (4.1) in “Appendix 1”.
O

4.2 Convergence to Equilibrium
We now wish to prove that the solution to the IVP (4.1) with G being locally Lipschitz
smooth and p-strongly convex converges to its attractive steady state solution as t — oo,

which is the minimal point in this case, at a matching rate with that of PAGD. This is one of
the highlights of this work. To this end, we introduce an auxiliary variable

1.
V(i) =X(t)—x"+-X()
n
so that the first equation of the IVP (4.1) can be rewritten

V) +nX@) + LG (X)) = 0. (4.3)

We also introduce an energy
N2 L L ¥
E(X,V)= §||V|\£ + ;(G(X) —G%), (4.4)

where we recall G* = G(x*) = min, g G (x). We will show that E is a Lyapunov function
for the IVP (4.1). For notational convenience, set Eg = E(xg, X9) = %(G(xo) - G* +

r] 2

3 xo = x* -

Theorem 4.4 (exponential decay) Let G : H — R be locally Lipschitz smooth in the strong
sense and [i-strongly convex. Denote by X the unique solution to the IVP (4.1). If n> < p,

the exponentially inflated energy E(t) = e" E(X(t), V(1)) is nonincreasing. Consequently,
the Lyapunov function (4.4) decays to zero at an exponential rate:

n 2 1 _
EX®), V(1) = 2 vl + ) (G(X (1)) — G*) < e "Eq. 4.5)
Proof Existence and uniqueness of X is guaranteed by Lemma 4.2. Let us now prove the
estimate (4.5). Taking the inner product of (4.3) with V (¢), and using the identity (2.12), we
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obtain, suppressing the time variable,
. . 1.
0=n(V.V)r+nX,X —x*+ ;X)L + (LG X)), X —x),

1 .
+ ;(E*‘G’(X), X)¢

| ) 5 (4.6)
=0 e+ | X+ VG = T w600, X —x7)
1, ., .
+ ;(G (X), X).
The lower quadratic trap, (2.11), implies
G(X) - G* = [G'(X), X — x*) < —%”X—x*”i. 4.7

Substituting (4.6) into the time derivative of the inflated energy and then using the above
estimate (4.7), we have

2

. 2 . | .
) =e™ [% [ VH% +n(V, V) +(G(X) — G*) + ;(G/(X), x)]
nt Lyoy2 772 %2 ’ * %
=e |:—5||X|‘£—|—7||X—x |- —(G'x). X —x )—l—G(X)—G} (4.8)
1 : n—n? .
e LA EEE

The last term is always nonpositive provided 172 < 1, and this implies £(r) < £(0) = Ey.
This completes the proof. O

Remark 4.5 (physical interpretation) We can rigorously explain the physical intuition given
in Remark 4.1 through Theorem 4.4 and its proof. If the friction, quantified by 7, is too small
the decay to the attraction point is slow as n governs the decay rate e~". On the other hand,
If the friction is too large, say n > /i, then we cannot guarantee the boundedness of £(¢).

O

5 An Energy Approach to Convergence of PAGD

In this section, we prove the existence of an invariant set of PAGD and its exponential
convergence in the objective as well as in the residual when it is applied to a strongly convex,
locally Lipschitz smooth objective. We follow the ODE arguments developed in Sect. 4.
Throughout this section, we assume 1 = /i, the optimal choice for the friction coefficient
in view of Theorem 4.4. Note that this does not undermine generality. If [i is the largest strong
convexity constant of G, that is, the supremum of 1’s that satisfies the strong convexity, (2.9),
then any u € (0, /1] can be taken as a (non-optimal) strong convexity constant. Thus, the
general case #> < ji corresponds to 7> = i < fi, the optimal friction coefficient associated
with a non-optimal strong convexity constant.

As a first step, we show that the assumption of the local Lipschitz smoothness is sufficient
for our analysis, as the iterates lie within a bounded set. We first show that, for every k > 0,
the yy iterate of PAGD lies in the segment between x; and vg. This is used frequently in the
convergence proof.
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Lemma 5.1 (convex hull) For every k > 0, the iterates constructed in PAGD, described
in Algorithm 2, satisfy yx € Xyvk. Specifically, they satisfy the following four equivalent
equalities:

1 0
[yk = g%t it o= (+0)w — o, (5.1)

ve = (1+ %) v — gx, Xk — Yk = 0 (yk — k).

Proof If k = 0 this is trivial since xg = yp = vg. For k > 1, we eliminate x;_; from (3.2)
and (3.3) with the index being k — 1 to get

1 ! + A = (L+2)(1 ! )+ * S
9 Yk Uk = 9 P X = ka.
Rearranging terms and using A = %’ we obtain the equalities that are listed above. O

‘We now show that there is an invariant set for the iterates of PAGD.

Lemma 5.2 (invariant set) Assume that the objective G : H — R is p-strongly convex and
locally Lipschitz smooth. Define

B={recH]||x—x*, <R}, (4.2)

where R = R + %Rz, R = /%(G(xo) — G*), Ry = /2r(G(xg) — G*), and r > 1. Let
PAGD, as described in Algorithm 2, be implemented with a step size rule

s € (O min [L_l (r — 1)211«_1}:| 4.3)
’ B\ 11 ’ '

where L g the local Lipschitz smoothness constant of G associated to the set 8. Then, for all
k > 0, we have that ka — x*Hc < Ry, hence xi € B, and yi, vi € *B.

Proof The outline of this proof is simple although it is long. We mimic the energy law
developed in Sect. 4.1 to obtain a bound on the distance between the main iterates and the
minimizer and that on the speed. Once we get the bounds, it is easy to prescribe an appropriate
ball, which will be our invariant set.

We will prove the statement by induction. For k = 0, the statement is trivial since xo =
Yo = vo and the strong convexity implies on —x* HL < R;. Suppose that ||xk —x* ||£ <R
(hence x; € B) and y, vx € B are true for k = 0,1,2,..., N. We need to show that
||xN+1 - x*HL < Rj (hence xy4+1 € B) and vy4+1 € B, then Lemma 5.1 implies yy41 €
XN+1UN+1 C *B since B is a convex set as a sublevel set of a convex function.

Note that the condition s < (%)ﬂfl, which is implied by (4.3), ensures A~! to be
bounded above since

1 1+ S5k
R AT 4.4)
A 1 — . /su

First, a similar argument to [15, Proposition 4.6] shows that the xy| update from yy is
a descent step in terms of G. That is, the section of G across the line m also inherits
the strong convexity and the local Lipschitz smoothness with the same constants on the
one-dimensional affine subset

Byt = {x =yy —1L7'G'(yy) € H|z € R}.

Let S(7) = G(yy — L! G’(yn)) denote the section.

@ Springer



Journal of Scientific Computing (2021) 89:17 Page 150f37 17

Since we know that yy € ‘B, we can bound S in a neighborhood of T = 0 using the upper
quadratic trap

_ Lp _ 2
U(D) = Gom +(G' ). =L 6 o)) + - | =7L7' 6 ow)
2 Lpt? 2
= Gom) ~ |G om |2 + T2 G w0 B
Observe that S(0) = U(0) = G(yn), that U(r) is decreasing around 7 = 0 since
dU/dz(0) = —||G’(yN)H§:,1 < 0, and that the optimal step size to minimize U is 1/Lp

since dU /dt(1/Lg) = 0. This implies that S(s) < U(s) < U(0) for any s € [0,2/Lg].
Moreover, for s € [0, 1/Lp], we have

Gyt =8@6) =U(s) = Gyn)

s ) 4.5)
=GOn) - EHG/()}N)“L‘I’

which is the desired descent property in G from yy to Xy 1.
Now, we want to mimic the energy argument that we carried out in Sect. 4.1. Substitute
(3.2) into (3.3), and add and subtract x;y — xx—1, to obtain the discrete counterpart of (4.1)

Xt — 25k + Xe—1 + (1= 1) (o — xx—1) + LG () = 0. (4.6)
Note that defining x_; := xq allows us to extend this equality to the case k = 0. Take the

L-inner product of this identity with x; — x¢—1 and add for 0 < k < N. Then, using (2.13),
the first term telescopes to simplify

N
D (k1 = 2%k 4 Xk1. X% — X1
k=0
I ¢ 2 2 2
= 5 2 (b st 2 = e = 230 -t [ = e = e )
k=0

1 1
= §“xN+1 — XN Hi -3 Z||Xk+1 — 2xp + Xk—1 Hi
k=0

We leave the second term as it is. For the third term, using (3.2), G(yx) — G(x) <
<G/ (Vi) Yk — xk) from convexity, and (4.5), it follows

N N
s Y (G ), 1 — xi 1) %ZG(yk),)’k—Xk)
k=0 k=0
s N K N s )
= =) (GO0 =G = 3 Y (Gl =G +5|G o0l 5) @D
k=0 k=0

_ %G(xNH) ~2Gxo) + —ZHG S] e
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Gathering all the three terms together and rearranging, we get

1 1
EHXN+1 — XN ||i + ;G(XN+1) < %G(xo) t3 Z”xk+1 — 2xp + Xp—1 ||i

k=0
||G<yk>||ﬁ 1 —(1—A>Z|x,\—xk e

= k=0
4.8)
Similarly, take the £-inner product of (4.6) with x44+; — x and sum over 0 < k < N.
This time, use (2.12) for the first term to get

ZA

N
D Otk = 2% + Xko1, Xkt — X0 £
k=0
1 ) 1 N 2
= §||XN+1 — XN Hﬁ + 5 ZHXkH — 2x + X1 Hﬁ
k=0

For the second term, using Cauchy-Schwarz and Young’s inequality, we have

N

(=2 (o = X1, X1 — X
k=0

-2 2 2
213 2 (bl e =)

For the third term, use (3.3) and argue as in (4.7) to get

N

s Y (GO0, e — xi) Z (G k), 3k = L7 G () — xx)
k=0 k=0

N
> —SZZHG(mHg s D (G i) i — )

k=0 k=0
52 & 2
> 3G+ = 5G0) = 5 Y600 2.
k=0

Gathering all these estimates we get

| 1Y
§||x1v+| — XN ||i +5G(xn+1) < 5G(x0) — 5 Z”xk+l — 2xk + X1 Hﬁ

k=0 (4.9)
2, 2 -2 2 2
P AR MRS EHEEAY
Add (4.8) and (4.9) and rearrange, then after some cancellations, it follows
1 + A
et = a5 (14 1) Gl - 67
s 1+1 (G(x)—a*)—i I i“a’( )| (4.10)
h 0 2\ YWl '

k=0
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1
<s(1+5) G -6, (@.11)
since 0 < A < 1. By removing the kinetic term from this estimate, strong convexity leads to

* * It
Gxo) —G" = Glan+1) =G = E||XN+1

which implies
|xn1 = x|, < R, (4.12)

which, in turn, proves xy; € 8. Similarly, discarding the potential term, dividing through
w, and using (4.4), we obtain

— 2
Hﬂﬁiﬁﬁhsdxmuw—cﬂs&.

Then, from the definition of vy (3.4),

X
IIN+1 e

1
Jower ="l = Jaw =" .+~ =Rt R=R

which implies vy 41 € B. This completes the proof. O

Remark 5.3 (step size restriction) The additional condition s < (%)2 1! on the step size
is not restrictive at all in practice. For example, if r = 3, we require that s < 1/ 4pf'. The
purpose of this condition is to bound A~! as explained in the proof. However, A~ becomes
unbounded when s is close to 1. If we set s = 1/L g, su is the (inverse) condition number
and the (inverse) condition number being close to 1 makes the problem more amenable
because it means that G is almost quadratic. Moreover, even from a theoretical point of
view, as r increases, the invariant set *B gets larger, which means Lgl gets smaller, while
(=7 1 )2 ! approaches 1~ !. Since LE' < u~ ! (unless G is perfectly quadratic), the second
argument of the minimum in (4.3) eventually becomes of no effect. O

Corollary 5.4 (convergence of residuals) Assume that G : H — R is p-strongly convex and
locally Lipschitz smooth. Suppose that PAGD, as described in Algorithm 2, is implemented
with a step size that obeys condition (4.3), where r > 1, *B is the invariant set given by (4.2),
and L g is the Lipschitz smoothness constant associated with B. In this setting, the residuals
{G' (yi)}r=0 converge to zero in the L -norm at least 2-fast. In other words,

6 G0 |1 < .

k=0

Proof Moving the summation term of (4.10) to the left hand side and dropping the other
nonnegative terms, we have

2(1 + A
EﬂGmwcu.(+;m(w G").

Letting N — oo completes the proof. O

Of course, this result is far from optimal. An exponential convergence of the residuals in
the £~ '-norm will be proved in Corollary 5.9.

We can now begin the proof of convergence per se. We begin with an estimate for the
discrete time derivative of the potential energy.
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Lemma 5.5 (discrete derivative of potential energy) Let the objective G : H — R be
w-strongly convex and locally Lipschitz smooth. Suppose that the step size in Algorithm 2
satisfies (4.3), where r > 1, B is the invariant set given by (4.2), and Lp is the Lipschitz
smoothness constant associated with 8. Then, we have that

160t =G _
n Vs -

Proof Since we have an invariant set, 8, we can utilize the local Lipschitz smoothness with
respect to it. Combined with sLp < 1, it leads to

||G< Ol + (600 3 — ) — 2fll e — el 7

Glrr) = GO = L7160 = GOw = 36007+ @.13)
Using this estimate, the strong convexity of G yields
G = GOw) + (G0 xe = i) + 5 v = el
> Glos) + 3]G 00|z + (G = i)+ 5 vk = w2

Rearranging the last estimate, multiplying through by 1/6, and recalling 6 = /s, n = /1,
we obtain the desired result. O

We also need an analogue of (4.6), a certain relation derived from the scheme.

Lemma 5.6 (discrete analogue of (4.6)) The iterates constructed by PAGD, as described in
Algorithm 2, satisfy

1 2
% (P =15 = o =271Z) + {600 36 = x)+ - o = *|

1 2
fl\ vt = vl g+ oo |3k = w7 = ok = | + (G 0w =) = 0.
(4.14)

Proof Substituting (3.3) in (3.4), and using the relations (5.1), we have

J5

| _ S
Vbt = Xk = Ok = x) 7:: Y'G'(y) = i + ok — yk — %ﬂ LG (y).

Rearranging, and multiplying through by \%, we obtain the discrete analogue of the ODE

(4.3)
Vk+1 — Uk Yk — Xk —1
+ +L7°G =0. 4.15
NG n NG k) (4.15)
The discrete analogue of V() is vy — x™*, so following the proof of Theorem 4.4, we now
take the £-inner product of (4.15) with vy — x* to obtain

n * n * i *

— (v — Vg, Vf — X + — — Xk, Uk — X +(G Jop —x)=0. (4.16

ﬁ(k+l ks Vk )z ﬁ(yk ks Vk ) +{G" ). v ) (4.16)
Using (2.13), the first term can be rewritten as

n n n
7 (ves1 = v, v = x7) = WG (||Uk+1 — |G = o= ]2) - Tﬁ”l}kﬂ - el
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For the second term in (4.16), we use relations (5.1), and then the identity (2.12) to get

1
% (v — Xk vk —x*), = %5 (V& — Xk, Ovp — 6x%)
1

N

(% = %6 Yk — X + 6k — %)
1 2 0 2 7 2
O e el P
Finally, for the third term of (4.16), we use (5.1) similarly to the above, then it follows
1
(G vk —x¥) = §<G/(yk), vy — 6x)

1
= §<G/(yk), yi — xk) + (G (), yr — x¥).
Then, the desired result follows upon combining the last three identities. O
‘We need one more relation between the iterates.

Lemma 5.7 (relation between iterates) The iterates constructed by PAGD, as described in
Algorithm 2, satisfy

sz e =l = 5 = el + 2£;|| G0 1 + {60, i = ).

Proof Combine (3.4) and the relations (5.1), and then use (3.3) to obtain
1 1 1
Vk+1 — Vk =xk+§(xk+1 —Xk)+§Xk— 1+5 Yk
1 S
=Xt — Yk + 5(Xk+1 — Yk) = Xk — Yk — %ﬁ 'G' ().

Take L£-norm squared on both sides and then multiply by O

_n_
25

We are now in a position to prove the main result of this section, the exponential con-
vergence of PAGD using energy arguments. The following result and its consequences are
another of the main contributions of this work. To state it, we recall that the Lyapunov func-
tion of (4.1) E : H? — R is defined in (4.4) and that E is its value at the initial state as
mentioned in Theorem 4.4.

Theorem 5.8 (exponential decay) Let the objective G : H — R be locally Lipschitz smooth
and u-strongly convex. If PAGD, as described in Algorithm 2, is applied to approximate
x* = argmin, i G(x) with a step size satisfying (4.3), where r > 1, B is the invariant
set given by (4.2), and L p is the Lipschitz smoothness constant associated with B, then the
Lyapunov function (4.4) decays exponentially along the iterates {xy }x>0. More specifically,
fork > 0, we have

E(pt1s kgt — X5 < (1 =D E (g, vp —x%),  E(u, ve —x%) < (1 —0)FEy. (4.17)

Proof Define, fork > 0, & = (1 — 6)”‘E(xk, v — x™*), which is the discrete analogue of
the exponentially inflated energy in the the proof of Theorem 4.4. To simplify notation, we
set Cox = (1 — 0)_(k+1) > 0. Then, similarly to the ODE case, one can show the discrete
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time derivative of & is nonpositive as follows. First, we simply use the forward difference
time derivative, rearrange, and use Lemma 5.5 to get

Sv1—& 1
Vs s

— l * *
- -9 k(;(G(xw—G )4 e —x IIZ)}

— Cos [1 G (xk+1) — G(xp)
T Ln NG

szmH—xh—hrwng+—hrﬁn]

1
[(1 — ) ¢+ <;(G(Xk+1) — G+ 3 e — x*lli)

+ (G(xx) = GY)

s 2 2
< Coa [~ 1G 00l = 5 b =l + (G - 6)

1 2 2

+ §<G’(yk), Yk — Xi)+ m(” et — x| = o — x| 2)

2

Ui

+ L _x*||;].

We continue by using Lemma 5.6 and then Lemma 5.7, then it follows

Erv1 — &
%scg,k_ ||G<yk>||,c1—<f

b gzl =3+ Tl + (0000 = ]

! 2 +(G G*
E)”xk_)’k”[:‘F( (k) = G7)

M1
= Cou | =5 |y = x|z + (G0 = 6 + (GO0 e = )

2
#6003 )+ 5 - 2]

Finally, add and subtract G (yx) from the last expression, and use the following estimates,
which are simple rearrangements of the lower and upper quadratic traps,

Gk — G* + (G (). x* — w) < —%Ika —x*|%

L
Gxk) = G o) + (GO v = xe) = 5 ook = v

then we arrive at
Err1 — &

7 < Cox [Gxx) — G + (G' ). yk — x4) + G () — G*

1 2 n? 2
+(600x" = = -l =+ S e =T

1 1 )
< Cox [5 (LB - ;) vk — x ||£] .

The step size condition forces the last term to be nonpositive. Therefore, we conclude that
{&k}k>0 is nonincreasing, from which we obtain (4.17). O

The following estimates are evident.
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Corollary 5.9 (rate of convergence) In the setting of Theorem 5.8, we have that the iterates
of PAGD, as described in Algorithm 2, converge to x*, the minimizer of G, at an exponential
rate. More specifically, for a suitable r > 1 the step size can be set s = 1/Lp and, in this
case, for k > 0,

1 ,
;(G(xk)—G*)—{—gHvk—x*”i < (1= vp)" Eo. 4.18)

which implies

[SEd

2E)

G —G* < (1= o) nEo.  |m—x*|, < (1—p) (4.19)

Furthermore, we have exponential convergence in the L™ -norm of the residuals: for k > 0,

2E k=1
|G’ 0] -1 < 3Ls, no (1- \/ﬁ)k21 . (4.20)

Proof We can choose an appropriate r > 1 so that the step size condition (4.3) reduces to
s € (0, LEI]; see Remark 5.3. Estimate (4.18) and the first estimate of (4.19) follow from
(4.17) upon setting s = 1/Lp. The second estimate of (4.19) follows by applying strong
convexity of G to the first estimate of (4.19).

Next, from the estimate (4.13), one obtains

W<G@HU<QW%“4mewyh @.21)

from which, one obtains the following by rearranging and then using the upper quadratic trap

|G" G| =1 = V2LB(G () — G*) < L |y — x*| -
In addition, we also have, from the definition of y; and 0 < A < 1,
Iyt ="l = o = + Ak = xpct £ = 2 =27 + s = 2] .

Combining the last two estimates and using (4.19), we obtain (4.20). O

Remark 5.10 (total energy) The exponential decrease of the “total energy” atevery step, given
in (4.18), does not imply that the “potential energy” G (xx41) — G* or the “kinetic energy”

% H Vg1 — x* ||i decay monotonically by themselves. Corollary 5.9 only asserts exponential

bounds. The same is true for the decay of the £~ '-norm of the residuals H G'(y) H -1-1n
fact, the numerical illustrations of Sect. 6 show that these quantities may oscillate. O

Remark 5.11 (matching convergence rates) As discussed in Sect. 3, in the case of G belng
locally Lipschitz smooth, 1 —strongly convex, the (best) contraction factor for PGD is (7 +p )2
while we have 1 — ,/p for PAGD (see Theorem 5.8), where we recall p = u/Lp and
Lp > 0is the Lipschitz smoothness constant on some appropriate invariant set 8. It must
be pointed out that this rate for PGD is achieved by choosing a “particularly good” step size

that is only available to PGD: s = —=— +u (see [26, Theorem 2.1.15]). More specifically, we

HLB
have a contraction factor 1 — s 7 i for PGD provided 0 < s < L

step size s = 1/L g, then the contraction factor for PGD turns out to be 1 + . This choice
makes it easier to see the rate match the continuous time model. Setting p = 2 in [34, SI
(Supplement Information) Theorem H.2] we see that the gradient flow X = LG’ (X)

. If one uses the
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has convergence rate G(X(¢)) — G* < (G(X(0)) — G*)e "', However, using an estimate
available to p-strongly convex functions (see [26, Theorem 2.1.10 (2.1.19)]), we can do
better to get G(X (1)) — G* < (G(X(0)) — G*)e~2*_ Then, we see that setting t = sk
and s = 1/Lp for the gradient flow, and assuming p < 1, the contraction factor can be
approximated by

e S x| —2us =1-2p,

which is close to :;—Z. Similarly, setting t = +/sk and s = 1/Lp in (4.5) and referring to
Corollary 5.9, we have the contraction factors

e VIS ~ —Jus=1—/p

for the IVP (4.1), which matches that of PAGD. O

6 Numerical Experiments

In this section, we carry out a series of numerical experiments aimed at illustrating the theory
that we have developed. In all our examples, we approximate the solution to a nonlinear PDE
with periodic boundary conditions by iteratively minimizing an energy related to this PDE.
This problem is a nonlinear version of the fractional Poisson problem, where a polynomial-
type nonlinearity is added. Nonlocal problems have recently been drawing increased attention
since many works have shown that they can better describe certain physical, social, or bio-
logical systems of interest (e.g., see [2,3,5,11]). Computation of nonlocal models is normally
highly challenging because they usually give rise to denser matrices. However, PDEs with
periodic boundary conditions often allow us to use the fast Fourier transform. Equations that
arise in materials science are often considered with such boundary conditions. In fact, minor
modifications of the problem we shall consider lead to nonlocal variants of many important
models in materials science ([2,3]).

The approximate solution is computed using a pseudo-spectral method (see [14,30]),
which was implemented in an in-house Matlab R2016a© code. This pseudo-spectral code
heavily uses the built-in ££t and i ££t Matlab internal routines to invert preconditioners
and apply residuals.

The energy minimization is carried out with GD, AGD, PGD, or PAGD, where the algo-
rithms terminates if one of the following cases is true:

(a) the co-norm (when the true solution is unknown) or the £ y-norm (when the true solution
is known) of the search direction is smaller than a certain tolerance, which we will call
convergence,

(b) the norm being measured is larger than a certain upper tolerance, which we will call blow
up;

(c) the number of iterations reaches a certain number, which we will call no convergence.

In the conditions above, we mean by “search directions” the residual if the scheme does not
involve a preconditioner. If the scheme involves a (discrete) preconditioner Ly (see (6.14)
for definition), the search direction is the solution to Lys = r, where r is the residual. In all
implementations, the initial guess is always zero.
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6.1 The Continuous Problem

‘We approximate the solution to the following “nonlocal” PDE:
(=AU + ulPu+tu=f inQ=(0,1)>cR? 6.1)

supplemented with periodic boundary conditions, where o > 0, p > 2, and ¢t > 0. Here and
in what follows, all functions are real-valued except for the exponential functions appearing in
Fourier series and Fourier coefficients. The nonlocal operator (—A)* is the spectral fractional
Laplacian, which is defined via Fourier series as follows.

For every v € Lfmr(Q), we have that v(X) = D 7> Ume , where the equality is in
the L2(Q2)-sense, x = (x, y) € 2,1 = +/—1, and Oy = fQ v(X)e~TImMXgx  m e 72

Thus, we define

2wim-x

(A vx) = Y (477 Im[*)" dpe™ ™,

meZ?

provided that the sum is finite.
‘With this definition at hand, it is not difficult to see that (6.1) in its weak form, can be seen
as the Euler—Lagrange equation for the functional

1 .
G(M)Z/ (*I(—A)Zul + — |u|p+ fu> (6.2)
a\2 2

over the space H = per(Q) NLP? (). It is well known that {27 M} mez2 18 an orthonormal

basis of Lgcr(Q). Then, H can be equivalently defined via

H={vell (@] Y Imim® < oo

meZ2

The existence and uniqueness of a weak solution to (6.1) is guaranteed for any f €
Lf,’er(Q), where 1/p + 1/p’ = 1, since, in this case, the energy is well-defined, strictly
convex, and coercive.

For the space H to possess a Hilbert structure, a restriction on p must be imposed depend-
ing on «. For ease of notation, let (-,-) and || - || denote the L?($2)-inner product and
L2(€2)-norm respectively. A natural inner product on per(Q) is given by (v, w)pge () =

per

((=A)2v, (=A)2w) + (v, w), and its associated norm by ||v | ,,, @ = /(¥ Vg ). The
per

following is a standard Sobolev embedding result. For a proof, see, e.g., [1, Theorem 7.34].

Proposition 6.1 (Sobolev embedding) Let o € (0, 1]. For all p € [2, p*] with p* Za

ifa < lorp e [2,00)ifa = 1, there exists Comp = Cemp(p, ) > 0 such that, fo i
v e HY (Q),

per
||v|| L@ = Cemb “U”ch,(sz)' (6.3)

We introduce the preconditioner Lu = (—A)*u + vu, where v > 0 is a free parameter,
which induces a inner product

(Lu,v)= / ((—A)%u(—A)%v + vuv) dx. (6.4)
Q
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Remark 6.2 (notation) As it is clear from its definition, the Lipschitz constant of G’ depends
on the norm being used. Thus, we will make a difference between the case with preconditioner
and without it. L denotes the Lipschitz constant with respect to the preconditioner-induced

norm || “ || 2> while L is the constant with respect to the original norm || . ”H O

We investigate the properties of G in the following result.

Proposition 6.3 (properties of G) Let G be given by (6.2) and the preconditioner L by (6.4).
Then, G is strongly convex with respect to L-norm. If, in addition, p satisfies the conditions
of Proposition 6.1, then G is locally Lipschitz smooth with respect to L-norm.

Proof First, the action of G’ is characterized by the following: for v, w € H|,
(G'(), w) = (M) Fv. (=A)Fw) + 1(v. w) + (WP 20, w) — (., w).

Note also that the following estimates hold, which are a special case of [7, Lemma 2.1]: for
p > 1, there exist Cp, Cpz > 0, which depend only on p, such that for all £, n € R,

IE1P™2E — 191?720 < CpilE — nl(E] + InDP 2, (6.5)
(EIP726 — NP2 m)(E — 1) = Cpolé — 02 (16 + In))P~2. (6.6)
Thus, using (6.6)

(G'@W) = G'w)v—w) = [~ w—w)|* +t]v—w|* = iv— w3

where
= min{l, t/v}. 6.7)

Observe that this holds without referring to Sobolev embedding. Note also that this implies
the coercivity of G with respect to £-norm, that is, lim ol S G(v) =00

Next, thanks to coercivity, for any bounded, convex set B C H there exists Mz € R such
that B C {x € H | G(x) < Mp}. Hence, for each v € B, using Cauchy-Schwarz inequality
and Young’s inequality, it follows that there exists € > 0 such that

1 a t 2
My = 6w = L2804 Ll g+ 10l - 1

1 2
I* =511 6:8)

v

Slemtef?+ QH;@+N
Rearranging this, we see that there exists Cf ;. , 3 > 0 such that
lvl,r) = Crips YveB. (6.9)
On the other hand, using (6.5), Holder’s inequality, and (6.9), we have, for all v, w € B,
(G'(v) = G'(w), v —w)
= |2 E@ - w) | +tv—w]® + (1720 — [wP 2w, v — w)
< 0w —w|* + v —w|*+ Cp /Q v — w?(|v] + |w))?~2dx

< JemF@—w|* +elv—w]® + Cpalo = widng, (10170, + 101250,

<[5 —w|* + v —w|>+2¢272 Challv = wil} sy
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where Cp3 > 01is a constant reflecting the equivalence between ([v| + [w])” “2and |v|P 2+
lw|P=2.

Finally, owing to the restriction on p, Proposition 6.1 guarantees that

2 2 2
lv— w”LP(Q) < Coupllv — w||H;%1-(Q)’

so that A )
(G'(v) = G'(w), v — w) < L (= w2
with L = max{1,1/v,2C}2 1Cp3C2, ). D

Remark 6.4 (strong Lipschitz smoothness) The proof of Proposition 6.3 can be easily modi-
fied to show that G is locally Lipschitz smooth in the strong sense, i.e., (2.8) holds. O

6.2 Discretization

‘We discretize the model problem (6.1) by introducing a uniform grid of points. To simplify the
presentation, we choose N € N with N = 2K + 1 for some integer K > 1. (The details for
the case that N is even are only slightly more complicated.) Define 7 = 1/N, and intro-
duce the grid domain Qy = {(xg, ym) € [0, 112 | x¢ =Lh, yy, =mh, 0 <{t,m < N}.
For ease of notation, let us introduce N%v = {m = (my,my) € 72 |1 <mi,my < N}
and Z%( = {r =rLn)eZ* —K<r,n< K}, Then, for m € N%,, we can denote
Xm = (X, Ym,) € Q. This notation must not be confused with that of the iterates of
PAGD. Define the space of periodic grid functions

Hy={vny : QN —=>R | vy (0, hm)=vy(hN, hm), vy (ht,0)=vn(ht,hN),0<m,{ <N},
(6.10)

endowed with the L%\,—inner product (v, wy)y = h? Zmeva VN (Xm)WnN (Xm). More gen-
1

erally, for p > 1, define || wy ||N.p = <h2 ZmEN:‘;\/ |wN(xm)|P>F . Given wy € Hy, its
discrete Fourier transform (DFT) is

Di () =h" Y wy(x)e N, re Lk

2
seNy,

The discrete fractional Laplacian (—An)% : Hy — Hy is defined by

[(—AN) w1 (xm) = Y (@dr?|r[?) g (r)e™ 5, 6.11)

reZ%(
Finally, for vy, wy € Hy, the Hy-inner product is given by (vy, wN)H,‘{‘, = (vN, WN)N +

(—AN)Zvy, (~AN)2wy)y, and |wy | He = (WN WN) e

‘We comment that there are, at least, three different natural choices for the underlying inner
product for Hiy: the L%\,-inner product, the Hl‘i‘,-inner product, and the £y-inner product,
(6.14). We will choose the first option, i.e., the L%\,-inner product for several reasons. To
begin with, this is the way numerical experiments are usually done if no special distinction
is made between representers of the residual with respect to multiple inner products. In
addition, this illustrates the effect of preconditioning more vividly. For example, if we adopt
Hy-inner product, this leads to a preconditioned scheme in disguise: finding a representer

@ Springer



17 Page 26 of 37 Journal of Scientific Computing (2021) 89:17

of the residual with respect to this inner product is equivalent to using £y-inner product
(6.14) with vy = 1. On the other hand, L%v-inner product leads to truly non-preconditioned
schemes such as GD or AGD.

After having introduced all this notation, we can write our discrete problem as: given
fn € Hy, find uy € Hy such that

(=AM un + lun|P2uy + tuy = fy. (6.12)

In this problem, fy € Hy is some approximation of the problem data f. For example, if f
is continuous, fy(Xm) = f(Xm) is a natural option, and if f is only an L2(2)—function,
then the sampling at the nodes of the L?(Q)—projection of f onto Pk, the trigonometric
polynomial of degree at most K , is natural although these two may not agree even if one starts
with the same continuous function f. In fact, the difference between these two possibilities
is very small if f is smooth and its derivatives are periodic (see [14, pp. 44—45]).

Our discrete problem has a similar energy structure to the continuous problem. It is the
Euler-Lagrange equation of the following functional

1 '3 2 1 2 t 2
Gy(vy) = EH(_AN)Z w |y + ;”UN ||N’p + EHUN Iy = U ow)y - (6.13)
‘We introduce a (discrete) preconditioner
Ly = (—AN)* +vyidy, (6.14)

where vy > 0 and idy : Hy — Hy is the identity map. The parameter vy > 0 will be
determined later. This preconditioner induces an inner product on Hy given by

(0w, wn)ey = vy, oy + ((Cam v, CanTuy) L 615)

and an associated norm || 2% H v = /(vN, vN) - Itis desirable that the convergence of our
. N - . . .

scheme does not deteriorate as we refine the grid points. We can ensure this under a certain

restriction on p. The following proposition provides an important tool for that purpose.

Proposition 6.5 (discrete Sobolev embedding) Let « € (0, 1]. For all p € [2, p*] with
p* = ﬁ ifa < lorforall p €[2,00) ifa = 1, there exists a constant Cp, o > 0 such

that, for all vy € Hy,
lonlly., < Coalonllyg- (6.16)
Cp.q is independent of vy and N.

Proof Note that H UN ||N » < C”vHL,,(Q) for all vy € Hy; see, for instance, [22, Lemma
2.48], where v is the unique trigonometric polynomial of degree less than or equal to K
interpolating vy and C > 0 depends only on the dimension of 2. Also, the following

Parseval’s identity holds in the fractional setting H Uy || He = || v H He () In conjunction with
per

the Sobolev embedding at the continuous level, (6.3), we have, for any vy € Hy,
|ow HN_p = CHUHLP(SZ) =CCpa ”””chr«z) = CCpalvy “H,‘{‘,'
O

The following result addresses dimension-independence of the (inverse) condition number
as well as the structure of G y that is needed to apply the theory we have developed in Sect. 5.
Note that, in the following statement, the sublevel sets of G provide a compatible way to
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describe bounded, convex sets when we consider multiple resolutions since, strictly speaking,
for different values of N, functions in Hy may not be directly comparable.

Theorem 6.6 (properties of Gy) Let the space of grid functions Hy be given by (6.10) and
the preconditioner Ly by (6.14). Then, the energy functional Gy : Hy — R defined by
(6.13) is strongly convex and locally Lipschitz smooth with respect to the Ly -norm. Moreover,
the strong convexity constant [iy is independent of N. Suppose, in addition, that p satisfies
the conditions of Proposition 6.5 and that fx is defined in a stable manner when we pose
the discrete problem (6.12), i.e., there exists C > 0 independent of N such that

| fv HN,z = CHf”LZ(Q)‘

Then, the local Lipschitz smoothness constant Ly is also independent of N in the sense that,
foreach M € R, Gy is Ly-Lipschitz smooth on the sublevel set

{vy € Hy | G(vy) < M}

with Ly independent of N. Consequently, the (inverse) condition number [iy/ Ly with
respect to the Ly -norm stays away from 0 as N — oo.

Proof The proof of the strong convexity is parallel to that of Proposition 6.3. The proof of
local Lipschitz smoothness is also parallel, but we need the assumed stability of || IN || voto
proceed from (6.8) to (6.9). Finally, to complete the proof, we simply replace the embedding
constant C,,, with its discrete counterpart C), o, as given in Proposition 6.5. O

Since the (inverse) condition number iy /Ly governs the rate of convergence of PAGD
(Corollary 5.9), the previous theorem guarantees that one can achieve the same rate of con-
vergence even if we refine the number of grid points N — oc. However, this is true in terms
of the number of iterations, but the wall clock time will take longer as the refinement is
conducted.

Being in finite dimensions, G y is also strongly convex, and locally Lipschitz smooth with
respect to any norm, for instance || . || - The constants in this case, however, are different and
depend on the dimension of Hy, which obviously depends on the number of grid points, and
thus on N. We label them .y and Ly to distinguish them from the dimension-independent
constants /iy and L N respectively.

6.3 A Problem with a Manufactured Solution

In this first experiment, we solve (6.12) by minimizing the energy (6.13). To compute the
errors and energies, the following manufactured solution is used

1 3
upy (Xm) = exp (sin 27 (xml - Z) + sin4m (sz — §)> ]

Weseta = 0.5, p = 4,t = 1, N = 64, and found, experimentally, that the values
vy = 1.2, uny = 1 are optimal, while we set iy = 5/6 = min{l, /vy} in view of (6.7).
To specify step sizes, recall the step size rules that theoretically guarantee convergence (see
Sect. 3): s =2/(Ly + py) for GD, s = 1 /Ly for AGD, s = 2/(ﬁN + fiy) for PGD, and
s = l/iN for PAGD. Step sizes are set by these relations with Ly = 500 and Ly =20,
which are also experimentally proved to be optimal. However, it must be noted that this
is just a way of setting step sizes. We do not really know neither whether the values for

@ Springer



17 Page 28 of 37 Journal of Scientific Computing (2021) 89:17

100
3
&2
o
2 5 ,
3] ©
) £ 10°
o <]
<
4
-15 o -10
10 50 100 150 200 10 0 50 100 150 200
number of iterations number of iterations
(a) Objective, Gn(zr) — Gn(un), (b) £Ly-—norm of errors that are generated
plot of GD, AGD, PGD, and PAGD. by GD, AGD, PGD, and PAGD.

10° =T .
*-GD-Potential
== AGD-Total
=== AGD-Potential
0 == AGD-Kinetic
w 10
[}
°
Q
&
107
10710 !
0 50 100 150 200

number of iterations

(€) Potential, kinetic, and total energy plot
of GD and AGD.

Fig. 2 Objective, error, and energy decay plots for GD, AGD, PGD, and PAGD. They are implemented to
solve (6.12) by minimizing (6.13) (@ = 0.5, p =4,t =1, N =64, vy = 1.2, Ly = 500, uy =1,
iN =20, iy = 5/6 = min{l,/vy}, and step sizes are set vias = 2/(Ly + pny) for GD, s = 1/Ly for
AGD,s =2/ (L N +an) forPGD,ands = 1/ L N for PAGD). The vertical axes (logarithmic scale) show the
value of the objective, £ y-norm of errors, or various energies while the horizontal axis (linear scale) shows
the number of iterations

Ly or Ly are the Lipschitz constants of the corresponding energy functionals nor whether
the aforementioned step size rules give the optimal results even if we knew the Lipschitz
constants. In fact, our last experiment suggests that larger step sizes than what is theoretically
proven seem to work.

Remark 6.7 (parameter tuning) PAGD, as we have described it here, requires knowledge of
several parameters that depend on the energy and may not be known in practice. Their careful
estimation is a topic beyond our discussion, but it is nevertheless important as the rates of
convergence depend on them. Practical ways of estimating relevant parameters are currently
under investigation. O

Figure 2 shows the performance of GD, AGD, PGD, and PAGD when used to solve (6.12)
by minimizing (6.13), where the data is as described above. The stopping criteria take the
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following parameters: the tolerance is 1078, the upper tolerance is 10'9, and the maximum
number of iterations is 200.

Figure 2a shows the decay of the objective, G y (xx) — G y (1) Which is, up to a constant,
the same as the decay of the potential energy, for all four schemes. Here k is the number
of iterations. Figure 2b shows the decay of the £y-norm of the errors. Notice that PAGD
performs significantly better than all the other methods.

Figure 2¢ shows the performance of GD and AGD. Since these schemes do not involve a
preconditioner, the corresponding total energy is defined by

1
Ex (3t w) = (G () = G () + o= un - 6.17)

where k is the number of iterations and ny = ,/un. The first and second terms can be
understood as potential and kinetic energy respectively. Figure 2c shows the decay of various
energies for nonpreconditioned schemes. This figure better illustrates our analysis of the
previous section than the preconditioned ones since they converge slower. As expected,
AGD performs substantially better than GD. The total energy of AGD decreases steadily and
exponentially fast. Notice that the vertical axis is in logarithmic scale. This matches what is
predicted by the theory in Theorem 5.8. Observe also that the potential and kinetic energies
of AGD, by themselves, oscillate; see Remark 5.10. The physical analogy for AGD described
in Remark 4.1 is clear from this picture. A fraction of the potential energy is converted to
kinetic energy and they fluctuate as the mechanical system converges to equilibrium.

6.4 A Problem where the Solution is Unknown

In this second experiment we, again, solve (6.12) by minimizing the energy (6.13). The
discrete right hand side fy is given by

fn(Xm) = exp (sin 27 (X, — 0.25) + sin 27w (Y, — 0.25)) . (6.18)

The parameters of the PDE are settoor = 0.5, p = 10,and# = 1. Observe that for these values
of « and p we do not have that Hg (€2) < L”(€2). We found, experimentally, that the choice
vy = 0.9 is optimal for the precondltloner Wealsoset uy = land iy = 1 = min{1, 7 /vy}
in view of (6.7) as before. Step sizes are set in the same way as in the previous experiment
with Ly = 300 or 3000, and L ~ = 9. The values of uy, Ly, and L N were experimentally
found to be optimal except for Ly = 3000. That is, they yield the best convergence rate
with all other parameters being fixed. A more detailed explanation about Ly = 3000 will
follow. Two different degrees of resolution are used to show the dimension dependence of
nonpreconditioned schemes. The stopping criterion parameters are as before.

Figure 3 shows the oco-norm of the search directions for GD, AGD, PGD, and PAGD with
varying degrees of resolution and with two different step sizes for GD and AGD, which are
determined by the same step size rules as in the previous experiment with Ly € {300, 3000}.
In Fig. 3a, we observe a similar performance as in Fig. 2. Recall that we do not have Sobolev
embedding. Thus, one can expect the Lipschitz constant Ly, hence the step size, to depend
on the number of grid points. In fact, theory predicts that even Ly depends on it. However, for
Ly, such dependence is not observed within the range of N that we have chosen. We see that
the step size for convergence indeed depends on N in Fig. 3b. As we increase the resolution of
the grid from N = 64 to N = 512, nonpreconditioned schemes become unstable. Figure 3¢
shows that the stability of GD and AGD is recovered after L y is increased from 300 to 3000,
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Fig.3 oo-norm plots of the search directions for GD, AGD, PGD, and PAGD. They are implemented to solve
(6.12) by minimizing (6.13) with varying resolutions N € {64, 512} and varying step sizes for GD and AGD;
s =2/(Ly + pny)forGD and s = 1/Ly for AGD with Ly € {300, 3000}. The other parameters are set to
a=05p=10,t=1,vy =09, uy = 1, Ay = 1 = min{l, t/vy}, s = 2/(Ly + in) for PGD, and
s=1/ L N for PAGD with L ~ = 9. The horizontal axis (linear scale) represents the number of iterations. The
vertical axis (logarithmic scale) represents co-norm of the search directions

which amounts to decreasing the step size to roughly a tenth of the old one. (L = 3000 is
not optimally chosen).

Figure 4 shows the dependence of Ly, hence the step size, on the number of grid points
with the same experiment. However, here we use different tolerances and a different maximum
number of iterations to best illustrate the dependence. For N € {16, 32, 64, 128, 256, 512},
Fig. 4 records the number of iterations for co-norm of the search direction generated by each
scheme to reach a tolerance 103 (“convergence”) or the maximum number of iterations,
which is set to be 1000, if it does not reach the tolerance (“no convergence”). If the co-norm
of the search direction reaches an upper tolerance 10%, the algorithm records the number of
iteration taken as 1100, which indicates “blowing up.” Figure 4a shows when the step sizes
of the nonpreconditioned schemes correspond to Ly = 300 and those of the preconditioned
ones correspond to Ly =9.GD and AGD converge until N = 64. However, they become
unstable for N > 128. Figure 4b shows the same experiment with smaller step sizes, which
correspond to Ly = 3000. In this case, we recover the stability of GD and AGD.
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Fig. 4 Number of iterations for co-norm of the search directions to reach the tolerance 10~3 for GD, AGD,
PGD, and PAGD. They are implemented to solve (6.12) by minimizing (6.13) with varying resolutions N =
16,32, 64, 128,256, 512 and varying Ly = 300,3000 (@ =0.5, p =10,t = 1,vy =09, uy =1, Ly
as indicated in the subfigures, iy = 1 = min{l, 7/vy}, L ~ = 9). The horizontal axis represents the degrees
of resolution, N. The vertical axis represents the minimum of the number of iterations for the co-norm of the
search directions to reach the tolerance 10~3 (convergence) or 1000 iterations. The number of iterations being
1100 means that the co-norm of the search directions have reached the upper tolerance 108 (blow up)

Table 1 The minimal number of iterations needed for the co-norm of the search direction of PGD and PAGD
to reach a tolerance of 10~ and the values of vy and s (step size) that led to the minimum iterations for a
range of values of «

PGD PAGD
o # iterations VN Step size # iterations VN Step size
0.1 64 1.0 0.20 38 0.9 0.14
0.2 50 1.1 0.25 32 1.0 0.18
03 39 12 0.31 29 1.1 0.22
04 29 2.6 0.57 26 1.2 0.26
0.5 22 2.8 0.66 24 13 0.30
0.6 16 4.1 0.97 20 5.5 0.83
0.7 13 3.4 0.90 17 5.2 0.91
0.8 11 4.6 1.04 15 42 0.88
0.9 12 38 0.89 12 5.0 0.96
1.0 10 4.0 0.95 12 43 0.92
1.5 9 4.5 0.97 11 45 0.97
2.0 8 4.8 1.03 10 45 0.96
2.5 8 4.1 0.88 9 4.2 0.90
3.0 8 4.1 0.88 9 42 0.90

They are implemented to solve (6.12) by minimizing the energy (6.13). N = 64, « € {0.1j | j =
1,2,3,...,10} U {1.5,2.0,2.5,3.0} € (0,31, p = 6, ¢t = 1, iy = min{l,¢/vy}, and fy is given
by (6.18). For each value of o, we consider vy € {0.1j | j = 1,2,3,...,100} C (0, 10] and
s € {001 | j =1,2,3,...,200} C (0,2]. Among the possible 20,000 combinations of vy and s, we
display the values that give the minimal number of iterations
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6.5 A Comparison Between PGD and PAGD

In this final collection of experiments, we aim at comparing the performance of PGD and
PAGD in different scenarios. To do so, we solve the discrete problem (6.12) by minimizing
the energy (6.13) with the right hand side given by (6.18) as before. The problem parameters
aresetasa € {0.1j | j=1,2,3,...,10} U {1.5,2.0,2.5,3.0} C (0,3], p=6,and t = 1.
We set N = 64 and iy = min{l, /vy}. Then, for each value of @ (column 1 of Table 1),
PGD and PAGD are applied with vy € {0.1j | j = 1,2,3,...,100} C (0, 10] and the
step size s € {0.017 | j =1,2,3,...,200} C (0, 2]. Observe that neither Algorithm 1 nor
Algorithm 2 require knowledge of Lya priori. Instead, we directly set the step size in this
last experiment. Among these 20,000 possible values of vy and s, the minimal number of
iterations for the co-norm of the search direction generated by PGD and PAGD to reach a
tolerance of 10~° (convergence) is recorded (column 2 and column 5 of Table 1, respectively).
A pair of values, vy and s, that led to the minimal number of iterations is also recorded
(columns 3 and 4 of Table 1 for PGD and columns 6 and 7 of Table 1 for PAGD). There
can be multiple such pairs. If this is the case, the pair (vy, s) that comes the first in the
lexicographic order is recorded.

As we can see from Table 1, for the nonlocal PDE (6.12) with small @ (¢ =
0.1,0.2,0.3,0.4), PAGD performs better than PGD when they are implemented with their
own best pair of parameters vy and s among those pairs that were considered. In particular,
in the cases of « = 0.1, 0.2, 0.3, PAGD outperforms PGD while the best values of vy for
the two schemes are similar, hence directly comparing their performances roughly make
sense. An interesting thing, however, is that one cannot say that PAGD is always better than
PGD. In fact, for the remaining values of «, PGD takes fewer iterations to converge in the
aforementioned sense than PAGD provided they are equipped with their “best” parameters
for each method. It must be noted that this result does not contradict our theory. The theory
only tells us some upper bounds about the rate of convergence of the two schemes within
a certain range of step size when they involve the same preconditioner. It does not explain
what happens outside of that. The result provided here perhaps illustrates the latter case. In
any case, we can see an improvement in the convergence of PAGD compared to PGD for
“harder” problems ((6.12) with small «), where a stronger nonlocality is involved.

Funding SMW acknowledges partial financial support from NSF-DMS 1719854. AJS has been partially
supported by NSF-DMS 1720123.

Code Availability The code can be made available on reasonable request.

Declarations

Conflict of interest We declare we have not conflict of interest.

Ethics Approval We have not submitted this manuscript anywhere, and it will not be submitted anywhere
while it is under review.

@ Springer



Journal of Scientific Computing (2021) 89:17 Page330f37 17

Appendix 1: An IVP as the Limit of the PAGD Method
A.1. Derivation of the ODE

Let us start with the same approach as in [33]. We assume, as an ansatz, that PAGD is a
discretization of an ODE, which has a solution X : [0, o0) — HI, or a trajectory. We also
assume that X is smooth enough, e.g., twice continuously differentiable in time. For a fixed
t € (0, 00), the assumed smoothness on X, together with the identification t = /sk and
Taylor’s formula in a normed vector space (e.g., [17, Theorem 7.9-1]) implies:

% =X+ %X(t)\/g+0(\/§) ass — 0,
% =X@) — %X(t)\/g—l—o(\/g) ass — 0,

VSLTVG () = VSLTIG (X (1) + o(s) ass — 0. (A1)

The last identity follows from the continuity of G’, that of L1 and (3.2), from which we
can deduce y; — X(z) as s — 0. Plugging (3.2) into (3.3) and dividing by /s, we have
X"J’“/Sf"" - )LX"_\%‘“ + /SL7'G'(y) = 0. Substituting the above Taylor expansions, and

then rearranging, we arrive at

1 . 1, e
SU+DXO + —=XO + LG X)) +0(1) =0 ass > 0. (A2)

7

To make this estimate consistent, interpret A as a function of s and further assume that
(I = A)//s — 2nas /s — 0 for some n € (0, co), which yields

X +2nX0) + LG (X (1)) = 0. (A3)

A.2. Derivation of the Initial Conditions

The initialization yp = x¢ and (3.3) with k = 0 imply
X1 — Xp
J5

Take the limit s — 0 and conclude X (0) = 0 since G’ and X are assumed to be continuous.
Therefore, we arrive at the desired IVP (4.1).

= /sL71G (x).

Remark A.1 (momentum method) A similar procedure can be carried out far more easily for
the so-called momentum method (MM). To see this, we recall that

X1 — 2, + Xp—1

. Xk — Xj—
. X~ %
Then, the discrete version of the ODE (4.1) becomes

X1 = Xk — $G'(x) 4+ (1 = 20/5) (xx — x4-1),
which is MM with the weight 1 — 2n./s; see [28, p. 12 (9)]. This weight is close to A:

X)) ~ G'(X(1) =~ G'(xp).

1 - 2
s s

A= —1—
L4+ny/s L4+ n/s
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In this sense, MM seems more natural and amenable for analysis than AGD. O

The limiting behavior of MM can also be explained by the IVP (4.1). Observe that the
only essential difference between MM and PAGD is where G’ is evaluated, that is, x; and yk
respectively. Andin the limits — 0, x; and yi are not distinguishable in this setting. However,
PAGD exhibits less oscillation than MM since evaluating G’ at y; serves as “foreseeing”
the uphill of the objective functional, if exists, along the trajectory and “steering” to avoid
unnecessary oscillating behaviors. Recently, a higher order Taylor expansion turns out to
help differentiate their performaces (see [31]).

Appendix 2: PAGD as a Discretization of the IVP

Let us label the step size /s, rather than s, in order to make the setting more in line with
the PAGD algorithm. Again, it is helpful to have in mind the correspondence: time ¢ <—
ks (k = 0,1,2,...) and position X(f) <—> xi. First, we will see y; corresponds to a
“drifted” position without the potential landscape over [z, ¢ + 4/s]. This can be modeled by
X(t) + 29X (1) = 0, which leads to another energy law %”X(t +/5) ||i = %”X(r) Hi -
2n ft’+‘/§||)'( (1) ”id‘[. Approximate the speed in the integrand by the average 5 (| X(t +
A/8) ||£ + | X(@) Hﬁ), then after a short calculation, one obtains || X(t +/5) HC =1 X(@) ||£
Since the dynami.cs takes_ place in a si'ngle direction, this implies X+ J8) = AX (). The
approximations X (f) & % and X (¢ + +/5) = % lead us to (3.2).

Next, we discretize the vector V(¢). Since we do not know the minimizer in practice,
we remove it from the definition of vy and discretize V() + x* = X(¢) + %X (t). The
approximations X () & y; and X (1) ~

Yk —Xk
75

suggest

1
Vg = Yk + 5(yk — Xk), (B.)

which leads to the definition of {vk}x>1 (3.4) upon combining with the definition of {yy}.
Finally, to get the main iterates, {x}x>1, we discretize (4.3) using the approximations

V() ~ % X(1) ~ % and the evaluation of G’ at yy, then it follows n”"L\/Sivk +

7)% + 7! G’(y¢) = 0. Plugging in (3.4) and (A.1), one obtains (3.3), the definition of

{xk}kzl-

Appendix 3: Literature Comparison

‘We summarize our discussion on the existing literature works, and contrast them with our
contributions, in Table 2.
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Table 2 We summarize our discussion on the existing literature works, and contrast them with our contribu-
tions, in this table

References s=0 s >0 L B L Numerics Numerical Analysis
[35] Opt. Opt. Glob. X Bregman X X
[6] X X Loc. X X v e
[23] Opt. Opt. Glob. X X X X
[29] X X Glob. X X v X
[21] X X Loc. X X X X
[13] Sub. X Glob. X X v X
[24] Opt. Opt. Glob. X X X X
[32] Opt. Opt. Glob. X X X X
[31] Sub. Sub. Glob. X X v X
Ours Opt. Opt. Loc. v v v v

A comparison of recent works from a numerical PDE point of view. All works that provide convergence rates
either in the continuous (column s = 0) or discrete (column s > 0) case assume the global Lipschitz condition
(column L). No work addresses invariant sets (column *B), incorporates preconditioning explicitly (column
L), nor it explains how concrete numerical examples fit the abstract theory (column Numerical Analysis)
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