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Abstract

A method is developed here for building differentiable three-dimensional manifolds on multicube
structures. This method constructs a sequence of reference metrics that determine differentiable
structures on the cubic regions that serve as non-overlapping coordinate charts on these mani-
folds. It uses solutions to the two- and three-dimensional biharmonic equations in a sequence
of steps that increase the differentiability of the reference metrics across the interfaces between
cubic regions. This method is algorithmic and has been implemented in a computer code that au-
tomatically generates these reference metrics. Examples of three-manifolds constructed in this
way are presented here, including representatives from five of the eight Thurston geometriza-
tion classes, plus the well-known Hantzsche-Wendt, the Poincaré dodecahedral space, and the
Seifert-Weber space.
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1. Introduction

Differentiable manifolds are the mathematical structures on which the differential equations
of the physical sciences are solved to provide descriptions of the universe as we understand it.
This paper develops methods that allow these equations to be solved numerically in a convenient
way on a much broader class of manifolds.

In the traditional literature, an n-dimensional differentiable manifold is defined as a space that
can be covered by a collection of open sets, plus invertible maps that take each member of this
collection onto some open subset of R”. In practical terms, these open subsets in R” are the coor-
dinate charts used to identify points in the manifold. For points having images in two coordinate
patches, the inferred maps in the overlap regions between the patches must be differentiable. The
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differentiability of these overlap maps defines the differentiable structure of the manifold. This
structure is used to define what it means for global tensor fields on the manifold to be continuous
and differentiable. The existence of differentiable global tensor fields is fundamental to finding
global solutions to the equations of the physical sciences on manifolds. Therefore having, or if
necessary creating, a suitably smooth differentiable structure on a manifold is essential.

The traditional description of a differentiable manifold is difficult to implement numerically
in a computer code for several reasons: Such an implementation must keep track of the exact
size and shape of each coordinate patch in R”, plus the exact sizes and shapes of the overlap
regions containing points represented in two patches, plus the maps between the coordinates in
the overlap regions. These structures can of course be designed and implemented in a code for
any particular manifold. However, each case is unique and each case requires a lot of work to
design and implement properly. It requires a great deal of effort even to transform a numerical
code designed for use on one manifold into one that can be used on another. In addition, there
does not exist in the literature (so far as we know) a catalog containing the needed information
(i.e. the needed collections of coordinate regions, plus all the needed information about their
overlaps, plus the maps between the overlap regions) that would allow these traditional methods
to be implemented in a code in a straightforward way for a broad collection of three-dimensional
manifolds.

An alternative description of a differentiable manifold was introduced in Ref. [1] that is sim-
pler in ways that make it more suitable for use in a computer code. In this multicube approach the
coordinate charts in R" are standardized, requiring each patch to be a cube of uniform coordinate
size and orientation. These coordinate patches are chosen not to overlap in R”, except for points
on the boundaries of the cubes. The global coordinates in R” can therefore be used to identify
points globally in these manifolds. Since the coordinate patches have uniform sizes and shapes
in this approach, the maps that identify points on the boundaries between neighboring patches
are particularly simple, consisting of a rigid translation that maps the center of a face into the
center of its neighbor’s face, followed by a simple rotation (and/or reflection) that aligns the two
faces in the appropriate way. In three dimensions, the case of primary interest in this paper, the
number of possible rotations/reflections is quite small (just 48), so all the possible maps are easily
included in a computer code. It was shown in Ref. [1] that this multicube structure is sufficiently
general to represent any two- or three-dimensional manifold in this way.

The simplicity of the structures of the coordinate charts and their overlap regions makes
it much easier to implement the multicube description of a manifold in a computer code. In
addition, describing manifolds in this way makes it possible to access and easily make use of
published catalogs that contain thousands of three-dimensional manifolds represented by their
triangulations [2-5]. Some of these catalogs include online access to the explicit triangulations
for these manifolds [6]. Converting a triangulation into a multicube structure is straightforward,
see e.g. Ref. [1]. A computer code that implements this procedure has been developed as part of
this project and is described in some detail in Appendix A.Most of the manifolds included in this
study are based on triangulations given in Ref. [6], and then converted to multicube structures
by this new code. The basic multicube structures constructed in this way do not come with
differentiable structures. So the problem of constructing those differentiable structures—the main
focus of this paper-remains.

Since the coordinate patches in a multicube representation do not overlap, it is not possible
to construct differentiable structures on these manifolds in the traditional way. Instead, Ref. [1]
showed how these structures could be constructed using a reference metric. Given a reference
metric that is continuous across each interface boundary in a multicube structure, a simple analyt-
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ical formula can be used to determine special Jacobians at those boundaries. Those Jacobians can
then be used to define what it means for vector and tensor fields to be continuous across those
boundaries. A reference metric that is both continuous and differentiable (in the appropriate
sense) across the interfaces can also be used to define a covariant derivative that (together with
the Jacobians) can be used to determine what it means for vector and tensor fields to be differen-
tiable across those boundaries. This approach was used to construct differentiable structures on a
few simple three-dimensional manifolds in Ref. [1]. An algorithmic method for constructing the
needed reference metrics numerically for arbitrary two-dimensional manifolds was developed
and tested in Ref. [7]. This paper focuses on the more difficult and complicated problem of
developing analogous algorithmic methods for constructing reference metrics on arbitrary three-
dimensional manifolds.

Most of the equations of the physical sciences require fixing some combination of the values
and normal derivatives of the fields at the boundaries of computational domains. This means
that a differentiable structure must be present on the manifold that is capable of defining what it
means for fields and their derivatives to be continuous across those boundaries. For a manifold
constructed by the multicube method, this means that a global C ! metric is required. The purpose
of this paper is to develop a step-by-step algorithm for constructing global C' metrics on these
manifolds. These steps consist of building a sequence of metrics gup, Zap» Zap» and g4, described
in detail in Secs. 2 and 3.! The first part of this procedure, described in Sec. 2, constructs a global
C° metric, 8a», Whose intrinsic parts (i.e., the components that define the intrinsic metric on a
given face) are continuous across the interface boundaries between the cubic regions, and which
is free from conical singularities at the vertices and along the edges of those regions. The first
step, described in Sec. 2.1, re-organizes the multicube structure into a set of overlapping star-
shape domains that surround each of the vertices in the multicube structure. Singularity-free flat
metrics are constructed on these star-shaped domains in the second step, described in Sec. 2.2.
These flat metrics are combined together using a special partition of unity to produce a global C°
reference metric, 2,5, in the third step, described in Sec. 2.3.

In Sec. 3 the C° metric, 3., is transformed into a C' metric g, in three additional steps.
These steps build two additional intermediate metrics, g, and g4, in Secs. 3.1 and 3.2. In the
first of these, Sec. 3.1, a conformal transformation is applied to g, that produces a new metric,
Zab, that makes all the edges of each cubic region into geodesics. This transformation also makes
one component of the associated extrinsic curvatures f((’l‘zl vanish along the edges. The conformal
factor needed for this step is produced by solving two-dimensional biharmonic equations on each
cube face, with boundary conditions along the edges that enforce the geodesic conditions. The
pseudo-spectral numerical methods used to solve those equations for this study are described in
Appendix B. In Sec. 3.2 gauge transformations are performed on the metric g, at the interfaces
of the cubic regions. The resulting metric g, has the property that its intrinsic components on
each cube face are identical to those of g, but the gauge components of the metric on those
faces are deformed in a way that makes all the components of the associated extrinsic curvatures
f(i‘;’ vanish on all the edges of each cubic region. In Sec. 3.3 the metric g, is adjusted in the
interiors of each cubic region (keeping the boundary values fixed) by solving three-dimensional
biharmonic equations whose boundary conditions are chosen to make the extrinsic curvatures
f(iZ’ vanish on each cube face. This g, retains the continuity of its intrinsic components across

I'The notation g, is often used to represent the physical metric (as determined by solving Einstein’s equation for
example). To avoid confusion, that notation is not used here in the construction of the C' reference metric g, that is
designed only to define the differential structure of the manifold.
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each interface boundary inherited from g,; and g,;,. The continuity of the intrinsic metric together
with the continuity of the extrinsic curvature are the geometric conditions, often referred to as
the Israel junction conditions [8], needed to ensure that the metric g, is C ! across the interface
boundaries.

Section 4 describes a number of three-dimensional manifolds on which C! differentiable
structures have been constructed for this study using the methods described in Secs. 2 and 3.
Numerical convergence of the Israel junction conditions, the necessary and sufficient conditions
that g,, be C'! across the interface boundaries, is demonstrated for these examples. Appendix
D presents detailed multicube structures for a variety of three-dimensional manifolds, includ-
ing examples from the Thurston geometrization classes [9, 10] E3, 83, 82x 8!, H? xS, and
H3. The manifolds studied here include 29 that were constructed from triangulations given in
Ref. [6] using the code described in Appendix A. In addition a few multicube structures were
constructed by hand for several well known three-manifolds: including the Poincaré dodecahe-
dral space [11], Seifert-Weber space [12], and all six compact orientable three-manifolds that
admit flat metrics [13, 14], including the Hantzsche-Wendt space [15]. Section 5 gives a brief
summary of the basic methods developed in this paper and the ways they have been tested nu-
merically. In addition a number of interesting questions and possible extensions of the current
results are outlined.

2. Constructing C° Three-Dimensional Reference Metrics

The procedure to create a continuous (C°) three-dimensional reference metric, §; j»on a mul-
ticube structure has three basic steps: In the first, described in Sec. 2.1, the multicube structure
is re-organized to create a collection of overlapping star-shaped domains on the manifold. In
the second step, described in Sec. 2.2, flat metrics are constructed in each of these overlapping
domains. In the third step, described in Sec. 2.3, a global C 0 reference metric, 8ap, 1s constructed
using these flat metrics and a special partition of unity. Explicit analytic formulas are given in
Secs. 2.2 and 2.3 for the C° metric, g,5, along with the flat metrics and partition of unity functions
used to construct it.

All these steps can be, and have been, implemented in a computer code that automatically
generates these C? metrics using only the multicube structures as input. In the simplest version
of this procedure (the one described in most detail here, and the one presently implemented in our
code) all the dihedral angles between the cube faces that meet along a particular edge are chosen
to have the same size. While this simplifying assumption cannot be applied to most multicube
structures, it is general enough that compliant structures have been constructed here on a diverse
set of manifolds in Sec. 4 to illustrate these methods.

2.1. Step 1: Assembling Star-Shaped Domains.

In this first step, the multicube structure consisting of a collection of cubic regions, By, is
enhanced by defining a set of domains, called the star-shaped domains, S;, that overlap the
boundaries between the primary cubic regions. One star-shaped domain surrounds each distinct
vertex of the multicube structure. It is constructed from (copies of) all the cubic regions that
intersect at that vertex point. (A particular cubic region 84 may be included more than once in
a star-shaped domain if two or more of its vertices are identified with each other.) Each of the
star-shaped domains, S;, has the topology of an open ball in R®. The index 4 is used to label
the cubes B, in the multicube structure, while the index 7 labels the star-shaped domains S,



or equivalently the distinct vertices in the multicube structure. The structures of the individual
star-shaped domains depend on the global properties of the multicube structure, in particular on
how many cube vertices intersect in the manifold at the center of each S;. Figure 1 illustrates
several examples of star-shaped domains having different numbers of cubic regions intersecting
at their central vertex points.

OEP %

Figure 1: Examples of star-shaped domains, S;, in three dimensions consisting of four, six, eight and twenty cubic
regions, respectively, that intersect at their central vertex points. The cubic regions in each example have been distorted
so they fit together smoothly with the flat metric of the R? in which they are shown. One (red colored) cubic region in
each example has been made semi-transparent to allow the internal structures of these domains to be seen more clearly.

A code designed to use multicube structures can be enhanced to assemble the S; in a fairly
straightforward way: Any multicube structure code must include the cube face identification
maps. Starting at one vertex of one cubic region, the identities of the three cubes whose faces are
identified with the faces of 8,4 adjacent to this vertex are determined from the multicube maps.
This can be done, for example, by following the interface identification maps for points near this
vertex on each of the three faces that meet at that point. Copies of the three cubes identified as
neighbors in this way are added to S;. This identification step is repeated for the adjacent faces of
each of the additional cubes, and then iterated until (copies of) all the cube vertices that intersect
the original vertex point are included in S;. Once a star-shaped domain S; is complete, if some
cube vertices in the full multicube structure remain un-assigned to the center of some star-shaped
domain, then a new star-shaped domain Sy, is constructed around this vertex using the same
procedure. The process terminates when all the cube vertices have been included at the center of
some star-shaped domain. There are a finite number of cube vertices in any multicube structure
(that can be used for practical numerical work), so in practice this process always terminates after
a finite number of steps.

2.2. Step 2: Constructing Semi-Local Flat Metrics.

The second step in the procedure to construct global C° reference metrics builds a flat metric
in each of the star-shaped domains, S;, introduced in Sec. 2.1. Each S; consists of a cluster
of cubes that intersect at its central point. If these cubes are appropriately distorted into paral-
lelograms (by adjusting the dihedral angles between the cube faces), they can be fitted together
(without overlapping and without leaving gaps between them) to form an isometric subset of R?,
and thus inherit a natural flat metric. Figure 1 illustrates several simple examples of star-shaped
domains isometrically embedded in R?.

To understand whether the cubic regions of a multicube structure can always be fitted to-
gether in this way, consider a small two-sphere surrounding the central vertex of S;. This sphere
intersects all the cubic regions that meet at this central point. The intersections of this sphere
with the faces and edges of each cube form triangles on this sphere. Figure 2(a) illustrates the
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spherical triangles that result from these intersections. The intersection of one of these cubes,
By, is displayed as the spherical triangle with solid (red) line edges. The intersections of other
nearby cubes in S; are displayed with dash-dot (green) line edges. Together the intersections
from all the cubic regions in S; form a triangulation of this two-sphere.

Any triangulation on a two-sphere can be realized geometrically in an infinite number of
ways. Given any one realization, an infinite number of others can be created simply by moving
the vertices of the triangles around on the sphere by small amounts (i.e., much smaller than the
sizes of the triangles), and then replacing the edges with geodesics (great circles) between ver-
tices. Each spherical triangle with geodesic edges represents the intersection of a parallelogram
(whose dihedral angles match the angles of the triangle) with the two-sphere. Thus there are an
infinite number of ways to construct distorted parallelograms that fit together in the correct way
to represent S; as an isometric subset of R3.

Figure 2: Left illustration, 2(a), shows the intersection between the corner of a cubic region and a small sphere centered on
the vertex of one of the star-shaped domains. This sphere is depicted as the dashed (blue) curve, the intersections between
this cubic region and the sphere are shown as solid (red) curves. The dash-dot (green) curves represent the intersections
of nearby cubic regions in the star-shaped domain. Right illustration, 2(b), labels the angles that characterize the spherical
triangle formed by the intersection of a cubic region and a small sphere centered at its vertex. The y.g), efc. are the
dihedral angles (in the local flat metric) between the faces of this cubic region. These y,p are also the angles of the
spherical triangle. The 6y, etc. are the angles between the edges of the cubic region. These #,; are also the arc lengths
of the sides of the spherical triangle.

An algorithm designed to compute a flat metric on S; must choose from among the infinite
possibilities in some way. Making and implementing that choice is expected to be a complicated
optimization problem that we plan to analyze fully in a future study. For the purposes of the
present study, however, we have chosen to adopt a simple pragmatic approach: choosing the
dihedral angles to have uniform sizes around each edge. This simple approach limits the class
of multicube structures to which it can be applied. However, it is general enough that we have
been able to construct compliant examples (see Sec. 4) from most of the Thurston geometriza-
tion classes, plus examples of several well known manifolds like the Poincaré dodecahedral
space [11], Seifert-Weber space [12], and all six compact orientable three-manifolds that admit
flat metrics [13, 14], including the Hantzsche-Wendt space [15] (E6).

Before proceeding with the details of constructing flat metrics on the S; in these simple
multicube structures, it will be helpful to establish some basic notation. The notation 9,8, (or
more compactly A{e}) is used to refer to the « face of cubic region B4. The index o can have the
values {—x, +x, —y, +y, —z, +z}. The edge of region B, formed by the intersection of the A{e}
and A{g} faces is referred to as A{ef}, and the vertex formed by the intersections of the A{a},



A{B}, and Ay} faces is referred to as A{apBy). The dihedral angle between the A{a} and A{B}
faces is denoted i4(.5), While the angle between the axes at the edges of the A{a} face is denoted
Ba(a)- The Yraap are also equal to the angles of the spherical triangle created by the intersection
of cube B, with a small sphere (see Fig. 2(b)), and the 4, are also equal to the arc lengths of
the edges of this triangle.

The uniform dihedral angle spacing assumption adopted here requires the dihedral angles of
all the cubic regions that intersect along an edge to be the same. In addition to being reasonably
simple to impose, it has the advantage of imposing a rigid uniformity that prevents any cubic
region from being more distorted than its neighbors. To prevent conical singularities along the
cube edges, the sum of the dihedral angles around each edge must be exactly 27. The uniform
dihedral angle assumption therefore implies that the dihedral angle at the A{af3} edge must be
given by
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Kaap)

Yaep) =
where K4(.g) is the number of cubic regions that intersect along this edge.

The uniform dihedral angle assumption also implies that the triangulations of the two-sphere
at the center of a star-shaped domain, S;, must have a special local reflection symmetry. Fig-
ure 3(a) illustrates two neighboring triangles in one of these triangulations. If the uniform di-
hedral angle assumption has been imposed then y = ¢ = 2rx/K; and ¢, = ¢ = 2n/K,. The
spherical geometry analog of the angle-side-angle congruence theorem from Euclidean geometry
then implies that i3 = 3. With the uniform dihedral angle assumption, this means that K3 = K5,
i.e. the number of edges that meet at vertex 3 in this triangulation must be the same as the number
that meet at vertex, 3, of the neighboring triangle. This symmetry must apply to every edge of
every triangle in the triangulations of the two-spheres at the centers of each star-shaped domain
8;. Therefore, this simple assumption is quite limiting, and is not satisfied by most two-sphere
triangulations and consequently most multicube structures.

Figure 3: Left illustration, 3(a), shows two neighboring triangles in a two-sphere triangulation. The uniform dihedral
angle assumption requires ¢ = 1 and ¥ = 2, and this in turn implies 3 = 3 for every pair of neighboring triangles.
Right illustration, 3(b), shows the relationship between the dihedral angle Yiap) between two faces of a cubic region, and
the angle between the outward directed normals to the cube faces: il - fljgy = cos(m — Yiap)) = —cOS(Wjag).

Any open subset of R? inherits the flat Euclidean metric of R>. Thus any S; constructed
from parallelograms whose dihedral angles satisfy the uniform dihedral angle assumption will
naturally inherit a flat metric. The illustration in Fig. 3(b) shows the relationship between the

dihedral angle .5 and the angle between unit normals to the cube faces, fign) = €l Vx for



@ = %X, it = CVy for @ = xy, and ue) = cjyVz for @ = z. The constants ¢y are
chosen to ensure that the 774, are the outgoing unit normals. The inner products of the outgoing
unit normals are related to the dihedral angles by 7aa) - lagg = COS(T — Yagep)) = — COSPa(ap)-
The inner products of the coordinate gradients also determine the coordinate components of the
inverse metric: e = Vx“ . Vx?. Therefore the flat inverse metric, e? , associated with the

b
. . . Alapy) .
vertex A{afBy}, expressed in terms of the local Cartesian coordinates of region By, is given by

2 _ ab
OSaapy) = Catapy) 9a Obs
2, 92 2
= 6x + ay + BZ - 26“&;6{5} ({0} l//A{ng} 6_,5 ay
—2C(0)Cly) COS Yalay) Ox Oz — 2€(p)Cry) COSYaipy) Oy O, (2)
where the constants c(y = —C{—x} = C{4y} = —C{—y} = C{+z} = —C(—z} = 1 ensure the unit normals

are outgoing. In Eq. (2) @ = +x, 8 = +ty and y = +z. These metrics have the correct dihedral
angles between coordinate faces to allow them to fit together smoothly with the metrics in neigh-
boring regions. Since the derivatives of these metrics vanish throughout each region, they are all
flat.

The final step in constructing a flat metric on the S; domain is to show that the intrinsic parts
of the metrics constructed in Eq. (2) are continuous across the interface boundaries between
the cubic regions in S;. Equation (2) shows that these metrics depend only on the dihedral
angles of the edges of the cubic region. The simple uniform dihedral angle assumption adopted
for this study implies the local reflection symmetry of the triangulations described above. This
symmetry guarantees that the dihedral angles of each cubic region B4 are the same as those of
the neighboring cubic regions. The metrics in two neighboring regions will therefore be related
to one another by the local reflection symmetry across the interface boundary between them. It
follows that the intrinsic parts of the metrics must be continuous across the interface boundary.
In general the gauge components of the metric will not be continuous when expressed in the
Cartesian coordinates of the multicube structure.

2.3. Step 3: Constructing g.p.

The next step in our procedure for constructing a reference metric is to build a partition of
unity that can be used to combine the flat metrics from the various overlapping domains into
a global non-singular metric that is smooth within each cubic region, and whose intrinsic parts
are continuous across the interfaces with each neighboring region. The needed partition of unity
function uaas,)(¥) > 0 has the value 1 at the A{aBy} vertex of domain B,, and falls smoothly
to zero on the faces of B, that do not intersect this vertex. The uA{Qﬁy,()E’) are positive within the
star-shaped domain S; centered on the A{a@By} vertex, and vanish on its outer boundary. They are
used as weight functions to compute averages of the flat inverse metrics e X‘l’aﬁy} defined on the S;
domains in Eq. (2). The inverse of the resulting average, £, is the global C° reference metric.

First introduce a set of non-negative weight functions, was,(¥) = 0, whose support is
centered on the vertex A{aBy}. In the two-dimensional case [7] simple separable functions of
the global Cartesian coordinates were used successfully for these weight functions. The three-
dimensional analogs of those two-dimensional functions are

AXafopy) L AYsapy) P Azajapy)
L L L /)

WA{(X,B’}/]()?) = h ( 3)



where the index A{afy} refers to the vertex of the cubic region B4, and L is the coordinate size
of the regions. The vectors A_SCA{QM, = (AxA{Qﬁy,, AYaapy)» AzA{QM,) are defined by

AXpjapy) = X — Ca — Viagy)» 4)

where X are the global Cartesian coordinates of the multicube structure that are aligned with the
cube faces, and where ¢4 + V43, are the coordinates of the vertex A{afBy}. The values of ¢4,
the locations of the centers of regions B4, are specified as part of the definition of the multicube
structure; and the values of V{QM,, the positions of the vertices relative to the centers are given in
Table 1. They are the same for all the regions.

Table 1: This table gives the coordinates of each of the eight cube vertices 7,5,y With respect to the center of By4.

{aBy} Viagy) | {aBy) Viagy)
(-x-y-2) 1L(-1,-1,-1) {(-x—y+2) IL(-1,-1,+1)
(~x+y-2} IL(-1,+1,-1) (-x+y+2) IL(-1,+1,+1)
(+x -y -2} IL(+1,-1,-1) (+x—y+2} IL(+1,-1,+1)
(+x+vy-2} TL(+1,+1,-1) (+x+y+2} TL(+1,+1,+1)

The functions A(s) used in Eq. (3) are chosen to have the values #(0) = 1 and A(x1) = O.
With the arguments specified in Eq. (3) this corresponds to setting w4qg,) = 1 at the vertex point
A{apBy}, and waes,; = 0 on the boundary faces of 8,4 that do not intersect this vertex. Each of
the functions wa(s,)(¥) is also continuous across the A{a}, A{S}, and A{y} interfaces with the
corresponding functions in the neighboring domains centered on this same vertex. We find that
the functions

h(s) = h(—s) = 1 {1 (- —[1-a- |s|)2k][}, 5)

with integers k > 0 and £ > 0, work quite well in practice. Some of these functions are illustrated
in Fig. 4, with integer values in the range that worked best in our numerical tests.
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Figure 4: Examples of the h(s) = ${1 + (1 — s*)¢ = [1 — (1 — |s)*]%} functions defined in Eq. (5) used to construct the
partitions of unity for the C° reference metrics, and in the construction of the C® and C! reference metrics.



The final task in constructing special partitions of unity for the region B, is to construct the
normalizing functions W4 (%):

Wa(®) = Z Watagy (X), (6)
{aBy}

where Wy (%) is defined in Eq. (3). These W4(%) are strictly positive, so they can be used to
define the partition of unity functions:

_ WA{(X,B’}/]()?)
Unjapy)(X) = WaD (7

This normalization ensures that these functions satisfy the inequalities 0 < u4(q8,)(X) < 1, and
also the usual partition of unity normalization condition

1= tatapn(, ®)

{aBy}

for each ¥ in each B4.

A global reference inverse metric g “*(¥) for ¥ in region 8, can now be constructed by com-
bining the flat metrics eﬂ’aﬁyl defined in Eq. (2) with the partition of unity functions defined in
that region by Eq. (7):

2D =) tatapy (D) el (D). )
{apy}

The sum is over the eight vertices of region B,. This inverse metric is positive definite since it is
a linear combination of positive definite inverse metrics, e/‘(ﬁwﬂ, using the non-negative weight
functions uap(%). A global continuous reference metric, §,(X), is then obtained by inverting
£ (%) at each point ¥. The metric g, has continuous intrinsic parts across all of the multicube
interface boundaries because it is constructed from flat metrics and partition of unity functions

that are each appropriately continuous across those interfaces.

3. Constructing a C! Three-Dimensional Reference Metric

In this section the C° metric, 8ap, constructed in Sec. 2 is transformed into a C ! metric in
three steps. In the first of these steps, in Sec. 3.1, a conformal transformation is applied to §up,
producing a new metric, g4, that makes all the edges of each cubic region into geodesics while
keeping the intrinsic parts of g,, continuous across the interface boundaries. This transformation
also fixes one component of the associated extrinsic curvatures along the edges: f(i‘;’y“yb =0
where y“ is tangent to the edge. (See Sec. 3.2 for details.) In the second step, in Sec. 3.2, the
metric g, is transformed to produce a new metric, 2,5, whose intrinsic components on each
cube face are identical to those of g,5, but whose extrinsic curvatures, I_(L‘Z], vanish identically on
each edge of each cubic region. In the third step, in Sec. 3.3, the metric g, is adjusted in the
interiors of each cubic region (keeping its boundary values fixed) in such a way that the resulting
metric g, has extrinsic curvatures f(j;} that vanish identically on each cube face. The g,, metric
constructed by these three steps preserves the continuity of the intrinsic components of the metric
8ap across each interface boundary. This intrinsic metric continuity together with the continuity
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of the extrinsic curvatures across the interface boundaries (which vanish identically on those
boundaries in this case) are the geometric Israel junction conditions [8] needed to ensure that the
metric g, is C I across those interfaces.

The methods used in this section are quite general. In particular, they do not depend on
the uniform dihedral angle assumption used in Sec. 2 to construct §,,. The only specialized
assumption used here, specifically in Sec. 3.2, requires that the dihedral angles are constants
along each cube edge. This additional assumption is satisfied automatically by the g,, metrics
constructed in Sec. 2 using the uniform dihedral angle assumption, but it will not be satisfied in
the most general case. All that is required to avoid conical singularities is the sum of the dihedral
angles (from each of the cubes that intersect at an edge) equal 2 at each point along the edge. So
the dihedral angle in any one cube may (and perhaps will) in the general case vary along an edge,
so long as the global sum constraint is satisfied. In this general case, the construction of the C!
metrics described here, particularly the parts described in Sec. 3.2, will have to be generalized as
well.

3.1. Step 1: Converting 8ap into gap.

This section constructs a conformal factor, e?, that is used to transform the reference metric
&a» constructed in Sec. 2.3:

gab = e¢§ab- (10)

The geodesic equation for the curve x“(s) in the g, metric is given by

dx_ dot dxe

dx“
A —/— 11
ds? be qs ds () ds’ an

where s is an arbitrary parameterization of this curve, where I;ZC are the Christoffel symbols of
the second kind for this metric, and where A(s) is a parameter dependent function. The idea is
to choose a conformal factor ¢¢ in Eq. (10) having two properties: a) it makes each edge of each
cubic region into a geodesic of the metric g5, and b) it is continuous across each cube interface.

Consider the cubic region, 84, whose Cartesian coordinates are labeled x* = {x?, X, x7}, and
consider the A{af} edge of this region where the A{e} and A{B} faces intersect. This edge is a
curve with tangent vector dx*/ds = {0, 0, 1}, where the parameter s has been chosen to be s = x7.
An equivalent form of this equation, more convenient for these purposes, is given by

d2xt _ dxPdxe dx?
8av—— +T —— = A(S$) 8ab——

abc ) 12
ds? b ds ds ds a2

where the I are the Christoffel symbols of the first kind. The three components of this equation
can be reduced to

6)/4?(1)/ - %aagyy = A(s) gaya (13)
0y8py — %aﬁgw = A(5) 8y (14
108y = A&y (15)

As an interesting aside, note that Eq. (13) depends only on the intrinsic metric on face A{S},
and together with Eq. (15) forms the intrinsic geodesic equation on this face. Similarly Eq. (14)
depends only on the intrinsic metric on face A{a}, and together with Eq. (15) forms the intrinsic
geodesic equation on this face. Thus the curve formed by the intersection of two surfaces is a
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geodesic of the full three-dimensional space if and only if it is a geodesic of the intrinsic geometry
of each surface separately.

The idea now is to choose a conformal factor ¢ that transforms g, using Eq. (10), so the
resulting g, satisfies Egs. (13)—(15) on the edges of each cubic region. The intrinsic parts of the
resulting g,, will be continuous across the interfaces between regions if and only if the conformal
factor ¢ is continuous across those interfaces. First set ¢ = 0 along the edges of the cubic region
to ensure that g, is continuous there. In this case Eqgs. (13)—(15) can be re-written in terms of
8a» and ¢ for points along the A{a} edge:

aygay - %60«@7}/ - %g776(l¢ = A(s) gay» (16)
Oy8py — %aﬁg’w - %gwéﬁfp = A(5) 8pys (17
%ayg’w = A(5) &yy- (18)

The terms involving d,¢ all vanish in these equations because ¢ = 0 along this edge. These
equations place constraints on d,¢ and dg¢. In particular, Eq. (18), determines A(s) in terms of
8y, while Egs. (16) and (17), can be re-written as boundary conditions for d,¢ along the A{a}
edge:

20)8ay = Badyy _ Bay Oy8yy

6& ¢ Aq/ = N s (19)
{AapB} 2y (gyy)z
2 ayg[)’y B aﬁg Yy g[)’y &yg Y
Op Pracpy = p - (20)
8yy (gw)

Note that these expressions imply that the conformal factor ¢ will not vanish everywhere on the
cube faces unless 0 = ﬁ,w on the edges, in which case those edges would already be geodesics of
the g, metric. Also note that the metric g,, constructed in Sec. 2 rapidly approaches a constant
flat metric at each vertex of the cubic region. It follows that the connection fﬂbc and the gradient
0,¢ all vanish at these vertex points.

The next step is to extend the conformal factor ¢ across the faces of the cubic region B4
in a way that a) satisfies the boundary conditions given in Egs. (19) and (20) along each edge,
and b) ensures that it is continuous across the interface with the neighboring cubic region. The
conformal factor ¢4,y on the A{a} face satisfies the boundary conditions ¢.5 = 0 and Eq. (20)
along the A{aB} edge. Analogous conditions must also be imposed on each edge of this face.
Together, these conditions constitute Dirichlet and Neumann boundary conditions for ¢4, on
the A{a} face. One convenient way to find ¢ 4o that satisfy these boundary conditions is to solve
the bi-harmonic equation for ¢4, on this face:

(04 +203 02 +05) pares = 0. 1)

Solutions to the bi-harmonic equation are uniquely determined by specifying both Dirichlet and
Neumann conditions on the boundary of a compact domain [16]. This approach can then be used
to determine the surface values of ¢ on each face of each region in the multicube structure. The
pseudo-spectral numerical methods used to solve this equation for this study are described briefly
in Appendix B.

The boundary conditions that determine the solution to Eq. (21) only depend on the intrinsic
components of the metric, gg3, &3, and &,,, on the A{a} face. These intrinsic metric components
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were constructed to be continuous across this interface boundary in Sec. 2. It follows that bound-
ary conditions used to determine ¢4,y Will be the same on both sides of the interface boundary.
Since the solution to Eq. (21) with Dirichlet and Neumann boundary conditions is unique [16], it
follows that the ¢4(,) determined in this way will be the same on both sides of the interface.

The method describe above can be used to determine the surface values ¢4, on each face of
each cubic region. These solutions provide Dirichlet boundary conditions for the full conformal
factor ¢4 within each region. The normal derivatives of ¢4, are unconstrained, however, be-
yond the requirement that those derivatives agree along the edges with the tangential derivatives
from the neighboring faces. The conformal factor ¢ within the cubic region can therefore be
determined in any number of ways. For example, it could be determined by solving the three-
dimensional Laplace equation with the Dirichlet boundary conditions ¢4ja}.

A computationally more efficient approach has been adopted for this study. Begin by defining
a set of coordinates s4 that measure the relative distance between a point inside region 84 and
the 8_,8, face of that region. The s are normalized so that 54 = 0 on the d,8B,4 face, while
54 = 1 on the opposite d_,8B,4 face. In particular

z-c¢y 1
L 2

x—cy 1 o |- 1
R I

X __
Sy =

where X = (x, y, z) are the global Cartesian coordinates of the multicube structure, ¢4 = (cj, cz, )
are the coordinates of the center, and L is the coordinate size of region B,.

The conformal factor ¢4 on the A{a} face, constructed by solving Eq. (21), can now be
extrapolated into the interior using the A(s) functions defined in Eq. (5). Consider the extrapo-
lation ¢ = h(s%) dajey. The ¢aye) vanish identically along the edges because of the boundary
conditions used to solve Eq. (21). Therefore the ¢4o) extrapolated in this way do not modify the
dap on the adjacent faces. It does not modify ¢4(—« on the opposite face, either, because h(s%)
vanishes there. The complete conformal factor ¢4 in the interior of region B4 can therefore be
determined by combining the extrapolations from all the cube faces:

da= D 0% = D h(sh) barar (23)

The resulting ¢4 automatically satisfies the Dirichlet conditions ¢4, on each of the faces.

The conditions in Egs. (19) and (20) ensure that the edges of each cubic region are geodesics
of the metric g,, = e?%,,. The continuity across the interface boundaries of ¢4 ensures that the
global solution for ¢ is continuous across those boundaries. And this in turn ensures that the
intrinsic components of the g,, metric are continuous across all the interface boundaries as well.

3.2. Step 2: Converting gup into .

Let g.5, denote the global C° metric constructed in Sec. 3.1. The goal of this second step is to
convert g, into a metric g, having two important properties: first, the extrinsic curvatures I_(i‘g)
associated with g,, must vanish identically on each edge of each cubic region; and second, the
intrinsic parts of g,, must be identical to those of g,,. We note that while g,;, was constructed
to have intrinsic parts that are only C° across the interface boundaries, within each region g is
actually smooth.

Consider the interface boundary A{«} of cubic region B,. In the global Cartesian coordinates
of our multicube structure, the boundary A{a} is a level surface of the coordinate x*. The unit
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normal co-vector field to the foliation of constant x surfaces, i, is given by

Al = Ni9lg,xe, (24)

where NI@ = ¢l (§"")71/2. The constant € = +1 determines the sign of N' and is chosen

to ensure that ﬁff} is the outward directed unit normal on the A{a} face. The extrinsic curvature

I:(L‘Z’ of this surface is given by

Kl = plaeplaid g jlo (25)
= Pepd (o ) - Al T, (26)
= %ﬁi{lICﬁLald AN (8, Bea — O Bed — O Bec) s (27)

where V. is the g, metric-compatible covariant derivative, and Eﬁ,") “ is the projection tensor
Pl™e = 5¢ !l Note that the term proportional to (95172‘” = 3.N99,x% in Eq. (26) vanishes
identically because P;}“’dadx" =0.

We define the difference between the g, and the g,, metrics, 62,5, and the associated differ-
ences between extrinsic curvatures, 6[?5’:

08ap = §ab — 8ab> (28)
glad gl iolal
6Ka(; - Ka(lj - Ka(l): : 29

Note that these differences are not necessarily infinitesimal. To ensure that the intrinsic parts of
8ap are identical to those of g,5, we choose 55, to be a smooth tensor in the interior of each
cubic region that satisfies,

Pleplisg =0 (30)

on each cube face A{a}. Note that the projection tensor P9 is identical to P''¢ on A{a} because
Plaeg x@ = P¢g. x@ = 0. Therefore the metric continuity condition on 68, is equivalent to
v d e
Py Py 68 = 0, 31
={a}

which is easier to enforce since the metric g, and consequently the normal vector 71, ', is already
known. The condition that the extrinsic curvature K({JZ} vanish along each edge of the A{a} face

can be expressed as the following condition on 61_(({;},

olat iolalt
(5Kab = -K

ab’ (32)

on each edge of each cube face A{a}.

To determine exactly what restrictions are placed on 6g,, by the intrinsic metric and ex-
trinsic curvature continuity conditions, Egs. (31)-(32), we examine those conditions expressed
in the Cartesian coordinates {x?, x®, X’} of region B,. The A{a} face of this region is defined
by an x?=constant surface, while the ¥* and x” coordinates label points on that face. In these
coordinates the intrinsic metric continuity condition, Eq. (31), implies that all the »* and x” com-
ponents of the metric perturbation vanish everywhere on that face: dggs = 08, = 08,, = 0.
Similarly on the adjacent A{g} face, all the x* and x” components of the metric perturbation van-
ish 084e = 080y = 08, = 0. It follows that all the components of 6g., except 68,4 must vanish
along the A{af3} edge: 08aa = 080y = 0838 = 088y = 08yy = 0.
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The C° metric g, was constructed so that the dihedral angle between the A{a} and A{f} faces,
COS Yiaap = —8%/ /8PP, is constant along the edge between these faces. This was done to
ensure there is no conical singularity along this edge. To ensure that the g,, metric has no conical
singularity there, we keep this dihedral angle fixed in this metric along this edge as well. This
can be done by imposing the additional constraint 6g.,s = 0 along this edge. This makes all the
components g, = 0, and consequently §g%> = 0 which keeps the dihedral angles fixed. Thus
the intrinsic metric continuity conditions, along with the conditions to ensure there are no conical
singularities along the edges, require that all the components of the metric perturbation vanish
along each edge: 6g. = 0. ~

Exact expressions for the ¥* and x” components of the extrinsic curvature f(gg} on the A{a}
face are obtained from Eqs. (27) and (28):

Kl = 30 (00 8o — 205 8ap) + 37 (9 0Zs — 205 08ap) - (33)
K = 33 (04 8py — Op Bay — Oy Bup) + 357 (00 03y — O 08uy — 0 02ap) . (34)
K = 3 (00 8y — 20, 8ay) + 57 (90 08,y — 20, 08ay) (35)

On the A{apB} edge, where the A{a} and A{B} faces intersect, 68, = 0, so 2'¥* = !¢, Conse-
quently Egs. (33)—(35) can be re-written in the simpler form:

oKy = Ryl - Kyl = 51 (0 g — 205 020p) (36)
51?;?} = K;Q} - KI{;} = %ﬁ{ala (au 5gﬁy - 6[; 5guy - By 6ga,8) S (37)
SRI = Rl - KW = 1Al (04 68,y — 20, 03y - (38)

Since 684, = 0 along the A{af} edge, it follows that ,68., = O there. Since 68z = 08p, =
08y, = 0 everywhere on the A{a} face, it follows that 908ss = 03085, = 038,, = 0 along
the A{af3} edge as well. Finally, 6g,, on the adjacent 9gB, face represents a perturbation of the
intrinsic metric, so 8,08y, = 0 along the A{a} edge as well. The components of !¢ in these
coordinates are given by !¢ = Nl@}{ge@ 508 547} g0 the expressions for 6[?:;’ from Eqgs. (36)—
(38) can be simplified further:

oKly = 5N g™ (3, 68 — 20 08ap). (39)

51_([’;;] = % Nt gww ((911 5ggy - 6[; 5gmy) s (40)
glal

6[(77 =0 1)

The analogous expressions for 6[?!5', the extrinsic curvature of the adjacent A{S} face, along this
edge can be obtained by interchanging the roles of x* and x* in Egs. (39)—(41):

SKi = 3N 8% (0 08aa — 2 0 02ap) (42)
SKY) = L NW g% (0 63ay — 00 0Zpy) - (43)
sKY = 0. (44)

These expressions for 51_([';;] and 61_(({,‘;’ define the required boundary conditions on the derivatives

0,084 along the A{af} edge, where the A{a} and A{B} faces intersect. Since 5121’1(;] must satisfy
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Eq. (32), we see that these boundary conditions imply that the gauge components of the metric
(i.e. the non-intrinsic components) 6gua, 08qp, and 0g,, cannot simply be set to zero on the A{a}
face.

The expressions for 61_(%} and 61_(;[;], Egs. (41) and (44), along the A{ef} edge, imply that
no discontinuity in I_(%) or I_(ﬁ) along this edge can be removed by any 6g,, allowed by our
constraints. To understand what that means, let y* be the components of the vector 8, = y“d,.
This vector is orthogonal to the surface normals: 0 = 7%y = %'y It follows that I_(%) =
YYVaA = Y, (ﬁi}"’yb) - @y V= —il®y*V,yP. Since the metric g, constructed in
Sec. 3.1 has the property that each edge is a geodesic, y*V,y” = A(x?)y” (for some function
A(x”) along this edge), it follows that f(%’ = 0 and similarly I_C{fy} = 0 along the A{af} edge.
This component of the extrinsic curvature continuity condition Eq. (32) is therefore satisfied
automatically along this edge, so 51_(,';;] = 51_(;[;] = 0 are the appropriate corrections there.

The right sides of Eqgs. (40) and (43) are both proportional to dg 58y — 0« 08y, SO the extrinsic
curvature perturbations on the left sides must also be related: N 61_(({,‘;’ = -NY 6K f{i’, obtained
by simplifying using N = €(g2@)=1/2 and N¥¥' = €¥(g#P)=1/2. This condition is inconsistent
with Eq. (32) unless

N RE) = N KL, 45)

The simple proof of this identity is given in Appendix C. This identity shows that the edge
constraints given in Egs. (40) and (43) for 6[([';;] and 61(05[;’ are self-consistent.

Equation (32) together with Egs. (39)—(44) place the following constraints on the derivatives
of certain components of 53, along the A{aB} edge,

020845 — 20p080p = —2NKs, (46)
= = vie) plal N B}

0008py — 0p08ay = -2N! }K/i’y = ZNW}K}Y@’ 47

050%0a — 200680p = —2NPERE) (48)

The metric perturbation components 684, 0803, and 084, do not affect the intrinsic metric on
the A{a} face, while the 6gss, 083, and 68, components do not affect the intrinsic metric on the
A{B} face. These components therefore play the role of gauge degrees of freedom on these faces,
which can be chosen arbitrarily subject to the constraints in Eqs. (46)—(48). While not unique,
one self-consistent way to satisfy these constraints along the A{a/5} edge is given by

0368aa = —2NPEKY (49)
8308ep = O, (50)
0308y = -NPRE). 51
DadZps = —2N'IK), (52)
aaégﬁa = 0, (53)
adpy = -NEK). (54)

We note that the equations for 6ggs, 08, and 68, in Egs. (52)—(54) can be obtained from those
for 68 ua, 08ap, and 68,y in Eqs. (49)—(51) simply by exchanging the « and § indices.

The intrinsic components of the metric perturbations 6g,, must vanish on the A{a} face, 0 =
08p8 = 08py = 08y,. It follows from Eqs. (49)—(51) that the full set of boundary conditions on
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08q» along the A{af} edge of the A{a} face are given by

0ga»r = 0, (55)
6ﬁ6gaa = _2NW)[?;BQ}» (56)
03680y = -NPRY, (57)
0p08ap = 0poZps = O0p08py = 0p08yy = 0. (58)

When the analogs of the conditions in Egs. (55)—(58) are enforced along all four edges of the
A{a} face, they constitute both Dirichlet and Neumann conditions for the metric perturbations,
6gfg}, on this face. One convenient way to find 6gi;’ that satisfy these boundary conditions is to
solve the bi-harmonic equation on this face:

(64 +20507 +05)o3'y = o. (59)

Solutions to the bi-harmonic equation are uniquely determined by specifying both Dirichlet and
Neumann boundary conditions on the boundary of a compact domain. For the intrinsic compo-

nents on this face, the solutions with these boundary conditions are trivial: 0 = 6g}$ = 6g;”y} =

vy ay» We use pseudo-spectral meth-
ods to solve this equation numerically, as described in Appendix B. We repeat this procedure to
determine 03, satisfying all the edge boundary conditions on all the faces of each cubic region.
The solutions to Eq. (59) determine Dirichlet boundary conditions for g, on all the faces of
cubic region B4. The normal derivatives of dg,, on the A{a} face are not prescribed, except the
requirement that they be compatible with the tangential derivatives on the adjoining A{g} faces.
The complete interior solutions for 6g,;, that are compatible with these boundary conditions can
be determined in a variety of ways. For example the three-dimensional Laplace equation could
be solved for each component of g, with the Dirichlet boundary conditions 5gfg} prescribed by
the solutions to Eq. (59).
This study has adopted the computationally more efficient approach described in Sec. 3.1.
This approach extrapolates the values of 6gfi} from the A{a} face into the interior using expres-

L‘Z’, where the smooth function A(s) is defined in Eq. (5), and
54 is defined in Eq. (22). The values of each component of 6g(‘1”;’ vanish on each edge of B4
because of the boundary conditions, Eq. (55), imposed on the solutions to Eq. (59). It follows
that the extrapolations 6ga, = h(s%) 5gfg} from the A{a} face will vanish on all the other faces of
the multicube structure. These face extrapolations can therefore be combined to give a complete

interior solution for §g; in region By,

8Zab = ) h(s5) 2L, (60)

639 For the non-trivial gauge components, 632/, 6gf;2, and 63/

sions of the form 6g., = h(s%) 08

that automatically satisfies all the required Dirichlet boundary conditions. Adding the resulting
metric perturbation to g, results in a new metric g4:

§ub = Zab + 08ab- 61)

The boundary conditions imposed on 68, in this construction ensure that g, satisfies the two
important properties outlined at the beginning of this subsection. In particular, the intrinsic
components of g, are identical to those of g,, on each cube face, and the boundary conditions
imposed on 6g,, ensure that the extrinsic curvatures, I_(i‘;}, vanish identically along each edge of
each cube.
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3.3. Step 3: Convert gqp, into gup.

Let 2,5 denote the global C° metric constructed in Sec. 3.2. The goal of this third step is to
convert g, into a metric ., having two important properties: first, the extrinsic curvatures f((‘g’
associated with g,, must vanish identically on each face of each cubic region; and second, the
metric g,, must be identical to g, on each face of each cubic region. We note that while g, was
constructed to have intrinsic parts that are only C? across the interface boundaries, within each
region g, is actually smooth.

We define the unit normal vectors ﬁff}, the projection tensors Pff}b, and the extrinsic curva-
tures I?i‘;’ associated with the metric g, using expressions analogous to those given in Eqgs. (24)—
(27). Similarly, we define the differences between the g, and g, metrics, 68,5, and the associ-
ated differences between extrinsic curvatures, 61_(iz):

6§ab = gab_éalh (62)
oKy = Ky - Ky (63)

We note that these differences are not assumed to be small. To ensure that g, is identical to g,
on the cube faces, we choose 62, to be a smooth tensor in the interior of each cubic region that
satisfies

68ab =0 (64)

on each cube face A{a}. The condition that the extrinsic curvature f((’l‘;' vanishes on the A{a} face
is equivalent to the following condition on 61_(6{;},

glat e
§K'Y = -K9. (65)

In analogy with Eq. (27), an exact expression for K/ @} i5 given by

[’{V(I;Zl - % fltt)cplald {a}e (@, God — 3, ot — 84 gec) (66)
= % il ’CP’a]d lale(a gcd_acged_adgec)
+3 PP (3, 6Fca — O 0Fea = Oa OFec) - (67)

The metric perturbatlon 034 vanishes on each cube face, Eq. (64), therefore iil?¢ = 7!®¢ and
PL”}b = PL”} on those faces as well. Consequently, Eq. (67) can be re-written as an exact
expression for 5K k' on those faces:

SK'

ab %F:) ’CP S ltZIE(a 6g6d—a 6g€d_ad6gec) (68)
1

= (N’a]) Pita) CPb daa 6§cd' (69)
The second equality, Eq. (69), follows from the fact that 6g,, vanishes on the A{a} face. This

- _ = -l
implies that 3[%‘58441; = 8,63a = 0, P77 “” =0so0 P9 =0, and ¥ = (N“”)

Let N denote the boundary condmons on 6(,6g‘”’ on the A{a} face. Only the intrinsic
components of g, contribute to the right side of Eq. (69). Therefore Egs. (65) and (69) provide
the needed boundary conditions for the intrinsic metric components:

=lal _ {a} _  _~ e} plad
04085 = Ny = 2Nk, (70)
9 5g’“' = Ny = 2NYIRY, (71)
- Nl = _oplelglal
0,08\ = N2 = —2NWIEK. (72)
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The normal derivatives specified in Egs. (70)—(72) vanish along the edges of the A{a} face, be-
cause f((‘g’ was constructed to vanish along those edges. These edge conditions are needed to
ensure that the normal derivatives 8a6§fg} are consistent along the A{a3} edge with the tangential
derivatives 6(,652[2’ from the adjoining A{S} face.

The normal derivative boundary conditions on the intrinsic components gf 6§fg} in Egs. (70)—
(72) are sufficient to guarantee that the entire extrinsic curvature vanishes, K,, = 0, on the A{a}
face. The boundary conditions on the gauge components are not fixed in this way, however.
These gauge boundary conditions can be chosen arbitrarily so long as they vanish along each

cube edge. One choice is simply to set 0 = N2 = N({)z} = Néi} everywhere on the A{a} face.

Somewhat better numerical convergence can be achieved, however, by choosing Ni‘;’ to make

the second derivatives 6(,6[;6551‘2} consistent along the {a} edge with their values on the adjacent

A{p} face. These conditions on N(iz} along the {aB} edge require

NG = BN = —20,(NVKE), (73)
Ny = 0, (74)
N = 0N = -20,(NPKY)). (75)

Analogous conditions on each edge of the A{a} face provide Neumann boundary conditions for
the gauge components of Nig’ along the edges of this face. Together with the Dirichlet conditions

NL{;} = 0 along these edges, they provide the boundary conditions needed to determine N({,Z}, NLZ,},

and No‘f;’ everywhere on this face by solving the two-dimensional bi-harmonic equations

(0 +2050; + o) Nl = 0, (76)
(05 +20; 07 +a5) Nl = 0, (77)
(0 +2050; + o )N = 0. (78)

The pseudo-spectral numerical methods used in this study to solve this equation are described
in Appendix B.

Equation (64) provides Dirichlet boundary conditions for §g,;, and the Nig’ from Eq. (70)—
(72) together with the solutions to Eqgs. (76)—(78) provide Neumann boundary conditions on
each face of each cubic region. The perturbations 6g,, can therefore be determined throughout
the region by solving the three-dimensional biharmonic equation,

(0 +0) +02 +2070] +20707 +208}07) 0% = 0, (79)

with these boundary conditions. The pseudo-spectral numerical methods used here to solve
Eq. (79) for 68, are discussed in Appendix B. Adding the resulting 6g., to g, results in the
new metric g,p:

gab = §ab + 6§ab- (80)

The boundary conditions imposed on §g,;, ensure that g, satisfies the two important properties
outlined at the beginning of this subsection; namely, the components of g,, are identical to
those of g,, on each cube face, and the extrinsic curvatures, K({JZ}, vanish identically on each
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cube face. It follows that the intrinsic components of 2,, and the extrinsic curvatures f(iZ’ are
continuous across the interface boundaries between all the cubic regions. Therefore g, satisfies
the Israel [8] junction conditions across all the boundaries of the multicube structure, and is
therefore C! globally.

4. Numerical Examples

Multicube structures for a collection of manifolds have been developed here to test the nu-
merical reference metric construction methods described in Secs. 2 and 3. All the multicube
structures used in these examples satisfy the local reflection symmetry property described in
Sec. 2. This condition is needed to permit the construction of flat metrics in the neighborhood
of each vertex having uniform dihedral angles around each edge of the cubic regions. These
example manifolds are listed in Table 2, including their Thurston geometrization classes (see
Ref [17]). They include representatives from five of the eight Thurston geometrization classes,
missing only the SL,, Nil, and Sol classes.

Some of the multicube structures used in these examples were constructed by hand, while
most were constructed from triangulations obtained from Ref. [6] using the method developed
in Ref. [1]. The multicube structures constructed from triangulations were done automatically
by the code described in Appendix A. Those constructed by hand include the Three-Torus (E1),
S3 and SxS1, as described in Ref. [1]. Manifolds of the form G, x S, where G, is the compact
orientable two-manifold with genus number 7, can be constructed easily by hand from the two-
dimensional multicube structures developed for arbitrary G, in Ref. [7]. This study includes
G;,xS1 as an example. Multicube structures have also been constructed by hand for several
manifolds that can be defined by identifying the faces of three-dimensional polygonal solids. The
numerical examples presented here include the Poincaré dodecahedral space [11], Seifert-Weber
space [12], and all six compact orientable three-manifolds that admit flat metrics (sometimes
called E1-E6) [13, 14], and the Hantzsche-Wendt space [15] (also called E6). Appendix D
gives the complete descriptions of the previously unpublished multicube structures constructed
by hand for this study, along with a representative selection of those constructed automatically
from triangulations by the code described in Appendix A.

Reference metrics g, have been constructed numerically for each of the manifolds listed in
Table 2. The methods developed in Secs. 2 and 3 are designed to make the intrinsic parts of
&a» continuous across the interface boundaries between the cubic regions, and also to make the
associated extrinsic curvatures, f(j;}, vanish on each interface boundary. These conditions satisfy
the Israel junction conditions [8] that ensure g, is C ! across those interfaces.

The methods introduced in Secs. 2 and 3 have been implemented numerically for this study
in the SpEC pseudo-spectral code (developed originally by the Caltech/Cornell numerical rela-
tivity collaboration [18-20]). Figures 5 and 6 show L, norms of the surface discontinuities of
the intrinsic parts of g,, and the extrinsic curvatures f((‘g’ as functions of the spatial resolution
parameter N (the number of spectral collocation points used in each dimension) for most of the
manifolds listed in Table 2. These L, norms were computed by averaging the squares of all the
intrinsic components of each tensor over all the grid points on all interface surfaces, and finally
taking the square root of this average. These results show that the numerical methods developed
and implemented here produce C' reference metrics having small errors that converge toward
satisfying the Israel junction conditions as the spatial resolution is increased. The results for the
manifolds not included in these graphs are similar to those shown in Fig. 6 (except for the flat
manifolds E1-E4 and E6 whose K, errors are at or below the 1072 level for all N).
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The results of these numerical tests have been divided into two groups. Those represented
in Fig. 5 have significantly smaller errors than those shown in Fig. 6. The reason for these dif-
ferences appears to be the amount of distortion caused by the dihedral angles needed to allow
the cubic regions to fit together without introducing conical edge singularities. Higher resolu-
tions are needed to represent models having larger distortions at a particular accuracy level. All
the manifolds in the larger error group, Fig. 6, have some edges with small dihedral angles,
min(y¥) < 2m/6, while those in the smaller error group, Fig. 5, have larger minimum dihedral
angles min(y) > 2r/5 (except for G,xS1 and Sixth-Turn Space, ES, which have min(y) = 27/6).

The surface errors in g, and K, for the examples shown in Fig. 5 decrease (approximately)
exponentially with increasing N for N < 28. Double precision roundoff error is probably limiting

Table 2: Manifolds used in numerical tests of the C! metric construction methods developed in Secs. 2 and 3. First
part of the table lists this multicube structures constructed by hand, while the second part lists those constructed from
triangulations by the code described in Appendix A. Names used for the manifolds constructed from triangulations are
those used in Ref. [6]. The L(p,q) manifolds are lens spaces, i.e., quotients of the three-sphere S* with a discrete group
characterized by parameters (p,q). The manifolds S2x S1, T X S 1, KB/n2x~S 1, and SFS[B : (p1,q1)(P2,92)(P3.43)],
are Seifert fibered spaces. S 1 represents a circle. The X operator is the Cartesian product, e.g. S2 X S 1, while X~ is the
twisted product used to undo the non-orientability of the base manifold, e.g. in KB/n2x~S 1. The base spaces B include
the two-sphere S2, the real projective plane RP2/n2, the Klein bottle KB/n2, and the two-torus 7. The parameters, e.g.
(p1,q1), describe “singular” fibers whose neighborhoods have been replaced by fibers twisted by an amount determined

by (p1.q1).

Three Dimensional Multicube Structures Constructed by Hand

Manifold Geometry Class | Manifold Geometry Class
Three-Torus (E1) E? Half-Turn Space (E2) E?
Quarter-Turn Space (E3) E? Third-Turn Space (E4) E?

Sixth-Turn Space (ES) E? Hantzsche-Wendt Space (E6) E?
Three-Sphere (S3) s3 S2xS1 §2x 8!
G2xS1 H>x S! Seifert-Weber Space H?

Poincaré Dodecahedral Space s3

Three Dimensional Multicube Structures Constructed From Triangulations

Manifold | Geometry Class || Manifold Geometry Class || Manifold Geometry Class
L(5,2) s3 L(40,19) s3 SFS[S2 : (2, 1)2, 1)(7,-6)] s3
L(8,3) s3 L(44,21) s3 SFS[S2:(2,1)2,1)8,-7)] s3
L(10,3) s3 TxS1 E? SFS[S2 : (2, 1)2, 1)(9,-8)] 53
L(12,5) s3 KB/n2x~S1 E? SFS[S2: (2, 1)(2,1)(10,-9)] s3
L(16,7) s3 SFS[RP2/n2 : 2, 1)2,-1)] | E? SFS[S2: (2, D2, 1)(11,-10)] | §3
L(20,9) s3 SFS[S2: (2, D2, D2, -] | §3 SFS[S2: (2, D3, 1)(5,-4)] s3
L4, 11) | 83 SFS[S2:(2, D2, 1D3,-2)] | §° SFS[S2:(2,1)(3,2)3,-1)] s3
L(28,13) | §3 SFS[S2: (2, D2, D)@4,-3)] | §° SFS[S2: (2, 1)(4, 1)4,-3)] s3
L(32,15) | §3 SFS[S2: (2, D2, D)5, -4 | 83 SFS[S2: (3, D3, 1)3,-2)] s3
L(36,17) | §3 SFS[S2:(2, D2, 1)6,-5] | §3
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Figure 5: Graphs representing L, norms, for different values of the spatial resolution N, of the intrinsic metric discon-
tinuities of g,5 across the multicube interface boundaries in the left Fig. 5(a), and L, norms of the associated extrinsic

curvatures IN(é‘”

errors are at the 10715 level.
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Figure 6: Graphs representing L, norms, for different values of the spatial resolution N, of the intrinsic metric discon-
tinuities of g,5 across the multicube interface boundaries in the left Fig. 6(a), and L, norms of the associated extrinsic

curvatures f(iz) of those boundaries in the right Fig. 6(b).

convergence in these cases for N > 28. Some of the examples in Fig. 6 also show exponential
convergence for N < 28. However most of the examples in Fig. 6 show slower power law



convergence in N. For example the errors in one of the slowest converging cases, KB/n2 X~
S', are well fit by the power laws N~'%/? for g, and N~%/3 for K'). There is some indication
that the examples in Fig. 6 with exponential convergence transition to power law convergence
for larger values of N. This transition is probably caused by errors due to discontinuities in
the mixed partial derivatives of §g,, at some of the edges. These discontinuities are caused by
disagreements between the tangential derivatives of the Neumann boundary data on the faces that
intersect along those edges. At some resolution these higher-order discontinuity errors become
dominant and power law convergence takes over. The examples in Fig. 6 with the largest errors
are also those with the most distorted multicube structures, some with dihedral angles as small
as min(y) = 2x/8. This supports the idea that the larger distortions cause the larger errors at a
given resolution N.

5. Discussion

New methods have been presented in Secs. 2 and 3 for building three-dimensional differen-
tiable manifolds numerically. These methods involve the construction of C' reference metrics
that are used to construct special Jacobians to define the continuity of tensors, and a covari-
ant derivative to define the differentiability of those tensors, across the interface boundaries
between coordinate charts. These methods have been applied in Sec. 4 to a selection of forty
three-dimensional manifolds, including examples from five of the eight Thurston geometrization
classes. Test results on these examples show that the methods developed in Secs. 2 and 3, and our
implementation of those methods in the SpEC pseudo-spectral code, are numerically convergent.

The methods developed here are general enough to be applied to a larger variety of dif-
ferentiable three-manifolds than has been studied previously using existing numerical methods.
However, the methods presented here make very restrictive assumptions about the multicube
structures to which they can be applied. Perhaps the most obvious limitation is the assumption in
Sec. 2 that the multicube structure exhibit a particular local reflection symmetry. A diverse col-
lection of manifolds that satisfy this restriction has been constructed, however, this assumption
is not satisfied by most multicube structures. We do not think that this assumption is essential.
It was made here because it was easy to implement numerically in our code. We think it will be
possible to relax this assumption. We plan to investigate ways to do that in a future study.

Another obvious limitation of the results presented in Sec. 4 is the relatively slow numerical
convergence of the reference metrics constructed on manifolds having highly distorted multicube
structures. One significant part of this problem is probably caused by the discontinuities in the
derivatives of the Neumann boundary data used to determine the C ! reference metrics in Sec. 3.3
(at cube edges where some intrinsic metric component is present on both faces, e.g. the g,, com-
ponent along the A{ef} edge). We think this particular problem can be ameliorated by enforcing
somewhat different boundary conditions on the gauge components of the metric in Sec. 3.2. We
plan to investigate this and other approaches to improving the numerical convergence of these
methods in a future study.

Most of the differential equations used in the physical sciences, e.g. systems of symmetric
hyperbolic evolution equations, or systems of second-order elliptic equations, require specifying
some combination of the values of fields and their derivatives at the boundaries of computational
domains. The C! reference metrics developed in this paper are sufficient to provide the needed
transformations of these data at the interface boundaries between coordinate patches. We showed
in Ref. [7] that the differentiable structures produced by different C' reference metrics are equiv-
alent. The needed continuity of the boundary data at the interfaces between computational do-
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mains can therefore be done correctly and exactly using the C' reference metrics constructed
here. There is no fundamental need to refine these reference metrics by increasing their global
differentiability.

For various reasons it may be desirable, however, to transform these metrics further to pro-
duce metrics that are smoother at the interface boundaries, or perhaps that have more uniform
spatial structures which can be resolved numerically at lower resolutions. In Ref. [7] we used
numerical Ricci flow to evolve the C! reference metrics developed there for two-dimensional
manifolds. Ricci flow is a system of parabolic evolution equations that transform C! initial data
into C* solutions at later times [21-25]. The initial metrics for Ricci flow are required to have
bounded curvatures [26, 27] to ensure that even very short evolutions become real analytic. The
Israel junction conditions [8] guarantee that while our C! reference metrics may have curvature
discontinuities across the interfaces, they will not be unbounded there. Ricci flow in two dimen-
sions also evolves all initial data into constant curvature geometries. We plan to use numerical
Ricci flow to evolve the three-dimensional C ! reference metrics produced here in a future study.
In three dimensions, Ricci flow may form singularities before the manifold attains constant cur-
vature, even for manifolds like the Three-Sphere (S3) having very simple topologies [28]. While
there is no guarantee that the Ricci flow of our C' metrics will necessarily produce more uni-
form geometries, it will be interesting to see what happens. If singularities occur then it will be
interesting to explore the nature of those singularities. If these evolutions proceed to uniform cur-
vature solutions, then it will be interesting to determine and to verify that the resulting geometries
satisfy the appropriate properties associated with their Thurston geometrization classes.

Finally, we plan to use the reference metrics developed here in a future study to solve Ein-
stein’s equations numerically on a diverse collection of manifolds. Solving Einstein’s equations
involves finding solutions to an elliptic system to obtain acceptable initial data, and then to evolve
those data using a system of hyperbolic equations that determine the structure of the resulting
spacetime. The appropriate representation of Einstein’s equations to use in spacetimes with
non-trivial topologies was developed in Ref. [29]. We plan to use those methods to explore
solutions representing cosmological models evolved from initial data on a diverse collection of
compact three-manifolds. It might also be interesting to explore solutions to Einstein’s equations
on manifolds with non-trivial topologies and asymptotically flat initial data. These geometries
are expected to evolve into black-hole spacetimes [30—32]. with any non-trivial topological struc-
tures hidden behind event horizons. By studying these evolutions, it will be interesting to explore
whether observers outside the black holes could identify the presence of these topological struc-
tures in some indirect way.
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Appendix A. Converting Three-Manifold Triangulations to Multicube Structures

This appendix describes the method used by our code to convert a three-dimensional trian-
gulation into a multicube structure. A three-dimensional triangulation consists of a set of tetra-
hedra and the identification maps that identify each tetrahedron face with the appropriate face
of its neighbor. These face identifications are determined by specifying which vertices of one
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tetrahedron are identified with which vertices of its neighbor. Large numbers of triangulations
specified in this way are published in the Regina catalog [6]. Our code is designed to read the
triangulation structures exported into files by the Regina software.

Given a three-dimensional triangulation, it is straightforward to convert it to a multicube
structure following the method described in Ref. [1]. The idea is to cut each tetrahedron into
four cubes by adding vertices and edges as illustrated in Fig. A.1, and described in some detail in
the caption. Our code creates a list of cubic regions from the list of tetrahedrons, then it assigns
unique locations in R? to each cube. These locations are chosen so the four cubes associated
with each tetrahedron are grouped together, and these tetrahedron based groups are arranged in a
2D lattice for convenience of 3D visualization. Figure A.2 illustrates the locations of the cubes
assigned by our code for the multicube structure constructed for the SES[RP2/n2:(2,1)(2,-1)]
manifold from the triangulation given in the Regina catalog.

D D
cd
‘ C ‘ C
ad
be
A
ab

A
B B B

Figure A.1: In Fig. A.1(a) label the vertexes of the tetrahedron “A”, “B”, “C” and “D”, and add vertexes at the midpoints
of each edge. In Fig. A.1(b) add additional vertexes at the centroid of each face of the tetrahedron, labeled “a” for the
centroid of face “BCD”, “b” for face “ACD”, etc. Then add additional edges (shown as dashed line segments) connecting
each centroid to the midpoint of each adjoining edge. In Fig. A.1(c) add one additional vertex, labeled “O” at the centroid
of the tetrahedron. Add additional edges (shown as dash-dot line segments) that connect “O” to the centroids of each
face, and add six additional faces that include “O” as a vertex. In Fig. A.1(d) the “distorted” cubes that make up the
tetrahedron are illustrated. The two cubes adjacent to vertexes “A” and “C” are shown with opaque shaded faces, while
the faces of the cubes adjacent to “B”” and “D” are transparent.

Finally our code constructs the appropriate maps in R3 between cube faces using Eq. (D.1),
following the prescription given in Ref. [29]. In addition to the locations of each cube, these maps
depend on knowing the appropriate rotation/reflection matrix, C/g,", that aligns the faces A{a} and
B{B} in the appropriate way. Each cube has six faces, three of which correspond to internal
connections between the four cubes that make up a tetrahedron. The rotation/reflection matrices
needed for these internal face transformations are the same for every tetrahedron group of cubes.
So they are easily included in the code. The three additional faces of each cube are parts of the
faces of the tetrahedra. The appropriate rotation/reflection matrices for those faces depend on
the face mappings of the triangulations. There are, however, a reasonably small number of ways
the faces of any two tetrahedra can be identified. Our code includes the appropriate matrices
for all the possible cube face matchings (which we determined by systematically reproducing
each possibility with a collection of paper models). Once a triangulation with its face mappings
is read into our code, it automatically determines the appropriate cube mappings from its table
of all possibilities. Our code can then output the complete multicube structure in any desired
format. For example Tables D.6, D.8, D.9 and D.10 in Appendix D are output from our code in
ETEXformat. Our code also generates the appropriately formatted input files used by the SpEC
code to compute the reference metrics g, described in Sec. 4.

Our code can be used to construct a multicube structure from any three-dimensional triangu-
lation. However, the methods for constructing reference metrics presented in Sec. 2 only work
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Figure A.2: Locations of the cubic regions in R3 assigned by our code for the manifold SFS[RP2/n2:(2,1)(2,-1)] based
on the triangulation given in the Regina [6] catalog. Each tetrahedron is divided into four cubes, which are placed in
groups with some of the identified internal faces overlapping.

for special multicube structures that allow uniform dihedral angles around each edge. The code
therefore tests several identities to determine when this is possible.

Once the multicube structure has been constructed by the code, it determines the dihedral
angles a(qp around each edge using the uniform dihedral angle assumption given in Eq. (1) of
Sec. 2.2. The most important identity that must be satisfied by these /4,5 involves the associated
angles 64y between the axes that define the edges of the A{a} face. These angles must agree
with the angles 6p,) between the axes of the B{a} face identified with it in the multicube structure.
Without this condition the intrinsic metric of region 84 would not be continuous across that face
with the intrinsic metric of region Bg. The edge angle 844, is related to the dihedral angles 40
using the spherical law of cosines,

COS Yagy) + COSYaiap) COS Yalay)
Sin Yafop) SINYajay) .

COsS QA{Q} = (A 1)

Our code evaluates the 4oy for each vertex of each cube face and determines whether it agrees
with the corresponding angles 6p,, at those vertices. Multicube structures that do not satisfy this
condition could not be used in the present study.
Our code also checks two other less restrictive identities. One ensures that the determinant
of the flat inverse metric ef"{’aﬁyl defined in Eq. (2) is positive in each cubic region:
det ef;’faﬁy, = 14+2c0sYa(ep) COSYaiay) COS Yapy) — COS wi[aﬁl —Cos %2\{”] —Cos wiw >0. (A2)

A second identity ensures that the areas of the spherical triangles created by the intersection of
each cubic region with small spheres located at their vertices (see Fig. 2(b)) are positive. This
requires

Yaap) + Yajay) + Yapy > 7. (A3)

We have run this code on all the triangulations consisting of up to eleven tetrahedra listed in
the catalogs of all closed prime orientable three-manifolds in Refs. [2—-6]. We find that of these
only the 29 manifolds listed in Table 2 satisfy all these constraints.
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Appendix B. Solving the Biharmonic Equation Using Pseudo-Spectral Methods

The biharmonic equations in two and three dimensions are given by

0 = (9f+2070;+0)) U (B.1)
0 = (9 +0)+0}+2070}+20707 +20}02) U. (B.2)

The solutions to these equations on compact domains are determined uniquely by the values of
U and its normal derivative dU/dn (the Dirichlet and Neumann conditions respectively) on the
boundaries of the domain [16].

In this study these equations are solved using pseudo-spectral numerical methods. A function
U is specified in this approach by its values on a special mesh. The mesh points used here are
located at the Gauss-Lobatto collocation points [33]. This choice makes it possible to transform
easily and exactly back and forth between the mesh representation and a Chebyshev polynomial
based spectral representation of U. The value of U at a particular mesh point is written here as
Uijy in two dimensions or Uy;jy in three. Partial derivatives of a function, which are exact for
this spectral representation, can be written as special linear combinations of its values on these
mesh points,

0:Uyijy DY U, (B.3)
OUupy = DV Uy, B4

where the repeated indices s or ¢ are summed over all the mesh points in the particular direc-
tion. The discrete pseudo-spectral representation of the two-dimensional biharmonic equation
can therefore be written as

0 = D(x)isz)(x)stz)(x)tuz)(x)uv Ulvj) +2 D(x)isz)(x)Slz)(y)juz)()r)uv U(zv]
+DV DO 1DV DY Y Uy, (B.5)

An analogous expression is used for the discrete representation of the biharmonic equation in
three dimensions.

Boundary conditions are imposed by replacing the discrete biharmonic equations along the
outer layer of mesh points with discrete versions of the Neumann boundary conditions at those
points. Dirichlet boundary conditions are also needed along the boundaries, and those are im-
posed by replacing the discrete biharmonic equation on the mesh points at the next layer of
points adjacent to the boundary with the Dirichlet condition evaluated at the nearest boundary
points. Figure B.1(a) illustrates where these boundary conditions are imposed for the case of a
two-dimensional mesh. The three-dimensional case is analogous, but more difficult to illustrate
in two-dimensional figures.

The functions Uy, in two dimensions (or Uy; i) in three) can be thought of as vectors U4 on
a space where the super-index A ranges over all the mesh points, i.e. A = {ij} in two dimensions
(or A = {ijk} in three). The discrete biharmonic equation can be thought of as a linear matrix
equation on this space:

2,04"Us = ha. (B.6)
B8

where O 42 is defined in two dimensions by the expression in Eq. (B.5) at the interior mesh points.
The discrete versions of the Dirichlet and Neumann conditions are imposed on the components
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Figure B.1: Figure on the left represents one corner of a two-dimensional mesh used to solve the biharmonic equation.
Discrete representations of the boundary conditions for points along the boundaries replace the biharmonic equation at the
points marked with (red) diamonds for Dirichlet and (blue) circles for Neumann conditions, respectively. The average
of the Dirichlet conditions from both nearby boundary points are imposed at the point marked with a (green) square.
Discrete representations of the biharmonic equation are imposed at the remaining interior mesh points marked with
(black) stars. Figure on the right illustrates the average (rms) boundary errors in the Dirichlet and Neumann boundary
conditions for examples of the numerical 2D and 3D biharmonic solutions used in this study.

of this equation representing the surface layers of the mesh. The vector &4 holds the boundary
data for those conditions, in addition (if any) to the inhomogeneous source for the equation at the
interior points. The expression used here for O#® in three dimensions is completely analogous.

Our primary interest is finding smooth functions U that satisfy the boundary conditions as
accurately as possible. The components of the matrices D™/, etc., which provide discrete rep-
resentations of the derivative operators, have average magnitudes that scale like N, where N is
the number of mesh points used in each direction. Therefore the components of the matrix O 4%
representing the biharmonic operator on interior mesh points will scale like N*, and for large N
will therefore dominate the boundary condition terms. These interior components have therefore
been scaled in this study by N~* to emphasize the relative importance of the boundary conditions.
A similar scaling would also be applied to any source terms in &4, however, no additional scaling
is needed for the homogeneous equations considered here.

The linear equations given in Eq. (B.6) can be solved numerically using a variety of iterative
techniques, e.g. using solvers such as GMRES [34] or BI-CGSTAB [35]. Numerical experiments
using pseudo-spectral methods described above for this problem showed that faster and more
accurate results could be obtained using more direct non-iterative methods, because the meshes
used here are relatively small (in comparison with those used by standard finite difference or
finite element methods). The matrix O 4% has size N? x N? for the two-dimensional problem and
N3 x N? for three, where N is the number of mesh points used in each dimension. The largest
meshes used in this study have N = 35, so the largest matrix has size 1,225 x 1,225 for the
two-dimensional meshes, and 42, 875 x 42, 875 for three. For matrices of this size, it is possible
to construct the LU decomposition of O#? directly using modest computing resources. Very
fast direct algorithms then exist for solving such linear systems exactly, see e.g. Ref. [36]. The
construction of the LU decomposition requires a lot of memory and computer time. The highest
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resolution that could be run on the computing facility available to us is N = 35 due to memory
limitations. Constructing the LU decomposition at this resolution required about 152 hours on
a single processor. But once computed for each needed resolution N, these LU decompositions
can be stored on disk and quickly read in whenever they are needed. A very accurate solution of
the linear equations in LU form can then be obtained very quickly and efficiently. Pre-computing
the LU decompositions in this way reduces the N = 35 problem of solving one 3D biharmonic
equation (plus six 2D biharmonic equations to set the boundary conditions) from about 152 hours
to about 75 seconds.

The condition number k of a matrix operator O#® is a measure of how accurately linear
equations like Eq. (B.6) can be solved numerically [37]. Fractional errors in the solutions Ug
can be as large as k multiplied by the fractional errors in the matrix O#® and the source /4. We
have estimated « for the two and three-dimensional representations of the biharmonic matrices
used in our study. These approximations were obtained using the simple approximate expression:

koo = |10l 10 Moo = -
w0 = [0l 107 [l ming (U]

B.7)
where U 4% is the upper diagonal part of the LU decomposition: 3c P4 0c? = Yo LaCUZ,
where P4 is a permutation matrix. These estimates of k., using Eq. B.7 are illustrated in Fig. B.2.
As the figures shows, these estimates for the condition number scale with spatial resolution N as
a power law: ~N*2, While condition numbers as large as the 103 seen in this figure might seem
large, they mean that fractional erors in the matrix O#” and the source /4 at the double precision
roundoff level, 10716, could produce fractional errors only as large as 10~!! in the solution Usg.
We also note that condition numbers of this size have not significantly influenced the boundary
condition errors (our primary interest in these solutions), as illustrated in Figs. B.1(b), 5 and 6.
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Figure B.2: Figure illustrates the spatial resolution, N, dependence of the condition number k., (using the estimate given
in Eq. B.7) for the pseudo-spectral matrix representations of the two- and three-dimensional biharmonic operators used
in this study.

In addition to being very quick and efficient, the direct LU solver method used here provides
solutions having better accuracy for our purposes than those obtained with the iterative solvers
that were tested. Solutions to the two- and three-dimensional biharmonic equation are used here
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at various stages in the construction of a reference metric. The important requirement is the need
to have those solutions satisfy the Dirichlet and Neumann boundary conditions as accurately
as possible. The interior details are not of primary importance, so long as they are smooth.
Figure B.1(b) illustrates the convergence with resolution N of the errors in the Dirichlet and
Neumann boundary conditions satisfied by numerical examples of two- and three-dimensional
biharmonic solutions obtained with this direct LU solver method. The two-dimensional results
are at the double-precision roundoff levels for all values of N tested, while the three-dimensional
results show the exponential convergence that is expected for pseudo-spectral methods. The
average interior bulk residual errors are also roughly at double-precision roundoff levels. The
boundary condition accuracies achieved using this direct LU solver method were much better
than anything obtained with the iterative solvers tested here.

Appendix C. Proof of the Identity N/ I_(({fy’ = -N I_(l{:;’

The following simple argument shows that this condition is satisfied along the A{a3} edge by
the C° metric g, constructed in Sec. 3.1. Start with the identity

,ya ﬁla]bl_((ﬁl — ,ya ﬁ{(l)b ﬁaﬁ{f} — ,ya ﬁ ( {a}b {/3 ) ,ya nlﬁ]bv 11 _,ya ﬁilf)bf(il;” (C.1)

where the y“ are the components of the vector d, = y“d, that is tangent to both the A{e} and A{S}
faces. The last equality follows from the fact that 8, (2'®? ﬁ‘bﬁ’) =
constant along the A{af3} edge. The additional simple identities !¢ y* I_(L‘Z' = alftayb f(ﬁ’ =0
and I_(%) = I_(,'f;] = 0 can be used to transform the tensor identity in Eq. (C.1) into the coordinate
identity given in Eq. (45). First obtain the coordinate representations of the simple identities:

0 because the dihedral angle is

0 = —la]a ,yb N{(t) ( (mKlal + gaﬁK‘M) (C2)
0 = alleyb KW’ N# (FoRY) + 3¥KY)). (€3)

lata

Coordinate representations of ' “y?K'*) and 7l®V4y* K% can be written as

ﬁ{[)’luybl—(lt;l _ (g[)’d [ g[)’ﬁ](“”) (C4)
—|a|a,be|ﬁb] — N{Q (gQQKw) gQB[(LB)) (CS)

These expressions can be simplified by using Eq. (C.2) to express I_((';;' in terms of I_([';;], and

similarly Eq. (C.3) to express I_(g;] in terms of I_(fy). Making these substitutions in Egs. (C.4) and
(C.5) gives

ﬁ{B)a,ybI‘({a) - NB (Nla])z [g(mg,[fﬁ _ (gaﬁ)Z] I-<[|;;1, (C.6)
A RE = (W) [g - )| R €7

It follows that the identity Al ayb RO = _iblayb R19) from Eq. (C.1) implies the identity N KY)
~N Kg;’ given in Eq. (45).
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Appendix D. Example Three-Dimensional Multicube Manifolds

This appendix gives detailed descriptions of the multicube structures of several manifolds
used in this study. New structures are presented here for all the examples constructed by hand
(except the trivial flat examples, E2 and E3): the Poincaré dodecahedral space [11], Seifert-
Weber space [12], G2xS1, and the three non-trivial compact orientable three-manifolds that
admit flat metrics [13, 14], E4, ES and E6 (Hantzsche-Wendt space [15]). In addition, a se-
lection of the multicube structures constructed automatically from triangulations using the code
described in Appendix A are presented here: KB/n2x~S1, L(5,2), SES[RP2/n2:(2,1)(2,-1)], and
SES[S2:(2,1)(2,1)(2,-1)].

The notation used to describe these multicube structures is based on that introduced in
Ref. [1]. Each multicube structure consists of a set of non-overlapping cubes, B,, that cover
the manifold, and a set of maps ‘I’/;g that identify the faces of neighboring cubes. The interface
boundary maps used here (written in terms of the global Cartesian coordinates used for the mul-
ticube structure) take points, xjg, on the interface boundary B{S} (or equivalently 9zBp) of region
Bj to the corresponding points, x',, in the boundary A{a} (or equivalently 6,8,) of region 8,4 in
the following way,

Xy =+ fi+ Chging — el — f). (D.1)

The vectors ¢4 + ﬁ and ¢z + f; are the locations of the centers of the A{a} and B{B} faces respec-
tively, and Cg‘ﬁ” is the combined rotation/reflection matrix needed to orient the faces properly.

The following tables include lists of the cubic regions, 8B4, used to cover the manifold in each
structure, the vectors ¢4 that define the locations of the centers of these regions in R3, and the
rotation/reflection matrices C/;” needed to transform each cube face into the face of its neighbor.>
The identification of the B{8} face with the A{a} face is indicated in the tables by {@A} < {8B}.
The notation I in these tables indicates the identity matrix, while R,, indicates the +7/2 rotation
about the outward directed normal to the {a} cube face.

Table D.1: Multi-Cube representation of Third-Turn space [13, 14] (E4, one of the six compact orientable three-manifolds
that admits a global flat metric), can be constructed by identifying opposite rectangular faces of a hexagonal cylinder,
and identifying the two hexagonal faces after twisting by 27/3. Multicube structure: region center locations ¢4, region
face identifications, {& A} <> {8 B}, and the rotation matrices for the associated interface maps, Cﬁﬁ .

@ =-x @ =+x a=-y a=+y @ =-z7 @ =+z
A A BpC® | BpC® | BpcC® | BpC® | BpC¥® | BpC®
1 (0,0,0) 2+x 1 2-x1 3+y 1 3-y1 2+2z Ry 3-z R_;
2 | (1L00) | 1+4x1I 1-xI | 3-xRy | 3+xRy [ 3+4zR% | 1-z R,
3| ©0L0) | 2-yR, | 2+y R, | 1+yI I-yI | 1+z R, | 2-z R,

The vectors ﬁ, are the relative positions of the center of the A{a} cube face with the center of region B4. These
vectors are the same for all the cubic regions, and are given explicitly in Ref. [1] so they are not repeated here.
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Table D.2: Multi-Cube representation of Sixth-Turn space [13, 14] (ES, one of the six compact orientable three-manifolds
that admits a global flat metric), can be constructed by identifying opposite rectangular faces of a hexagonal cylinder,
and identifying the two hexagonal faces after twisting by 27/6. Multicube structure: region center locations ¢4, region

face identifications, {@ A} <> {8 B}, and the rotation matrices for the associated interface maps, Cﬁﬁ .

@ =-x @ =+x a=-y a=+y a=-z a=+z
A A BpC¥ | Bpc¥® | BpcC® | BpcC¥ | BpC¥ | BpCY¥
1| 01,0 | 5-xR, | 6+y R, 24y 1 3+x Ry, | 2+z Ry, | 6-2z R,
2 | 0,0,0) | 4-x R, 3-xI | 6-y R, 1-y1 3+zR,. | 1-z R,
3 | (1,0,0) 2+x 1 l+y R, | 5-yR2, | 4+x R, | 4+z R} | 2-zR_,
4 | 31,0 | 2-xR% | 3+y R, 5+y1 6+x Ry, | 5+z Ry, | 3-z R%,
51 (3,00 | 1-x R, 6-x1 | 3-yR% 4-y1 6+zR,. | 4-z R_.
6 | (4,0,0) S5+xI1 | 4+yR, | 2-yR%, | 1+xRy, | 1+z2R% | 5-z R,

Table D.3: Multi-Cube representation of Hantzsche-Wendt space [13—15] (E6, one of the six compact orientable three-
manifolds that admits a global flat metric), can be constructed by identifying faces on two cubic regions (see Ref. [14]
example 8.1.7 for details) . Multicube structure: region center locations ¢4, region face identifications, {¢ A} — {8 B},
and the rotation matrices for the associated interface maps, Cf’z .

a=—-x @ = +x a=-y a=+y a=-z a=+z
A & BpC¥ | Bpc¥ | BpC¥ | BpC¥ | BpC¥ | BpC¥
0 | (0,0,0) | 1+xR2 | 1-x R} | 1-y R} | l+y R%, 1+z1 1-z1
1|01 | 0+xR:, | 0-xR? | 0-y R} | O+y RZ, 0+z 1 0-z1

Table D.4: Multicube representation of the product space G2xS1 constructed from the genus number N, = 2 two-
dimensional compact orientable manifold. Multicube Structure: region center locations ¢4, region face identifications,

{a A} < {8 B}, and the rotation matrices for the associated interface maps, Cﬁﬁ .

@ =-x @ =+x ==y a=+y a=-z =4z
A & BEC¥ | BpC® | BpC¥ | BpC® | BpC¥ | BpC®
1 (L,2L,0) 8+x 1 10-x1 2+y1 4-y1 I+z1 1-z1
2 (L, L,0) T+x1 4+4xRE | 3+y1 1-y 1 2+z1 2-z1
3 (L,0,0) 6+x1 9-x1 4+y1 2-y1 3+z1 3-z1
4 (L,~L,0) 5+x1 2+x R, 1+y1 3-y1 4+71 4-z1
5 (0,-L,0) | 7-x R%, 4-x1 8+y 1 6-y1 5+z1 5-z1
6 (0,0,0) 9+x 1 3-x1 S5+y1 T7-y1 6+z1 6-z1
7 (0, L,0) 5-x R, 2-x1 6+y 1 8-y I T+z1 7-z1
8 (0,2L,0) 10+x I 1-x1 T+y1 5-y1 8+z 1 8-z 1
9 (=L, 0,0) 3+x1 6-x1 9+y 1 9-y1 9+z1 9-z1
10 (-L,2L,0) l+x1 8§—x1 10+y I 10-y 1 10+z 1 10-z1I
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Table D.5: Multicube representation of the Poincaré dodecahedral space (also called the Poincaré homology three-
sphere) [11]. This multicube structure is based on cutting a dodecahedron into twenty cubes (each vertex of the dodeca-
hedron is the vertex of one of the cubes, opposite vertices of these cubes all intersect at the center of the dodecahedron)
and identifying opposite faces of the dodecahedron after rotation by 7r/5. Multicube Structure: region center locations
¢4, region face identifications, {¢ A} & {8 B}, and the rotation matrices for the associated interface maps, Cﬁﬁ .

@ =-x @ =+x a=-y @ =+y a=-z @ =+z
A & Bp C¥ Bp C¥ BB CY¥ BB CY¥ Bp C¥ Bp C¥
1 (2L, 3L,0) 12+y RyR,; 15-y Ry, 8-y R,R, 4+x R,R,; 10-y R,R,, 2-z1
2 (2L,3L, L) 6+x 1 16—y R, 18+y 1 13-z R_.R,, 1+z1 7-z Ry,
3 (4L,0,3L) T+x1 12+z R Ry, 19+y I 9-x R_, 18+z R, 4-z1
4 (4L,0,4L) 17 - x R, R, 1+y R.R, 13+x R,R_; 10-x R, 34z 1 15-x R_,Ry,
5 (0,3L,0) 8+y RyRy, 12+x R, R3, 16 +y Ry, 19+ x Ry, 14—y Ry, 6-z1
6 (0,3L, L) 17—z RR,, 2-x1 10+y 1 20+ x R,; 5+z1 11-z R,
7 | @L,3L3L) 13-x R, 3-x1 M+yI 16+z R, 2+z R, 8-z 1
8 | (2L,3L,4L) 14-x R, 17+y R,R_; 1-y R%,R,, 5-x R.R,, T+z1 19-y R,R,
9 0,L,0) 3+y Ry 20-x R, 12-x R,R,. | 16+x R,R,, 18+x Ry, 10-z1
10 (0,L, L) 4+y Ry, 14+y R_, 1-z R,Ry, 6-y 1 9+2z1 15-z1
11 (0,3L,3L) 20+z R, 15+y R, 17-y R%, T-y1 6+z R, 12-z1
12 | (0,3L,4L) 9-y R_.R,, 5+x RZR 18-y R%, 1-x R_R,, 1+z1 3+x R,R,
13 (2L, 0,0) 7-x R2, 4-y RR_, 16-x R,R,; | 20+y R,R%, 2+y R,R,, 14-z1
14 (2L,0,L) 8-x R, 18-x I 5-z R, 10+ x Ry, 1B3+z1 19-z Ry,
15 (0,L,3L) 4+z RyRy, 19-x1 1+x R, 11+x Ry, 10+z1 16-z1
16 (0,L,4L) 13-y R.R,, | 9+y R_R,, 2+x R, 5-y R, 15+z1 T+y Ry,
17 (4L,0,0) 4-x RZR_, 20-y R,R,, 11-y R%, 8+x R R, 6—x R,R,, 18—z 1
18 (4L,0,L) 14+x I 9-z R, 12-y R?, 2-y1 17+z 1 3-z Ry,
19 | (2L,0,3L) 15+x 1 5+y R, 8+z R.,Ry, 3-y1 14+z R, 20-z 1
20 | (2L,0,4L) 9+x Ryy 6+y R, 17+x R,R,, | 13+y RZR,, 19+21 11-x Ryy

Table D.6: Multicube representation of the Regina triangulation of the lens space L(5,2). Multicube Structure: region
center locations ¢4, region face identifications, {¢ A} < {8 B}, and the rotation matrices for the associated interface maps,

B8
C
@ =-x @ =+x a=-y a=+y a=-z @ =+z
A & BB CY¥ BB CY¥ BB CY¥ Bp C¥ BpCY¥ BB CY¥
00 | ©,00) | 03+zR,R, | 01-xI | 02-zR.Ry, 02-y 1 0.1-y R.Ry, 03-z1
0.1 | (L,0,0) 0.0+x 1 02-xRy | 00-z R, Ry, | 02+xR., | 03-yRLR, | 03+xR,
02 | OL0O | 0l1+xR, | 0l+yR, 00+y I 03-x RLR,; | 00—y RRy | 03+y Ryy
03 | 0.0L) | 02+y RRR, | 0.1+z Ry, | 0.1-z R4,R,, | 02+z R, 00+z1 0.0-x R,R.,
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Table D.7: Multicube representation of Seifert-Weber space [12]. This multicube structure is based on cutting a dodec-
ahedron into twenty cubes (each vertex of the dodecahedron is the vertex of one of the cubes, opposite vertices of these
cubes all intersect at the center of the dodecahedron) and identifying opposite faces of the dodecahedron after rotation
by 37/5. Multicube Structure: region center locations ¢4, region face identifications, {¢ A} < {8 B}, and the rotation
matrices for the associated interface maps, Cfﬁ .

o =—X = +Xx a =-y a=+y o =-Z = +z
A 2 BB CY¥ B C¥ BpCY¥ BB CY¥ Bp C¥ Bp C¥
1 (2L, 3L,0) 12+y RyR,; 19-y R,R,; 8-y R,RZ 13-z R2R,, 9-y R, R, 2-z1
2 (2L,3L, L) 6+x 1 15-y R,R,, 18+y 1 20+ x R, R, 1+z 1 3-z1
3 | (L,3L,2L) T+x 1 5+y RyR_, 19+y1 10-x R,R_, 24z 1 4-z1
4 | @L3L3L) | 17-xR,R%, | 124z R’ R, | B+x R R, | 6-x R,R, 3+z1 16 - x R2,R,
5 (0,3L,0) 17-z R2 R,y | 12+x R,R3, 16 +y Ry, 3+x R R, 13-y R,R,, 6-z1
6 (0,3L, L) 4+y R Ry, 2-x1 10+y I 19+ x R, R, 5+z1 7-z1
7 (0,3L,2L) 14— x R,,R?, 3-x1 M+yI 9-x R,R_, 6+z 1 8-z 1
8 (0,3L,3L) 10-y RyR_, | 17+y Ry,R, 1-y R%,R,, 16 +z R..;R_, T+z1 20-y RLR_,
9 (0,L,0) 7+y R Ry, 20-x R, 1-z R,R?%, 16+x R,R,, | 17+x R Ry, 10-z 1
10 (0,L, L) 3+y Ry Ry, 14+y R_, 8-x R Ry, 6-y I 9+z 1 1-z1
11 (0,L,2L) 13-x R_,R%, 15+y R_, 18-y R,R%, T-y 1 10+z1 12-z1
12 (0,L,3L) 20+z Ry.R_, 5+x RZR, 14-y R,R%, 1-x RR,, M+zI 4+x R,R%,
13 (2L, 0,0) 11 -x RZR,, 4-y R R, 5-z R,Ry, 20+y R,R2, 1+y R, R%, 14-z1
14 (2L,0,L) 7-x RAR 18—x 1 12—y R%2R,, 10+x R,; 13+z1 15-z 1
15 | (2L,0,2L) 17-y R,R_, 19-x1 2+x RRy, 11+x Ry, 4+z1 16-z1
16 | (2L,0,3L) 4+z R,R%, 9+y R_R,, 18+x R, R, 5-y R, 15+z1 8+y Ri.R
17 (4L,0,0) 4-x RER_, 9-zR,R, | 15-xR.R,, | 8+x R.R, 5-x R,R%, 18-z 1
18 (4L,0,L) 14+x1 16-y R R, | 11-y RE R, 2-y1 17+z1 19-z1
19 | (4L,0,2L) 15+x1 6+y R_R_, 1+x RRy, 3-y1 18+z 1 20—z 1
20 | (4L,0,3L) 9+x Ry, 2+y R_R, 8+x R, R% 13+y R2R,, 19+z1 12-x RyR_,

Table D.8: Multicube representation of the Regina triangulation of the Seifert fiber space SFS[S2:(2,1)(2,1)(2,-1)]. Mul-
ticube Structure: region center locations ¢4, region face identifications, {¢ A} < {8 B}, and the rotation matrices for the

. . B
associated interface maps, C Aﬁ .

@ =-X @ =+x a=-y a=+y a=-z @ =+z
A & BB C¥ BpC¥ BpC¥ BB C¥ BB C¥ BB C¥
0.0 | (0,0,0) 1.2-x R, 01-x1 L.1-z R,R,, 02-y I 13-y R, R_, 03-z1
0.1 (L,0,0) 00+x1I 13+z Ry | 12-z RLR,, 02+x Ry, 1.0-y RyR, | 03+x R,
02 | (0,L,0) 1.0-x R, 0.1+y R_, 00+y I 12+y RZR,, | L.1-y RZR, | 03+y R,
03 | (0,0,L) 13-x RZR., | 0.1+z Ry, | 1.0-z R,R,, 02+z R, 00+z1 1.1+x R,
1.0 | (3L,0,0) 0.2-x R, 11-x1 0.1-z R,R, 12—y 1 03-y R,,R_. 13-z 1
1.1 | (4L,0,0) 1.0+x I 03+z Ry, | 02-z RZR,, 12+x Ry, 00-y R,,R, | 1.3+x R,
12 | (3L,L,0) 0.0-x R, 1.1+y R, 1.0+y I 02+y RZR,, | 0.1-y RZR., | 13+y Ry,
13 | GL0,L) | 03-x RLR, | L.1+z Ry, | 00-z R,R., 12+z R, 1.0+z 1 0.1+x R,
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Table D.9: Multicube representation of the Regina triangulation of the Seifert fiber space KB/n2x ~S1. Multicube
Structure: region center locations &4, region face identifications, {¢ A} < {BB} , and the rotation matrices for the
associated interface maps, Cﬁﬁ .

a=-x a = +x a=-y @ =+y a=-z a=+z

A 24 B C¥ B C¥ Bp C¥ BpCY¥ Bp C¥ BpCY¥
0.0 (0,0,0) 21+x1 0.1-x1 3.1+x R,R,, 02-y 1 43+z7 1 03-z1
0.1 (L,0,0) 00+x I L.1+x RZR,, | 33+z RZR., | 02+x Ry, 4.1+x Ry, 03+x R,
0.2 (0,L,0) 22+y Ry, 0.1+y R_; 00+y I 13+z R, 42+y R, 03+y Ry,
0.3 0,0,L) 23+z R, 0.1+z Ry, 32+y R, 02+z R, 00+z I 12+y Ryy
1.0 (0,3L,0) 22-x R, 11-x1 52+y 1 12-y1 33-x R,Ry, 13-z 1
L1 | (L3L0) 1L0+x I 0.1+x R2R,, 51+x R, 12+x Ry, | 32-x R2R,, 13+x R,
1.2 (0,4L,0) 2.0-x R, L.1+y R_, 1.0+y I 03+z R | 3.0-x R,R,, 13+y Ry,
1.3 (0,3L, L) 23-x RZR., L1+z Ry 53+z Ry, 12+z R, 1.0+z 1 02+y Ry,
2.0 (3L,0,0) 1.2 -x R, 21-x1 53-x R..Ry, 22-y 1 43-x R,R,, 23-71
2.1 (4L,0,0) 20+x 1 00-x 1 50-x RRyy | 22+x Ry, | 42-x RLR,, 23+x R,
22 (3L, L,0) 1.0—x R2, 21+y R, 20+y 1 02-x R, | 40-x R,R,, 23+y Ry,
23 (3L,0,L) 13-x R2ZR_, 2.1+z Ry, 52-x RLR. | 22+z R, 20+z 1 03-x Ry,
3.0 | BL3L0) | 12-z RyR,, 31-x1 43-y R2, 32-y1 51-z RY, 33-z1
3.1 | (4L,3L,0) 30+x I 00-y RyR;, | 41-y RZR., | 32+x Ry, 50-z R, 33+x R,
32 | BL4L0) | L.1-z RER,, 3.1+y R_, 30+y 1 03-y Ry | 52-z RAR., 33+y Ry,
33 | (3L,3L,L) 1.0-z Ry, Ry, 31+z Ry 40-y R%, 32+z R, 30+z 1 0.1-y R?R,,
4.0 (6L,0,0) 22-7 RyR,, 41-x1 3.3-y R%, 42-y 1 50-y Ry, 43-z1
4.1 (7L,0,0) 40+x 1 0.1-z R, 31-y RZR, | 42+x Ry, 51—y Ry, 43+x R,
42 | (6L,L,0) 21-z RZR,, 41+y R_. 40+y 1 02-z Ry, 53—y Ry, 43+y Ry,
43 (6L,0,L) 2.0-z RyRy, 41+z Ryy 3.0-y R2, 42+7 R, 40+z 1 00-z1
50 | (6L,3L,0) | 2.1-y R__.R,, 50-x1 40-z R, 52-y1 3.1-z R, 53-z1
5.1 | (7L,3L,0) 50+x 1 1.1-y Ry, 41-z R, 52+x Ry, 3.0-z R%, 53+x R,
52 | (6L,4L,0) | 23—y R2 Ry, 51+y R, 50+y 1 1.0-y I 32-z 2R, 53+y Ry,
53 | (6L,3L,L) | 20—y R_.R,, 5.1+z Ry, 42-7 R, 524z R, 50+z 1 13-y R,
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Table D.10: Multicube representation of the Regina triangulation of the Seifert fiber space SFS[RP2/n2:(2,1)(2,-1)].
Multicube Structure: region center locations ¢4, region face identifications, {& A} <> {8 B}, and the rotation matrices for
the associated interface maps, Cfﬁ .

a=-x @ =+x a=-y @ =+y a=-z @ =+z

A & Bp C¥ Bp C¥ Bp C¥ Bp C¥ BpC¥ Bp C¥
0.0 | (0,0,0 21+x1 0.1-x1 3.1+x R_R., 02-y I 42+y R,R; 03-z1
0.1 (L,0,0) 00+x I L1+x RZR,, | 33+z RAR., 02+x Ry, 43+z R, 03+x R,
02 | (0,L,0) 22+y Ry, 0.1+y R, 0.0+y I 13+z R, 41+x RLR,, 03+y Ry,
0.3 | (0.0,L) 23+z R, 0.1+z Ryy 32+y R, 02+z R, 0.0+z 1 12+y Ry,
1.0 | (0,3L,0) 22-x R%, Ll-x1 52+y 1 12-y I 33-x RyR.; 13-z1
L1 | (L3L0) 1L0+x I 0.1+x R2R,, 51+x R, 12+x Ry, 32-x R2R,, 13+x R,
1.2 | (0,4L,0) 20-x R%, Ll+y R 1.0+y I 03+z R, 3.0-x RyR,, 13+y Ry,
13 | 03LL | 23-xRYiR., L1+z Ry 53+z Ry, 12+z R, 1.0+z 1 02+y Ry,
20 | (3L,0,0) 12-x R%, 21-x1 53-x Ri.R,, 22-y 1 40-x R, 23-z1
2.1 | (4L,0,0) 20+x I 00-x1 50-x Ry.R,, 22+x Ry, 43-x R, 23+x R,
22 | (L,L,0) 1.0-x R%, 21+y R, 20+y I 02-x R, 42-x R, 23+y Ry,
23 | (BL0,L) | 13-x R2LR., 21+z Ry 52-x RLR., 22+z R, 20+z 1 0.3-x Ry
30 | (BL,3L,0) | 12-z RyRy, 31-x1 40-z R, 32-y 1 51-z R}, 33-z1
3.1 | (4L,3L,0) 30+x I 0.0-y R Ry, 41-z R, 32+x Ry, 50-z R3, 33+x R,
32 | (BL4L,0) | 1.1-z RLR., 31+y R 30+y I 03-y Ry, 52-z RAR_; 33+y Ry,
33 | GL3LL) | 1.0-z RyRy, 31+z Ry 42-z R, 32+z R, 30+z 1 0.1-y R Ry,
4.0 | (6L.0,0) 20-z Ryy 41-x1 50-y RLR,, 42-y 1 3.0-y Ry, 43-z1
4.1 | (7L,0,0) 40+x 1 02-z RER,, | 53-y R3R,, 42+x Ry, 3.1-y Ry, 43+x R,
42 | (6L,L,0) 22-z Ry 41+y R, 40+y I 0.0 -z R.,Ry,y 33-y Ry, 43+y Ry
43 | (6L,0,L) 21-z Ry, 41+z Ry, 51-y R2R,, 42+z R, 40+z1 0.1-z Ry,
50 | (6L,3L,0) | 2.1-y R_Ry, 50-x1 4.0-y R2,R,, 52-y 1 31-z R}, 53-z1
5.1 | (7L,3L,0) 50+x 1 1.1-y R 43-y R3R,, 52+x Ry, 30-z Ry 53+x R,
52 | (6L,4L,0) | 23-y RLR,, 51+y R, 50+y I 1.0-y I 32-z RL,R; 53+y Ry,
53 | (6L3L.L) | 2.0-y RoR, 51+z Ry 4.1-y R%,R,, 52+z R, 50+z 1 13-y R,
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