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Abstract

We present a phase-field crystal model for solidification that accounts for ther-
mal transport and a temperature-dependent lattice parameter. Elasticity effects
are characterized through the continuous elastic field computed from the micro-
scopic density field. We showcase the model capabilities via selected numerical
investigations which focus on the prototypical growth of two-dimensional crys-
tals from the melt, resulting in faceted shapes and dendrites. This work sets
the grounds for a comprehensive mesoscale model of solidification including
thermal expansion.

Keywords: solidification, crystal growth, heat flux, thermal expansion, phase-
field crystal

(Some figures may appear in colour only in the online journal)

1. Introduction

Solidification of crystalline materials is a ubiquitous phenomenon in nature and technology.
It yields shapes and patterns which depend on out-of-equilibrium growth conditions and the
interplay of different instabilities [1]. At the same time, the control of the solidification process
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is key in several technological applications, from conventional ones [2, 3] up to bottom-
up approaches exploiting self-assembly [4, 5]. The outcome of crystal growth results from
several different contributions: crystal seeds grow after nucleation or on pre-existing crys-
tal phases/seeds, while later stages are affected by capillarity, elasticity, plasticity, as well as
various kinetic effects [6—10]. When considering solidification, heat transfer in the region sur-
rounding the solid phase also plays an important role [6, 8—10]. From a microscopic point of
view, the arrangement of atoms in a periodic lattice typically emerges in anisotropic behav-
iors such as faceting and in the nucleation and motion of defects, which are tightly related to
crystallographic directions.

The modeling of solidification has been addressed by different approaches. Microscopic
approaches are suitable for evaluating lattice-dependent features such as anisotropies and
defect structures [7]. However, the growth of crystals involves long time scales, typically not
accessible within these methods. Macroscopic approaches, which cope with large systems and
long timescales, successfully described the main features of crystal growth via front tracking
and phase-field methods [11-17]. However, they usually lack a direct connection to the lattice
symmetry and microscopic features in general. Lattice-dependent effects can then be only par-
tially described and are included mainly through parameters and additional functions as, e.g.,
anisotropic interface energies [18, 19].

The so-called phase-field crystal (PFC) model [20-23] emerged as a prominent approach
to describe crystal structures at large (diffusive) timescales through a continuous, periodic
order parameter representing the atomic density. It describes solidification and crystal growth,
including capillarity, elasticity, nucleation, and motion of defects. As a result, it reproduces the
main phenomenology of crystal growth in two- and three-dimensions [23-25]. Also, it allows
for a self-consistent description of anisotropies resulting from the lattice structure [26, 27].
Therefore, it represents a suitable framework for the development of a comprehensive model
of crystal growth. Only recently, however, a temperature field and the related heat flux have
been considered in PFC models [28, 29]. Similarly, while its first formulation already includes
elasticity effects, recent studies shed light on its connections to continuum mechanics [30-36],
allowing for extended descriptions of deformations in crystals. Lattice deformation and inter-
nal stresses may result or change due to the thermal expansion (contraction) of the crystal
lattice upon heating (cooling) and in the presence of temperature gradients. This phenomenon
affects properties in single crystals and crystalline heterostructures, e.g., residual stresses, dis-
location density, and crack propagation [37—-39]. However, PFC models do not usually include
the dependence of the lattice parameter on the temperature.

This paper presents a PFC model of crystal growth featuring the coupling with thermal
transport and a temperature-dependent equilibrium lattice parameter. Compared to previous
PFC models of crystal growth that include a temperature field and the related heat flux [28, 29],
it features a suitable modification of the PFC free energy to include a spatially-dependent lattice
parameter [36], here set to depend on the temperature field. The coupling of PFC equations
with heat flux is then considered in the minimal, thermodynamically-consistent formulation
introduced in [29]. The resulting model is illustrated in section 2. The equations are solved
numerically by a simple but efficient approach based on the Fourier pseudo-spectral method, as
shown in section 3. Section 4 reports the description of the continuous elastic field exploited to
assess the proposed model. In section 5 the model is then showcased through selected numerical
simulations. They reproduce the prototypical growth of two-dimensional crystals from a melt,
resulting in faceted shapes and dendrites. The effects of temperature described by the model
are illustrated. Finally, we draw conclusions and perspectives in section 6.
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2. Model

The PFC model is based on a Swift—Hohenberg free energy functional [20, 21, 23], which can
be written as

4 3 4
Ao = [ 2SR R Cavgn - Ve (V) ) o )
Q

The scalar order parameter 1/(r, )* is related to the atomic number density, and Q € R" (n = 2
in this work). The parameter g, enforces a periodicity of ap = 1/¢g, and a set of parameters
A, k > 0 determine the phases which minimize F[v] and characterize material properties. Cou-
pled with appropriate boundary- and initial conditions, the time evolution of 1) is described via
a conservative (H™") gradient flow of F, namely

o = V——. (2)

It is worth mentioning that different forms of F are used in literature as, e.g., in the orig-
inally proposed formulation [20] including g, in the differential operator (g3 + V?)*¢ or
(g3 + V*9)? only, a parameter € = x — ) playing the role of the quenching depth, and even-
tually additional coefficients for other terms in ), such as 7¢° + v¢* (with7 = 0and v = 1 in
[20]). Such formulations, however, are equivalent and lead to the same expression for 6F /.
In [29] an extension of this PFC model including heat transfer through a temperature field was
proposed. Therein, the (dimensionless) Helmholtz free energy functional with g, = 1, here
normalized with respect to the temperature, reads

Fly, T
Flu.T) = [1/) ]

/ A ¥ + 9 In(T) - —7(1/; +1 +5(-2Vef + (V2)’) ar.
3)

with T(r, f) the dimensionless temperature and 7 = 1 at the melting point. 1,y > 0 are addi-
tional parameters. The dynamics is then given by the coupled evolution of 7 and v, reading

yO,T — 90) = MVT,

OF [, T] “)
&y

with M > 0 a parameter corresponding to the thermal diffusivity assumed to be constant.
This model is here extended by including a variable lattice parameter and connecting it to

the temperature field, aiming to describe thermal expansion in the crystal phase. Let us consider

a crystalline solid with lattice parameter ay. Expansion due to temperature can be described

through the thermal expansion coefficient o =L-(dL /dT) with L acharacteristic (reference)

length of measurement and L a linear dimension in the solid. Assuming weak dependence of
" on T, ar = ap[1 + (T — Ty)] with ay and aq the lattice spacing at T and T, respectively.

o = V2

4 Dependence on space and time are omitted elsewhere for the sake of readability, the same applies for other quantities
introduced in the following, see e.g., 7(r, 1), 1(r, 1), and 7,,(r, 1).
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This equation defines a relative deformation, i.e. a thermal strain e™(T, Ty) = (ar — ap) Jap =
a™(T — Tp). Following the arguments in [36], this information may be encoded in the
PFC free energy by noticing that (ar — ao)/ap = (qy/qs) — 1 and thus g, = 5(T, Tp)g, with
B = B(T,Ty) = 1/(1 + e™(T, Tp)). Therefore, by setting g, =1 we may derive from
equations (1) and (3) the following free energy functional:

Fi = AT [AZROZ 8 g = o) 5
+ 5 (-2ve- v + (V) ar.
This leads to the following evolution equations defining our model:
~yOT — 90 = MVT,
o = V* {(A — Rl Y — 72 + ; + KAV ©)

+ KV2(B5) + KV — T |

Note that the PFC heat-flux model, equations (3) and (4), without temperature-dependent lat-
tice parameter [29] is recovered for 5 = 1. On the other hand, by neglecting the heat flux
with a constant and unitary temperature field and setting a constant ™, the evolution equation
for the density ) in the presence of an eigenstrain ¢* = ' as introduced in reference [36] is
obtained. Therefore, our resulting model, equation (6), realizes a general combination of these
two models.

In this work, we consider honeycomb and triangular two-dimensional crystals. In a one-
mode approximation, they are well described by

N
G 1) = P, + Y (e, Hel, (7

n=1

with i the imaginary unit, v(r,7) the local average density, 7,(r,) amplitudes function
which are real for relaxed crystals, 7, = ¢, and reciprocal lattice vectors (N = 6), {q"}5_, =
q0{(0, £1), (V3 /2,+1/2)}. According to energy minimization, the real amplitude in the

relaxed solid phase results

2 —4A4+2/1 4+ 16A +20(k — A — 16A2)
24 ’

with A the global average density. For A > 0.5 and A < 0.5, the amplitudes can be identified
with ¢_ and ¢, resulting in honeycomb and triangular structure, respectively (with similar
energetics). Equation (8) is exploited to initialize ¢ in the solid phase, whereas the density of
the pure liquid phase is initialized as ©» = A and ¢ = 0. Also, the temperature field is initialized
as spatially homogeneous T = Tj. Parameters used in the simulations are reported in table 1.

¢=¢r= ®)

3. Numerical methods

Numerical solutions of the partial differential equation (6) are computed using a first-order
linear IMEX scheme for the time discretization in combination with a Fourier pseudo-spectral

4



Table 1. Numerical parameters (C, K, Ar) for all the simulations reported in this paper. We set M/y = ¥/y = 1 except for v = 0 (decoupled
equations in (6)), for which we set M = 99 = 0. Empty table entries read as the row above.

Model parameters

Numerical parameters

Figures ) B A ~ T b C K At
2 1.04 1 0 0 — 0 —0.149 0.990 5
0.6 0.459 81 0.849 0.06 0.6
3 1.0 —1.060 1.000 1
0.1 0 0.100 0.5
02...03 —0.140 0.998 3
0.4 —0.147 1.000 5
0.5 0.990
0.6 —0.149 0.990
4(a) 0.7...0.97 0.985
0 — 0.990
0.01...0.1 0.6
0.2 —0.143 1.020
0.3...0.6 —0.130 1.022 3
0.7...0.9 0.050 1.000 1
1 0.200 0.5
2 1.000 1.030 0.4
3 2.100 1.050
4 0.3
5 0.2
4(b) 6 0.1
0.06 5x107*...0.5 —1.060 0.995 1
4(c) 06...1.3 1.000
0.844,0.846 0 —0.149 0.974 5
0.849 0.990
5(a) 0.2 1/3 1.120 0.130 1.000 2
5(b) and (c) 0.6 0.459 81 0.849 —0.149 0.990 5
0.849,0.151
6,7,and 8 1.0 —1.060 1.000 1

00120 (2202) 0€ "Bu3 108 JereN “Inwis Buljiepon

e 1o ayund W
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Figure 1. Convergence study of a C-IMEX scheme (with C = —0.149) compared to a
standard IMEX scheme (C = 0). The measurable limit of the accuracy R is obtained by
a linear extrapolation.

method for the spatial discretization, enforcing periodic boundary conditions. The numerical
simulations are performed on a uniform grid with an element size of dx = dy = 0.78125,
resulting in a resolution of ~75 grid points per unit cell. The Fourier transforms are per-
formed with an algorithm based on the FFTW2 library. A constant time step size At for the
IMEX scheme is considered and chosen to ensure numerical convergence. Additionally, we
exploit the numerical time-stabilization routine presented in [40]. This approach features a con-
vex—concave splitting of the free energy controlled by a parameter C, combined with an IMEX
scheme (C-IMEX). For every set of model parameters, we determine optimal C by minimizing
the difference of the error (least square of the difference) in the free energy decay obtained with
the C-IMEX scheme with respect to a numerical reference solution (IMEX scheme with small
timestep). Optimal errors are found by considering a minor rescaling of the time scale by a
factor K ~ 1, which is found to compensate for quantitative effects on the time scale observed
for the C-IMEX scheme [40].

A convergence study of the considered numerical methods is reported in figure 1, for a spe-
cific set of model parameters leading to the growth of a crystal in domain 2 = [—28p, 28p]?
with p = 47r/\/§ and for time steps At € [1072, 1]. This figure shows the residua of 1/ and
T, Ry and Ry, respectively, evaluated as the integral over the domain of the squared differ-
ence from a numerical reference solution for different Az. The IMEX (C = 0) and C-IMEX
(C = —0.149) schemes are compared, with a reference solution corresponding to the C-IMEX
scheme with At = 0.01. As expected, the schemes converge linearly for a decreasing time step
size At. However, for a fixed Az, the C-IMEX approach gives two orders of magnitude smaller
error than the IMEX approach for ¢ and a two and a half orders of magnitude smaller error
for T. By fixing an accuracy instead, the C-IMEX approach allows for two-order of magni-
tude larger timesteps than the IMEX approach. Convergence studies similar to figure 1 have

6
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been performed for all the simulations reported in this work. Table 1 summarizes the numerical
parameters (C, K, Ar), together with other model parameters for all simulations in this paper.

4. Evaluation of elastic fields

In this section we address the evaluation of the elastic fields to assess the PFC formulation
including a variable lattice spacing as introduced in section 2. Elasticity in PFC models can
be characterized by small perturbations of the equilibrium density ¢. Therefore, it features
variations of ¢ over a length scale significantly larger than the lattice spacing, and a coarse-
graining of ¢ is usually considered in this context [35, 41]. In particular, one may consider an
expansion of the periodic density as in equation (7) with complex amplitudes encoding lattice
distortion over a displacement field u. Indeed, setting ¢ (r, ) = wref(r —u, 1) with reference
density field ™ (r, 1) leads to equation (7) with 7,(r, £) = ¢(r, )e 4" "®_ This ansatz can also
be exploited to derive a coarse-grained PFC model, namely the amplitude expansion of the
PFC (APFC), where 1, are the variables to solve for [42—-44]. Within the PFC model, 7, as
well as E can be computed from a demodulation of ¢ [41, 45]:

m= e g [ ],
_ ,, )
l/) _ <g;-fl |:6727rajkj ?[1/)]} ]

with .% the Fourier transform, .# " the inverse Fourier transform, and implying Einstein
summation convention. The demodulation (9) includes a coarse-graining procedure over one
unit cell UC = [0, a;] x [0,a;] with a; = p, a, = \/§p/2 and p = 47r/\/§. Following recent
works [33, 36, 41, 46], one may obtain the mechanical stress tensor o;; = o;;(r, #) without
isotropic pressure terms from the density field:

[ 0(Fsle(r + w0, T(r, )] — Fslep(r, 1), T(r,0)])
Y (58,<uj

= k((2B°0,; + i + V(BN — Yt

(10)

with (- ) a spatial average over the unit cell, which may be explicitly performed in reciprocal
space through the smoothing kernel similarly to equation (9) for ¢). Equation (10) generally
defines o;; up to a phase-dependent divergence-free contribution, which can be removed by
considering v as expressed through an one-mode approximation as in equation (7) [41].

A coarse-grained description of the crystal is also achieved through amplitudes from
equation (9). Assuming 7, to be constant over the length of UC (similarly to the basic
assumption of the APFC model [44]) and denoting the complex conjugate of 7, as 7, we
obtain

N

0ij = “Z [(2(B*)(0; + gy + i + 1)) Ok + 2iq} 0k — qigDdmn + mu(B).:) an
n=1

x (0; — gy — (Ou + 2iq}0k — qiai) ma(O; — igH(D; — ig’m}] .

Equation (10) with an one-mode approximation for ¥ and equation (11) are found to deliver
almost identical elastic fields. As shown below, this approach allows for characterizing elastic
properties in systems featuring solid-liquid coexistence.

7
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In reference [36] a benchmark problem has been reported for the APFC model. It consists
of the simulation of an elastic inclusion through an eigenstrain formulation that enforces a
spatially-dependent lattice parameter through a quantity similar to S in equation (5). It cor-
responds to the so-called Eshelby problem [47—49]. Here we consider the same setting to
assess this elastic inclusion problem within the microscopic PFC model (rather than the coarse-
grained APFC model). We set a spatially dependent, but constant in time, lattice parameter

B 1 1 B [r| — R
ﬂ_1—<1—1+5*>§, 5_2{1 tanh(g )} (12)

with * = 0.01,R = 10p, e = p. The domain € is set to [—50p, 50p] x [—25v/3p, 25v/3p] for
atriangular lattice and we let the system relax until a steady state is reached. Figure 2 provides a
comparison of the mechanical stress components computed from the PFC simulation through
equation (11) and the analytic solution for an inclusion in an infinite medium [49, 50]. The
result obtained by an APFC simulation [36] is also reported for comparison. A good agree-
ment between the analytic solution and the simulations is obtained. A few differences may be
recognized and ascribed to different effects similarly to reference [36]. In brief, the considered
setting models the inclusion problem inside a domain of finite size and with periodic boundary
conditions, while the Eshelby solution is derived for infinite systems. Also, elastic properties of
PFC models account for non-linear effects, which are absent in the analytic solution. Further-
more, the approximation of the inclusion’s boundary as a diffuse interface achieved through
equation (12) inherently produces a smooth field that differs from the sharp transition implied
in the analytic solution. This smoothing and the decay of the elastic field away from the inclu-
sion match the results obtained with the APFC model with the same parameters. A slightly
different stress field in the inclusion is obtained. It may be ascribed to a fixed average density
assumption in the APFC simulation.

5. Numerical simulations

5.1. Model features and parameter study

In this section, we illustrate the capabilities of the proposed model through numerical exper-
iments exploiting the method described in section 3. In particular, we provide an overview
of its features focusing on the dendritic solidification regime. Figures 3(a) and (b) illustrates
the numerical solution of equation (6) at a representative stage (t = 3.5 x 10%) for A = 0.849
(A > 0.5, honeycomb), with and without including a temperature-dependent lattice spacing
(namely with o™ = 0 and o™ = 1.0). Focusing first on the morphologies of the crystalline
domain, we note that the initial crystal seed grows in both cases and develops an anisotropic
shape. It corresponds to a six-fold dendrite which reflects the underlying triangular symmetry
of the crystal lattice. This evidence extends the preliminary numerical results reported in ref-
erence [29], showing that the model including heat flux allows for dendritic growth with an
extended set of parameters. Moreover, differences are observed among the simulations with
a™ = 0 and o = 1.0. The latter case leads to growing arms of the dendrite, which are more
rounded than the former. As shown in figure 3(c) reporting a comparison of the length of den-
dritic arms over time /p, = /p(t) in both cases, the velocity of the tip is also smaller for o = 1.0
(namely /p/t =~ 1.85 x 10~2and /p/t ~ 1.50 x 10~2 for o™ = 0 and o' = 1.0, respectively).
However, after a first initial transient, a constant tip velocity is observed in both cases, con-
sistently with a classical result for dendritic growth [10]. Figure 3(c) also includes the time
evolution of F3, showing that the energy decreases for both the considered settings.

8
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Figure 2. Benchmark of the stress definition, equation (10), through the Eshelby inclu-
sion problem. (a) Stress field components extracted from the result of a PFC simulation
(first row) and the analytic solution for an inclusion in an infinite medium (second row).
(b) Comparison of the o,,(x) for these solutions and the result of corresponding APFC
calculations from reference [36] aty corresponding to the center of the inclusion. Lengths
are scaled with the atomic spacing along the x direction, p.

For the chosen parameters, the growing crystal has a local average density lower than the
liquid phase and, as dictated by the equation for 9,7, a lower temperature with respect to
Ty (see figures 3(a) and (b)). This behavior is observed, e.g., for materials such as hexago-
nal ice, which is well represented by a honeycomb structure, but also diamond-cubic silicon,

9
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Figure 3. Numerical solution of equation (6) for a given set of parameters, with and
without including a temperature-dependent lattice spacing. The density field ¢, local
average density v and temperature field T during growth of the dendrite at r = 3.5 x 10*
are shown for (a) o™ = 0 and (b) o™ = 1.0. (c) Time evolution of the free energy Fsand
length of dendritic arms /p, (scaled by the length of the unit cell along the y-direction)
for o™ = 0 and o™ = 1.0. Q = [—110p, 110p]>.

rhombohedral bismuth, and orthorhombic gallium [51]. At the liquid—solid interface, the tem-
perature increases above T, whereas away from the growing seed where ¢) = A, we have
T =~ Ty. These variations can be interpreted in terms of a Gibbs—Thompson effect [52, 53],
commonly observed at phase boundaries, combined with the conservation laws. A region with
a slight material depletion surrounding the T > T, region is observed for a = 1.0, which can
be ascribed to a material transfer toward the interface triggered by the reduced lattice spacing

10
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Figure 4. Parameter study of equation (6) with parameter ranges as in (13). The effects
of (a) Ty, (b) v, and (c) o™ are illustrated. Insets show representative comparisons of
morphologies with a reference (corresponding to the empty triangle in every panel).

in the solid phase. In turn, larger temperature gradients are present, which enforce the more
isotropic shapes. The more typical behavior of larger (local) average density and T > T in the
crystal phase can be straightforwardly obtained by setting a global average density A — 1 — A
(i.e., for the corresponding triangular phase, as can be readily shown from the equations defin-
ing the model). These cases lead to identical energetics and, in turn, morphologies and fields for
the o = 0 case. However, for o't = 1.0, either a lattice expansion or compression is enforced
for settings with symmetric global average densities with respect to A = 0.5. As a result, dif-
ferences are observed: for A < 0.5, no slight material depletion is observed from the liquid
phase with instead a larger region with an increased average density, temperature gradients
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(b) (c)
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J \
1:2 1:4
— reference — A =0.846 Q = [-221p, 221p)? — Q) = [—441p, 441p)?

—A=02k=1/3 — A=0.844

Figure 5. Morphologies obtained for different parameters entering the classical PFC
model and the domain size. (a) Effect of different average densities and material
parameters (reference shapes as in figure 3). (b) Shape of a dendrite in a domain
Q =[-221p,221 p]2 scaled by factor 1/2. (c) 2 = [—441p, 441 p]2 scaled by factor 1/4.

closely resembling the o' = 0 case and, in turn, similar morphologies (not shown), in agree-
ment with the arguments reported above. This symmetry breaking will be exploited in the
following section to characterize the thermal stress.

More insights into the morphological evolution are obtained through a parameter study
for the same simulation setup considered above. In particular, to shed light on temperature-
dependent effects, we vary Ty, v, o' separately in the following range:

Ty € [0.1,0.97], v € [0, 6], a™ e [0,1.3]. (13)

We analyze ¢, as well as the temperature range, AT(¢) = maxyeq 7(r, 1) — mingcq 7(r, 7), and
the morphologies at a given time ( = 3.5 x 10%), as illustrated in figure 4. Decreasing Ty or
increasing -y leads to a decrease in AT and ¢ at a given time, and vice versa. Also, small
changes in the shapes are obtained as illustrated in insets of figures 4(a) and (b) comparing
representative morphologies. We conclude that the initial temperature, Ty, and the coupling
strength between equation (6), 7, mainly affect the growth rate. In contrast, a large thermal
expansion coefficient, o, leads to more significant differences in terms of morphologies con-
sistently with the result in figure 3, as well as a decrease of /p and increase of AT. Still, the
growth dynamic results mostly unaffected for o < 0.1. While kept fixed in the simulations
discussed above, parameters entering the original PFC model, like A, A, %, as well as the size
of the simulation domain, still determine the features of the solidification process and if the
growth leads to a dendritic shape. For completeness, we illustrate in figure 5 the main expected
changes for the solidification process. Varying the average density affects the anisotropy of the
growing crystal/dendrite. Also, effectively changing the quenching depth through A and x may
lead to a different growth regime, up to reaching equilibrium with a morphology correspond-
ing to the anisotropic equilibrium crystal shape, see figure 5(a). It is worth mentioning that the
growth of dendrites discussed so far may be considered in a larger domain allowing for the
development of long arms and the onset of the growth of secondary arms. This is illustrated in
figures 5(a)—(c).

5.2. Crystal growth and lattice deformation

After characterizing the model, we study the growth in a prototypical case representative of
more general settings. We consider the solidification occurring in a system with two crys-
tal seeds having different (random) orientations. We address both the cases with (o™ = 1.0)
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P
ot =0
T
ath =0
P
att =1.0
T
ot =1.0
t=1.25-10°
Closeup III\IIII\I.I\IIII\IIIIII
D 0.028 W 1.210
0.597 T for o' =0 0.605
0.593 T for at™ = 1.0 0.613

Figure 6. Growth and interaction of two dendrites, with (o™ = 1.0) and without
(o™ = 0) a temperature-dependent lattice spacing. The density- and temperature fields at
representative stages are reported. The last panel on the bottom reports a magnification
of the density field for the o' = 1.0 simulation, explicitly showing defected merging
region. Parameters are set as in figure 3, Q = [~221p, 221p]°.

and without (o™ = 0) a temperature-dependent lattice spacing. Figure 6 shows the result-
ing density- and temperature fields at four representative stages. The dendrites exhibit shapes
analogous to figure 3 owing to the same parameters. Moreover, when the length of the arms
approaches half the distance among the seeds, the temperature fronts where 7' > T meet, and
the two growing crystals begin to interact. At this stage, similarly to results reported in the
literature [17, 54], the growth rate drops. Interestingly, while the dendritic arms are separated
for longer times with o' = 0, merging is observed for the o' = 1.0 case, with the formation
of grain boundaries and dislocations. In general, the merging of growing crystals depends on
the phase of the periodic lattice and its deformation at the corresponding growth fronts. If they
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(a)

=0 Ao =1.0 Ay, 0 =1.0

x/p x/p z/p

S T T S A I S o |
0.011 P(A) 1.214
-0.211 ¥(Ag) 0.970

tin 10*
— PFC — heat-flux PFC (ot = 0) — Ay,0th =10 — Az, ot =10

Figure 7 Merging of a small crystal with its periodic images. (a) Density v for the heat-
flux PFC model without (o'® = 0) and with (" = 1.0) a temperature-dependent lattice
in cases A} = 0.849 and A, = 0.151 after t = 10° are shown. (b) Time evolution of o
at the center of the crystal, also reported for the classical PFC model (7p = 1.0,y = 0).
Q = [—40p, 40p] x [—20+/3p, 20v/3p].

would form a relaxed crystal, i.e., if the crystal structures meeting at the growth fronts are
commensurate, the process is expected to occur. Otherwise, additional energy barriers exist,
which may lead to hindering the merging process. The evidence from figure 6 suggests that
the effects induced by the temperature dependence of the lattice spacing in the specific setup
considered for this simulation favor the commensurability of the crystals at the growth fronts.

To understand the behavior observed in figure 6 and further characterize the effects
described by the model, we focus on an idealized case, namely the growth of a small seed
and the interaction with its periodic images in a domain hosting an integer number of the unit
cell at Ty. The growing crystal is expected to interact with its periodic images. As shown in
figure 7(a), with o/ = 0 no merging occurs, and tensile stress is observed (see figure 7(c)).
The latter builds during the very first stages of the growth and decreases up to a certain value
when the temperature equilibrates to 7;. Note that no significant differences are observed in this
regard with (y # 0) and without (y = 0) the coupling with the heat flux, so this effect is present
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Figure 8. Stress field and thermal stress. A first stage of the simulations with o™ = 1.0in
figure 7 is considered. (a) o;; for the case A| = 0.849. (b) o;; for the case A, = 0.151. (¢)

(A1) = (1/2)(0°, — %) and 0, (A2) = (1/2)(02, + 02,) as well as their split into
o< and o0, are compared along the x-axis crossing the center of the crystal.

in the classical PEC model. With o' = 1.0, we consider two cases corresponding to two differ-
ent initialization of the average density. We consider A; = A, for which T' < Tj in the crystal,
and A, = 1 — A, for which T > T in the crystal, such to have opposite T — T contributions
(see also discussion of figure 3). These two cases show different behaviors. The former case
features lower tensile stress due to a negative contribution of the temperature-induced lattice
deformation, partially compensating for the tensile stress observed during growth. As a result,
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merging occurs, and smaller residual stress is observed at later stages. The latter, instead, fea-
tures an additional tensile-stress contribution due to the increase in the temperature, and no
merging is observed. In this case, similar tensile stress is observed owing to the equilibration
of the temperature at Ty for an isolated crystal with a shape very similar to the o™ = 0 case.

Exploiting the simulations initialized with both A; and A, we may provide an estimation
for the thermal stress. The mechanical stress for o/ = 0, namely or?j may include different
contributions in general, e.g., effects of an applied load and specific boundary conditions.
Under similar conditions but with o/ = 1.0 an additional contribution resulting from the
dependence of the equilibrium lattice spacing on the temperature field, o7}, is expected such
that oy; = a,‘-)j + of;. We point out that a?j is not necessarily equivalent for o' = 1.0 and
a™ = 0 as the growth dynamics is different. However, it is expected to be similar for early
stages of the growth where the morphologies obtained with different parameters do not dif-
fer significantly, as we consider here. An estimation of o7; may then be given by defining
oij(Ar) = J,Qj(Ak) + 0{i(Ap), withk = 1,2, and 0{}(A2) =~ —07}(A1) = :0/}, reflecting the behav-
ior of the temperature in the solid. We may then compute 20f; = 0;j(A2) — 0;;(A) assuming
a?j(Al) ~ a?j(Az) = (1/2)[0;(A1) + 0i/(A2)]. In figure 8 we show the mechanical stress com-
ponents for the simulations initialized with average densities A; and A, and address their
splitting into a?j and o7} for an early stage of the simulations reported in figure 7 with a®" =1.0.
Independently on the value of o', the stress vanishes in the liquid phase, while its values
changes for A; and A;, owing to the different temperatures, see figures 8(a) and (b). More
insights are given in figure 8(c), reporting o,,(A,) and o,,(A;) along the x-axis crossing the
center of the crystal as well as the computed U,(-)j and o} cr?j closely resembles the value obtained
for oM = 0 case. Importantly, opposite effects are obtained for T < T and T > T, in the solid
obtained with A; and A,, respectively. A positive (negative) oy is obtained for T > Ty (T < Ty)
in the crystalline phase, consistently with the expected thermal stress. A small region with
opposite behavior at the solid—liquid interface may be ascribed to the features of the solidifi-
cation process [55, 56] and includes the effects induced by changes in the temperature field. It
is worth noting that considering a proper separation of the timescales for elastic relaxation and
diffusive dynamics, eventually controllable through parameters, would account for a complete
model allowing for the exploration of different relaxation regimes [32, 33, 41, 57]. However,
the purely diffusive dynamics considered here, delivering a slow elastic relaxation as encoded
in the standard PFC, is instrumental in interpreting the different quantities entering the model,
which may be extended without major adaptations of the aspects discussed above.

6. Conclusion

We introduced a PFC model of crystal growth accounting for heat fluxes and thermal expan-
sion. As a starting point, we considered a thermodynamically consistent approach coupling
the evolution of the density field with a diffusion—reaction equation for the temperature field.
Then, a parameter controlling the periodicity of the density, dependent on a temperature field,
has been set consistently with the classical law of thermal expansions in solids. We compared
this description with a known analytic solution of a prototypical system, namely addressing
the Eshelby inclusion problem in the PFC model. Moreover, we showed the model’s capabil-
ities by numerical simulations performed with a simple but efficient numerical scheme. An
overview of how the parameters entering the model control the growing morphologies is pro-
vided, focusing on the dendritic growth regime. Importantly, we characterized thermal stress
effects in the system due to the variation of the lattice spacing induced by temperature changes.
This is found to affect the merging process of growing crystals.
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This work sets the ground for a comprehensive approach to crystal growth at diffusive time
scales, retaining microscopic features. Perspective extensions include the modeling and sim-
ulations of the growth of faceted crystals and dendrites in open systems beyond closed ones
enforced here by periodic boundary conditions and accounting for the latent heat of solidifica-
tion. Like classical PFC and phase-field models, the approach presented here could be readily
applied to the study of three-dimensional systems with the aid of efficient numerical methods
[25, 58]. However, for this purpose, the so-called APFC model [42, 44] may also represent an
ideal framework as it features an additional spatial coarse-graining and may enable large-scale
simulations. Additionally, considering explicit modeling of elastic relaxation may allow for a
better description of competitive time scales, in particular concerning elastic relaxation and
diffusive dynamics [32, 33, 45, 57], also in the presence of heat flux.

Acknowledgments

MP and MS acknowledge support from the German Research Foundation (DFG) under Grant
No. SA4032/2-1. AV acknowledges support from the German Research Foundation (DFG)
within SPP1959 under Grant No. Vo899/20-2. SMW gratefully acknowledges support from
the US National Science Foundation under Grant NSF-DMS 2012634. The authors acknowl-
edge useful discussions with Ken R Elder. Computing resources have been provided by the
Center for Information Services and High-Performance Computing (ZIH) at TU Dresden, and
by Jiilich Supercomputing Center under Grant PFAMDIS.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
10.5281/zenod0.6957382

ORCID iDs

Maik Punke @ https://orcid.org/0000-0002-3564-7942
Steven M Wise & https://orcid.org/0000-0003-3824-2075
Axel Voigt @ https://orcid.org/0000-0003-2564-3697
Marco Salvalaglio & https://orcid.org/0000-0002-4217-0951

References

[1] Langer J S 1980 Rev. Mod. Phys. 52 1-28

[2] Flemings M C 1974 Metall. Mater. Trans. B 5 2121-34

[3] Dantzig J A and Rappaz M 2016 Solidification: Revised & Expanded (Lausanne: EPFL Press)

[4] StanglJ, Holy V and Bauer G 2004 Rev. Mod. Phys. 76 725-83

[5] Polshettiwar V, Baruwati B and Varma R S 2009 ACS Nano 3 728-36

[6] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M and Trivedi R 2000 Acta
Mater. 48 43-70

[7]1 HoytJ J, Asta M and Karma A 2003 Mater. Sci. Eng. R 41 121-63

[8] Jaafar M A, Rousse D R, Gibout S and Bédécarrats J-P 2017 Renewable Sustainable Energy Rev.
74 1064-79

[9] Gréandsy L, Toth G I, Warren J A, Podmaniczky F, Tegze G, Ratkai L and Pusztai T 2019 Prog.
Mater. Sci. 106 100569

[10] Alexandrov D V and Galenko P K 2021 Phil. Trans. R. Soc. A 379 20200325

17



Modelling Simul. Mater. Sci. Eng. 30 (2022) 074004 M Punke et a/

[11] Kobayashi R 1993 Physica D 63 410-23

[12] Karma A and Rappel W-J 1998 Phys. Rev. E 57 4323-49

[13] Zhu M and Stefanescu D 2007 Acta Mater. 55 1741-55

[14] Steinbach 12009 Modelling Simul. Mater. Sci. Eng. 17 073001

[15] Pan S and Zhu M 2010 Acta Mater. 58 340-52

[16] Takaki T 2014 ISIJ Int. 54 437-44

[17] Kaiser J W J, Adami S, Akhatov I S and Adams N A 2020 Int. J. Heat Mass Transfer 155 119800

[18] Suzuki T, Ode M, Kim S G and Kim W T 2002 J. Cryst. Growth 237-239 125-31

[19] Torabi S, Lowengrub J, Voigt A and Wise S 2009 Proc. R. Soc. A 465 1337-59

[20] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701

[21] Elder K R and Grant M 2004 Phys. Rev. E 70 051605

[22] Provatas N and Elder K 2010 Phase-Field Methods in Materials Science and Engineering (New
York: Wiley)

[23] Emmerich H, Léwen H, Wittkowski R, Gruhn T, Téth G 1, Tegze G and Gréandsy L 2012 Adv. Phys.
61 665-743

[24] Tegze G, T6th G I and Grandsy L 2011 Phys. Rev. Lett. 106 195502

[25] Tang S, Backofen R, Wang J, Zhou Y, Voigt A and Yu Y-M 2011 J. Cryst. Growth 334 14652

[26] Podmaniczky F, T6th G I, Pusztai T and Grandsy L 2014 J. Cryst. Growth 385 14853

[27] Ofori-Opoku N, Warren J A and Voorhees P W 2018 Phys. Rev. Mater. 2 083404

[28] Kocher G and Provatas N 2019 Phys. Rev. Mater. 3 053804

[29] Wang C and Wise S M 2021 arXiv:2107.05555

[30] Spatschek R and Karma A 2010 Phys. Rev. B 81 214201

[31] Heinonen V, Achim C V, Elder K R, Buyukdagli S and Ala-Nissila T 2014 Phys. Rev. E 89 032411

[32] Heinonen V, Achim C V, Kosterlitz J M, Ying S C, Lowengrub J and Ala-Nissila T 2016 Phys. Rev.
Lert. 116 024303

[33] Skaugen A, Angheluta L and Vifials J 2018 Phys. Rev. Lett. 121 255501

[34] Skaugen A, Angheluta L and Viiials J 2018 Phys. Rev. B 97 054113

[35] Salvalaglio M, Voigt A and Elder K R 2019 npj Comput. Mater. 5 48

[36] Salvalaglio M, Chockalingam K, Voigt A and Dérfler W 2022 Examples Counterexamples 2 100067

[37] Billig E and Allibone T E 1956 Proc. R. Soc. A 235 37-55

[38] Rappaz M 1989 Int. Mater. Rev. 34 93—-124

[39] Koch R 1994 J. Phys.: Condens. Matter. 6 9519—50

[40] Elsey M and Wirth B 2013 ESAIM: Math. Modelling Numer. Anal. 47 1413-32

[41] Skogvoll V, Skaugen A and Angheluta L 2021 Phys. Rev. B 103 224107

[42] Goldenfeld N, Athreya B P and Dantzig J A 2005 Phys. Rev. E 72 020601

[43] Athreya B P, Nigel G and Dantzig J A 2006 Phys. Rev. E 74 011601

[44] Salvalaglio M and Elder K R 2022 Modelling Simul. Mater. Sci. Eng. 30 053001

[45] Skogvoll V, Angheluta L, Skaugen A, Salvalaglio M and Viiials J 2022 J. Mech. Phys. Solids 166
104932

[46] Salvalaglio M, Angheluta L, Huang Z-F, Voigt A, Elder K R and Viiials J 2020 J. Mech. Phys. Solids
137 103856

[47] Eshelby J D 1957 Proc. R. Soc. A 241 376-96

[48] Eshelby J D 1959 Proc. R. Soc. A 252 561-9

[49] Mura T 1982 Micromechanics of Defects in Solids (Berlin: Springer)

[50] Li S, Sauer R and Wang G 2005 Acta Mech. 179 67-90

[51] Ohring M 1995 Thermodynamic of solids Engineering Materials Science ed M Ohring (New York:
Academic) pp 189-247

[52] Alexandrov D V and Makoveeva E V 2020 Phys. Lett. A 384 126259

[53] Tiller W A 1991 The Science of Crystallization: Microscopic Interfacial Phenomena (Cambridge:
Cambridge University Press)

[54] Chen Z, Hu Y, He X, Xiao T, Hao L and Ruan Y 2021 Mater. Today Commun. 29 102935

[55] Galenko P K and Elder K R 2011 Phys. Rev. B 83 064113

[56] Galenko P K, Sanches F I and Elder K R 2015 Physica D 308 1-10

[57] Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504

[58] Yamanaka A, McReynolds K and Voorhees P W 2017 Acta Mater. 133 160-71

18



