
Journal of Computational and Applied Mathematics 415 (2022) 114474

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Optimal rate convergence analysis of a numerical scheme for
the ternary Cahn–Hilliard systemwith a
Flory–Huggins–deGennes energy potential

Lixiu Dong a, Cheng Wang b,∗, Steven M. Wise c, Zhengru Zhang d

a College of Education for the Future, Beijing Normal University, Zhuhai 519087, China
b Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747, USA
c Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
d Laboratory of Mathematics and Complex Systems, Ministry of Education and School of Mathematical Sciences, Beijing Normal

University, Beijing, 100875, China

a r t i c l e i n f o

Article history:

Received 18 March 2022

Received in revised form 23 May 2022

MSC:

35K35

65M06

65M12

Keywords:

Ternary Cahn–Hilliard system

Flory–Huggins–deGennes energy

Energy stability

Positivity preserving

Optimal rate convergence analysis

Rough and refined error estimates

a b s t r a c t

We present an error analysis for a fully discrete finite difference scheme for the

three-component Macromolecular Microsphere Composite (MMC) hydrogels system, a

ternary Cahn–Hilliard system with a Flory–Huggins–deGennes free energy potential. The

numerical scheme was recently proposed, and the positivity-preserving property and

unconditional energy stability were theoretically established. In this paper, we rigorously

prove first order convergence in time and second order convergence in space for the

numerical scheme, in the L∞
∆t (0, T ;H−1

h )∩L2∆t (0, T ;H1
h ) norm. Many highly non-standard

estimates have to be involved, due to the nonlinear and singular nature of the surface

diffusion coefficients. The combination of (i) a higher order asymptotic expansion of the

numerical solution (up to second order temporal accuracy); (ii) a rough error estimate

(to establish the L∞
∆t bound for the phase variables); (iii) and a refined error estimate

have to be carried out to conclude such a convergence result. To our knowledge, it will

be the first work to provide an optimal rate convergence estimate for a ternary phase

field system with singular energy coefficients.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Macromolecular microsphere composite (MMC) hydrogels, a class of polymeric materials, have attracted theoretical

and experimental studies due to their well-defined network microstructures and high mechanical strength. A binary

mathematical model was presented in [1] to describe the periodic structures and the phase transitions of the MMC

hydrogels based on Boltzmann entropy theory. The corresponding model leads to the MMC-TDGL equation, with a similar

structure to the Cahn–Hilliard equation. The binary Cahn–Hilliard equation – with either polynomial Ginzburg–Landau

or singular Flory–Huggins-type free energy – models spinodal decomposition, phase separation, and coarsening in a two-

phase fluid. There have been many theoretical analyses and numerical approximations for these kinds of gradient flows in

the two-phase case [2–13]. The two-phase version of the MMC-TDGL equation, which is like the Cahn–Hilliard equation,

but with certain singular gradient coefficients, is discussed in [14–17]. Also see the related works [18–22] for the hydrogel

model.

∗ Corresponding author.

E-mail addresses: lxdong@bnu.edu.cn (L. Dong), cwang1@umassd.edu (C. Wang), swise1@utk.edu (S.M. Wise), zrzhang@bnu.edu.cn (Z. Zhang).

https://doi.org/10.1016/j.cam.2022.114474

0377-0427/© 2022 Elsevier B.V. All rights reserved.



L. Dong, C. Wang, S.M. Wise et al. Journal of Computational and Applied Mathematics 415 (2022) 114474

For the ternary Cahn–Hilliard system, the general framework is to adopt three independent phase variables (φ1, φ2, φ3)
while enforcing a mass conservation (or ‘‘no-voids’’) constraint φ1 + φ2 + φ3 = 1. See the related works [23–25].
A ternary system with Flory–Huggins–deGennes energy potential has been of great scientific interests, which turns
out to be an improvement over the model proposed in [1], as it removes certain limiting assumptions. The singular
Flory–Huggins–deGennes energy potential is as follows:

Go(φ1, φ2, φ3) =

∫

Ω

{

So(φ1, φ2, φ3) +
1

36

3
∑

i=1

ε2i

φi

|∇φi|
2 + Ho(φ1, φ2, φ3)

}

dx,

where So(φ1, φ2, φ3) + Ho(φ1, φ2, φ3) is the reticular (Flory–Huggins style) free energy density:

So(φ1, φ2, φ3) =
φ1

M0

ln
αφ1

M0

+
φ2

N0

ln
βφ2

N0

+ φ3 lnφ3,

Ho(φ1, φ2, φ3) = χ12φ1φ2 + χ13φ1φ3 + χ23φ2φ3.

So is the ideal solution part and Ho is the entropy of mixing part. The domain Ω ⊂ R
2 is assumed open, bounded, and

simply connected. We focus on the 2-D case for simplicity of presentation, while the extension to the 3-D gradient flow is
straightforward. The mass-conservative phase variables φ1, φ2 and φ3, represent the concentration of the macromolecular
microsphere, the polymer chain, and the solvent, respectively. These three phase variables are subject to the ‘‘no-voids’’
constraint φ1 + φ2 + φ3 = 1. We denote by M0 the relative volume of one macromolecular microsphere, and by N0

the degree of polymerization of the polymer chains. The coefficient εi is called the statistical segment length of the ith
component, which is always positive. The parameters α and β depend on M0 and N0:

α = π

((M0

π

)
1
2

+
N0

2

)2

, β = 2
(M0

π

)
1
2

+ N0.

By χ12, χ13, and χ23 we denote the Huggins interaction parameters between (i) the macromolecular microspheres and
polymer chains, (ii) the macromolecular microspheres and solvent, and (iii) the polymer chains and solvent, respectively.
All these parameters are positive, and the following inequality is assumed to guarantee the concavity of the entropy of
mixing H0 term:

4χ13χ23 − (χ12 − χ13 − χ23)
2 > 0.

Making use of the no-voids constraint φ3 = 1 − φ1 − φ2, we can rewrite the energy functional as

G(φ1, φ2) =

∫

Ω

{

S(φ1, φ2) +
ε21|∇φ1|

2

36φ1

+
ε22|∇φ2|

2

36φ2

+
ε23|∇(1 − φ1 − φ2)|

2

36(1 − φ1 − φ2)
(1.1)

+ H(φ1, φ2)

}

dx,

where, naturally,

S(φ1, φ2) =
φ1

M0

ln
αφ1

M0

+
φ2

N0

ln
βφ2

N0

+ (1 − φ1 − φ2) ln(1 − φ1 − φ2),

H(φ1, φ2) = χ12φ1φ2 + χ13φ1(1 − φ1 − φ2) + χ23φ2(1 − φ1 − φ2).

The ternary MMC dynamic equations are H−1 gradient flows associated with the given energy functional (1.1):

∂tφ1 = M1∆µ1, ∂tφ2 = M2∆µ2, (1.2)

where M1,M2 > 0 are mobilities, which are assumed to be positive constants. µ1 and µ2 are the chemical potentials
with respect to φ1 and φ2, respectively, i.e.,

µ1 := δφ1G =
1

M0

ln
αφ1

M0

− ln(1 − φ1 − φ2) − 2χ13φ1 + (χ12 − χ13 − χ23)φ2

+ χ13 +
1

M0

− 1 −
ε21|∇φ1|

2

36φ2
1

− ∇ ·

(

ε21∇φ1

18φ1

)

(1.3)

+
ε23|∇(1 − φ1 − φ2)|

2

36(1 − φ1 − φ2)2
+ ∇ ·

(

ε23∇(1 − φ1 − φ2)

18(1 − φ1 − φ2)

)

,

µ2 := δφ2G =
1

N0

ln
βφ2

N0

− ln(1 − φ1 − φ2) − 2χ23φ2 + (χ12 − χ13 − χ23)φ1

+ χ23 +
1

N0

− 1 −
ε22|∇φ2|

2

36φ2
2

− ∇ ·

(

ε22∇φ2

18φ2

)

(1.4)

+
ε23|∇(1 − φ1 − φ2)|

2

36(1 − φ1 − φ2)2
+ ∇ ·

(

ε23∇(1 − φ1 − φ2)

18(1 − φ1 − φ2)

)

.
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For simplicity, periodic boundary conditions are assumed. These equations would reduce to the classical ternary Cahn–

Hilliard system if the gradient energy coefficients ε2i /(36φi) were replaced by ε2i /2. In any case, it is then easy to see that

the energy is non-increasing for the ternary MMC model. The evolution equations (1.2) are mass conservative; the mass

fluxes are proportional to the gradients of the respective chemical potentials. Clearly the phase fields must satisfy 0 < φ1,

0 < φ2, and 0 < 1 − φ1 − φ2 for the model to make sense physically and mathematically. We define the following Gibbs

Triangles for use later:

G :=
{

(φ1, φ2) ∈ R
2 | 0 < φ1, φ2, φ1 + φ2 < 1

}

, (1.5)

and, for δ ≥ 0,

Gδ :=
{

(φ1, φ2) ∈ R
2 | δ ≤ φ1, φ2, φ1 + φ2 ≤ 1 − δ

}

. (1.6)

Of course, G0 = G, and Gδ ⊆ G, for each δ ≥ 0. If (φ1( · , t), φ2( · , t)) ∈ G, point-wise, for all t ≥ 0, we say that the positivity-

preserving property holds for the equation. If, for some strictly positive δ > 0, (φ1( · , t), φ2( · , t)) ∈ Gδ , point-wise, for all

t ≥ 0, we say that a strict separation property holds for the equation.

A numerical approximation to the ternary MMC system (1.2)–(1.4) turns out to be very challenging, due to the

highly nonlinear and singular nature of both the Flory–Huggins logarithmic part and the singular surface diffusion terms.

In particular, the positivity-preserving property and the energy stability are two important theoretical issues for any

numerical algorithm. A fully discrete finite difference scheme has been proposed in a recent article [26], with both of these

theoretical properties rigorously established. In more detail, implicit treatments are applied to the singular logarithmic

term and the chemical potential terms associated with the nonlinear deGennes surface diffusion energy, while the linear

expansive term is treated explicitly. The resulting scheme is proven to be uniquely solvable, positivity-preserving and

unconditionally energy stable. In fact, the following key point plays a crucial role in the positivity-preserving analysis:

the convex and the singular natures of the implicit nonlinear parts prevents the numerical solutions from approaching the

boundary of the Gibbs triangle G. Because of this subtle fact, an implicit treatment for the nonlinear terms is necessary to

ensure these theoretical properties; also see the related works [14,27–37] for the corresponding analysis. By contrast, the

invariant energy quadratization (IEQ) [38], scalar auxiliary variable (SAV) [39,40] or linear stabilization [41,42] approaches

face serious difficulty to justify these theoretical properties for gradient flows with singular potential.

Several interesting numerical simulation results were presented in [26]. On the other hand, the convergence analysis

for ternary system (1.2)–(1.4) remained an open problem. The primary difficulties are associated with the highly nonlinear

and singular surface diffusion parts and logarithmic terms, in contrast with the analysis required for the ternary model

with polynomial energy potential and constant diffuse interface coefficients [43]. In this article, we provide an optimal rate

convergence analysis for the fully discrete scheme formulated in [26], which is shown to be first order accurate in time

and second order in space. Because of the nonlinear structure for both the logarithmic and surface diffusion terms, such

an error estimate has to be performed in the L∞
∆t (0, T ;H−1

h ) ∩ L2∆t (0, T ;H1
h ) space, to make use of the convex structure

for these nonlinear terms. To overcome the well-known difficulties associated with the nonlinear and singular surface

diffusion coefficients, many highly non-standard estimates have to be involved. A higher order asymptotic expansion,

up to second order temporal accuracy, has to be performed with a careful linearization technique. Such a higher order

asymptotic expansion enable one to obtain a rough error estimate, so that to the L∞
∆t bound for all three phase variables

could be derived. This L∞
∆t estimate yields the upper and lower bounds of the two variables, and these bounds ensure

a uniform distance between the numerical solution and the singular limit values, which will play a crucial role in the

subsequent analysis. Finally, the refined error estimate is carried out to accomplish the desired convergence result. To

our knowledge, this will be the first work to provide an optimal rate convergence estimate for a ternary phase field

system with singular energy potential.

The rest of the article is organized as follows. In Section 2, we review the fully discrete finite difference scheme and

state the main theoretical result. The optimal rate convergence analysis and error estimate are presented in Section 3.

Finally, we give some concluding remarks in Section 4.

2. The fully discrete numerical scheme

2.1. The finite difference spatial discretization

We use the notation and results for some discrete functions and operators from [44–46]. Let Ω = (0, Lx) × (0, Ly),

where for simplicity, we assume Lx = Ly =: L > 0. Let N ∈ N be given, and define the grid spacing h := L
N
, i.e., a uniform

spatial mesh size is taken for simplicity of presentation. We define the following two uniform, infinite grids with grid

spacing h > 0: E := {pi+1/2 | i ∈ Z}, C := {pi | i ∈ Z}, where pi = p(i) := (i − 1/2) · h. Consider the following 2-D discrete
N2-periodic function spaces:

Cper :=
{

ν : C × C → R | νi,j = νi+αN,j+βN , ∀ i, j, α, β,∈ Z

}

,

E
x
per :=

{

ν : E × C → R | ν
i+ 1

2
,j

= ν
i+ 1

2
+αN,j+βN , ∀ i, j, α, β ∈ Z

}

,

3
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in which identification νi,j = ν(pi, pj) is taken. The space E
y
per is analogously defined. The functions of Cper are called cell

centered functions, and the functions of Ex
per, E

y
per are called east–west , north–south face-centered functions, respectively. We

also define the mean zero space C̊per := {ν ∈ Cper |0 = ν := h2

|Ω|

∑N

i,j=1 νi,j}, and denote EEper := E
x
per × E

y
per. The space ECG

per

is defined as

ECG

per :=
{

(u1, u2) ∈ Cper × Cper | (u1i,j, u2i,j) ∈ G, i, j ∈ Z

}

,

where G is the Gibbs Triangle (1.5). In addition, the following difference and average operators are introduced:

Axνi+1/2,j :=
1

2

(

νi+1,j + νi,j
)

, Dxνi+1/2,j :=
1

h

(

νi+1,j − νi,j
)

,

Ayνi,j+1/2 :=
1

2

(

νi,j+1 + νi,j
)

, Dyνi,j+1/2 :=
1

h

(

νi,j+1 − νi,j
)

,

with Ax, Dx : Cper → E
x
per, Ay, Dy : Cper → E

y
per. Likewise,

axνi,j :=
1

2

(

νi+1/2,j + νi−1/2,j

)

, dxνi,j :=
1

h

(

νi+1/2,j − νi−1/2,j

)

,

ayνi,j :=
1

2

(

νi,j+1/2 + νi,j−1/2

)

, dyνi,j :=
1

h

(

νi,j+1/2 − νi,j−1/2

)

,

with ax, dx : E
x
per → Cper, and ay, dy : E

y
per → Cper. The discrete gradient ∇h : Cper → EEper and the discrete divergence

∇h· : EEper → Cper are given by

∇hνi,j =
(

Dxνi+1/2,j,Dyνi,j+1/2

)

, ∇h · Efi,j = dxf
x
i,j + dyf

y

i,j,

where Ef = (f x, f y) ∈ EEper. The standard 2-D discrete Laplacian, ∆h : Cper → Cper, becomes

∆hνi,j := dx(Dxν)i,j + dy(Dyν)i,j =
1

h2

(

νi+1,j + νi−1,j + νi,j+1 + νi,j−1 − 4νi,j
)

.

More generally, if D is a periodic scalar function that is defined at all of the face center points and Ef ∈ EEper, then DEf ∈ EEper,

assuming point-wise multiplication, and we may define ∇h ·
(

DEf
)

i,j
= dx (Df x)i,j + dy (Df y)i,j. Specifically, if ν ∈ Cper, then

∇h · (D∇h ) : Cper → Cper is defined point-wise via ∇h ·
(

D∇hν
)

i,j
= dx (DDxν)i,j + dy

(

DDyν
)

i,j
. In particular, suppose that

ν, φ ∈ Cper are grid functions and σ : R → R is a continuous function. Then we define

∇h ·
(

σ (Ahν)∇hφ
)

i,j
:= dx (σ (Axν)Dxφ)i,j + dy

(

σ (Ayν)Dyφ
)

i,j
,

where Ahν is understood to be a periodic function defined at the edge centered points obtained by doing appropriate

east–west and north–south averages.

In addition, the following grid inner products are defined:

〈ν, ξ〉 := h2

N
∑

i,j=1

νi,j ξi,j, ν, ξ ∈ Cper, [Ef1, Ef2] :=
[

f x1 , f
x
2

]

x
+

[

f
y

1 , f
y

2

]

y
, Efi = (f xi , f

y

i ) ∈ EEper,

[ν, ξ ]x := 〈ax(νξ ), 1〉, ν, ξ ∈ E
x
per, [ν, ξ ]y := 〈ay(νξ ), 1〉, ν, ξ ∈ E

y
per.

Subsequently, we define the following norms for cell-centered functions. If ν ∈ Cper, then ‖ν‖2
2 := 〈ν, ν〉; ‖ν‖p

p :=

〈|ν|p, 1〉, for 1 ≤ p < ∞, and ‖ν‖∞ := max1≤i,j≤N

∣

∣νi,j
∣

∣. The gradient norms are introduced as follows:

‖∇hν‖
2
2 := [∇hν,∇hν] = [Dxν,Dxν]x +

[

Dyν,Dyν
]

y
, for ν ∈ Cper,

‖∇hν‖p :=
(

[

|Dxν|
p, 1

]

x
+

[

|Dyν|
p, 1

]

y

)
1
p
, 1 ≤ p < ∞.

The discrete H1 norm is defined as ‖ν‖2

H1
h

:= ‖ν‖2
2 + ‖∇hν‖

2
2.

Lemma 2.1 ([46,47]). Let D be an arbitrary periodic, scalar function defined on all of the face center points. For any ψ, ν ∈ Cper

and any Ef ∈ EEper, the following summation by parts formulas are valid:

〈ψ,∇h · Ef 〉 = −[∇hψ, Ef ], 〈ψ,∇h · (D∇hν)〉 = −[∇hψ,D∇hν]. (2.1)

4



L. Dong, C. Wang, S.M. Wise et al. Journal of Computational and Applied Mathematics 415 (2022) 114474

2.2. The fully discrete numerical scheme and the main theoretical results

The following numerical scheme is proposed in a recent work [26], based on a careful convex–concave decomposition
of the physical energy (1.1):

φn+1
1 − φn

1

∆t
= M1∆h

(

1

M0

ln
αφn+1

1

M0

− ln(1 − φn+1
1 − φn+1

2 ) − 2χ13φ
n
1 + (χ12 − χ13 − χ23)φ

n
2

−
ε21

36
Ah

( |∇hφ
n+1
1 |

2

(Ahφ
n+1
1 )2

)

−
ε21

18
∇h ·

(∇hφ
n+1
1

Ahφ
n+1
1

)

+
ε23

36
Ah

( |∇h(1 − φn+1
1 − φn+1

2 )|
2

(Ah(1 − φn+1
1 − φn+1

2 ))2

)

+
ε23

18
∇h ·

(∇h(1 − φn+1
1 − φn+1

2 )

Ah(1 − φn+1
1 − φn+1

2 )

)

)

, (2.2)

φn+1
2 − φn

2

∆t
= M2∆h

(

1

N0

ln
βφn+1

2

N0

− ln(1 − φn+1
1 − φn+1

2 ) − 2χ23φ
n
2 + (χ12 − χ13 − χ23)φ

n
1

−
ε22

36
Ah

( |∇hφ
n+1
2 |

2

(Ahφ
n+1
2 )2

)

−
ε22

18
∇h ·

(∇hφ
n+1
2

Ahφ
n+1
2

)

+
ε23

36
Ah

( |∇h(1 − φn+1
1 − φn+1

2 )|
2

(Ah(1 − φn+1
1 − φn+1

2 ))2

)

+
ε23

18
∇h ·

(∇h(1 − φn+1
1 − φn+1

2 )

Ah(1 − φn+1
1 − φn+1

2 )

)

)

, (2.3)

where

Ah

(

|∇hu|
2

(Ahu)2

)

:= ax

(

|Dxu|
2

(Axu)2

)

+ ay

(

|Dyu|
2

(Ayu)2

)

,

∇h ·

(

∇hu

Ahu

)

:= dx

(

Dxu

Axu

)

+ dy

(

Dyu

Ayu

)

,

for all u ∈ Cper, provided u does not vanish at any grid points.
The positivity-preserving property and unique solvability has been established in [26].

Theorem 2.1 ([26]). Given (φn
1 , φ

n
2 ) ∈ ECG

per, there exists a unique solution (φn+1
1 , φn+1

2 ) ∈ ECG
per and φ

n+1
1 = φn

1 , φ
n+1
2 = φn

2 . In

addition, the numerical scheme (2.2)–(2.3) is unconditionally energy stable: Gh(φ
n+1
1 , φn+1

2 ) ≤ Gh(φ
n
1 , φ

n
2 ), where the discrete

energy Gh(φ1, φ2) : ECG
per → R is defined as

Gh(φ1, φ2) := 〈S(φ1, φ2) + H(φ1, φ2), 1〉

+ 〈ax(κ(Axφ1)(Dxφ1)
2) + ay(κ(Ayφ1)(Dyφ1)

2), ε21〉

+ 〈ax(κ(Axφ2)(Dxφ2)
2) + ay(κ(Ayφ2)(Dyφ2)

2), ε22〉

+ 〈ax(κ(Ax(1 − φ1 − φ2))(Dx(1 − φ1 − φ2))
2), ε23〉

+ 〈ay(κ(Ay(1 − φ1 − φ2))(Dy(1 − φ1 − φ2))
2), ε23〉, (2.4)

with κ(φ) := 1
36φ

.

Now we proceed into the convergence analysis. Let Φ1, Φ2 be the exact solution for the ternary MMC flow (1.2)–(1.4).
With sufficiently regular initial data, we could assume that the exact solution has regularity of class R:

Φ1,Φ2 ∈ R := H3
(

0, T ; Cper(Ω)
)

∩ H2
(

0, T ; C2
per(Ω)

)

∩ L∞
(

0, T ; C6
per(Ω)

)

. (2.5)

In addition, we assume that the following separation property is valid for the exact solution: for some δ,

(Φ1,Φ2) ∈ Gδ, (2.6)

which is satisfied at a point-wise level, for all t ∈ [0, T ]. Define Φ1,N ( · , t) := PNΦ1( · , t), Φ2,N ( · , t) := PNΦ2( · , t), the
(spatial) Fourier projection of the exact solution into B

K , the space of trigonometric polynomials of degree up to and
including K (with N = 2K + 1). The following projection approximation is standard: if Φj ∈ L∞(0, T ;Hℓper(Ω)), for some
ℓ ∈ N,

∥

∥Φj,N −Φj

∥

∥

L∞(0,T ;Hk)
≤ Chℓ−k

∥

∥Φj

∥

∥

L∞(0,T ;Hℓ)
, ∀ 0 ≤ k ≤ ℓ, j = 1, 2. (2.7)

By Φm
j,N , Φ

m
j we denote Φj,N ( · , tm) and Φj( · , tm), respectively, with tm = m ·∆t . Since Φj,N ∈ B

K , the mass conservative
property is available at the discrete level:

Φm
j,N =

1

|Ω|

∫

Ω

Φj,N (·, tm) dx =
1

|Ω|

∫

Ω

Φj,N (·, tm−1) dx = Φm−1
j,N , ∀ m ∈ N. (2.8)

5
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On the other hand, the solution of (2.2)–(2.3) is also mass conservative at the discrete level:

φm
j = φm−1

j , ∀ m ∈ N, j = 1, 2. (2.9)

As indicated before, we use the mass conservative projection for the initial data: φ0
j = PhΦj,N ( · , t = 0), that is

(φ0
1 )i,j := Φ1,N (pi, pj, t = 0), (φ0

2 )i,j := Φ2,N (pi, pj, t = 0). (2.10)

The error grid function is defined as

em1 := PhΦ
m
1,N − φm

1 , em2 := PhΦ
m
2,N − φm

2 , ∀ m ∈ {0, 1, 2, 3, . . .} . (2.11)

Therefore, it follows that emj = 0, for any m ∈ {0, 1, 2, 3, . . .}, j = 1, 2. Meanwhile, we need to introduce a discrete H−1

norm. For any ϕ ∈ C̊per , there exists a unique ψ = (−∆h)
−1ϕ ∈ C̊per that solves −∆hψ = ϕ, with ψ = 0. In turn, the

following norm is introduced:

‖ϕ‖−1,h =
√

〈ϕ, (−∆h)−1ϕ〉.

Therefore, the discrete norm ‖ · ‖−1,h is well defined for the error grid functions em1 and em2 .
The following theorem is the main result of this article.

Theorem 2.2. Given initial data Φ1( · , t = 0),Φ2( · , t = 0) ∈ C6
per(Ω) and Φ1( · , t = 0),Φ2( · , t = 0) ∈ G, point-wise,

suppose the exact solution for ternary MMC flow (1.2)–(1.4) is of regularity class R. Then, provided ∆t and h are sufficiently

small, and under the linear refinement requirement C1h ≤ ∆t ≤ C2h, we have

1

Mj

‖enj ‖−1,h +
( ε20

36
∆t

n
∑

m=1

‖∇he
m
j ‖2

2

)1/2

≤ C(∆t + h2), ε0 = min(ε21, ε
2
2, ε

2
3), j = 1, 2, (2.12)

for all positive integers n, such that tn = n∆t ≤ T , where C > 0 is independent of ∆t and h.

Remark 2.1. The proposed numerical scheme (2.2)–(2.3) is based on the convex splitting for the free energy (1.1), which
in turn leads to an implicit treatment for the highly singular and nonlinear terms. Meanwhile, many linear numerical
schemes, such as the IEQ [48–52] and SAV [53–58] approaches, have been widely applied to various phase field models,
either with two-component or three components, either with or without fluid motion coupling. For the ternary MMC
gradient flow (1.2)–(1.4), the IEQ and SAV methods are expected to be applicable; an extension of the free energy is
required if the phase variable takes a value outside the range of (0, 1). The associated IEQ and SAV numerical schemes
will be linear, and a modified energy stability is expected. However, a theoretical justification of the positivity preserving
property will face a serious difficulty for these linear numerical schemes, due to the explicit treatment of the singular
nonlinear terms. In contrast, an implicit treatment for the convex singular terms is necessary to ensure the positivity-
preserving property of the phase variables; see the related nonlinear analysis in the related works [14,29,30,33,35,37],
etc.

Remark 2.2. The finite difference spatial approximation is taken in proposed numerical scheme (2.2)–(2.3), which in
turn gives second order spatial accuracy. Meanwhile, many high precision spatial discretization methods, such as Fourier
Galerkin spectral or pseudo-spectral approximation, have been extensively applied to various Cahn–Hilliard and other
related phase field models [6,48,49]. The advantage of the spectral method is associated with its exponential convergence
with a limited spatial resolution, which has been verified by extensive numerical experiments. For the ternary MMC
gradient flow (1.2)–(1.4), the Fourier spectral method is expected to be applicable. Meanwhile, due to the global nature
of the spectral spatial discretization, the unique solvability and positivity-preserving analysis of the spectral method is
expected to be much more challenging; in contrast, the positivity-preserving analysis for the finite difference scheme
(2.2)–(2.3) replies heavily on the local difference stencil structure, as revealed in [26]. A more detailed analysis of the
spectral numerical scheme will be reported in the future works.

3. Optimal rate convergence analysis in L∞
∆t (0, T ;H−1

h
) ∩ L2

∆t (0, T ;H1
h
)

3.1. Higher order consistency analysis of (2.2)–(2.3): asymptotic expansion of the numerical solution

By consistency, the projection solution Φ1,N , Φ2,N solves the discrete equation (2.2)–(2.3) with a first order in time and
second order in space local truncation error. However, we should point out that this leading local truncation error will
not be enough to recover an a-priori L∞

∆t bound for the numerical solution to recover the separation property. To remedy
this, we use a higher order consistency analysis, via a perturbation argument, to recover such a bound in later analysis.
In more detail, we need to construct supplementary fields, Φj,∆t and Φ̌j satisfying

Φ̌j = Φj,N +∆tΦj,∆t , j = 1, 2, (3.1)

6
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so that a higher O(∆t2 + h2) consistency is satisfied with the given numerical scheme (2.2)–(2.3). The constructed fields
Φj,∆t , which will be found using a perturbation expansion, will depend solely on the exact solution Φj.

In other words, we introduce a higher order approximate expansion of the exact solution, since a first order temporal
consistency estimate is not able to control the discrete L∞

∆t norm of the numerical solution. Instead of substituting the
exact solution into the numerical scheme, a careful construction of an approximate profile is performed by adding O(∆t)
correction term to the projection solution to satisfy an O(∆t2) truncation error. In turn, we estimate the numerical
error function between the constructed profile and the numerical solution, instead of a direct comparison between
the numerical solution and projection solution. Such a higher order consistency enables us to derive a higher order
convergence estimate in the ‖ · ‖−1,h norm, which in turn leads to a desired ‖ · ‖∞ bound of the numerical solution, via
an application of inverse inequality. This approach has been reported for a wide class of nonlinear PDEs; see the related
works for the incompressible fluid equation [59–65], various gradient equations [66–69], the porous medium equation
based on the energetic variational approach [70,71], nonlinear wave equation [72], etc.

The following truncation error analysis for the temporal discretization can be obtained by using a straightforward
Taylor expansion, as well as the estimate (2.7) for the projection solution:

Φn+1
1,N −Φn

1,N

∆t
= M1∆

(

1

M0

ln
αΦn+1

1,N

M0

− ln(1 −Φn+1
1,N −Φn+1

2,N ) − 2χ13Φ
n
1,N + (χ12 − χ13 − χ23)Φ

n
2,N

−
ε21

36

|∇Φn+1
1,N |

2

(Φn+1
1,N )2

−
ε21

18
∇ ·

(∇Φn+1
1,N

Φn+1
1,N

)

+
ε23

36

( |∇(1 −Φn+1
1,N −Φn+1

2,N )|
2

(1 −Φn+1
1,N −Φn+1

2,N )2

)

+
ε23

18
∇ ·

(∇(1 −Φn+1
1,N −Φn+1

2,N )

(1 −Φn+1
1,N −Φn+1

2,N )

)

)

+∆tg
(0)
1 + O(∆t2) + O(hm), (3.2)

Φn+1
2,N −Φn

2,N

∆t
= M2∆

(

1

N0

ln
βΦn+1

2,N

N0

− ln(1 −Φn+1
1,N −Φn+1

2,N ) − 2χ23Φ
n
2,N + (χ12 − χ13 − χ23)Φ

n
1,N

−
ε22

36

|∇Φn+1
2,N |

2

(Φn+1
2,N )2

−
ε22

18
∇ ·

(∇Φn+1
2,N

Φn+1
2,N

)

+
ε23

36

( |∇(1 −Φn+1
1,N −Φn+1

2,N )|
2

(1 −Φn+1
1,N −Φn+1

2,N )2

)

+
ε23

18
∇ ·

(∇(1 −Φn+1
1,N −Φn+1

2,N )

(1 −Φn+1
1,N −Φn+1

2,N )

)

)

+∆tg
(0)
2 + O(∆t2) + O(hm). (3.3)

Here the function g
(0)
j is smooth enough in the sense that its derivatives are bounded in the ‖ · ‖L∞ norm. In fact, g

(0)
j

turns out to be only dependent on the higher order derivatives (both spatial and temporal) of the projection solution
(Φ1,N ,Φ2,N ), henceforth only dependent on the exact solution (Φ1,Φ2), as indicated by the Taylor expansion and the
Fourier projection estimate.

The temporal correction function Φj,∆t is given by solving the following equations:

∂tΦ1,∆t = M1∆

(

1

M0

Φ1,∆t

Φ1,N

+
Φ1,∆t +Φ2,∆t

(1 −Φ1,N −Φ2,N )
− 2χ13Φ1,∆t + (χ12 − χ13 − χ23)Φ2,∆t

+
ε21

36

2|∇Φ1,N |2Φ1,∆t

Φ3
1,N

−
ε21

36

2∇Φ1,N · ∇Φ1,∆t

Φ2
1,N

−
ε21

18
∇ ·

(∇Φ1,∆t

Φ1,N

−
Φ1,∆t∇Φ1,N

Φ2
1,N

)

+
ε23

36

(2|∇(1 −Φ1,N −Φ2,N )|
2(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )3

−
2∇(1 −Φ1,N −Φ2,N ) · ∇(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )2

)

+
ε23

18
∇ ·

(

−∇(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )
+

(Φ1,∆t +Φ2,∆t )∇(1 −Φ1,N −Φ2,N )

(1 −Φ1,N −Φ2,N )2

))

− g
(0)
1 , (3.4)

∂tΦ2,∆t = M2∆

(

1

N0

Φ2,∆t

Φ2,N

+
Φ1,∆t +Φ2,∆t

(1 −Φ1,N −Φ2,N )
− 2χ23Φ2,∆t + (χ12 − χ13 − χ23)Φ1,∆t

+
ε21

36

2|∇Φ2,N |2Φ2,∆t

Φ3
2,N

−
ε21

36

2∇Φ2,N · ∇Φ2,∆t

Φ2
2,N

−
ε21

18
∇ ·

(∇Φ2,∆t

Φ2,N

−
Φ2,∆t∇Φ2,N

Φ2
2,N

)

+
ε23

36

(2|∇(1 −Φ1,N −Φ2,N )|
2(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )3

7
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−
2∇(1 −Φ1,N −Φ2,N ) · ∇(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )2

)

+
ε23

18
∇ ·

(

−∇(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )
+

(Φ1,∆t +Φ2,∆t )∇(1 −Φ1,N −Φ2,N )

(1 −Φ1,N −Φ2,N )2

))

− g
(0)
2 . (3.5)

Existence of a solution of the above linear PDE system is straightforward. Note that the solution depends only on the

projection solution Φj,N . In addition, the derivatives of Φj,∆t of various orders are bounded. Of course, an application of

the semi-implicit discretization (as given by (2.2)–(2.3)) to (3.4)–(3.5) implies that

Φn+1
1,∆t −Φn

1,∆t

∆t
(3.6)

=M1∆

(

1

M0

Φn+1
1,∆t

Φn+1
1,N

+
Φn+1

1,∆t +Φn+1
2,∆t

(1 −Φn+1
1,N −Φn+1

2,N )
− 2χ13Φ

n
1,∆t + (χ12 − χ13 − χ23)Φ

n
2,∆t

+
ε21

36

2|∇Φn+1
1,N |

2
Φn+1

1,∆t

(Φn+1
1,N )3

−
ε21

36

2∇Φn+1
1,N · ∇Φn+1

1,∆t

(Φn+1
1,N )2

−
ε21

18
∇ ·

(∇Φn+1
1,∆t

Φn+1
1,N

−
Φn+1

1,∆t∇Φ
n+1
1,N

(Φn+1
1,N )2

)

+
ε23

36

(2|∇(1 −Φn+1
1,N −Φn+1

2,N )|
2
(Φn+1

1,∆t +Φn+1
2,∆t )

(1 −Φn+1
1,N −Φn+1

2,N )3
−

2∇(1 −Φn+1
1,N −Φn+1

2,N ) · ∇(Φn+1
1,∆t +Φn+1

2,∆t )

(1 −Φn+1
1,N −Φn+1

2,N )2

)

+
ε23

18
∇ ·

(−∇(Φn+1
1,∆t +Φn+1

2,∆t )

(1 −Φn+1
1,N −Φn+1

2,N )
+

(Φn+1
1,∆t +Φn+1

2,∆t )∇(1 −Φn+1
1,N −Φn+1

2,N )

(1 −Φn+1
1,N −Φn+1

2,N )2

)

)

− g
(0)
1 +∆thn

1,

Φn+1
2,∆t −Φn

2,∆t

∆t
(3.7)

=M2∆

(

1

N0

Φn+1
2,∆t

Φn+1
2,N

+
Φn+1

1,∆t +Φn+1
2,∆t

(1 −Φn+1
1,N −Φn+1

2,N )
− 2χ23Φ

n
2,∆t + (χ12 − χ13 − χ23)Φ

n
1,∆t

+
ε21

36

2|∇Φn+1
2,N |

2
Φn+1

2,∆t

(Φn+1
2,N )3

−
ε21

36

2∇Φn+1
2,N · ∇Φn+1

2,∆t

(Φn+1
2,N )2

−
ε21

18
∇ ·

(∇Φn+1
2,∆t

Φn+1
2,N

−
Φn+1

2,∆t∇Φ
n+1
2,N

(Φn+1
2,N )2

)

+
ε23

36

(2|∇(1 −Φn+1
1,N −Φn+1

2,N )|
2
(Φn+1

1,∆t +Φn+1
2,∆t )

(1 −Φn+1
1,N −Φn+1

2,N )3
−

2∇(1 −Φn+1
1,N −Φn+1

2,N ) · ∇(Φn+1
1,∆t +Φn+1

2,∆t )

(1 −Φn+1
1,N −Φn+1

2,N )2

)

+
ε23

18
∇ ·

(−∇(Φn+1
1,∆t +Φn+1

2,∆t )

(1 −Φn+1
1,N −Φn+1

2,N )
+

(Φn+1
1,∆t +Φn+1

2,∆t )∇(1 −Φn+1
1,N −Φn+1

2,N )

(1 −Φn+1
1,N −Φn+1

2,N )2

)

)

− g
(0)
2 +∆thn

2.

Similarly, the function hj is smooth enough in the sense that its derivatives are bounded in the ‖ · ‖L∞ norm, and these

functions are only dependent on the higher order derivatives of Φj,∆t and Φj,N (j = 1, 2), henceforth only dependent on

the exact solution (Φ1,Φ2).
Therefore, a combination of (3.2)–(3.3) and (3.6)–(3.7) leads to the second order temporal truncation error for Φ̌1, Φ̌2

(given by (3.1)):

Φ̌n+1
1 − Φ̌n

1

∆t
= M1∆

(

1

M0

ln
αΦ̌n+1

1

M0

− ln(1 − Φ̌n+1
1 − Φ̌n+1

2 ) − 2χ13Φ̌
n
1 + (χ12 − χ13 − χ23)Φ̌

n
2

−
ε21

36

|∇Φ̌n+1
1 |

2

(Φ̌n+1
1 )2

−
ε21

18
∇ ·

(∇Φ̌n+1
1

Φ̌n+1
1

)

+
ε23

36

( |∇(1 − Φ̌n+1
1 − Φ̌n+1

2 )|
2

(1 − Φ̌n+1
1 − Φ̌n+1

2 )2

)

+
ε23

18
∇ ·

(∇(1 − Φ̌n+1
1 − Φ̌n+1

2 )

(1 − Φ̌n+1
1 − Φ̌n+1

2 )

)

)

+ O(∆t2) + O(hm), (3.8)

Φ̌n+1
2 − Φ̌n

2

∆t
= M2∆

(

1

N0

ln
βΦ̌n+1

2

N0

ln(1 − Φ̌n+1
1 − Φ̌n+1

2 ) − 2χ23Φ̌
n
2 + (χ12 − χ13 − χ23)Φ̌

n
1

−
ε22

36

|∇Φ̌n+1
2 |

2

(Φ̌n+1
2 )2

−
ε22

18
∇ ·

(∇Φ̌n+1
2

Φ̌n+1
2

)

+
ε23

36

( |∇(1 − Φ̌n+1
1 − Φ̌n+1

2 )|
2

(1 − Φ̌n+1
1 − Φ̌n+1

2 )2

)

+
ε23

18
∇ ·

(∇(1 − Φ̌n+1
1 − Φ̌n+1

2 )

(1 − Φ̌n+1
1 − Φ̌n+1

2 )

)

)

+ O(∆t2) + O(hm). (3.9)

8
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In the derivation of (3.8)–(3.9), the following linearized expansions have been utilized:

ln Φ̌j = ln(Φj,N +∆tΦj,∆t ) = lnΦj,N +
∆tΦj,∆t

Φj,N

+ O(∆t2), j = 1, 2,

ln(1 − Φ̌1 − Φ̌2) = ln(1 −Φ1,N −Φ2,N −∆tΦ1,∆t −∆tΦ2,∆t )

= ln(1 −Φ1,N −Φ2,N ) −∆t
Φ1,∆t +Φ2,∆t

1 −Φ1,N −Φ2,N

+ O(∆t2),

|∇Φ̌j|
2

Φ̌2
j

=
|∇(Φj,N +∆tΦj,∆t )|

2

(Φj,N +∆tΦj,∆t )2

=
|∇Φj,N |2

Φ2
j,N

− 2∆t
|∇Φj,N |2Φj,∆t

Φ3
j,N

+ 2∆t
∇Φj,N · ∇Φj,∆t

Φ2
j,N

+ O(∆t2), j = 1, 2,

∇Φ̌j

Φ̌j

=
∇(Φj,N +∆tΦj,∆t )

Φj,N +∆tΦj,∆t

=
∇Φj,N

Φj,N

+∆t
∇Φj,∆t

Φj,N

−∆t
Φj,∆t∇Φj,N

Φ2
j,N

+ O(∆t2),

|∇(1 − Φ̌1 − Φ̌2)|
2

(1 − Φ̌1 − Φ̌2)2
=

|∇(1 −Φ1,N −Φ2,N −∆tΦ1,∆t −∆tΦ2,∆t )|
2

(1 −Φ1,N −Φ2,N −∆tΦ1,∆t −∆tΦ2,∆t )2

=
|∇(1 −Φ1,N −Φ2,N )|

2

(1 −Φ1,N −Φ2,N )2
−∆t

2∇(1 −Φ1,N −Φ2,N ) · ∇(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )2

+
2∆t|∇(1 −Φ1,N −Φ2,N )|

2(Φ1,∆t +Φ2,∆t )

(1 −Φ1,N −Φ2,N )3
+ O(∆t2),

∇(1 − Φ̌1 − Φ̌2)

(1 − Φ̌1 − Φ̌2)
=

∇(1 −Φ1,N −Φ2,N −∆tΦ1,∆t −∆tΦ2,∆t )

(1 −Φ1,N −Φ2,N −∆tΦ1,∆t −∆tΦ2,∆t )

=
∇(1 −Φ1,N −Φ2,N )

1 −Φ1,N −Φ2,N

−∆t
∇(Φ1,∆t +Φ2,∆t )

1 −Φ1,N −Φ2,N

+∆t
(Φ1,∆t +Φ2,∆t )∇(1 −Φ1,N −Φ2,N )

(1 −Φ1,N −Φ2,N )2
+ O(∆t2).

Subsequently, we introduce Φ̌j,N ( · , t) := PNΦ̌j( · , t), the (spatial) Fourier projection of the constructed solution Φ̌j into
B
K , j = 1, 2. A careful application of Taylor expansion in space yields the desired higher order consistency estimate for
Φ̌1,N , Φ̌2,N in the fully discrete scheme:

Φ̌n+1
1,N − Φ̌n

1,N

∆t
= M1∆h

(

1

M0

ln
αΦ̌n+1

1,N

M0

− ln(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ) − 2χ13Φ̌
n
1,N + (χ12 − χ13 − χ23)Φ̌

n
2,N

−
ε21

36
Ah

( |∇hΦ̌
n+1
1,N |

2

(AhΦ̌
n+1
1,N )2

)

−
ε21

18
∇h ·

(∇hΦ̌
n+1
1,N

AhΦ̌
n+1
1,N

)

+
ε23

36
Ah

( |∇h(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )|
2

(Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ))2

)

+
ε23

18
∇h ·

(∇h(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )

Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )

)

)

+ τ n+1
1 , (3.10)

Φ̌n+1
2,N − Φ̌n

2,N

∆t
= M2∆h

(

1

N0

ln
βΦ̌n+1

2,N

N0

− ln(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ) − 2χ23Φ̌
n
2,N + (χ12 − χ13 − χ23)Φ̌

n
1,N

−
ε22

36
Ah

( |∇hΦ̌
n+1
2,N |

2

(AhΦ̌
n+1
2,N )2

)

−
ε22

18
∇h ·

(∇hΦ̌
n+1
2,N

AhΦ̌
n+1
2,N

)

+
ε23

36
Ah

( |∇h(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )|
2

(Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ))2

)

+
ε23

18
∇h ·

(∇h(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )

Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )

)

)

+ τ n+1
2 , (3.11)

with ‖τ n+1
1 ‖−1,h, ‖τ

n+1
2 ‖−1,h ≤ C(∆t2 + h2).

Remark 3.1. Trivial initial data Φj,∆t (·, t = 0) ≡ 0 are given to Φj,∆t as (3.4)–(3.5). Therefore, using similar arguments as

in (2.8)–(2.9), we conclude that

φ0
j ≡ Φ̌0

j,N , φk
j = φ0

j , ∀ k ≥ 0, (3.12)

9
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Φ̌k
j,N =

1

|Ω|

∫

Ω

Φ̌j,N (·, tk) dx =
1

|Ω|

∫

Ω

Φ̌j(·, tk) dx =
1

|Ω|

∫

Ω

Φ̌0
j dx = φ0

j , ∀ k ≥ 0, (3.13)

in which the first step of (3.13) is based on the fact that Φ̌j,N ∈ B
K , the second step comes from the fact that Φ̌j,N is the

projection of Φ̌j onto B
K , and the third step comes from the mass conservative property of Φ̌j at the continuous level.

These two properties will be used in later analysis.
In addition, since Φ̌j,N is mass conservative at a discrete level, as given by (3.13), we observe that the local truncation

error τj has a similar property:

τ n+1
1 = τ n+1

2 = 0, ∀n ≥ 0, j = 1, 2. (3.14)

Remark 3.2. Since the temporal correction function Φj,∆t is bounded, we recall the separation property (2.6) for the exact

solution, and obtain a similar property for the constructed profile Φ̌j,N :

Φ̌1,N ≥ δ0, Φ̌2,N ≥ δ0, 1 − Φ̌1,N − Φ̌2,N ≥ δ0, ∃ δ0 > 0, (3.15)

in which the projection estimate (2.7) has been repeatedly used. Such a uniform bound will be used in the convergence

analysis.

In addition, since the temporal correction function Φj,∆t only depends on Φj,N and the exact solution, its W 1,∞ norm

will stay bounded. In turn, we are able to obtain a discrete W 1,∞ bound for the constructed profile Φ̌j,N :

‖∇hΦ̌j,N‖∞ ≤ C∗, j = 1, 2. (3.16)

Remark 3.3. The reason for such a higher order asymptotic expansion and truncation error estimate is to justify an a-priori

L∞
∆t bound of the numerical solution, which is needed to obtain the separation property, similarly formulated as (3.15) for

the constructed approximate solution. With such a property valid for both the constructed approximate solution and the

numerical solution, the nonlinear error term could be appropriately analyzed in the H−1 convergence estimate.

3.2. A rough error estimate

Instead of a direct analysis for the error function defined in (2.11), we introduce an alternate numerical error function:

φ̃m
1 := PhΦ̌

m
1,N − φm

1 , φ̃
m
2 := PhΦ̌

m
2,N − φm

2 , ∀ m ∈ {0, 1, 2, 3, . . .} . (3.17)

The advantage of such a numerical error function is associated with its higher order accuracy, which comes from the

higher order consistency estimate (3.8)–(3.9). Again, since φ̃m
1 = φ̃m

2 = 0, which comes from the fact (3.12)–(3.13), for

any m ≥ 0, we conclude that the discrete norm ‖ · ‖−1,h is well defined for the error grid function φ̃m
j , j = 1, 2.

In turn, subtracting the numerical scheme (2.2)–(2.3) from the consistency estimate (3.10)–(3.11) yields

φ̃n+1
1 − φ̃n

1

∆t
= M1∆hµ̃

n+1
1 + τ n+1

1 , (3.18)

φ̃n+1
2 − φ̃n

2

∆t
= M2∆hµ̃

n+1
2 + τ n+1

2 , (3.19)

with

µ̃n+1
1 =

1

M0

(ln Φ̌n+1
1,N − lnφn+1

1 ) − (ln(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ) − ln(1 − φn+1
1 − φn+1

2 ))

− 2χ13φ̃
n
1 + (χ12 − χ13 − χ23)φ̃

n
2 + µ̃n+1

1,s + µ̃n+1
3,s , (3.20)

µ̃n+1
2 =

1

N0

(ln Φ̌n+1
2,N − lnφn+1

2 ) − (ln(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ) − ln(1 − φn+1
1 − φn+1

2 ))

− 2χ23φ̃
n
2 + (χ12 − χ13 − χ23)φ̃

n
1 + µ̃n+1

2,s + µ̃n+1
3,s , (3.21)

µ̃n+1
1,s =

ε21

36
Ah

(

γ (1)
Ahφ̃

n+1
1 −

∇h(Φ̌
n+1
1,N + φn+1

1 ) · ∇hφ̃
n+1
1

(AhΦ̌
n+1
1,N )2

)

−
ε21

18
∇h ·

(∇hφ̃
n+1
1

Ahφ
n+1
1

−
φ̃n+1
1 ∇hΦ̌

n+1
1,N

Ahφ
n+1
1 AhΦ̌

n+1
1,N

)

, (3.22)

µ̃n+1
2,s =

ε22

36
Ah

(

γ (2)
Ahφ̃

n+1
2 −

∇h(Φ̌
n+1
2,N + φn+1

2 ) · ∇hφ̃
n+1
2

(AhΦ̌
n+1
2,N )2

)

−
ε22

18
∇h ·

(∇hφ̃
n+1
2

Ahφ
n+1
2

−
φ̃n+1
2 ∇hΦ̌

n+1
2,N

Ahφ
n+1
2 AhΦ̌

n+1
2,N

)

, (3.23)

µ̃n+1
3,s =

ε23

36
Ah

(

γ (3)
Ah(φ̃

n+1
1 + φ̃n+1

2 )
)

−
ε23

18
∇h ·

( ∇h(φ̃
n+1
1 + φ̃n+1

2 )

Ah(1 − φn+1
1 − φn+1

2 )

)

10
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−
ε23

36
Ah

(∇h(2 − φn+1
1 − φn+1

2 − Φ̌n+1
1,N − Φ̌n+1

2,N ) · ∇h(φ̃
n+1
1 + φ̃n+1

2 )

(Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ))2

)

−
ε23

18
∇h ·

( (φ̃n+1
1 + φ̃n+1

2 )∇h(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )

Ah(1 − φn+1
1 − φn+1

2 )Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N )

)

, (3.24)

γ (1) =
Ah(φ

n+1
1 + Φ̌n+1

1,N )|∇hφ
n+1
1 |

2

(Ahφ
n+1
1 )2(AhΦ̌

n+1
1,N )2

, (3.25)

γ (2) =
Ah(φ

n+1
2 + Φ̌n+1

2,N )|∇hφ
n+1
2 |

2

(Ahφ
n+1
2 )2(AhΦ̌

n+1
2,N )2

, (3.26)

γ (3) =
Ah(2 − φn+1

1 − φn+1
2 − Φ̌n+1

1,N − Φ̌n+1
2,N )|∇h(1 − φn+1

1 − φn+1
2 )|

2

(Ah(1 − φn+1
1 − φn+1

2 ))2(Ah(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ))2
. (3.27)

To proceed with the nonlinear analysis, we make the following a-priori assumption at the previous time step:

‖φ̃n
j ‖−1,h ≤ ∆t

7
4 + h

7
4 , ‖φ̃n

j ‖2 ≤ ∆t
5
4 + h

5
4 , j = 1, 2. (3.28)

Such an a-priori assumption will be recovered by the optimal rate convergence analysis at the next time step, as will be

demonstrated later.

Taking a discrete inner product with (3.18), (3.19) by µ̃n+1
1 , µ̃n+1

2 , respectively, leads to

〈φ̃n+1
1 , µ̃n+1

1 〉 + 〈φ̃n+1
2 , µ̃n+1

2 〉 +∆t(M1‖∇hµ̃
n+1
1 ‖2

2 + M2‖∇hµ̃
n+1
2 ‖2

2)

= 〈φ̃n
1 , µ̃

n+1
1 〉 + 〈φ̃n

2 , µ̃
n+1
2 〉 +∆t(〈τ n+1

1 , µ̃n+1
1 〉 + 〈τ n+1

2 , µ̃n+1
2 〉). (3.29)

Because of the mean-zero property (3.14) for the local truncation error terms, the following estimate is available:

〈τ n+1
j , µ̃n+1

j 〉 ≤ ‖τ n+1
j ‖−1,h · ‖∇hµ̃

n+1
j ‖2 ≤

1

2Mj

‖τ n+1
j ‖2

−1,h +
Mj

2
‖∇hµ̃

n+1
j ‖2

2, j = 1, 2. (3.30)

For the two terms 〈φ̃n
1 , µ̃

n+1
1 〉 and 〈φ̃n

2 , µ̃
n+1
2 〉, an application of the Cauchy inequality reveals that

〈φ̃n
j , µ̃

n+1
j 〉 ≤ ‖φ̃n

j ‖−1,h · ‖∇hµ̃
n+1
j ‖2 ≤

1

2Mj∆t
‖φ̃n

j ‖
2
−1,h +

Mj

2
∆t‖∇hµ̃

n+1
j ‖2

2, j = 1, 2. (3.31)

Going back (3.29), we get

〈φ̃n+1
1 , µ̃n+1

1 〉 + 〈φ̃n+1
2 , µ̃n+1

2 〉 ≤
1

2M∗∆t
(‖φ̃n

1‖
2
−1,h + ‖φ̃n

2‖
2
−1,h) +

∆t

2M∗

(‖τ n+1
1 ‖2

−1,h + ‖τ n+1
2 ‖2

−1,h), (3.32)

which M∗ = min(M1,M2). On the other hand, the detailed expansions in (3.20)–(3.21) reveal the following identity:

〈φ̃n+1
1 , µ̃n+1

1 〉 + 〈φ̃n+1
2 , µ̃n+1

2 〉

=
1

M0

〈(ln Φ̌n+1
1,N − lnφn+1

1 ), φ̃n+1
1 〉 +

1

N0

〈(ln Φ̌n+1
2,N − lnφn+1

2 ), φ̃n+1
2 〉

−〈(ln(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ) − ln(1 − φn+1
1 − φn+1

2 )), φ̃n+1
1 + φ̃n+1

2 〉

−2χ13〈φ̃
n
1 , φ̃

n+1
1 〉 − 2χ23〈φ̃

n
2 , φ̃

n+1
2 〉 + (χ12 − χ13 − χ23)(〈φ̃

n
2 , φ̃

n+1
1 〉 + 〈φ̃n

1 , φ̃
n+1
2 〉)

+〈µ̃n+1
1,s , φ̃

n+1
1 〉 + 〈µ̃n+1

2,s , φ̃
n+1
2 〉 + 〈µ̃n+1

3,s , φ̃
n+1
1 + φ̃n+1

2 〉. (3.33)

For the first nonlinear inner product on the right hand side, we begin with the following observation:

ln Φ̌n+1
1,N − lnφn+1

1 =
1

ξ
φ̃n+1
1 , with 0 < ξ < 1 between φn+1

1 and Φ̌n+1
1,N ,

which comes from an application of intermediate value theorem. Since the bound 0 < ξ < 1 is available at a point-wise

level, we conclude that

〈(ln Φ̌n+1
1,N − lnφn+1

1 ), φ̃n+1
1 〉 ≥ ‖φ̃n+1

1 ‖2
2. (3.34)

Using similar arguments, we also obtain

〈(ln Φ̌n+1
2,N − lnφn+1

2 ), φ̃n+1
2 〉 ≥ ‖φ̃n+1

2 ‖2
2, (3.35)

−〈(ln(1 − Φ̌n+1
1,N − Φ̌n+1

2,N ) − ln(1 − φn+1
1 − φn+1

2 )), φ̃n+1
1 + φ̃n+1

2 〉 ≥ ‖φ̃n+1
1 + φ̃n+1

2 ‖2
2. (3.36)

11
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Moreover, since the discrete surface energy functional presented in (2.4) is convex, we conclude that

〈µ̃n+1
1,s , φ̃

n+1
1 〉 + 〈µ̃n+1

2,s , φ̃
n+1
2 〉 + 〈µ̃n+1

3,s , φ̃
n+1
1 + φ̃n+1

2 〉 ≥ 0. (3.37)

Going back (3.33), we arrive at

〈φ̃n+1
1 , µ̃n+1

1 〉 + 〈φ̃n+1
2 , µ̃n+1

2 〉

≥
1

M0

‖φ̃n+1
1 ‖2

2 +
1

N0

‖φ̃n+1
2 ‖2

2 + ‖φ̃n+1
1 + φ̃n+1

2 ‖2
2 − 4χ2

13M0‖φ̃
n
1‖

2
2 −

1

4M0

‖φ̃n+1
1 ‖2

2

−4χ2
23N0‖φ̃

n
2‖

2
2 −

1

4N0

‖φ̃n+1
2 ‖2

2 −
1

4M0

‖φ̃n+1
1 ‖2

2 −
1

4N0

‖φ̃n+1
2 ‖2

2

−(χ12 − χ13 − χ23)
2(M0‖φ̃

n
2‖

2
2 + N0‖φ̃

n
1‖

2
2)

≥
1

2M0

‖φ̃n+1
1 ‖2

2 +
1

2N0

‖φ̃n+1
2 ‖2

2 − (4χ2
13M0 + (χ12 − χ13 − χ23)

2N0)‖φ̃
n
1‖

2
2

−(4χ2
23N0 + (χ12 − χ13 − χ23)

2M0)‖φ̃
n
2‖

2
2. (3.38)

In turn, its substitution into (3.32) yields

1

2M0

‖φ̃n+1
1 ‖2

2 +
1

2N0

‖φ̃n+1
2 ‖2

2

≤ (4χ2
13M0 + (χ12 − χ13 − χ23)

2N0)‖φ̃
n
1‖

2
2 + (4χ2

23N0 + (χ12 − χ13 − χ23)
2M0)‖φ̃

n
2‖

2
2

+
1

2M∗∆t
(‖φ̃n

1‖
2
−1,h + ‖φ̃n

2‖
2
−1,h) +

∆t

2M∗

(‖τ n+1
1 ‖2

−1,h + ‖τ n+1
2 ‖2

−1,h). (3.39)

Furthermore, a substitution of the a-priori error bound (3.28) at the previous time step results in a rough error estimate
for φ̃n+1

1 , φ̃n+1
2 :

‖φ̃n+1
1 ‖2 + ‖φ̃n+1

2 ‖2 ≤ Ĉ(∆t
5
4 + h

5
4 ), (3.40)

under the linear refinement requirement C1h ≤ ∆t ≤ C2h, with Ĉ dependent on M0, N0, χ12, χ13 and χ23. Subsequently,
an application of 2-D inverse inequality implies that

‖φ̃n+1
1 ‖∞ + ‖φ̃n+1

2 ‖∞ ≤
C(‖φ̃n+1

1 ‖2 + ‖φ̃n+1
2 ‖2)

h
≤ Ĉ1(∆t

1
4 + h

1
4 ), with Ĉ1 = CĈ, (3.41)

under the same linear refinement requirement. Because of the accuracy order, we could take ∆t and h sufficient small so
that

Ĉ1(∆t
1
4 + h

1
4 ) ≤

δ0

4
, so that ‖φ̃n+1

1 ‖∞ + ‖φ̃n+1
2 ‖∞ ≤

δ0

4
. (3.42)

Its combination with (3.15), the separation property for the constructed approximate solution, leads to a similar property
for the numerical solution:

φn+1
1 ≥

δ0

2
, φn+1

2 ≥
δ0

2
, 1 − φn+1

1 − φn+1
2 ≥

δ0

2
, for δ0 > 0. (3.43)

Such a uniform ‖ · ‖∞ bound will play a very important role in the refined error estimate.

Remark 3.4. In the rough error estimate (3.40), we see that the accuracy order is lower than the one given by the
a-priori-assumption (3.28). Therefore, such a rough estimate could not be used for a global induction analysis. Instead,
the purpose of such an estimate is to establish a uniform ‖ · ‖∞ bound, via the technique of inverse inequality, so that
a discrete separation property becomes available for the numerical solution. With such a property established for the
numerical solution, the refined error analysis will yield much sharper estimates.

3.3. The refined error estimate

Taking a discrete inner product with (3.18), (3.19) by (−∆h)
−1φ̃n+1

1 , (−∆h)
−1φ̃n+1

2 , respectively, leads to

1

M1

〈φ̃n+1
1 − φ̃n

1 , φ̃
n+1
1 〉−1,h +

1

M2

〈φ̃n+1
2 − φ̃n

2 , φ̃
n+1
2 〉−1,h +∆t(〈φ̃n+1

1 , µ̃n+1
1 〉 + 〈φ̃n+1

2 , µ̃n+1
2 〉)

=
∆t

M1

〈τ n+1
1 , φ̃n+1

1 〉−1,h +
∆t

M2

〈τ n+1
2 , φ̃n+1

2 〉−1,h, (3.44)

with the summation by parts formulas applied. The following identities are available for the temporal approximation
terms:

1

Mj

〈φ̃n+1
j − φ̃n

j , φ̃
n+1
j 〉−1,h =

1

2Mj

(‖φ̃n+1
j ‖2

−1,h − ‖φ̃n
j ‖

2
−1,h + ‖φ̃n+1

j − φ̃n
j ‖

2
−1,h), j = 1, 2. (3.45)

12
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For the local truncation error terms, similar estimates could be derived:

1

Mj

〈τ n+1
j , φ̃n+1

j 〉−1,h ≤
1

2Mj

(‖τ n+1
j ‖2

−1,h + ‖φ̃n+1
j ‖2

−1,h), j = 1, 2. (3.46)

For the term 〈φ̃n+1
1 , µ̃n+1

1 〉 + 〈φ̃n+1
2 , µ̃n+1

2 〉, the expansion (3.33), as well as the inequalities (3.34)–(3.36), are still valid.
For the inner product associated with the concave terms, a standard Cauchy inequality is applied:

−2χ13〈φ̃
n
1 , φ̃

n+1
1 〉 ≥ −2χ13‖φ̃

n
1‖−1,h‖∇hφ̃

n+1
1 ‖2

≥ −
144χ2

13

ε20
‖φ̃n

1‖
2
−1,h −

ε20

144
‖∇hφ̃

n+1
1 ‖2

2, (3.47)

−2χ23〈φ̃
n
2 , φ̃

n+1
2 〉 ≥ −2χ23‖φ̃

n
2‖−1,h‖∇hφ̃

n+1
2 ‖2

≥ −
144χ2

23

ε20
‖φ̃n

2‖
2
−1,h −

ε20

144
‖∇hφ̃

n+1
2 ‖2

2, (3.48)

(χ12 − χ13 − χ23)(〈φ̃
n
2 , φ̃

n+1
1 〉 + 〈φ̃n

1 , φ̃
n+1
2 〉) (3.49)

≥ −
36(χ12 − χ13 − χ23)

2

ε20
(‖φ̃n

1‖
2
−1,h + ‖φ̃n

2‖
2
−1,h) −

ε20

144
(‖∇hφ̃

n+1
1 ‖2

2 + ‖∇hφ̃
n+1
2 ‖2

2).

The rest works are focused on the estimates for the error terms associated with the nonlinear surface diffusion, as given
by 〈µ̃n+1

1,s , φ̃
n+1
1 〉, 〈µ̃n+1

2,s , φ̃
n+1
2 〉, 〈µ̃n+1

3,s , φ̃
n+1
1 + φ̃n+1

2 〉, the last three terms in (3.33). First, we look at the expansion for

〈µ̃n+1
1,s , φ̃

n+1
1 〉, which comes from the expression (3.22):

〈µ̃n+1
1,s , φ̃

n+1
1 〉 = I1 + I2 + I3 + I4, with

I1 :=
ε21

36
〈Ah(γ

(1)
Ahφ̃

n+1
1 ), φ̃n+1

1 〉, I2 := −
ε21

36

〈

Ah

(∇h(Φ̌
n+1
1,N + φn+1

1 ) · ∇hφ̃
n+1
1

(AhΦ̌
n+1
1,N )2

)

, φ̃n+1
1

〉

I3 := −
ε21

18

〈

∇h ·
(∇hφ̃

n+1
1

Ahφ
n+1
1

)

, φ̃n+1
1

〉

, I4 :=
ε21

18

〈

∇h ·
( φ̃n+1

1 ∇hΦ̌
n+1
1,N

Ahφ
n+1
1 AhΦ̌

n+1
1,N

)

, φ̃n+1
1

〉

. (3.50)

It is clear that I1 stays non-negative:

I1 =
ε21

36
〈γ (1)

Ahφ̃
n+1
1 ,Ahφ̃

n+1
1 〉 ≥ 0, (3.51)

in which the summation by parts formula is applied in the first step, while the fact that γ (1) ≥ 0 (given by (3.25)) is used
in the second step. Similarly, for the third part I3, an application of summation by parts reveals that

I3 =
ε21

18

[∇hφ̃
n+1
1

Ahφ
n+1
1

,∇hφ̃
n+1
1

]

≥
ε21

18
‖∇hφ̃

n+1
1 ‖2

2, (3.52)

in which the point-wise estimate 0 < φn+1
1 < 1 has been used in the second step. For the fourth part I4, an application

of summation by parts formula gives

−I4 =
ε21

18

[ φ̃n+1
1 ∇hΦ̌

n+1
1,N

Ahφ
n+1
1 AhΦ̌

n+1
1,N

,∇hφ̃
n+1
1

]

≤
ε21

18

∥

∥

∥

1

Ahφ
n+1
1

∥

∥

∥

∞
·
∥

∥

∥

1

AhΦ̌
n+1
1,N

∥

∥

∥

∞
· ‖∇hΦ̌

n+1
1,N ‖∞ · ‖φ̃n+1

1 ‖2 · ‖∇hφ̃
n+1
1 ‖2

≤
C∗ε21

18
· 2(δ0)

−2‖φ̃n+1
1 ‖2 · ‖∇hφ̃

n+1
1 ‖2

≤
C∗ε21(δ0)

−2

9
‖φ̃n+1

1 ‖
1
2
−1,h · ‖∇hφ̃

n+1
1 ‖

3
2
2

≤ C(C∗)4(δ0)
−8ε21‖φ̃

n+1
1 ‖2

−1,h +
ε21

72
‖∇hφ̃

n+1
1 ‖2

2. (3.53)

In more details, the preliminary estimate (3.16) has been applied in the third step, combined the separation proper-

ties (3.15), (3.43); the Sobolev interpolation formula, ‖φ̃n+1
1 ‖2 ≤ ‖φ̃n+1

1 ‖
1
2
−1,h ·‖∇hφ̃

n+1
1 ‖

1
2
2 , has been used in the fourth step;

the Young’s inequality has been applied in the last step. For the second term I2, we begin with the following summation
by parts:

−I2 =
ε21

36

[∇h(Φ̌
n+1
1,N + φn+1

1 ) · ∇hφ̃
n+1
1

(AhΦ̌
n+1
1,N )2

,Ahφ̃
n+1
1

]

. (3.54)
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Meanwhile, because of the fact φn+1
1 = Φ̌n+1

1,N − φ̃n+1
1 , we are able to decompose −I2 into two parts:

− I2 = −I2,1 − I2,2, with −I2,1 :=
ε21

18

[∇hΦ̌
n+1
1,N · ∇hφ̃

n+1
1

(AhΦ̌
n+1
1,N )2

,Ahφ̃
n+1
1

]

, (3.55)

−I2,2 := −
ε21

36

[ |∇hφ̃
n+1
1 |

2

(AhΦ̌
n+1
1,N )2

,Ahφ̃
n+1
1

]

. (3.56)

The bound for −I2,1 could be obtained in a similar style as (3.53):

−I2,1 ≤
ε21

18

∥

∥

∥

1

AhΦ̌
n+1
1,N

∥

∥

∥

2

∞
· ‖∇hΦ̌

n+1
1,N ‖∞ · ‖Ahφ̃

n+1
1 ‖2 · ‖∇hφ̃

n+1
1 ‖2

≤
C∗ε21

18
· (δ0)

−2‖Ahφ̃
n+1
1 ‖2 · ‖∇hφ̃

n+1
1 ‖2 ≤

C∗ε21

18
· (δ0)

−2‖φ̃n+1
1 ‖2 · ‖∇hφ̃

n+1
1 ‖2

≤
C∗ε21(δ0)

−2

18
‖φ̃n+1

1 ‖
1
2
−1,h · ‖∇hφ̃

n+1
1 ‖

3
2
2

≤ C(C∗)4(δ0)
−8ε21‖φ̃

n+1
1 ‖2

−1,h +
ε21

144
‖∇hφ̃

n+1
1 ‖2

2. (3.57)

For the other part −I2,2, we recall the ‖ · ‖∞ rough estimate (3.41) and the separation inequality (3.15), and arrive at

−I2,2 ≤
ε21

36

∥

∥

∥

1

AhΦ̌
n+1
1,N

∥

∥

∥

2

∞
· ‖Ahφ̃

n+1
1 ‖∞ · ‖∇hφ̃

n+1
1 ‖2

2

≤
ε21

36
· (δ0)

−2 · Ĉ1(∆t
1
4 + h

1
4 )‖∇hφ̃

n+1
1 ‖2

2. (3.58)

In turn, if ∆t and h are sufficiently small so that

Ĉ1(δ0)
−2

36
(∆t

1
4 + h

1
4 ) ≤

1

144
, (3.59)

we obtain a useful bound

−I2,2 ≤
ε21

144
‖∇hφ̃

n+1
1 ‖2

2. (3.60)

A substitution of (3.57)–(3.60) into (3.54) leads to

−I2 ≤ C(C∗)4(δ0)
−8ε21‖φ̃

n+1
1 ‖2

−1,h +
ε21

72
‖∇hφ̃

n+1
1 ‖2

2. (3.61)

Finally, a combination of (3.51)–(3.53) and (3.61) results in

〈µ̃n+1
1,s , φ̃

n+1
1 〉 ≥

ε21

36
‖∇hφ̃

n+1
1 ‖2

2 − 2C(C∗)4(δ0)
−8ε21‖φ̃

n+1
1 ‖2

−1,h. (3.62)

The two other nonlinear surface diffusion error terms could be analyzed in the same style. The results are stated below;

the technical details are skipped for the sake of brevity.

〈µ̃n+1
2,s , φ̃

n+1
2 〉 ≥

ε22

36
‖∇hφ̃

n+1
2 ‖2

2 − 2C(C∗)4(δ0)
−8ε22‖φ̃

n+1
2 ‖2

−1,h, (3.63)

〈µ̃n+1
3,s , φ̃

n+1
1 + φ̃n+1

2 〉 ≥
ε23

36
‖∇h(φ̃

n+1
1 + φ̃n+1

2 )‖2
2 − 2C(C∗)4(δ0)

−8ε23‖φ̃
n+1
1 + φ̃n+1

2 ‖2
−1,h

≥
ε23

36
‖∇h(φ̃

n+1
1 + φ̃n+1

2 )‖2
2

−4C(C∗)4(δ0)
−8ε23(‖φ̃

n+1
1 ‖2

−1,h + ‖φ̃n+1
2 ‖2

−1,h). (3.64)

A substitution of (3.34)–(3.36), (3.47)–(3.49), (3.62)–(3.64) into (3.33) results in

〈φ̃n+1
1 , µ̃n+1

1 〉 + 〈φ̃n+1
2 , µ̃n+1

2 〉

≥
ε20

72
(‖∇hφ̃

n+1
1 ‖2

2 + ‖∇hφ̃
n+1
2 ‖2

2) − 4C(C∗)4(δ0)
−8(ε21 + ε22 + ε23)(‖φ̃

n+1
1 ‖2

−1,h + ‖φ̃n+1
2 ‖2

−1,h)

−
144

ε20
(χ2

13 + χ2
23 + (χ12 − χ13 − χ23)

2)(‖φ̃n
1‖

2
−1,h + ‖φ̃n

2‖
2
−1,h). (3.65)
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A combination of (3.44)–(3.46) and (3.65) gives
(

1

M1

‖φ̃n+1
1 ‖2

−1,h +
1

M2

‖φ̃n+1
2 ‖2

−1,h

)

−

(

1

M1

‖φ̃n
1‖

2
−1,h +

1

M2

‖φ̃n
2‖

2
−1,h

)

+
ε20

36
∆t(‖∇hφ̃

n+1
1 ‖2

2 + ‖∇hφ̃
n+1
2 ‖2

2)

≤ κ (1)∆t(‖φ̃n
1‖

2
−1,h + ‖φ̃n

2‖
2
−1,h) + κ (2)∆t(‖φ̃n+1

1 ‖2
−1,h + ‖φ̃n+1

2 ‖2
−1,h)

+∆t

(

1

M1

‖φ̃n+1
1 ‖2

−1,h +
1

M2

‖φ̃n+1
2 ‖2

−1,h

)

+∆t

(

1

M1

‖τ n+1
1 ‖2

−1,h +
1

M2

‖τ n+1
2 ‖2

−1,h

)

, (3.66)

with κ (1) =
288

ε20
(χ2

13 + χ2
23 + (χ12 − χ13 − χ23)

2), κ (2) = 8C(C∗)4(δ0)
−8(ε21 + ε22 + ε23).

In other words, we have
(

1

M1

‖φ̃n+1
1 ‖2

−1,h +
1

M2

‖φ̃n+1
2 ‖2

−1,h

)

−

(

1

M1

‖φ̃n
1‖

2
−1,h +

1

M2

‖φ̃n
2‖

2
−1,h

)

+
ε20

36
∆t(‖∇hφ̃

n+1
1 ‖2

2 + ‖∇hφ̃
n+1
2 ‖2

2)

≤ κ (1)∆t(‖φ̃n
1‖

2
−1,h + ‖φ̃n

2‖
2
−1,h) +

(

κ (2) +
M1 + M2

M1M2

)

∆t(‖φ̃n+1
1 ‖2

−1,h + ‖φ̃n+1
2 ‖2

−1,h)

+
M1 + M2

M1M2

∆t
(

‖τ n+1
1 ‖2

−1,h + ‖τ n+1
2 ‖2

−1,h

)

, (3.67)

Therefore, an application of discrete Gronwall inequality leads to the desired higher order convergence estimate

1

M
1/2

j

‖φ̃n+1
j ‖−1,h +

( ε20

36
∆t

n+1
∑

m=1

‖∇hφ̃
m
j ‖2

2

)1/2

≤ Ĉ2(∆t2 + h2), j = 1, 2, (3.68)

based on the higher order truncation error accuracy, ‖τ n+1
1 ‖−1,h, ‖τ n+1

2 ‖−1,h ≤ C(∆t2 + h2). This completes the refined
error estimate.
Recovery of the a-priori assumption (3.28)

With the higher order error estimate (3.68) at hand, we notice that the first a-priori assumption in (3.28) is satisfied
at the next time step tn+1:

‖φ̃n+1
j ‖−1,h ≤ CĈ2(∆t2 + h2) ≤ ∆t

7
4 + h

7
4 , if ∆t and h are sufficiently small, (3.69)

for j = 1, 2. For the second assumption in (3.28), we observe that the L2∆t (0, T ;H1
h ) error estimate in (3.68) implies that

‖∇hφ̃
n+1
j ‖2 ≤

CĈ2(∆t2 + h2)

∆t
1
2

≤ CĈ2(∆t
3
2 + h

3
2 ), (3.70)

in which we have used the linear refinement C1h ≤ ∆t ≤ C2h in the second step. Moreover, since φ̃n+1
1 = φ̃n+1

2 = 0, an
application of discrete Poincaré inequality implies that

‖φ̃n+1
j ‖2 ≤ C‖∇hφ̃

n+1
j ‖2 ≤ C2Ĉ2(∆t

3
2 + h

3
2 ) ≤ ∆t

5
4 + h

5
4 , j = 1, 2, (3.71)

provided that ∆t and h are sufficiently small. Therefore, both a-priori assumptions in (3.28) are satisfied, so that an
induction analysis could be applied. This finishes the second order convergence analysis.

Finally, the convergence estimate (2.12) is a direct consequence of (3.68), combined with the definition (3.1) of the
constructed approximate solution Φ̌j, as well as the projection estimate (2.7). This completes the proof of Theorem 2.2.

4. Concluding remarks

In this paper, we have established the convergence analysis and error estimate of a fully discrete finite difference
scheme for the three-component Macromolecular Microsphere Composite (MMC) hydrogels system, a ternary Cahn–
Hilliard system with a Flory–Huggins–deGennes free energy potential. The numerical scheme, proposed in [26], is based
on a convex–concave decomposition of the ternary phase field energy, with its positivity-preserving property and energy
stability available. The first order convergence in time and second order convergence in space have been proved in the
L∞
∆t (0, T ;H−1

h )∩L2∆t (0, T ;H1
h ) norm. To overcome a well-known difficulty associated with the highly nonlinear and singular

surface diffusion coefficient, many non-standard estimates have to be involved in the analysis. The higher order asymptotic
expansion, up to second order temporal accuracy, has to be performed with a careful linearization technique. Such a higher
order asymptotic expansion enables one to obtain a rough error estimate, so that to the L∞

∆t bound for the phase variables
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could be derived. This L∞
∆t estimate yields the upper and lower bounds of the two variables, and these bounds ensure

a uniform distance between the numerical solution and the singular limit values, which has played a crucial role in the
subsequent analysis. Finally, the refined error estimate are carried out to accomplish the desired convergence result. It
is the first work to provide an optimal rate convergence estimate for a ternary phase field system with singular energy
potential.
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