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Abstract: In this manuscript, we present a coherent rigorous overview of the main properties of
Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type
are scattered through the literature and can be difficult to find. A special emphasis has been put
on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar
fact that for a general nonsmooth domain QinR”,0 < t < 1,and 1 < p < o, it is not necessarily
true that W7(Q) — WHP(Q). This has dire consequences in the multiplication properties of
Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus
on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly
useful in better understanding the behavior of elliptic differential operators on compact manifolds.
In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general
framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij
spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that
are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles,
cannot be found in the literature in the generality appearing here.
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1. Introduction

Suppose s € Rand p € (1, 00). With each nonempty open set ) in R” we can associate
a complete normed function space denoted by W*?(Q)) called the Sobolev-Slobodeckij
space with smoothness degree s and integrability degree p. Similarly, given a compact
smooth manifold M and a vector bundle E over M, there are several ways to define the
normed spaces W*? (M) and more generally W*?(E). The main goal of this manuscript is
to review these various definitions and rigorously study the key properties of these spaces.
Some of the properties that we are interested in are as follows:

*  Density of smooth functions

*  Completeness, separability, reflexivity

*  Embedding properties

*  Behavior under differentiation

*  Being closed under multiplication by smooth functions:

?
u e W, ¢issmooth = gu € W*?
¢ Invariance under change of coordinates:

u e W¥, Tis a diffeomorphism s uoT e WP

e Invariance under composition by a smooth function:
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u € W, Fis smooth = F(u) e W¥P

As we shall see, there are several ways to define W*”(E). In particular, |[u||yys»(g) can
be defined using the components of the local representations of u with respect to a fixed
augmented total trivialization atlas A, or it can be defined using the notion of connection in
E. Here are some of the questions that we have studied in this paper regarding this issue:

*  Are the different characterizations that exist in the literature equivalent? If not, what is
the relationship between the various characterizations of Sobolev-Slobodeckij spaces
on M?

*  Inparticular, does the corresponding space depend on the chosen atlas (more precisely
the chosen augmented total trivialization atlas) used in the definition?

*  Suppose f € WP (M). Does this imply that the local representation of f with respect
to each chart (Uy, @y ) is in WP (¢ (Uy))? If g is a metric on M and g € W**, can we
conclude that g;; o Pt € WP (@ (Uy))?

*  Suppose that P : C*(M) — C*(M) is a linear differential operator. Is it possible
to gain information about the mapping properties of P by studying the mapping
properties of its local representations with respect to charts in a given atlas? For
example, suppose that the local representations of P with respect to each chart (U, )
in an atlas is continuous from W7 (@, (Uy,)) to WP (¢, (Uy)). Is it possible to extend
P to a continuous linear map from W* (M) to W57 (M)?

To further motivate the questions that are studied in this paper and the study of the
key properties mentioned above, let us consider a concrete example. For any two sets
A and B, let Func(A, B) denote the collection of all functions from A to B. Consider the
differential operator

divg : C*(TM) — Func(M, R), dive X = (tro sharp, o Vo flatg) X,

on a compact Riemannian manifold (M, g) with g € W*?. Let { (U,, ¢« ) } be a smooth atlas
for M. It can be shown that for each «

:f;¢£%gébu¢am%XWb¢?ﬂ,
= «

where g, (x) is the matrix whose (i, j)-entry is (gij o ¢, ')(x). As it will be discussed in
detail in Section 10, we call Q% : C®(¢q(Uy), R") — Func(¢,(Uy), R) defined by
d 1 d

:]; 7@(%@[(\/@)0”)]

Q(Y7)

Q(Y)

the local representation of div, with respect to the local chart (Uy, ¢x). Let us say we can
prove that for each a and j, Qf maps Wy (¢u(Ux)) to W= (,(Uy)). Can we conclude

that divg maps W%(TM) to We~14(M)? Furthermore, how can we find exponents e and ¢
such that

Q- W (9 (Ua)) = W (9o (Ua))

is a well-defined continuous map? We will see how the properties we mentioned above
play a key role in answering these questions.

Since W7 (Q)) = LP(Q)), Sobolev-Slobodeckij spaces can be viewed as a generalization
of classical Lebesgue spaces. Of course, unlike Lebesgue spaces, some of the key properties
of W¥P(Q) (for s # 0) depend on the geometry of the boundary of Q). Indeed, to thoroughly
study the properties of W*?(()) one should consider the following cases independently:

1) Q=R"
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24) bounded

2b) unbounded

3a) bounded
3b) unbounded

Let us mention here four facts to highlight the dependence on domain and some
atypical behaviors of certain fractional Sobolev spaces. Let s € (0,00) and p € (1,0).

. Fact 1:

(2) Qs an arbitrary open subset of R" {

(38) Qisan open subset of R” with smooth boundary {

d
Vi —  WSP(R") — WS LP(R"
P W ®")
is a well-defined bounded linear operator.
*  Fact2: If we further assume that s # % and ) has smooth boundary then

Vi 9. WSP(Q) — W= P(Q)
ox/
is a well-defined bounded linear operator.
e Fact3: If5 <s,then

WP (R™) < WSP(R™).
*  Fact4: If Q) does NOT have Lipschitz boundary, then it is NOT necessarily true that
WP (Q) — W (Q)

for0 <5< 1.

Let M be an n-dimensional compact smooth manifold and let {(Uy, ¢« ) } be a smooth
atlas for M. As we will see, the properties of Sobolev-Slobodeckij spaces of sections of
vector bundles on M are closely related to the properties of spaces of locally Sobolev-
Slobodeckij functions on domains in R”. Primarily we will be interested in the prop-
erties of W9 (¢, (Uy)) and WlS of(cpa( Uy )). Furthermore, when we want to patch things
together consistently and move from “local” to “global”, we will need to consider spaces
WP (9o (Ux NUg)) and WP (g (U M Ug)). However, as we pointed out earlier, some of
the properties of W*?(Q)) depend heavily on the geometry of the boundary of Q). Consider-
ing that the intersection of two Lipschitz domains is not necessarily a Lipschitz domain, we

need to consider the following question:

¢ Isitpossible to find an atlas such that the image of each coordinate domain in the atlas
(and the image of the intersection of any two coordinate domains in the atlas) under
the corresponding coordinate map is either the entire R” or a nonempty bounded set
with smooth boundary? Furthermore, if we define the Sobolev spaces using such an
atlas, will the results be independent of the chosen atlas?

This manuscript is an attempt to collect some results concerning these questions and
certain other fundamental questions similar to the ones stated above, and we pay special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. There are a number of standard sources for properties of integer order Sobolev
spaces of functions and related elliptic operators on domains in R" (cf. [1-3]), real order
Sobolev spaces of functions [4-8], Sobolev spaces of functions on manifolds [9-12], and
Sobolev spaces of sections of vector bundles on manifolds [13,14]. However, most of these
works focus on spaces of functions rather than general sections, and in many cases the
focus is on integer order spaces. This paper should be viewed as a part of our efforts to
build a more complete foundation for the study and use of Sobolev-Slobodeckij spaces on
manifolds through a sequence of related manuscripts [15-18].
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Outline of Paper. In Section 2, we summarize some of the basic notation and con-
ventions used throughout the paper. In Section 3, we will review a number of basic
constructions in linear algebra that are essential in the study of function spaces of gen-
eralized sections of vector bundles. In Section 4 we will recall some useful tools from
analysis and topology. In particular, a concise overview of some of the main properties
of topological vector spaces is presented in this section. Section 5 deals with reviewing
some results we need from differential geometry. The main purpose of this section is to
set the notation, definitions, and conventions straight. This section also includes some less
well-known facts about topics such as higher order covariant derivatives in the context
of vector bundles. In Section 6 we collect the results that we need from the theory of
generalized functions on Euclidean spaces and vector bundles. Section 7 is concerned
with various definitions and properties of Sobolev spaces that are needed for developing
a coherent theory of such spaces on the vector bundles. In Sections 8 and 9 we introduce
Lebesgue spaces and Sobolev-Slobodeckij spaces of sections of vector bundles and we
present a rigorous account of their various properties. Finally in Section 10 we study the
continuity of certain differential operators between Sobolev spaces of sections of vector
bundles. Although the purpose of Section 3 through Section 7 is to give a quick overview
of the prerequisites that are needed to understand the proofs of the results in later sections
and set the notation straight, as it was pointed out earlier, several theorems and proofs that
appear in these sections cannot be found elsewhere in the generality that are stated here.

2. Notation and Conventions

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and Ny denotes the set of nonnegative integers. For any nonnegative real number
s, the integer part of s is denoted by |s]. The letter # is a positive integer and stands for the
dimension of the space.

() is a nonempty open set in R". The collection of all compact subsets of () will be
denoted by K(Q2). Lipschitz domain in R" refers to a nonempty bounded open set in R"
with Lipschitz continuous boundary.

Each element of Ng is called a multi-index. For a multi-index & = (ay,...,a,) € NI,
we let
o la|i=a .. Fay
o al:=aq!. .l

If o, 3 € N, wesay B < a provided that f; < a; foralll <i < n. If g < a, welet

() = a=mn = () (5)

Suppose that « € Njj. For sufficiently smooth functions u : 3 — R (or for any
distribution u) we define the ath order partial derivative of u as follows:

o

0" u = %
dxy'...0xy"

We use the notation A < B to mean A < ¢B, where c is a positive constant that does
not depend on the non-fixed parameters appearing in A and B. We write A ~ Bif A < B
and B < A.

For any nonempty set X and r € N, X*" stands for X x ... x X.

5,—/
r times

For any two nonempty sets X and Y, Func(X, Y) denotes the collection of all functions
from X to Y.

We write L(X,Y) for the space of all continuous linear maps from the normed space X
to the normed space Y. L(X, R) is called the (topological) dual of X and is denoted by X*.
We use the notation X < Y to mean X C Y and the inclusion map is continuous.
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GL(n,R) is the set of all n x n invertible matrices with real entries. Note that GL(n, R)
can be identified with an open subset of R™ and so it can be viewed as a smooth manifold
(more precisely, GL(n, R) is a Lie group).

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second-countable.

Let M be an n-dimensional compact smooth manifold. The tangent space of the
manifold M at point p € M is denoted by T, M, and the cotangent space by Ty M. If (U, ¢ =
(x')) is a local coordinate chart and p € U, we denote the corresponding coordinate basis
for T,M by 9;|, while % |x denotes the basis for the tangent space to R” at x = ¢(p) € R";
that is,

P+0; = PR
Note that for any smooth function f : M — R we have

@if)op = i(fop™).

The vector space of all k-covariant, I-contravariant tensors on T, M is denoted by
TF(T,M). So, each element of T} (T, M) is a multilinear map of the form

F:T;,‘Mx~--><T;M><TPM><~~-><T,,M—>R.

[ copies k copies
We are primarily interested in the vector bundle of (’f )-tensors on M whose total space is

THM) = |] THT,M).
peEM

A section of this bundle is called a (ll( )-tensor field. We set T*M := T§(M). TM denotes the
tangent bundle of M and T*M is the cotangent bundle of M. We set

(M) = C®(M, Tf(M)) = collection of smooth (l,()—tensor fields on M

and
x(M) = C®(M, TM) = the collection of smooth vector fields on M.

A symmetric positive definite section of T>M is called a Riemannian metric on M. If
M is equipped with a Riemannian metric g, the combination (M, g) will be referred to as a
Riemannian manifold. If there is no possibility of confusion, we may write (X, Y) instead
of g(X,Y). The norm induced by g on each tangent space will be denoted by ||.||¢. We say
that g is smooth (or the Riemannian manifold is smooth) if g € C*(M, T2M).

d denotes the exterior derivative and grad : C*(M) — C®(M,TM) denotes the
gradient operator which is defined by g(grad f, X) = d f(X) for all f € C®(M) and
X e C®(M, TM).

Given a metric g on M, one can define the musical isomorphisms as follows:

flatg : TyM — T, M
X=X =g(X, ),
sharp, : T,M — T,M
> ph = flat, ' ().

Using sharp, we can define the (g)—tensor field ¢~! (which is called the inverse metric
tensor) as foﬁows

&' (¢1,¢92) := g(sharpy (1), sharp, (¢2)) .
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Let {E;} be a local frame on an open subset U C M and {1} be the corresponding dual
coframe. So we can write X = X'E; and ¢ = ¢;n". It is standard practice to denote the ith
component of flaty X by X; and the ith component of sharpg(gb) by '

flate X = X', sharp ¢ = ¢'E;.

It is easy to show that , ‘ B
X = gin], Y= gl]l,l’j,
where g;; = ¢(E;, Ej) and g7 = ¢~ (if',5y/). It is said that flaty X is obtained from X by
lowering an index and sharp,  is obtained from ¢ by raising an index.

3. Review of Some Results from Linear Algebra

In this section, we summarize a collection of definitions and results from linear algebra
that play an important role in our study of function spaces and differential operators
on manifolds.

There are several ways to construct new vector spaces from old ones: subspaces,
products, direct sums, quotients, etc. The ones that are particularly important for the
study of Sobolev spaces of sections of vector bundles are the vector space of linear maps
between two given vector spaces, the tensor product of vector spaces, and the vector space
of all densities on a given vector space which we briefly review here in order to set the
notation straight.

e Let Vand W be two vector spaces. The collection of all linear maps from V to W is a
new vector space which we denote by Hom(V, W). In particular, Hom(V, R) is the
(algebraic) dual of V. If V and W are finite-dimensional, then Hom(V, W) is a vector
space whose dimension is equal to the product of dimensions of V and W. Indeed, if
we choose a basis for V and a basis for W, then Hom(V, W) is isomorphic with the
space of matrices with dim W rows and dim V' columns.

e Let U and V be two vector spaces. Roughly speaking, the tensor product of U and V
(denoted by U ® V) is the unique vector space (up to isomorphism of vector spaces)
such that for any vector space W, Hom(U ® V, W) is isomorphic to the collection of
bilinear maps from U x V to W. Informally, U ® V consists of finite linear combinations
of symbols u ® v, where u € U and v € V. It is assumed that these symbols satisfy the
following identities:

(u+u)@v—u1Q®v—u ®v =0,
U (v14+v) —uRv —u®uvy, =0,
a(u®ov)— (au)@0v =0,
a(u®ov) —u® (av) =0,

forall u,uq,up € U, v,v1,v2 € V and a« € R. These identities simply say that the map
:UxV->URV, (h,v)—~uRou,
is a bilinear map. The image of this map spans U ® V.

Definition 1. Let U and V be two vector spaces. Tensor product is a vector space U @ V
together with a bilinear map @ : U xV — U®V, (u,v) — u ® v such that given any
vector space W and any bilinear map b : U x V. — W, there is a unique linear map
b:U®V — Wuwithb(u®v) = b(u,v). That is, the following diagram commutes:

uev

o]

p A
UxV — W
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For us, the most useful property of the tensor product of finite dimensional vector
spaces is the following property:

Hom(V,W)=V* @ W.

Indeed, the following map is an isomorphism of vector spaces:

F:V*®@W — Hom(V,W), F(v* @ w) (v) = [v"(v)] w.
—— ——
an element of Hom(V, W) a real number

It is useful to obtain an expression for the inverse of F too. That is, given T €
Hom(V, W), we want to find an expression for the corresponding element of V* @ W.
To this end, let {e;}1<;<,, be a basis for V and {e'};<;<, denote the corresponding dual
basis. Let {s, }1<4<, be a basis for W. Then {¢' ® s;,} is a basis for V* ® W. Suppose
Y. Rl ® s, is the element of V* ® W that corresponds to T. We have

F(YRle @s,) =T=VueV Y RIFle'®s4)(u)=T(u)
ia ia
= VueV ZR?ei(u)sa =T(u).

i,a
In particular, forall1 <j <mn,

T(ej) = Y R? ei(ej)sa = ZR}’S,{.
i,a SN~ a

That is, R} is the entry in the ath row and ith column of the matrix of the linear
transformation T.
Let V be an n-dimensional vector space. A density on Visafunctionp: V x ... xV —
\_\,_/
n copies

R with the property that
u(Toq, ..., To,) = |detT|pu(vy, ..., v0),

forall T € Hom(V,V).

We denote the collection of all densities on V by D(V). It can be shown that D(V) is a
one dimensional vector space under the obvious vector space operations. Indeed, if
(e1,...,ex) is a basis for V, then each element y € D(V) is uniquely determined by
its value at (ey, ..., e,) because for any (vy,...,v,) € V*", we have u(vy,...,v,) =
|detT|pu(ey, ..., en) where T : V — V is the linear transformation defined by T(e;) = v;
forall1l <i < mn. Thus

F:D(V) =R, F(u) =puler, ..., en),

will be an isomorphism of vector spaces.

Moreover, if w € A"(V) where A" (V) is the collection of all alternating covariant
n-tensors, then |w| belongs to D(V). Thus, if w is any nonzero element of A”(V), then
{|w|} will be a basis for D(V) ([19], p. 428).

4. Review of Some Results from Analysis and Topology
4.1. Euclidean Space

Let () be a nonempty open set in R” and m € Ny. Here is a list of several useful

function spaces on ():
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C(Q) ={f:Q—R: fiscontinuous}
C"Q)={f:Q—=R:Vija|<m *feC(Q)} (C°(Q) = Cc(O))
BC(Q) = {f : Q — R f is continuous and bounded on O}

BC"(Q) ={feC"(Q):V]a] <m 0"fisbounded on O}

BC(Q) ={f:Q— R: f € BC(Q) and f is uniformly continuous on ()}
Cm(()) {fQO-R:fe BC'”( ), Y| <m a“f is uniformly continuous on O}
“(Q)= (] C"(Q), BC(Q)= () BC"(Q), BC(Q)= () BC"(O)
meNy meNy meNy

Remark 1 ([1]). If ¢ : Q — R is in BC(Q), then it possesses a unique, bounded, continuous
extension to the closure Q) of Q).

Notation: Let () be a nonempty open set in R”. The collection of all compact sets in (2 is
denoted by K£(Q)). If f : QO — Ris a function, the support of f is denoted by supp f. Notice
that, in some references supp f is defined as the closure of {x € (0 : f(x) # 0} in Q), while
in certain other references it is defined as the closure of {x € Q) : f(x) # 0} in R". Of
course, if we are concerned with functions whose support is inside an element of (Q}),
then the two definitions agree. For the sake of definiteness, in this manuscript we always
use the former interpretation of support. Furthermore, support of a distribution will be
discussed in Section 6.

Remark 2. If F(Q) is any function space on QY and K € KC(Q)), then F (Q)) denotes the collection
of elements in F (Q)) whose support is inside K. Furthermore,

fc(Q) = ]:comp(Q) = U ]:K(Q
Kek(Q)

Let0 < A < 1. A function F : Q C R" — Rk is called A-Holder continuous if there
exists a constant L such that

[F(x) = F(y)| < Llx—y|* Vx,yeQ.

Clearly, a A-Holder continuous function on () is uniformly continuous on (). 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BC"MQ) ={f: Q= R:V|a| <m 3*fis A-Holder continuous and bounded }
={feBC"(Q):V|a] <m 9*fis A-Holder continuous}
={f € BC"(Q)) :V|a| <m 9"fis A-Holder continuous}

and BC®*(Q) := Nyen, BC™(Q).
Remark 3. Let F: Q C R" — RK(F = (F',--- ,FK)). Then
Fis Lipschitz <= V1 <i <k Flis Lipschitz .

Indeed, for each i

k

|F'(x) = Fl(y)| < J Y |Fi(x) = Fi(y)|* = [F(x) = F(y)| < L|x - ],

j=1
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which shows that if F is Lipschitz so will be its components. Furthermore, if for each i, there exists
L; such that ' ‘
[F'(x) = F(y)| < Lilx —yl,

then .
Y IF (x) = Fl(y) ] < nL?|x —yl?,
=1

where L = max {Ly,- - - , Ly }. This proves that if each component of F is Lipschitz so is F itself.

Theorem 1 ([20]). Let Q) be a nonempty open set in R" and let K € IC(QY). There is a function
Y € CX(Q) taking values in [0, 1] such that ¢ = 1 on a neighborhood of K.

Theorem 2 (Exhaustion by Compact Sets [20]). Let Q2 be a nonempty open subset of R". There
exists a sequence of compact subsets (K;);cn such that U]-eNI%]- = Qand

KiCK CKC CKCKCoe.

Moreover, as a direct consequence, if K is any compact subset of the open set ), then there exists an
open set Vsuchthat KCV CV C Q.

Theorem 3 ([20]). Let Q) be a nonempty open subset of R". Let {K;} e be an exhaustion of Q) by
compact sets. Define
Vo=Ky,  VjeN V;=Kj4\K;.
Then
(1) Each V; is an open bounded set and () = U;V;;

(2)  The cover {V;}jcn, is locally finite in Q), that is, each compact subset of Q) has nonempty
intersection with only a finite number of the V;'s;

(3)  There is a family of functions p; € CZ(QY) taking values in [0, 1] such that supp p; C V; and

) pi(x) =1 forallx € Q.

jeNo

Theorem 4 ([21], p. 74). Suppose Q) is an open set in R" and G : Q — G(Q) C R"isa
Cl-diffeomorphism (i.e., G and G~ are both C' maps). If f is a Lebesgue measurable function on
G(Q), then f o G is Lebesgue measurable on Q. If f > 0 or f € LY (G(Q)), then

/Gm) flodx = /nfo G(x)|detG’(x)|dx .

Theorem 5 ([21], p. 79). If f is a nonnegative measurable function on R" such that f(x) = g(|x|)
for some function g on (0, c0), then

[e9)

[ fedx = (s ) [ ety tar,

0

where o(S"~1) is the surface area of (n — 1)-sphere.

Theorem 6 ([22], Section 12.11). Suppose U is an open set in R" and f : U — R is differentiable.
Let x and y be two points in U and suppose the line segment joining x and y is contained in U.
Then there exists a point z on the line joining x to y such that

fy) = f(x) = Vf(2)-(y = x).

As a consequence, if U is convex and all first order partial derivatives of f are bounded, then f is
Lipschitz on U.
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Warning: Suppose f € BC®(U). By the above item, if U is convex, then f is Lipschitz.
However, if U is not convex, then f is not necessarily Lipschitz. For example, let U =
U o(n,n+1) and define

fiUSR, fx)=(-1)"Vxe mn+1).

Clearly, all derivatives of U are equal to zero, so f € BC®(U). However, f is not uniformly
continuous and thus it is not Lipschitz. Indeed, forany 1 > > 0, wecanletx =2 —5/4
and y = 2+ 6/4. Clearly |x — y| < J, however, |f(x) — f(y)| = 2.

Of course, if f € Cl(U), then f can be extended by zero to a function in C!(R"). Since
R" is convex, we may conclude that the extension by zero of f is Lipschitz which implies
that f : U — Ris Lipschitz. As a consequence, C}(U) € BC%!(U) and C&°(U) C BC™'(U).
Furthermore, Theorem 60 and the following theorem provide useful information regarding
this issue.

Theorem 7. Let U C R" and V C R be two nonempty open sets and let T : U — V (T =
(TY,...,T%)) bea C' map (that is, for each 1 < i <k, T' € C'(U)). Suppose B C U is a bounded
setsuchthat BC BC U. ThenT:B — Vis Lipschitz.

Proof. By Remark 3 it is enough to show that each T’ is Lipschitz on B. Fix a function
@ € C®(R") such that ¢ = 1 on Band ¢ = 0 on R" \ U. Then ¢T' can be viewed as an
element of C!(R"). Therefore, it is Lipschitz (R" is convex) and there exists a constant L,
which may depend on ¢, B and T, such that

9T (x) = ¢T'(y)| < Llx—y| Vx,yeR".
Since ¢ = 1 on B, it follows that
T'(x) = T'(y)| < Llx—y| Vxye€B.
O

4.2. Normed Spaces
Theorem 8. Let X and Y be normed spaces. Let A be a dense subspace of X and B be a dense
subspace of Y. Then

e AXBisdensein X xY;
e IfT:AxB — Risa continuous bilinear map, then T has a unique extension to a continuous
bilinear operator T : X x Y — R.

Theorem 9 ([1]). Let X be a normed space and let M be a closed vector subspace of X.
(1) If X is reflexive, then X is a Banach space.

(2) X is reflexive if and only if X* is reflexive.

(3) If X* is separable, then X is separable.

(4) If X is reflexive and separable, then so is X*.

(6)  If X is a reflexive Banach space, then so is M.

(6) If X is a separable Banach space, then so is M.

Moreover, if X1, . .., X, are reflexive Banach spaces, then X1 x ... x X, equipped with the norm

el = Ml + -+ [lllx,

is also a reflexive Banach space.
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4.3. Topological Vector Spaces

There are different, generally nonequivalent, ways to define topological vector spaces.
The conventions in this section mainly follow Rudin’s functional analysis [23]. Statements
in this section are either taken from Rudin’s functional analysis, Grubb’s distributions and
operators [20], excellent presentation of Reus [24], and Treves’ topological vector spaces [25]
or are direct consequences of statements in the aforementioned references. Therefore we
will not give the proofs.

Definition 2. A topological vector space is a vector space X together with a topology T with the
following properties:

(i) Forall x € X, the singleton {x} is a closed set.
(i)  The maps

(x,y) —»x+y  (from X x Xinto X),
(A, x) — Ax (from R x X into X),

are continuous where X x X and R x X are equipped with the product topology.

Definition 3. Suppose (X, T) is a topological vector space and Y C X.

*  Yissaid to be convex if forall y1,y2 € Yand t € (0,1) it is true that ty; + (1 —t)y, € Y.

*  Yissaid to be balanced if for all y € Y and |A| < 1t holds that Ay € Y. In particular, any
balanced set contains the origin.

o Wesay Y is bounded if for any neighborhood U of the origin (i.e., any open set containing the
origin), there exits t > 0 such that Y C tU.

Theorem 10 (Important Properties of Topological Vector Spaces).

*  Every topological vector space is Hausdorff.
e If(X, 1) is a topological vector space, then

(1) Foralla € X: E € T<= a+ E € 1 (that is, T is translation invariant);
(2)  ForallA € R\ {0}: E € T <= AE € T (that is, T is scale invariant);
(3) IfAC Xisconvexand x € X, then sois A+ x;

(4)  If {Ai}icr is a family of convex subsets of X, then N1 A; is convex.

Note: Some authors do not include condition (i) in the definition of topological vector
spaces. In that case, a topological vector space will not necessarily be Hausdorff.

Definition 4. Let (X, T) be a topological space.

e Acollection B C 7 is said to be a basis for T, if every element of T is a union of elements in B.

o Letp e X. Ify C tis such that each element of vy contains p and every neighborhood of p
(i.e., every open set containing p) contains at least one element of <y, then we say y is a local
base at p. If X is a vector space, then the local base <y is said to be convex if each element of <y
is a convex set.

* (X, 1) is called first-countable if each point has a countable local base.

* (X, 7) is called second-countable if there is a countable basis for T.

Theorem 11. Let (X, T) be a topological space and suppose for all x € X, 7y is a local base at x.
Then B = UyexYx is a basis for T.

Theorem 12. Let X be a vector space and suppose T is a translation invariant topology on X. Then
forall x1,x, € X, the collection 7y, is a local base at xy if and only if the collection {A + (xp —
xl)},qeﬂh1 is a local base at x.
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Remark 4. Let X be a vector space and suppose T is a translation invariant topology on X. As a
direct consequence of the previous theorems the topology T is uniquely determined by giving a local
base 7y, at some point xg € X.

Definition 5. Let (X, T) be a topological vector space. X is said to be metrizable if there exists a
metric d : X x X — [0, c0) whose induced topology is T. In this case we say that the metric d is
compatible with the topology T.

Theorem 13. Let (X, T) be a topological vector space.

e X ismetrizable <=> there exists a metric d on X such that for all x € X, {B(x, %)}WEN isa
local base at x.
o Ametric d on X is compatible with T <= forall x € X, {B(x, 1)}, cn is a local base at x.

(B(x, 1) is the open ball of radius 1 centered at x).

Definition 6. Let X be a vector space and d be a metric on X. d is said to be translation invariant
provided that
Vx,yae X dx+ay+a)=dxy).

Remark 5. Let (X, T) be a topological vector space and suppose d is a translation invariant metric
on X. Then the following statements are equivalent:

(1) Forall x € X, {B(x, 1)},en is a local base at x.
(2)  There exists xo € X such that {B(xo, 1)} ,en is a local base at x,.

Therefore, d is compatible with T if and only if {B(0, 1)},cn is a local base at the origin.

Theorem 14. Let (X, T) be a topological vector space. Then (X, T) is metrizable if and only if
it has a countable local base at the origin. Moreover, if (X, T) is metrizable, then one can find a
translation invariant metric that is compatible with t.

Definition 7. Let (X, T) be a topological vector space and let {x, } be a sequence in X.

*  Wesay that {x,} converges to a point x € X provided that
VvUuert,xeld IN Vn>N x,€U.
e Wesay that {x,} is a Cauchy sequence provided that

VUet,0ecU IN Vmn>N x,—xpclU.

Theorem 15. Let (X, T) be a topological vector space, {x,} be a sequence in X, and x,y € X.
Additionally, suppose <y is a local base at the origin. The following statements are equivalent:

(1) x, — x;

2) (xn—x)—=0;

3 xnty—x+y;

4) VVey IN Vn>N x,—x€eV.

Moreover, {xy } is a Cauchy sequence if and only if
VVey AN Vum>N x,—x, €V.

Remark 6. In contrast with properties like continuity of a function and convergence of a sequence
which depend only on the topology of the space, the property of being a Cauchy sequence is not a
topological property. Indeed, it is easy to construct examples of two metrics di and dy on a vector
space X that induce the same topology (i.e., the metrics are equivalent) but have different collection
of Cauchy sequences. However, it can be shown that if di and dy are two translation invariant
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metrics that induce the same topology on X, then the Cauchy sequences of (X, dy) will be exactly
the same as the Cauchy sequences of (X, d).

Theorem 16. Let (X, T) be a metrizable topological vector space and d be a translation invariant
metric on X that is compatible with T. Let {x,} be a sequence in X. The following statements are
equivalent:

(1) {xn} is a Cauchy sequence in the topological vector space (X, T).
(2)  {x,} is a Cauchy sequence in the metric space (X, d).

Definition 8. Let (X, T) be a topological vector space. We say (X, T) is locally convex if it has a
convex local base at the origin.

Note that, as a consequence of Theorems 10 and 12, the following statements are
equivalent:
(1) (X, 7)is alocally convex topological vector space.

(2) There exists p € X with a convex local base at p.
(38) For every p € X there exists a convex local base at p.

Definition 9. Let (X, T) be a metrizable locally convex topological vector space. Let d be a
translation invariant metric on X that is compatible with T. We say that X is complete if and
only if the metric space (X, d) is a complete metric space. A complete metrizable locally convex
topological vector space is called a Frechet space.

Remark 7. Our previous remark about Cauchy sequences shows that the above definition of
completeness is independent of the chosen translation invariant metric d. Indeed one can show that
the locally convex topological vector space (X, T) is complete in the above sense if and only if every
Cauchy net in (X, T) is convergent.

Theorem 17 ([26], p. 63). A linear continuous bijective mapping of a Frechet space X onto a
Frechet space Y has a continuous linear inverse.

Definition 10. A seminorm on a vector space X is a real-valued function p : X — R such that

i) VxyeX plx+y) <plx)+py)
(i) VxeXVaeR  pax) = |alp(x)

If P is a family of seminorms on X, then we say P is separating provided that for all x # 0 there
exists at least one p € P such that p(x) # 0 (that is, if p(x) = 0 forall p € P, then x = 0).

Remark 8. It follows from conditions (i) and (ii) that if p : X — R is a seminorm, then p(x) > 0
forall x € X.

Theorem 18. Suppose P is a separating family of seminorms on a vector space X. Forall p € P
andn € N let

1
Vip,n) ={xeX:px) < ;}.
Furthermore, let 7y be the collection of all finite intersections of V (p,n)’s. That is,
Acy<=JkeN,3Ipy,...,px € P, 3Inyg, ..., ng € Nsuchthat A = ﬁi»‘:1V(pl-,ni)

Then each element of vy is a convex balanced subset of X. Moreover, there exists a unique topology T
on X that satisfies both of the following properties:

(1) 7 is translation invariant (that is, if U € Tand a € X, then a4+ U € T).

(2) vy isalocal base at the origin for T.

This unique topology is called the natural topology induced by the family of seminorms P.
Furthermore, if X is equipped with the natural topology T, then



Mathematics 2022, 10, 522

14 of 103

(i) (X, 7) is alocally convex topological vector space,
(i)  every p € P is a continuous function from X to R.

Theorem 19. Suppose P is a separating family of seminorms on a vector space X. Let T be the
natural topology induced by P. Then

(1) T is the smallest topology on X that is translation invariant and with respect to which every
p € P is continuous,

(2) 7 is the smallest topology on X with respect to which addition is continuous and every p € P
is continuous.

Theorem 20. Let X and Y be two vector spaces and suppose P and Q are two separating families
of seminorms on X and Y, respectively. Equip X and Y with the corresponding natural topologies.

(1) A sequence x, converges to x in X if and only if for all p € P, p(x, — x) — 0.
(2) A linear operator T : X — Y is continuous if and only if

Vge Q@ Jc>0,keN, py,...,pr € P suchthat Vxe X |q0T(x)|§clr2'<xkpi(x).
i<

(3) A linear operator T : X — R is continuous if and only if

dc>0,keN, py,...,pr € P suchthat VxeX |T(x)\§c1ma<xkpi(x).
<i<

Theorem 21. Let X be a Frechet space and let Y be a topological vector space. When T is a linear
map of X into Y, the following two properties are equivalent:

(1) T is continuous.

2) x,—-0inX=Tx, = 0inY.

Theorem 22. Let P = {py }ren be a countable separating family of seminorms on a vector space
X. Let T be the corresponding natural topology. Then the locally convex topological vector space
(X, T) is metrizable and the following translation invariant metric on X is compatible with T:

ey =y Lo px—y)
V) = L F T p- )

Let (X, T) be a locally convex topological vector space. Consider the topological dual
of X,
X*:={f: X — R: fislinear and continuous} .

There are several ways to topologize X*: the weak™ topology, the topology of convex
compact convergence, the topology of compact convergence, and the strong topology
(see [25], Chapter 19). Here we describe the weak™ topology and the strong topology on X*.

Definition 11. Let (X, T) be a locally convex topological vector space.

*  The weak* topology on X* is the natural topology induced by the separating family of
seminorms { px } xex where

VxeX px: X" =R, pu(f) = |f(x)].

A sequence {fy} converges to f in X* with respect to the weak* topology if and only if
fm(x) = f(x) inR forall x € X.

*  The strong topology on X* is the natural topology induced by the separating family of
seminorms {pp } pc Xpounded Where for any bounded subset B of X

pp: X" =R pp(f) :=sup{|f(x)|: x € B}.
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(It can be shown that for any bounded subset B of X and f € X*, f(B) is a bounded subset
of R.)

Remark 9.
(1)  If X is a normed space, then the topology induced by the norm

VieX®  fllop= sup [f(x)]

llxllx=1

on X* is the same as the strong topology on X* ([25], p. 198).

(2)  In this manuscript, we always consider the topological dual of a locally convex topological
vector space with the strong topology. Of course, it is worth mentioning that for many of
the spaces that we will consider (including X = £(Q) or X = D(Q) where Q) is an open
subset of R") a sequence in X* converges with respect to the weak™ topology if and only if it
converges with respect to the strong topology (for more details on this see the definition and
properties of Montel spaces in Section 34.4, page 356 of [25]).

The following theorem, which is easy to prove, will later be used in the proof of
completeness of Sobolev spaces of sections of vector bundles.

Theorem 23 ([24], p. 160). If X and Y are topological vector spaces and I : X — Y and
P:Y — X are continuous linear maps such that Po I = idy, then I : X — I(X) C Y is a linear
topological isomorphism and 1(X) is closed in Y.

Now we briefly review the relationship between the dual of a product of topological
vector spaces and the product of the dual spaces. This will play an important role in our
discussion of local representations of distributions in vector bundles in later sections.

Let X, ..., X; be topological vector spaces. Recall that the product topology on
X1 X ... x X, is the smallest topology such that the projection maps

7Tk:X1><...><Xy—>Xk, ﬂk(xll,_,,xr):xk,

are continuous for all 1 < k < r. It can be shown that if each X; is a locally convex
topological vector space whose topology is induced by a family of seminorms P, then
X1 X ... x X; equipped with the product topology is a locally convex topological vector
space whose topology is induced by the following family of seminorms

{promi+...+prom:prePrV1I<k<r}.

Theorem 24 ([24], p. 164). Let X3, ..., X; be locally convex topological vector spaces. Equip
Xy X ... X Xpand X5 X ... x X} with the product topology. The mapping L : X} x ... x Xj —
(X1 X ... x X;)* defined by

L(uy,...,us) =ujom+...+uom
is a linear topological isomorphism. Its inverse is
L(v) = (voiy,...,vo0i),
where forall 1 <k <v,i;: Xy = Xq X ... X X, is defined by

ir(z) =(0,...,0, _z ,0,...,0).

k" position

The notion of adjoint operator, which frequently appears in the future sections, is
introduced in the following theorem.
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Theorem 25 ([24], p. 163). Let X and Y be locally convex topological vector spaces and suppose
T : X — Y is a continuous linear map. Then

(1)  The map
T :Y* 5 X* Ty, X)xenx = U, Tx)yexy,

is well-defined, linear, and continuous. (T* is called the adjoint of T).
(2) IfT(X)isdenseinY, then T* : Y* — X* is injective.

Remark 10. In the subsequent sections we will focus heavily on certain function spaces on domains
Q) in the Euclidean space. For approximation purposes, it is always desirable to have D(Q))(=
C(Q)) as a dense subspace of our function spaces. However, there is another, may be more
profound, reason for being interested in having D(Q)) as a dense subspace. 1t is important to
note that we would like to use the term “function spaces” for topological vector spaces that can be
continuously embedded in D' (Q)) (see Section 6 for the definition of D'(Q))) so that concepts such
as differentiation will be meaningful for the elements of our function spaces. Given a function space
A(Q) it is usually helpful to consider its dual too. In order to be able to view the dual of A(Q)) as a
function space we need to ensure that [A(Q)]|* can be viewed as a subspace of D' (QY). To this end,
according to the above theorem, it is enough to ensure that the identity map from D(Q) to A(Q) is
continuous with dense image in A(Q}).

Let us consider more closely two special cases of Theorem 25.

(1) Suppose Y is a normed space and H is a dense subspace of Y. Clearly, the identity
map i : H — Y is continuous with dense image. Therefore, i* : Y* — H* (F — F|p)is
continuous and injective. Furthermore, by the Hahn-Banach theorem for all ¢ € H*
there exists F € Y* such that F|y = ¢ and ||F||y+ = ||¢||g+. So the above map
is indeed bijective and Y* and H* are isometrically isomorphic. As an important
example, let () be a nonempty open set in R”, s > 0, and 1 < p < oco. Consider
the space W, (Q) (see Section 7 for the definition of W,7(Q))). C®(Q) is a dense
subspace of Wy (Q2). Therefore, Wt (Q) = [Wy" (Q)]* is isometrically isomorphic
to [(CZ(QY), ||.l|s,p)]*- In particular, if F € Ws#'(Q), then

o W
ozyecs(@) [¥llsp

(bl w-s' (Q)

(2) Suppose (Y, ||.|ly) is a normed space, (X, T) is a locally convex topological vector
space, X C Y, and the identity map i : (X,7) — (Y, ||.|ly) is continuous with dense
image. So i* : Y* — X* (F — F|x) is continuous and injective and can be used to
identify Y* with a subspace of X*.

*  Question: Exactly what elements of X* are in the image of i*? That is, which
elements of X* “belong to” Y*?

* Answer: ¢ € X* belongs to the image of i* if and only if ¢ : (X, |.[ly) —
R is continuous, that is, ¢ € X* belongs to the image of i* if and only if

SUP e x\ {0} —‘,‘ﬁff{ﬂ‘ < o

So, an element ¢ € X* can be considered as an element of Y* if and only if

. Lo3)
xeXx\{0} llx]|y

< 0.

Furthermore, if we denote the unique corresponding element in Y* by ¢ (normally
we identify ¢ and ¢ and we use the same notation for both) then since X is dense in Y

16lye = sup 12O T
yeY\{o} Iylly xex\{0} [lxlly
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Remark 11. To sum up, given an element ¢ € X* in order to show that ¢ can be considered

as an element of Y* we just need to show that sup..cy\ (o} Lo o and in that case,

llxlly
norm of ¢ as an element of Y* is sup, X\{0} % However, it is important to notice that

if F: Y — Ris a linear map, X is a dense subspace of Y, and F|x : (X, |.|ly) — R is
bounded, that does NOT imply that F € Y*. It just shows that there exists G € Y* such that
Glx = Flx.

We conclude this section by a quick review of the inductive limit topology.

Definition 12. Let X be a vector space and let { X, }yc1 be a family of vector subspaces of X with
the property that

e Foreacha € I, X, is equipped with a topology that makes it a locally convex topological vector
space, and

o Uper Xu = X.

The inductive limit topology on X with respect to the family { X, } 4e] is defined to be the largest

topology with respect to which

(1)  Xis a locally convex topological vector space;
(2)  All the inclusions X, C X are continuous.

Theorem 26 ([24], p. 161). Let X be a vector space equipped with the inductive limit topology
with respect to { X, } as described above. If Y is a locally convex vector space, then a linear map
T : X — Y is continuous if and only if T|x, : Xo — Y is continuous for all « € 1.

Theorem 27 ([24], p. 162). Let X be a vector space equipped with the inductive limit topology
with respect to { X, } as described above. A convex subset W of X is a neighborhood of the origin
(i.e., an open set containing the origin) in X if and only if for all w, the set W N X, is a neighborhood
of the origin in X,.

Theorem 28 ([24], p. 165). Let X be a vector space and let {X;}cn, be a nested family of vector
subspaces of X:
X0CXiC...CX G

Suppose each X; is equipped with a topology that makes it a locally convex topological vector space.
Equip X with the inductive limit topology with respect to { X;}. Then the following topologies on
X" are equivalent (=they are the same):

(1)  The product topology;
(2)  The inductive limit topology with respect to the family {X].Xr} (For each j, X].Xr is equipped
with the product topology).

As a consequence, if Y is a locally convex vector space, then a linear map T : X*" — Y is continuous
if and only if Ty xr : X].X’ — Y is continuous for all j € Ny.
j

5. Review of Some Results from Differential Geometry

The main purpose of this section is to set the notation and terminology straight. To
this end we cite the definitions of several basic terms and a number of basic properties that
we will frequently use. The main reference for the majority of the definitions is one of the
invaluable books by John M. Lee [19].

5.1. Smooth Manifolds

Suppose M is a topological space. We say that M is a topological manifold of dimen-
sion # if it is Hausdorff, second-countable, and locally Euclidean in the sense that each
point of M has a neighborhood that is homeomorphic to an open subset of R". It is easy to
see that the following statements are equivalent ([19], p. 3):
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(1) Each point of M has a neighborhood that is homeomorphic to an open subset of R".
(2) Each point of M has a neighborhood that is homeomorphic to an open ball in R".
(3) Each point of M has a neighborhood that is homeomorphic to R”.

By a coordinate chart (or just chart) on M we mean a pair (U, ¢), where U is an open
subset of M and ¢ : U — U is ahomeomorphism from U to an open subset I = ¢(U) C R".
U is called a coordinate domain or a coordinate neighborhood of each of its points and ¢
is called a coordinate map. An atlas for M is a collection of charts whose domains cover
M. Two charts (U, ¢) and (V, ¢) are said to be smoothly compatible if either UNV = @
or the transition map ¢ o ¢! is a C®-diffeomorphism. An atlas A is called a smooth
atlas if any two charts in A are smoothly compatible with each other. A smooth atlas
A on M is maximal if it is not properly contained in any larger smooth atlas. A smooth
structure on M is a maximal smooth atlas. A smooth manifold is a pair (M, .A), where M
is a topological manifold and A is a smooth structure on M. Any chart (U, ¢) contained
in the given maximal smooth atlas is called a smooth chart. If M and N are two smooth
manifolds, a map F : M — N is said to be a smooth (C*) map if for every p € M, there
exist smooth charts (U, ¢) containing p and (V, ) containing F(p) such that F(U) C V
and o Fo ¢! € C®(p(U)). It can be shown that if F is smooth, then its restriction to
every open subset of M is smooth. Furthermore, if every p € M has a neighborhood U
such that F|; is smooth, then F is smooth.

Remark 12.

*  Sometimes we use the shorthand notation M" to indicate that M is n-dimensional.

*  Clearly, if (U, ¢) is a chart in a maximal smooth atlas and V is an open subset of U, then
(V,¢) where ¢ = ¢|y is also a smooth chart (i.e., it belongs to the same maximal atlas).

*  Every smooth atlas A for M is contained in a unique maximal smooth atlas, called the smooth
structure determined by A.

e If M is a compact smooth manifold, then there exists a smooth atlas with finitely many
elements that determines the smooth structure of M (this is immediate from the definition of
compactness).

Definition 13.

*  We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz (GL)
smooth atlas if the image of each coordinate domain in the atlas under the corresponding
coordinate map is a nonempty bounded open set with Lipschitz boundary.

*  We say that a smooth atlas for a smooth manifold M" is a generalized geometrically
Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas under
the corresponding coordinate map is the entire R" or a nonempty bounded open set with
Lipschitz boundary.

*  We say that a smooth atlas for a smooth manifold M" is a nice smooth atlas if the image of
each coordinate domain in the atlas under the corresponding coordinate map is a ball in R".

»  We say that a smooth atlas for a smooth manifold M" is a super nice smooth atlas if the image
of each coordinate domain in the atlas under the corresponding coordinate map is the entire R".

*  Wesay that two smooth atlases {(Uy, ¢a) Yacr and {(Ug, §p)} gej for a smooth manifold
M" are geometrically Lipschitz compatible (GLC) smooth atlases provided that each atlas
is GGL and moreover for all « € I and p € J with Uy NUg # @, ¢o(Uy N Upg) and
¢p(Un N Clﬁ) are nonempty bounded open sets with Lipschitz boundary or the entire R™.

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth
atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.
Furthermore, note that two arbitrary GL smooth atlases are not necessarily GLC smooth
atlases because the intersection of two Lipschitz domains is not necessarily Lipschitz (see,
e.g., [27], pp. 115-117).

Given a smooth atlas {(Uy, ¢«)} for a compact smooth manifold M, it is not necessarily
possible to construct a new atlas { (Uy, §»)} such that this new atlas is nice; for instance if
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Uy is not connected we cannot find @, such that @, (U,) = R" (or any ball in R"). However,
as the following lemma states, it is always possible to find a refinement that is nice.

Lemma 1. Suppose {(Ux, ¢a) }1<a<n is a smooth atlas for a compact smooth manifold M. Then
there exists a finite open cover { Vg }1<p<y, of M such that

VB 1 <a(f) < Nst. Vg CUypy, @ap)(Vp)isabalinR".

Therefore, {(V, 9u(p) v, ) }1<p<L is a nice smooth atlas.

Proof. For each 1 < a < N and p € U,, there exists r,p > 0 such that By, (¢a(p)) C
¢a(Uy). Let Vi = ‘PZl(Bmp((Pvc(P)))- Ur<a<n Upeur, Vap is an open cover of M and so it
has a finite subcover { Vi, p,, ..., Va; p, }- Let Vg = Vigpg- Clearly, Vg C Ua, and q),xﬂ(V/g) is
aballinR". O

Remark 13. Every open ball in R" is C*-diffeomorphic to R". Furthermore, compositions of
diffeomorphisms is a diffeomorphism. Therefore, existence of a finite nice smooth atlas on a compact
smooth manifold, which is guaranteed by the above lemma, implies the existence of a finite super
nice smooth atlas.

Lemma 2. Let M be a compact smooth manifold. Let {Uy }1<o<N be an open cover of M. Suppose
Cis a closed set in M (so C is compact) which is contained in Upg forsome1 < B < N. Then there
exists an open cover { Ay }1<q<n of M such that C C Ag C Alg C Ugand Ay C Ay C Uy for all
o # B.

Proof. Without loss of generality we may assume that f = 1. For each1 < a < N and
p € Uy, there exists rap > 0 such that By, (¢« (p)) C ¢a(Ua). Let Vip := (pojl(Brw(goa(p))).
Clearly, p € Vi € Vap € U,. Since M is compact, the open cover Uj<,<n Upeu, Vap of M
has a finite subcover A. Foreach1 <a < NletE, = {p € Uy : Vip € A} and

L = {a:E, #0}.

Ifao € 1, welet W, = UpGEa Vap. For a € Iy choose one point p € U, and let Wy = Vy.
C is compact so ¢1(C) is a compact set inside the open set ¢1 (Uj ). Therefore, there exists
an open set B such that

¢1(C) CBC BC ¢1(ly).

Let W = (pl_l(B). Clearly, CC W C W C U,. Now Let

A =Ww,
Ay =W, Va>1.
Clearly, A; contains W which contains C. Furthermore, union of A,’s contains

U, Upek, Vap which is equal to M. Closure of a union of sets is a subset of the union of
closures of those sets. Therefore, for each &, A, C U,. O

Theorem 29 (Exhaustion by Compact Sets for Manifolds). Let M be a smooth manifold. There
exists a sequence of compact subsets (K;);cn such that UjeNI%j =M, Kjs1 \K; # @ for all j and

KiCKCKC...CKCK C....

Definition 14. A C* partition of unity on a smooth manifold is a collection of nonnegative C*°
functions {Py : M — R} e 4 such that

(i) The collection of supports, {supp Y }aca is locally finite in the sense that every point in M
has a neighborhood that intersects only finitely many of the sets in {supp Y }oca-
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(ii) Ypcathua=1
Given an open cover {Uy }ye 4 of M, we say that a partition of unity { }aca is subordinate to the
open cover {Uy }ye A if supp o C U, for every a € A.

Theorem 30 ([28], p. 146). Let M be a compact smooth manifold and {Uy } e o an open cover of
M. There exists a C* partition of unity {{s }yca subordinate to {Uy }oc 4 (notice that the index
sets are the same).

Theorem 31 ([28], p. 347). Let {Uy }oca be an open cover of a smooth manifold M.

(i) Thereis a C* partition of unity { ¢y}t with every ¢y having compact support such that
for each k, supp @y C U, for some o € A.

(ii)  If we do not require compact support, then there is a C* partition of unity {{s }yeca subordi-
nate to {Uy }yeca-

Remark 14. Let M be a compact smooth manifold. Suppose {Uy } 4e 4 is an open cover of M and
{Wa taca is a partition of unity subordiante to {Uy }ye a-
o ForallmeN, {¢ = %ﬁlw} is another partition of unity subordinate to {Uy } ye a-

o If {Vg}pep is an open cover of M and {lg} is a partition of unity subordinate to
{Vs}pen, then {Yup}(ap)caxp is a partition of unity subordinate to the open cover

{uvt N V,B}(tx,ﬁ)eAxB-

Lemma 3. Let M be a compact smooth manifold. Suppose {Uy }1<4<nN is an open cover of M.
Suppose C is a closed set in M (so C is compact) which is contained in Ug for some1 < p < N.
Then there exists a partition of unity {ia }1<u<n subordinate to {Uy }1<y<n such that pg =1
on C.

Proof. We follow the argument in [29]. Without loss of generality we may assume 8 = 1.
We can construct a partition of unity with the desired property as follows: Let A, be a
collection of open sets that covers M and such that C C A; C A; C Uj and fora > 1,
Ay € Ay C Uy (see Lemma 2). Let 7, € C®(Uy) be such that 0 < 77, < land 77, = 1
on a neighborhood of A,. Of course Y"I_; 17, is not necessarily equal to 1 for all x € M.
However, if we define ¢y = 777 and fora > 1

Yo =1a(l—n1) ... (1= 7a-1),

by induction one can easily show thatfor1 <! < N

1
1—;%:(1—171)---(1—771)-

In particular,
N
1-3) ¢a=Q0-m)...(1=yn) =0,
a=1

since for each x € M there exists « such that x € A, and so 7,(x) = 1. Consequently,
YN Y. =1 0O

5.2. Vector Bundles, Basic Definitions
Let M be a smooth manifold. A (smooth real) vector bundle of rank r over M is a
smooth manifold E together with a surjective smooth map 7 : E — M such that
(1) Foreachx € M, Ey = m~!(x) is an r-dimensional (real) vector space;
(2) For each x € M, there exists a neighborhood U of x in M and a smooth map p =
(p',...,p") from E|y; := 1 (U) onto R” such that



Mathematics 2022, 10, 522

21 of 103

e Foreveryx € U, p|g, : Ex — R" is an isomorphism of vector spaces,
e &= (m|g,p): Ey = U xR is a diffeomorphism.

We denote the projection onto the last r components by 7’. So 71’ o ® = p. The
expressions “E is a vector bundle over M”, or “E — M is a vector bundle”, or “r : E - M
is a vector bundle” are all considered to be equivalent in this manuscript.

If 7 : E — M is a vector bundle of rank r, U is an open setin M, p : Ey; = 7~ 1(U) —
R"and @ = (7|, p) : Eu — U x R" satisfy the properties stated in item (2), then we refer
toboth® : Ey — U x R"and p : Ey — R” as a (smooth) local trivialization of E over U
(it will be clear from the context which one we are referring to). We say that E|; is trivial.
The pair (U, p) (or (U, P)) is sometimes called a vector bundle chart. It is easy to see that
if (U, p) is a vector bundle chart and @ # V C U is open, then (V,p|g, ) is also a vector
bundle chart for E. Moreover, if V is any nonempty open subset of M, then Ey is a vector
bundle over the manifold V. We say that a triple (U, ¢, p) is a total trivialization triple
of the vector bundle 7t : E — M provided that (U, ¢) is a smooth coordinate chart and
p= (o', --,0") : Ey — R is a trivialization of E over U. A collection {(Uy, ¢s,04)} is
called a total trivialization atlas for the vector bundle E — M provided that for each «,
(Ug, ¢a, pa) is a total trivialization triple and {(Uy, ¢« ) } is a smooth atlas for M.

Lemma 4 ([19], p. 252). Let 7t : E — M be a smooth vector bundle of rank r over M. Suppose
O:n Y (U) > UxR and ¥ : 11 (V) — V x R are two smooth local trivializations of E with
UNYV #@. There exists a smooth map T : U NV — GL(r,R) such that the composition

QoY 1 (UNV)xR — (UNV) xR

has the form
0¥ (p,v) = (p,7(p)0).

Remark 15. Let E be a vector bundle over an n-dimensional smooth manifold M. Suppose
{(Ux, @u, pa) }aer is a total trivialization atlas for the vector bundle 7t : E — M. Then for each
« € I, the mapping

Ey, = 0 ' (Ux) = ¢a(Us) x R" CR™, s = (@u(71(s)), pu(s))
will be a coordinate map for the manifold E over the coordinate domain Eiy,. The collection
{(Eu,, (¢a © 71, 04)) }aes will be a smooth atlas for the manifold E.

The following statements show that any vector bundle has a total trivialization atlas.

Lemma 5 ([30], p. 77). Let E be a vector bundle over an n-dimensional smooth manifold M (M
does not need to be compact). Then M can be covered by n + 1 open sets Vy, ..., V, where the
restriction E|y, is trivial.

Theorem 32. Let E be a vector bundle of rank v over an n-dimensional smooth manifold M. Then
E — M has a total trivialization atlas. In particular, if M is compact, then it has a total trivialization
atlas that consists of only finitely many total trivialization triples.

Proof. Let V..., V, be an open cover of M such that E is trivial over V4 with the mapping
pp + Evy = R". Let {(Uy, ¢u) }ac1 be a smooth atlas for M (if M is compact, the index
set I can be chosen to be finite). Foralla € I'and 0 < g < nlet Wy = Uy N V.
Let ] = {(a,B) : Wyp # O}. Clearly, {(Wag, Pups Pap)}(a,p)e] Where @up = %\waﬂ and
Pap = Pﬁ|r1(ww5) is a total trivialization atlas for E — M. [
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Definition 15.

*  Wesay that a total trivialization triple (U, ¢, p) is geometrically Lipschitz (GL) provided
that ¢(U) is a nonempty bounded open set with Lipschitz boundary. A total trivialization
atlas is called geometrically Lipschitz if each of its total trivialization triples is GL.

*  Wesay that a total trivialization triple (U, ¢, p) is nice provided that ¢(U) is equal to a ball
in R". A total trivialization atlas is called nice if each of its total trivialization triples is nice.

e Wesay that a total trivialization triple (U, ¢, p) is super nice provided that ¢(U) is equal to
R™. A total trivialization atlas is called super nice if each of its total trivialization triples is
super mnice.

* A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if each of
its total trivialization triples is GL or super nice.

*  We say that two total trivialization atlases {(Us, ¢, pa) tucr and {(Ug, §p,Pp)}pey are
geometrically Lipschitz compatible (GLC) if the corresponding atlases { (U, Pu) tucr
and {(Ug, pp)}pej are GLC.

Theorem 33. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E has a nice total trivialization atlas (and a super nice total trivialization atlas) that
consists of only finitely many total trivialization triples.

Proof. By Theorem 32, E — M has a finite total trivialization atlas {(Ux, ¢x,0x)}. By
Lemma 1 (and Remark 13) there exists a finite open cover {Vp }1<g< of M such that

VIB 1 < oc(ﬁ) < N s.t. Vﬁ Q Ua(ﬁ), (Pa(ﬁ)(vﬁ)ls a ball in R"
(OI‘ Vﬁ J1 < l’é(ﬁ) < N s.t. Vlg - u“(ﬁ), (Pa(ﬁ)(vﬁ) = Rn),

and thus {(Vg, ¢4(s)v;) }1<p<L is a nice (resp. super nice) smooth atlas. Now, clearly,
{ (Ve @up) vy Paip)l Ev, ) }1<p<L is a nice (resp. super nice) total trivialization atlas. [J

Theorem 34. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite total trivialization atlas that is GL compatible with itself. In fact, there
exists a total trivialization atlas {(Uw, Pu, Pa) F1<a<n Such that

e Foralll <wa < N, ¢u(Uy) is bounded with Lipschitz continuous boundary;
e Foralll <a,p < N, U, N Ug is either empty or else g (Uy N Uﬁ) and qoﬁ(l,l,x N U/g) are
bounded with Lipschitz continuous boundary.

Proof. The proof of this theorem is based on the argument presented in the proof of
Lemma 3.1 in [31]. Equip M with a smooth Riemannian metric g. Let r;,; denote the
injectivity radius of M which is strictly positive because M is compact. Let Vj, ..., V) be
an open cover of M such that E is trivial over Vg with the mapping pg : Ey, — R'. For
every x € M choose 0 < i(x) < n such that x € Vj(,). Forall x € M let r, be a positive
number less than V% such that exp, (By,) C V() where B, denotes the open ball in TxM
of radius r, (with respect to the inner product induced by the Riemannian metric g) and
exp, : TxM — M denotes the exponential map at x. For every x € M define the normal
coordinate chart centered at x , (Uy, ¢x), as follows:

Uy =exp,(Br,), ¢x:= )\;1 o exp;1 : U, = R",

where A, : R" — TyM is an isomorphism defined by A (y!,...,y") = y’'E;y; Here {E; }',

is a an arbitrary but fixed orthonormal basis for Ty M. It is well-known that (see, e.g., [32])

e 9x(x)=1(0,...,0);

e gij(x) = d;; where g;; denotes the components of the metric with respect to the normal
coordinate chart (Uy, ¢x);

*  Ej, = 9i|x where {0;}1<j<, is the coordinate basis induced by (Uy, ¢x).
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As a consequence of the previous items, it is easy to show that if X € TyM (X = X'd;y),
then the Euclidean norm of X will be equal to the norm of X with respect to the metric g,
thatis, |X|; = [X[s where

Xlg = /(X2 o (X2 [Xg = \/2(X,X).

Consequently, for every x € M, ¢, (Uy) will be a ball in the Euclidean space, in particular,
{(Uyx, ¢x) }xem is a GL atlas. The proof of Lemma 3.1 in [31] in part shows that the atlas
{(Uy, ¢x) }xem is GL compatible with itself. Since M is compact there exists x1,..., x5y € M
such that {Uy; }1<j<n also covers M.

Now, clearly, {(Ux;, ¢x;, pi( %) qu]- )}1<j<n is a total trivialization atlas for E that is GL com-
patible with itself. O

Corollary 1. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite super nice total trivialization atlas that is GL compatible with itself.

Proof. Let {(Uy, ¢u, px) 1<a<N be the total trivialization atlas that was constructed above.
For each «, ¢,(Uy) is a ball in the Euclidean space and so it is diffeomorphic to R"; let
Ca ¢ ¢a(Uy) — R" be such a diffeomorphism. We let §, := Cy0 ¢p : Uy — R". A
composition of diffeomorphisms is a diffeomorphism, so forall1 < a,8 < N, @, o (pﬁ_l :
¢p(Ux NUp) — ¢u(Uy N Upg) is a diffeomorphism. So {(Uy, Pa, pa) }1<a<n is clearly a
smooth super nice total trivialization atlas. Moreover, if 1 < &, f < N are such that U, N Up
is nonempty, then @, (U N Upg) is R" or a bounded open set with Lipschitz continuous
boundary. The reason is that ¢, = §a © @, and @ (Uy N Uﬁ) is R or Lipschitz, &, is a
diffeomorphism and being equal to R” or Lipschitz is a property that is preserved under
diffeomorphisms. Therefore, {(Uy, P, pa) }1<a<n is a finite super nice total trivialization
atlas that is GL compatible with itself. [J

A section of E isamap u : M — E such that 7t o u = Idj;. The collection of all sections
of E is denoted by I'(M, E). A section u € I'(M,E) is said to be smooth if it is smooth
as a map from the smooth manifold M to the smooth manifold E. The collection of all
smooth sections of E — M is denoted by C*(M, E). Note that if { (U, @a, Pa) }acs is a total
trivialization atlas for the vector bundle 7v : E — M of rank r, then for u € T(M, E) we
have u € C*(M, E) if and only if for all « € I, the local representation of u with respect to
the coordinate charts (U, ¢«) and (Ey,, (¢a © 7T, ps)) is smooth, that is,

UEC®(ME)<=VYacl xw (puomouocgy’,pxouocg;!)issmooth
eVael x> (x,px0u0@,")issmooth
—Vaecl xw pgouoq,issmooth
= VaeLVI<I<r plouogrl e C®(pu(Uy)).
A local section of E over an open set U C M is amap u : U — E where u has the

property that 7t o u = Idy; (that is, u is a section of the vector bundle E;; — U). We denote
the collection of all local sections on U by I'(U, E) or T'(U, Ey).

Remark 16. As a consequence of p|g, : Ex — R" being an isomorphism, if u is a section of
Ely —» Uand f : U — Ris a function, then p(fu) = fp(u). In particular, p(0) = 0.

Given a total trivialization triple (U, ¢, p) we have the following commutative dia-
gram:
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Elu ) o) x R

[ I

u—>r- p(U) CR"

If s is a section of E|;; — U, then by definition the pushforward of s by o/ (the jth

component of p) is a section of ¢(U) x R — ¢(U) which is defined by
pl(s) =plosop™ (ie,z€ ()~ (20050971 (2))).

Let E — M be a vector bundle of rank r and U C M be an open set. A (smooth) local
frame for E over U is an ordered r-tuple (sy, ..., s,) of (smooth) local sections over U such
that for each x € U, (s1(x),...,s,(x)) is a basis for E,. Given any vector bundle chart (V, p),
we can define the associated (smooth) local frame on V as follows:

Vi<I<rV¥xeV  s(x)=plg (e),

where (eq,- - -, e,) is the standard basis of R". The following theorem states the converse of
this observation is also true.

Theorem 35 ([19], p. 258). Let E — M be a vector bundle of rank r and let (s, ...,s,;) be a
smooth local frame over an open set U C M. Then (U, p) is a vector bundle chart where the map
o : Ey — R is defined by

Vx e U,Vu € Ey p(u):u1e1+...+u’e,,
where u = ulsy(x) + ...+ u"s,(x).

Theorem 36 ([19], p. 260). Let E — M be a vector bundle of rank r and let (sy1,...,s,) be a
smooth local frame over an open set U C M. If f € T(M, E), then f is smooth on U if and only if
its component functions with respect to (s, ..., sy) are smooth.

A (smooth) fiber metric on a vector bundle E is a (smooth) function which assigns to
each x € M an inner product
(,)E:Ex X Ex > R.

Note that the smoothness of the fiber metric means that for all u, v € C*°(M, E) the mapping
M — R, x = (u(x),v(x))E

is smooth. One can show that every (smooth) vector bundle can be equipped with a
(smooth) fiber metric ([33], p. 72).

Remark 17. If (M, g) is a Riemannian manifold, then g can be viewed as a fiber metric on the
tangent bundle. The metric g induces fiber metrics on all tensor bundles; it can be shown that ([32])
if (M, g) is a Riemannian manifold, then there exists a unique inner product on each fiber of le(M)
with the property that for all x € M, if {e;} is an orthonormal basis of Ty M with dual basis {n'},
then the corresponding basis of T} (T M) is orthonormal. We denote this inner product by (., .)
and the corresponding norm by |.|p. If A and B are two tensor fields, then with respect to any local
coordinate system

(A, B)p =g ... g"%gjis, . sy AL L BH I -
Theorem 37. Let 7t : E — M be a vector bundle with rank r equipped with a fiber metric (., .)g.
Then given any total trivialization triple (U, ¢, p), there exists a smooth map p : Eyy — R” such
that with respect to the new total trivialization triple (U, ¢, p) the fiber metric trivializes on U,
that is,
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VxeUVYu,v e Ey <u,v)E:ulvl+...+u’v’,
where for each 1 < 1 < r, u! and v* denote the Ith components of u and v, respectively, (with respect
to the local frame associated with the bundle chart (U, p)).

Proof. Let (t1,...,t ) be the local frame on U associated with the vector bundle chart (U, p).
That is,
Vxel, vVi<I<r tl(x):p|]:?r1(el).

Now, we apply the Gram-Schmidt algorithm to the local frame (#1, ..., ;) to construct an
orthonormal frame (sy,...,s,) where

t— L1 (b, s)Es
|t = i1t 8 s

Vi<Ii<r s =

s; : U — E is smooth because

(1) Smooth local sections over U form a module over the ring C*(U);
(2)  The function x — (t;(x),s;(x))g from U to R is smooth;

(3) SinceSpan{sy,...,s;_1} =Span{ty,..., t;_1},t — Z};% (t1,8;)Es;j is nonzero on U and
x = |t (x) — Zﬁ;% (t1(x),si(x))Esj(x)| as a function from U to R is nonzero on U and
it is a composition of smooth functions.

Thus, for each I, s is a linear combination of elements of the C*(U)-module of smooth
local sections over U, and so it is a smooth local section over U. Now, we let (U, §) be the
associated vector bundle chart described in Theorem 35. For all x € U and for all u,v € E,
we have

(u,v)p = <MZSZ,Uij>E = ulvj<sl,sj>g = ulvjél/- =ulol + ... +u'.
O

Corollary 2. As a consequence of Theorem 37, Theorem 34, and Theorem 33 every vector bundle
on a compact manifold equipped with a fiber metric admits a nice finite total trivialization atlas (and
a super nice finite total trivialization atlas and a finite total trivialization atlas that is GL compatible
with itself) such that the fiber metric is trivialized with respect to each total trivialization triple in
the atlas.

5.3. Standard Total Trivialization Triples

Let M" be a smooth manifold and 7t : E — M be a vector bundle of rank r. For certain
vector bundles there are standard methods to associate with any given smooth coordinate
chart (U, ¢ = (x')) a total trivialization triple (U, ¢, p). We call such a total trivialization
triple the standard total trivialization associated with (U, ¢). Usually this is done by first
associating with (U, ¢) a local frame for Ej; and then applying Theorem 35 to construct a
total trivialization triple.

e E= le (M): The collection of the following tensor fields on U forms a local frame for
Ey associated with (U, ¢ = (x')).

9 p] : .
_— ] ]
Fye ®...®axil Rdx ®@...Qdxk.

So, given any atlas { (Uy, ¢«)} of a manifold M", there is a corresponding total trivial-
ization atlas for the tensor bundle le(M), namely {(Uy, ¢a, pa) } where for each a, py

has n*+! components which we denote by (pa)ﬁ{;{ .Forall F € T(M, TF(M)), we have
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(pa)} 1 (F) = (B!

Here (Fa)jl"'jl denotes the components of F with respect to the standard frame for
TFU, described above. When there is no possibility of confusion, we may write F] " ] !

instead of (sz)]l {Ilc

e E = A¥(M): This is the bundle whose fiber over each x € M consists of alternating
covariant tensors of order k. The collection of the following forms on U form a local
frame for E;; associated with (U, ¢ = (x"))

dx AL Adx ((ji,. .., ji) is increasing).

e E = D(M) (the density bundle): The density bundle over M is the vector bundle
whose fiber over each x € M is D(TyM). More precisely, if we let

=[] p(Tum)
xeM
then D(M) is a smooth vector bundle of rank 1 over M ([19], p. 429). Indeed, for
every smooth chart (U, ¢ = (x%)), |[dx! A... Adx"| on U is a local frame for D(M)|;.
We denote the corresponding trivialization by pp ,, that is, given u € D(TyM), there
exists a number a such that

p=a(ldx* A AdxX"])

and pp , sends p to a. Sometimes we write D instead of D(M) if M is clear from
the context. Furthermore, when there is no possibility of confusion we may write pp
instead of pp 4.

Remark 18 (Integration of densities on manifolds). Elements of C.(M, D) can be integrated
over M. Indeed, for y € C.(M, D) we may consider two cases

*  Case 1: There exists a smooth chart (U, @) such that suppy C U.

= “lav
[i= [, omenoe

e Case 2: If y is an arbitrary element of Cc(M, D), then we consider a smooth atlas
{(Ux, ¢«) Yacr and a partition of unity {ips }4e1 subordinate to {Uy, } and we let

J =X ] v

ael

It can be shown that the above definitions are independent of the choices (charts and partition of
unity) involved ([19], pp. 431-432).

5.4. Constructing New Bundles from Old Ones
5.4.1. Hom Bundle, Dual Bundle, Functional Dual Bundle

e The construction Hom(.,.) can be applied fiberwise to a pair of vector bundles E and
E over a manifold M to give a new vector bundle denoted by Hom(E E). The fiber
of Hom(E, E) at any given point p € M is the vector space Hom(Ey, E,,). Clearly, if
rank E = r and rank E = 7, then rank Hom(E, E) = r7.

If {(Ux, ¢, pa) } and {(LI“, @, Pa)} are total trivialization atlases for the vector bundles
m:E— Mand 7 : E — M, respectively, then {Uy, ¢a, 0« } Will be a total trivialization
atlas for 7tyyom : Hom(E,E) — M where p, : 7! (Uy) — Hom(R",R7) = R is
defined as follows: for p € Uy, A, € Hom(E), E;) is mapped to [ﬁa\ép] ocAo [Pa|E,,]71
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e Letm : E — M be a vector bundle. The dual bundle E* is defined by E* =
Hom(E,E = M x R).

e Letmw : E - M be a vector bundle and let D denote the density bundle of M.
The functional dual bundle EV is defined by EY = Hom(E, D) (see [24]). Let us
describe explicitly what the standard total trivialization triples of this bundle are. Let
(U, ¢, p) be a total trivialization triple for E. We can associate with this triple the total
trivialization triple (U, ¢, p") for EY where p¥ : E)} — R’ is defined as follows: for
p €U, Ly, € Hom(E,, Dp) is mapped to pp,, 0 Ly o (‘0|Ep)’1 € (R")* ~ R". Note that
(R")* ~ R" under the following isomorphism

(Rr)* SR U — u(el)el+...+u(er)er-

That is, u as an element of R" is the vector whose components are (u(eq),...,u(er)).
In particular, if z = z1e1 + ... + z,e; is an arbitrary vector in R’, then

u(z) =u(zre1+ ...+ zrey) = zquler) + ... + zyu(er) =z - u,

where on the LHS u is viewed as an element of (R")* and on the RHS u is viewed as
an element of R".
In short, pV : E; — R is given by

vi<i<r  (p)(Lp) = (pppoLpo(ple,) ") (er)-

5.4.2. Tensor Product of Bundles

Let w: E— Mand 7t : E — M be two vector bundles. Then E ® E is a new vector
bundle whose fiber at p € M is E, ® Ep. If {(Ua, ¢u,pa)} and {(Us, ¢a, fa)} are total
trivialization atlases for the vector bundles 7 : E -+ M and 7 : E — M, respectively,
then {(Uy, ¢a, 0x))} will be a total trivialization atlas for 7ensor : E ® E — M where
Dt Trapsor(Ua) = (R" @ RT) 2 R is defined as follows: for p € Uy, a, ® d, € E, ® E, is
mapped to p« |, (ap) ® ﬁtx|E,, (p).

It can be shown that Hom(E, E) & E* @ E (isomorphism of vector bundles over M).

Remark 19 (Fiber Metric on Tensor Product). Consider the inner product spaces (U, (., .)i1)
and (V, (.,.)v). We can turn the tensor product of U and V, U ® V into an inner product space

by defining
(u1 ® v1, U2 ® V2)ugy = (U1, u2)u(v1,02)v,
and extending by linearity. As a consequence, if E is a vector bundle (on a Riemannian manifold

(M, g)) equipped with a fiber metric (.,.)g, then there is a natural fiber metric on the bundle
(T*M)®k and subsequently on the bundle (T*M)®* @ E. If F = F} ;dx" @ ... @dx' @ s, and

G = G]bl---jkdle ® ... ® dxk @ sy are two local sections of this bundle on a domain U of a total
trivialization triple, then at any point in U we have

(F, G>(T*M)®k®E = Fﬁ-~~ikG]b1..-jk (dxt, dx/") epg .. (dac'®, dxde) o (s, 50)
_ o1 ixj 2 ?
=g gk khabFil...iijl---fk !

where hyy := (34,8 (here {s, = p~(eq) }1<a<y is a local frame for E over U.{e, }1<q<y is the
standard basis for R"” where r = rank E).

5.5. Connection on Vector Bundles, Covariant Derivative
5.5.1. Basic Definitions

Let 7 : E — M be a vector bundle.

Definition 16. A connection in E is a map
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V:C®(M,TM) x C*(M,E) - C*(M,E), (X,u)+— Vxu
satisfying the following properties:
(1)  Vxuis linear over C*®(M) in X
Vf,g€C®(M)  Vixiiex,u=fVxu+gVxu.
(2)  Vxuis linear over R in u:
YabeR Vx(auy + buy) = aVxuy +bVxuy.
(3) 'V satisfies the following product rule
VfeC®M) Vx(fu) = fVxu+ (Xfu.
A metric connection in a real vector bundle E with a fiber metric is a connection V such that

VX eC®M,TM),Vu,ve C°(M,E) X(u,v)g = (Vxu,v)g + (u, Vxv)E.

Here is a list of useful facts about connections:

e ([34], p. 183) Using a partition of unity, one can show that any real vector bundle with
a smooth fiber metric admits a metric connection;

e ([19], p. 50) If V is a connection in a bundle E, X € C®(M,TM), u € C*(M,E), and
p € M, then Vxu|, depends only on the values of u in a neighborhood of p and the
value of X at p. More precisely, if u = il on a neighborhood of p and X, = X, then
VXM|p = v)‘(lﬂp,‘

* ([19], p. 53) If V is a connection in TM, then there exists a unique connection in
each tensor bundle Tf(M), also denoted by V, such that the following conditions
are satisfied:

(1) On the tangent bundle, V agrees with the given connection.

(2) On T%M), V is given by ordinary differentiation of functions, that is, for all
real-valued smooth functions f : M — R: Vxf = Xf.

B) Vx(F®G)=(VxF)®G+F® (VxG).

(4) If tr denotes the trace on any pair of indices, then Vx (trF) = tr(VxF).

This connection satisfies the following additional property: forany T € C*(M, T,k (M)),

vector fields Y;, and differential 1-forms w/,

(VxT)(aJl,. ..,wl, Yl,. . .,Yk) = X(T(wl,. . .,wl, Yl,. . .,Yk))

l .
— ZT(wl,...,VXw],...,wl,Yl,...,Yk)
=1

- iT(wl,...,wl,Yl,...,VXY,-,...,Yk).
i=1
Definition 17. Let V be a connection in 7t : E — M. We define the corresponding covariant
derivative on E, also denoted V, as follows
V:C®(M,E) = C*(M,Hom(TM,E)) 2 C*(M, T*"M®E), u— Vu
where for all p € M, Vu(p) : T,M — E, is defined by
Xp — Vxulp,

where X on the RHS is any smooth vector field whose value at p is X,,.
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Remark 20. Let V be a connection in TM. As it was discussed V induces a connection in any
tensor bundle E = TF(M), also denoted by V. Some authors (including Lee in [19], p. 53) define
the corresponding covariant derivative on E = le(M) as follows:

V:C®(M,Tf(M)) — C®(M, Tf*1(M)),  F~ VF

where

VE(W!, ..., Y,... Y%, X) = (VxF)(&, ..., &, Y1, ).
This definition agrees with the previous definition of covariant derivative that we had for general
vector bundles because

k factors 1 factors

Therefore,
C (M, Hom(TM, TFM)) & C¥(M, T"M & TEM) 2 C¥(M, T M)

More  concretely, —we have the following one-to-one correspondence  between
C*®(M, Hom(TM, TFM)) and C=°(M, T M):

(1) Givenu € C*(M, le‘HM), the corresponding element ii € C®(M, Hom(TM, TFM)) is given by
VpeM  i(p): T,M — T (T,M), X u(p)(...,...,X).

(2)  Given il € C®(M,Hom(TM,TfM)), the corresponding element u € C®(M, TF1M) is
given by

VpeM  u(p)(wl,..., o' Yq,..., Y, X) = [a(p)(X)](«} ..., &, Y, %)

5.5.2. Covariant Derivative on Tensor Product of Bundles

If E an E are vector bundles over M with covariant derivatives VE . C®(M,E) —
C®(M,T*M ® E) and VF : C*(M,E) — C®(M, T*M ® E), respectively, then there is a
uniquely determined covariant derivative ([14], p. 87)

VEOE . C®(M,E® E) — C®(M, T*"M ® E® E)

such that } N
VEtuea) =vViueia+ Viiou.
The above sum makes sense because of the following isomorphisms:

(T'M®E)QEXT'MQEQEXTMQEQE~ (T"M®E)®E.

Remark 21. Recall that for tensor fields covariant derivative can be considered as a map from
C®(M, TFM) — C®(M, le“M). Using this, we can give a second description of covariant
derivative on E ® E when E = leM. In this new description we have

VIMEE . c(M, TEM ® E) — C®°(M, T M ® E).
Indeed, for F € C*°(M, TFM) and u € C*(M, E)

VIMOE(P @) = (VIIMEY@u+ F ® VEu .
——— ~— T
TEH M T'M  T*M®E

TFHIM®E
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In particular, if f € C*°(M) and u € C®(M, E) we have VE(fu) € C®°(M, T*M ® E) and it is
equal to
VE(fu) =df @ u+ fVtu.

5.5.3. Higher Order Covariant Derivatives

Let 77 : E — M be a vector bundle. Let VE be a connection in E and V be a connection
in TM which induces a connection in T* M. We have the following chain

v(T*M)®2®E

vE vT*M@'@E 2
C®(M,E) = C®(M, T*"M ® E) ~—— C®(M, (T*M)*2 @ E) ~————

v Mm@k ee v(T*M)®kE

C®(M,(T*M)** @ E) s -+

In what follows we denote all the maps in the above chain by VE. That is, for any
k € Ny we consider VE as a map from C®(M, (T*M)®k @ E) to C®°(M, (T*M)®*+1) @ E).
So,
(VEYE: C®(M,E) — C®°(M, (T*M)** ® E) .

As an example, let us consider (VE)*(fu) where f € C*(M) and u € C®(M,E).
We have

VE(fu) =df @ u+ fVFu.
(VE)(fu) = VIMEE[df @ u+ fVFu]
= [VIMdf)@u+df @ VEu] + [df @ VEu+ f(VE)2u]

2 . .
=) <2> (VIM)if o (VEY Tu.
j=0 N
In general, we can show by induction that

k
k M i »
(75 ) = 1 (5) (0T o (95,
j=0

where (VT"™M)0 = Id. Here (VT M)i f should be interpreted as applying V (in the sense
described in Remark 20) j times; so (VI'M)if at each point is an element of T(])M =
(T*M)®1.

5.5.4. Three Useful Rules, Two Important Observations

Let 7 : E— Mand 7t : E — M be two vector bundles over M with ranks r and 7,
respectively. Let V be a connection in TM (which automatically induces a connection in all
tensor bundles), V£ be a connection in E and V¥ be a connection in E. Let (U, ¢, p) be a
total trivialization triple for E.

1 {9 = (p,jl%}lgign is a coordinate frame for TM over U.

(2)  {sa = p'(ea) }1<a<, is a local frame for E over U ({e, }1<,<; is the standard basis for
R" where r = rank E).
(3) Christoffel Symbols for V on (U, ¢, p): V5,0; = Fifjak.

(4) Christoffel Symbols for VEon (U, ®,p): Va.sa = (FE)?asb.
Furthermore, recall that for any 1-form w,

Vxw = (X'9;wy — Xiwjffk)dxk :

Therefore, ) )
V. dx) = —ngdxk.
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e Rulel:Forallu € C®°(M,E)
vEuy :dxi®VaEl_u onlU.

The reason is as follows: Recall that for all p € M, VEu(p) € T"M ® E. Since
{dx' ® s,} is a local frame for T*M & E on U we have

VEu = R?dxi R8s, =dx' ® (Rfsq) .

According to what was discussed in the study of the isomorphism Hom(V, W) =
V* ® W in Section 3 we know that at any point p € M, R{ is the element in column i
and row 4 of the matrix of VFu(p) as an element of Hom(T,M, E,). Therefore,

E
Va.u = Ris,.

Consequently, we have VEu = dx' @ (R%s,) = dx’ ® Vgiu.
* Rule2: Forallv; € C*°(M,E)and v; € C*(M,E)

V5 (01 @) = (Vho1) © 02+ 01 ® (V5 02).
* Rule3:Forallu € C°(M,E) and f € C*(M)

VE(fu) = fVEu+dfou.

The following two examples are taken from [35].

e Example 1: Let u € C*(M, E). On U we may write u = u”s,. We have

VEu = VE(u's,) Rule3 o Es, + du® ®@ s, = u"VEs, + (Qudx’) ® s,
Rulel eyl @ Vgisu + (Qudx’) ® s,
= u'dx' @ ((Tg)%sp) + (Qudx’) @ s, = dx’' @ (u(Tg)Ysp) + dx’ @ (9;u"sq)
=dx' ® (ub(l"E)?bsa) +dx' @ (9;u”s,)
= [0;u” + (T)%ub)dx' @ s, .
Thatis, VEu = (VEu)%dx’ ® s, where
(VEu)f = opu + (T )fu”

e Example 2: Let u € C*(M, E). On U we may write u = u”s,. We have
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(VE)ZM — vT*M@E([aiu
RIS @0 4 (T
aiu” + (F

Rliel[
Def.zofd [

Ru_EeZ[

*+ (Tg)fu'ldx' @ sq)

£)%ul VT MOE 4yl @ 5,) + d[ou® + (Tg)%u’] @ (dx' @ s,)
p)fyu’ldx) © VIMEE (dx! @ sq) + d[ou’ + (Tp)fu’] © (dx' @ s)
o + (Tp)% ub)dx ® VET,;M‘@E(dxi ®8q) +0j[0;u" + (Tp)%ub)dx ® dx' @ s,

o 4 (Tp)% ub]dyl @ [Vg;dei Qs +dx' ® ng_sa] +9;[0;u” + (Tp)%ub)dx @ dx' @ s,

= [9;u" + (Tg)%ul)dx @ [ — F;:kdxk ®sq +dx' ® (TE)jasc] + 0j[0u” + (Tg)%ub)dx @ dx' @ s,

i <+ k in the first summand [

ou’ + (FE)Zbub]dxf ® [ - F;-‘idxi ®sq+dr* ® (FE);ﬂsc] +0j[o;u" + (FE)?bub]dxj Qdx' ®s,

= {0)[0;u" + (Tg)4u’] — F;‘i[aku” + (Tp)%ub]}dx! @ dx' @ s, + [0 + (Fg)ﬁbuh](rg)]?adxj ®dx* @ s,

e Kinthe lastoammand (4 it + (Tg) ] — T [0’ + (Tg)fyul | ydxl @ do’ @5,

¢ < a in the last summand
= {01

+ [ + (Te)f ") (TE)Gudn @ dx' @ s,
o 4 (Tg)4ub] — I’}‘i [Qcu® + (Tp)%ub)}dy @ dx' @ s,
+ [0 + (Te)§u’|(Te) b @ dx' @ s,

Considering the above examples we make the following two useful observations that can
be proved by induction.

Observation 1: In general (VE)fu = ((VE)ku)?lmikdxil ®..0dx®s, (1 <a<
r,1 < iy,...,ix < n) where ((VE)ku)?l...ik o ¢! is a linear combination of u! o
¢~ !,...,u" o ¢! and their partial derivatives up to order k and the coefficients are
polynomials in terms of Christoffel symbols (of the linear connection on M and connec-
tion in E) and their derivatives (on a compact manifold these coefficients are uniformly

bounded provided that the metric and the fiber metric are smooth). That is,
r
(VEfu); o9t =3 Y Cpal(u'ogp™),
ln|<ki=1

where for each 77 and I, C;; is a polynomial in terms of Christoffel symbols (of the
linear connection on M and connection in E) and their derivatives.

Observation 2: The highest order term in <(VE)ku)?1...ik ogplis —x?l . —x?k (u o o~ 1);
that is,
0 0
Evk, )@ -1 _ -1
(V%) u)il---ik 0P = ooy (o " )+...

where extra terms contain derivatives of order at mostk — 1 of u' 0 ™1 (1 <1 < r):

ak

;
((VE)ku)Zmik o (P—l _ m(ua o q)—l) + ||Zklzl C,ﬂaﬂ(ul o q;—l) .
nl<ki=

6. Some Results from the Theory of Generalized Functions

In this section, we collect some results from the theory of distributions that will be

needed for our definition of function spaces on manifolds. Our main reference for this part
is the exquisite exposition by Marcel De Reus [24].

6.1. Distributions on Domains in Euclidean Space

)

Let () be a nonempty open set in R”.
Recall that
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KC(Q) is the collection of all compact subsets of Q).

C*®(Q)) = the collection of all infinitely differentiable (real-valued) functions on Q).
ForallK € £(Q)), C¥(Q) = {9 € C®(Q)) : supp ¢ C K}.

CZ(Q) = Ukek(a) CR(Q) = {p € C*(Q) : supp ¢ is compact in O }.

(2) Forall g € C®(Q),j € Nand K € £(Q) we define

lolljk := sup{[o*p(x)]| : [a] <j,x € K}.

(3) Forallj € Nand K € K(Q), ||.[jx is a seminorm on C*(Q)). We define £(Q) to
be C*(Q) equipped with the natural topology induced by the separating family of
seminorms {||.|/j k }jen kek(q)- It can be shown that £(€) is a Frechet space.

(4) ForallK € K(Q2) we define Ex(Q) to be CF(Q)) equipped with the subspace topology.
This subspace topology on Cg’(Q) is the natural topology induced by the separating
family of seminorms {||.||; x } jen- Since C¥(Q) is a closed subset of the Frechet space
£(Q)), Ek(Q) is also a Frechet space.

(5) Wedefine D(Q) = Ugex(a) €x(€2) equipped with the inductive limit topology with
respect to the family of vector subspaces {Ex(Q) }xe (). It can be shown that if
{K;}jen, is an exhaustion by compacts sets of ), then the inductive limit topology on
D(Q) with respect to the family {£k }jen, is exactly the same as the inductive limit

topology with respect to {Ex(Q) }rex(q)-

Remark 22. Let us mention a trivial but extremely useful consequence of the above description
of the inductive limit topology on D(Q). Suppose Y is a topological space and the mapping
T:Y — D(Q) is such that T(Y) C Ex(Q) for some K € K(Q)). Since Ex(Q) — D(Q), if
T:Y — Ex(Q) is continuous, then T : Y — D(Q) will be continuous.

Theorem 38 (Convergence and Continuity for £(Q)). Let Q) be a nonempty open set in R".
Let Y be a topological vector space whose topology is induced by a separating family of seminorms Q.

(1) Asequence {@m} converges to ¢ in £(Q) if and only if ||om — ¢||jx — 0 forall j € Nand
K e K(Q).
(2)  Suppose T : £(Q) — Y is a linear map. Then the following is equivalent

e T is continuous.
*  Foreveryq € Q, there exist j € Nand K € K(Q), and C > 0 such that

Voe&(Q) q(T(g)) <Cllolljk-

e Ifeu—0in&(Q), then T(¢pm) — 0in Y.
(3)  In particular, a linear map T : £(Q)) — R is continuous if and only if there exist j € N and
K € K(Q), and C > 0 such that

VeclQ) |T(e)l <Clollix-
(4)  Alinearmap T : Y — E(Q) is continuous if and only if

VjieN, VK e K(Q) 3C>0,keN,qy,..., qx € Q suchthatVy ||T(y)||]-,K§C1r£1a<xkqi(y).
<i<

Theorem 39 (Convergence and Continuity for Ex(Q)). Let Q) be a nonempty open set in R"
and K € K(Q). Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.
(1) A sequence {@m} converges to ¢ in Ex(Q) if and only if ||¢m — ¢||;x — 0 forall j € N.
(2)  Suppose T : Ex(Q) — Y is a linear map. Then the following is equivalent:

e T is continuous.
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e Foreveryq € Q, there exists j € Nand C > 0 such that

Voe&k(Q)  q(T(p)) < Cllollx-
o Ifeu — 0inEx(Q), then T(¢p) — 0inY.

Theorem 40 (Convergence and Continuity for D(Q)). Let Q) be a nonempty open set in R".
Let Y be a topological vector space whose topology is induced by a separating family of seminorms Q.
(1) A sequence {¢@m} converges to ¢ in D(Q) if and only if there is a K € IC(Q) such that
suppem C Kand @ — ¢ in Eg(Q).
(2)  Suppose T : D(Q) — Y is a linear map. Then the following is equivalent
e T is continuous.
e ForallK € K(Q), T: E(Q) — Y is continuous.
* Foreveryq € Qand K € K(Q), there exists j € Nand C > 0 such that

Ve e &k(Q))  q(T(e)) <Clloljk-

e Ifgu — 0inD(Q), then T(¢y) — 0inY.

(3)  In particular, a linear map T : D(Q) — R is continuous if and only if for every K € IC(Q)),
there exists j € Nand C > 0 such that

Vo c&k(Q)  [T(e)| < Cllolljk-

Remark 23. Let Q) be a nonempty open set in R". Here are two immediate consequences of the
previous theorems and remark:

(1)  The identity map
ipg:D(Q) = £(Q)

is continuous (that is, D(Q)) — £(Q)) ).

(2) IfT: E(Q) — E(Q) is a continuous linear map such that supp(Te) C suppe for all
¢ € E(Q) (ie., T is a local continuous linear map), then T restricts to a continuous
linear map from D(Q)) to D(Q). Indeed, the assumption supp(T¢) C supp implies
that T(D(Q))) C D(Q). Moreover, T : D(Q) — D(Q) is continuous if and only if for
K e K(Q)T: E(Q) — D(Q) is continuous. Since T(Ex(QY)) C Ex(Q), this map is
continuous if and only if T : Ex(Q) — Ex(Q) is continuous (see Remark 22). However, since
the topology of Ex(Q) is the induced topology from E(QY), the continuity of the preceding
map follows from the continuity of T : £(Q) — E(QY).

Theorem 41. Let () be a nonempty open set in R". Let Y be a topological vector space whose
topology is induced by a separating family of seminorms Q. Suppose T : [D(Q)]*" — Y is a linear
map. The following are equivalent: (product spaces are equipped with the product topology)

(1) T:[D(Q)]*" — Y is continuous.

(2) ForallK € K(Q), T: [Ex(Q)]*" — Y is continuous.

(3) Forallq € Qand K € K(Q), there exists ji, ..., j; € N such that

V(g ) € [E( QT go T, 9)| < Clllpalljx + -+ llorllj ) -

Theorem 42. Let Q) be a nonempty open set in R".

(1) Aset BC D(Q) is bounded if and only if there exists K € K(Q) such that B is a bounded
subset of Ex (Q)) which is in turn equivalent to the following statement:

VjieNdr; >0 suchthat Yo € B |oljx <7.

(2)  If{¢m} is a Cauchy sequence in D(QY), then it converges to a function ¢ € D(Q). We say
D(Q) is sequentially complete.
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Remark 24. Topological spaces whose topology is determined by knowing the convergent sequences
and their limits exhibit nice properties and are of particular interest. Let us recall a number of useful
definitions related to this topic:

e Let X be a topological space and let E C X. The sequential closure of E, denoted scl(E) is
defined as follows:

scl(E) = {x € X : there is a sequence {x, } in E such that x, — x} .

Clearly, scl(E) is contained in the closure if E.

e A topological space X is called a Frechet-Urysohn space if for every E C X the sequential
closure of E is equal to the closure of E.

e Asubset E of a topological space X is said to be sequentially closed if E = scl(E).

e A topological space X is said to be sequential if for every E C X, E is closed if and only if
E is sequentially closed. If X is a sequential topological space and Y is any topological space,
then amap f : X — Y is continuous if and only if

lim f(x,) = f(nh_{{}o Xn)

n—o0

for each convergent sequence {x,} in X.

The following implications hold for a topological space X:
X is metrizable — X is first-countable — X is Frechet-Urysohn — X is sequential

As it was stated, £ and Ex (For all K € K(Q)) are Frechet and subsequently they are
metrizable. However, it can be shown that D(Q) is not first-countable and subsequently it is not
metrizable. In fact, although according to Theorem 40, the elements of the dual of D(Q) can be
determined by knowing the convergent sequences in D(Q)), it can be proved that D(Q) is not
sequential.

Definition 18. Let Q) be a nonempty open set in R™. The topological dual of D(QY), denoted D' (Q))
(D'(Q)) = [D(Q)]*), is called the space of distributions on Q). Each element of D' (Q) is called
a distribution on Q).

Remark 25. Every function f € L}, (Q)) defines a distribution ug € D'(QY) as follows:

loc

VoeD(Q)  usg):= _/(')f(PdX- 1)

In particular, every function ¢ € £(Q) defines a distribution u. It can be shown that the map
j: £(Q) — D'(Q) which sends ¢ to u is an injective linear continuous map ([24], p. 11).
Therefore, we can identify £(Q) with a subspace of D'(Q)).

Remark 26. Let (O C R" be a nonempty open set. Recall that f : QO — R is locally integrable
(f € L},.(Q)) if it satisfies any of the following equivalent conditions:

(1) feLYK)forall K € K(Q).

(2)  Forall p € C*(Q), fe € L1(Q).

(3)  For every nonempty open set V.C Q) such that V is compact and contained in Q, f € L1(V).

(It can be shown that every locally integrable function is measurable ([36], p. 70)).
As a consequence, if we define Funcyeg(Q) to be the set

{f: Q= R:up: D(Q) — Rdefined by Equation (1) is well-defined and continuous},

then Funcyeq(Q) = L}

loc

().
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Definition 19 (Calculus Rules for Distributions). Let Q) be a nonempty open set in R". Let
ue D'(Q).
e Forall p € C®(Q), gu is defined by

Ve Q) pul(y) = uley).

It can be shown that pu € D' (Q)).
e For all multiindices «, 0*u is defined by

VyeCt(Q)  PUul(y) = (-1)*u(@y).

It can be shown that 9*u € D' (Q)).

Furthermore, it is possible to make sense of “change of coordinates” for distributions.
Let Q and Q) be two open sets in R". Suppose T : QO — ) is a C* diffeomorphism. T can
be used to move any function on () to a function on )’ and vice versa.

T* : Func(QY,R) — Func(Q, R), T*(f)=foT,
T, : Func(Q,R) — Func(QY,R),  T.(f) = foT L.

T*f is called the pullback of the function f under the mapping T and T.f is called
the pushforward of the function f under the mapping T. Clearly, T* and T\ are inverses of
each other and T, = (T~!)*. One can show that T. sends functions in L} _(Q) to L}, (Q))

loc
and furthermore T restricts to linear topological isomorphisms T, : £(Q) — £(Q)') and

T. : D(Q) — D(QY). Note that forall f € L} (Q) and ¢ € C*(QY)

loc

<ur 9 > @) = [ (LHWeWdy = [ (FoT) ey

TR F@e(T () dett ()]
=< ug, |detT’(x)|9(T(x)) >pra)xp() -

The above observation motivates us to define the pushforward of any distribution
u € D'(Q) as follows:

Vo € D(Q)  (Tuwt, @) pravyxp(ayy = (1 [detT’ (x)|9(T(x))) by xp(0) -

It can be shown that T,u : D(Q)’) — R is continuous and so it is in fact an element of
D'(Y). Similarly, the pullback T* : D'(€)’) — D’(Q)) is defined by

Ve D(Q)  (T*'w,¢)p(a)xp(o) = ( 1det(T™) ) o(T~ () pr vy xD(cy) -
It can be shown that T*u : D(Q)) — R is continuous and so it is in fact an element of D'(Q)).

Definition 20 (Extension by Zero of a Function). Let Q) be an open subset of R" and V be an
open susbset of (). We define the linear map exi‘(‘),,O : Func(V,R) — Func(Q, R) as follows:

_fx) fxev
ext(\)/,g(f)(x){o fxeQ\V

ext, o restricts to a continuous linear map D(V) — D(Q).
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Definition 21 (Restriction of a Distribution). Let () be an open subset of R" and V be an open
susbset of Q). We define the restriction map resqy : D'(QY) — D'(V) as follows:

(resq,vit, @) pr(vyxp(v) = (1 exth 0 @) pr(a)<p(0) -

This is well-defined; indeed, resqy : D'(Q)) — D'(V) is a continuous linear map as it is the
adjoint of the continuous map ext?/,Q : D(V) — D(Q). Given u € D'(Q)), we sometimes write
uly instead of resqy y 1.

Remark 27. It is easy to see that the restriction of the map resq y : D'(Q)) — D'(V) to £(Q)
agrees with the usual restriction of smooth functions.

Definition 22 (Support of a Distribution). Let Q) be a nonempty open set in R". Let u € D' (Q)).

e Wesay u is equal to zero on some open subset V of Q) if u|y = 0.
o Let {V;}ics be the collection of all open subsets of () such that u is equal to zero on V;. Let
V = Uier Vi- The support of u is defined as follows:

suppu = Q\ V.
Note that suppu is closed in () but it is not necessarily closed in R".

Theorem 43 (Properties of the Support [20,23,24]). Let Q) and Q) be nonempty open sets in R".

o Iff €LL.(Q), thensuppf = supp us.

e Forallue D'(Q), u=00nQ\suppu.

e Letue D'(Q). If p € D(Q) vanishes on an open neighborhood of supp u, then u(¢) = 0.

e For every closed subset A of O and every u € D'(Q)), we have suppu C A if and only if
u(¢p) = 0 for every ¢ € D(QY) with supp ¢ C Q\ A.

e Foreveryu € D'(Q) and ¢ € E(Q), supp(pu) C supp(y) Nsupp(u).

e Letu,v € D'(Q). If there exists a nonempty open subset U of Q) such that suppu C U and
suppv C U and

(ulu, ) pryxpw) = Clu P owyxpwy Yo € CCU),

then u = v as elements of D' (Q)).

e Letu,v € D'(Q). Then supp(u + v) C suppu Usuppo.

o Let {u;} be a sequence in D'(Q), u € D(Q), and K € K(Q) such that u; — u in D'(Q))
and supp u; C K for all i. Then also suppu C K.

e Foreveryu € D'(Q) and « € NJj, supp(0*u) C supp(u).

e IfT:Q — O is adiffeomorphism, then supp(T.u) = T(suppu). In particular, if u has
compact support, then so has T,u.

Considering the eighth item in the above theorem, an interesting question that one
may ask is the following: Let {u;} be a sequence in D(Q) such that u; — u in D'(Q)),
and suppose there exists K € IC(Q)) such that supp u C K. Does the fact that the limiting
distribution has compact support imply that there exists a compact set K such that supp u; C

K for all i? The answer is negative. For example, for each i € N let u; € D(R) be a

nonnegative function such that u; = 0 outside the interval (i,i + 1) and fiiH u;jdx = %
Clearly, u; — 0 in L1(R) and so u; — 0 in D’(R). However, there is no compact set K such

that supp u; C K for all i.

Theorem 44 ([24], pp. 10 and 20). Let Q) be a nonempty open set in R". Let £'(QY) denote the
topological dual of £(QY) equipped with the strong topology. Then

*  Themap that sends u € E'(Q) to u|p () is an injective continuous linear map from E'(QY)
into D'(Q)).
*  The image of the above map consists precisely of those u € D' (Q) for which supp u is compact.
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Due to the above theorem we may identify £’(Q)) with distributions on Q) with compact
support.

Definition 23 (Extension by Zero of Distributions With Compact Support). Let () be a
nonempty open set in R" and V be a nonempty open subset of (). We define the linear map
ext(‘),,O : EN(V) — E'(Q) as the adjoint of the continuous linear map resqy = £(Q) — E(V);
that is,

(ext o, @)eryxe() = (U @lv)ervyxew) -

Suppose (Y’ and () are two nonempty open sets in R"” such that )’ C Qand K € K£((Y).
One can easily show that:

e Forallu e E(QY), resgn © ext%,,Rnu = ext%,rou.
e TForallu € &(QY), ext%an o ext%,’ou = ext?),,R”u.
e Forallu € &(Q)), ex’c?.z,,Q oresq cyU = U.

We summarize the important topological properties of the spaces of test functions and
distributions in Table 1 below.

Table 1. Topological properties of the spaces of test functions.

po) &@ PO@  &@  pa) £

Strong Strong Weak Weak
Sequential No Yes No No No No
First-Countable No Yes No No No No
Metrizable No Yes No No No No
Second-Countable No Yes No No No No
Sequentially Complete Yes Yes Yes Yes Yes Yes
Complete Yes Yes Yes Yes No No

6.2. Distributions on Vector Bundles

6.2.1. Basic Definitions, Notation
Let M" be a smooth manifold (M is not necessarily compact). Let 7 : E — M be a

vector bundle of rank r.

(1) &(M,E) is defined as C*(M, E) equipped with the locally convex topology induced
by the following family of seminorms: let { (Uy, ¢, P) }acs be a total trivialization
atlas. Then foreverya € I, 1 <1 < r,and f € C*°(M,E), fl := pl o fo gzl isan
element of C®(¢,(Uy)). For every 4-tuple (I,a,j,K) with1 </ <r,a€I,jeN,Ka
compact subset of U, (i.e., K € K(U,)) we define

ik s CE(ME) = R, f = ok o fo g g -

It is easy to check that |.|; 4,k is a seminorm on C*(M, E) and the locally convex
topology induced by the above family of seminorms does not depend on the choice of
the total trivialization atlas. Sometimes we may write ||.[|;,¢, j,x instead of ||.[|;, k-

(2) For any compact subset K C M we define
Ek(M,E) :={f € E(M,E) : supp f C K}

equipped with the subspace topology.

@) D(M,E) = CZ(M,E) = Ugecim)Ek(M,E) (union over all compact subsets
of M) equipped with the inductive limit topology with respect to the family
{€k(M, E) }xekc(m)- Clearly, if M is compact, then D(M, E) = £(M, E) (as topological
vector spaces).
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Remark 28.

o Ifforeach o € I, {K%,} e is an exhaustion by compact sets of U, then the topology induced
by the family of seminorms

{Illajks :1<I<raeljeNmeN}

on C®(M, E) is the same as the topology of €(M, E). This together with the fact that every
manifold has a countable total trivialization atlas shows that the topology of £(M,E) is
induced by a countable family of seminorms. So (M, E) is metrizable.

* If {Kj}jen is an exhuastion by compact sets of M, then the inductive limit topology on
C&° (M, E) with respect to the family {Ex;(M, E)} is the same as the topology on D(M, E).

Definition 24. The space of distributions on the vector bundle E, denoted D' (M, E), is defined as
the topological dual of D(M, E). That is,

D'(M,E) = [D(M,E")]*.

As usual we equip the dual space with the strong topology. Recall that EV denotes the bundle
Hom(E, D(M)) where D(M) is the density bundle of M.

Remark 29. The reason that space of distributions on the vector bundle E is defined as the dual of
D(M, EY) rather than the dual of the seemingly natural choice D(M, E) is well explained in [24,37].
Of course, there are other nonequivalent ways to make sense of distributions on vector bundles
(see [37] for a detailed discussion). Furthermore, see Lemma 13 where it is proved that Riemannian
density can be used to identify D' (M, E) with [D(M, E)]*.

Remark 30. Let U and V be nonempty open sets in M with V C U.
Asin the Euclidean case, the linear map ext%, , : T(V,Ey) — T (U, E}}) defined by

x) xeV

ext) xX)= £

vuf () {0 xeU\Vv
restricts to a continuous linear map from D(V, EY;) to D(U, E]).

*  Asin the Euclidean case, the restriction map resy v : D'(U, Eyy) — D'(V, Ey) is defined as
the adjoint of ext(‘},,u:

0
(resu,vit, @) pr(v,ey)xD(V,EY) = (U €Xty @) Dr(UEy) xD(ULEY) -

e Support of a distribution u € D' (M, E) is defined in the exact same way as for distributions
in the Euclidean space. It can be shown that

(1) ([24],p. 105) Ifu € D'(M, E) and ¢ € D(M, E") vanishes on an open neighborhood
of suppu, then u(¢p) = 0.

(2)  ([24], p. 104) For every closed subset A of M and every u € D'(M,E), we have
suppu C A if and only if u(¢) = 0 for every ¢ € D(M, EY) with suppp C M\ A.

The strength of the theory of distributions in the Euclidean case is largely due to the
fact that it is possible to identify a huge class of ordinary functions with distributions. A
question that arises is that whether there is a natural way to identify regular sections of
E (i.e., elements of I'(M, E)) with distributions. The following theorem provides a partial
answer to this question. Recall that compactly supported continuous sections of the density
bundle can be integrated over M.



Mathematics 2022, 10, 522

40 of 103

f S Frgg(M, E) —

Theorem 45. Every f € £(M, E) defines the following continuous map:

up: D(M,EY) > R, l[)>—>/M[l,U,f], )
where the pairing [, f| defines a compactly supported continuous section of the density bundle:
VxeM [y, fl(x):=[px)][f(x)] (P(x) € Hom(Ey, Dy) evaluated at f(x) € Ey).
In general, we define I';g(M, E) as the set
{f € T(M,E) : us defined by Equation (2) is well-defined and continuous} .

Compeare this with the definition of Func,ee () in Remark 26. Theorem 45 tells us that
E(M, E) is contained in Tyeg(M,E). If u € D'(M,E) is such that u = uy for some f €
Treq (M, E), then we say that u is a regular distribution.

Now, let (U, ¢, p) be a total trivialization triple for E and let (U, ¢, pp) and (U, ¢,p")
be the corresponding standard total trivialization triples for D(M) and E", respectively.
The local representation of the pairing [¢, f] has a very simple expression in terms of the
local representations of f and :

Flo )= (flog™h o flog ™) i=pofog™ € [Func(p(U), R)]

(f1,..., f7) is the local representation of f .

¢ € D(M,EY) =

(@ ¢)=@og™ ... .9 op ) i=p opog " € [Func(e(U),R)]*

(¢!,...,¢") is the local representation of .

Our claim is that the local representation of [, f] (that is, pp o [, f] o ¢~ !) is equal to the
Euclidean dot product of the local representations of f and ¢:

ppo [, flog™! Zf’

The reason is as follows: Lety € ¢(U) and x = ¢~ ()

lopo [y, flo o™ 1(y) = po ([W()IF()]) = pp ([$ ()] [(ple) " (F W), Fr))])
= lopoy(x)o(ole) 1 W) F'(y)
= [0 (WON(fY(y),..., f'(y))] the left bracket is applied to the right bracket
=0V (p(x) - (Fi(y),.. f (y)) dotproduct! p¥(ip(x)) viewed as an element of R”
=@ @ W) W) W)

6.2.2. Local Representation of Distributions

Let (U, ¢,p) be a total trivialization triple for 7 : E — M. We know that each
f € T(M, E) can locally be represented by r components f,..., f defined by

Vi<i<r fligpu) =R, fl=plofog!

These components play a crucial role in our study of Sobolev spaces. Now the question is
that whether we can similarly use the total trivialization triple (U, ¢, p) to locally associate
with each distribution u € D'(M, E), r components !, . . ., " belonging to D’(¢(U)). That
is, we want to see whether we can define a nice map

D'(U, Eu) = [D(U, Ej)]" — D'(@(U)) x ... x D'(p(U)) .

r times
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(Note that according to Remark 30, if u € D’(M, E), then u|; € D’'(U, Ey;).) Such a map, in
particular, will be important when we want to make sense of Sobolev spaces with negative
exponents of sections of vector bundles. Furthermore, it would be desirable to ensure
that if u is a regular distribution then the components of u as a distribution agree with the
components obtained when u is viewed as an element of I'(M, E).

We begin with the following map at the level of compactly supported smooth func-
tions:

Tevue : D(UEY) = [D(@(U)]", &= pYofog™ = ((0") 0gog ..., (p") 0Cog™).
Note that Tgv ; ,, has the property that for all y € C*(U) and ¢ € D(U, Ey7)

Tpvu,p(98) = (Yo (P_l)TEV,u,<p(§) .

Theorem 46. The map Ty 5, : D(U, Eyp) — [D(@(U))]*" is a linear topological isomorphism
([D(@(U))]*" is equipped with the product topology).

Proof. Clearly, TEV,U,go is linear. Furthermore, the map TEV,U,(p is bijective. Indeed, the
inverse of Tgv 1, (Which we denote by Tgv ;) is given by

Tev e [D(9(U))]*" — D(U, EY)
VeelU Tevyy(@- i) (x) = (0"]5) 0 (@eensEr) o plx).

Now, we show that Tgv ;,,, : D(U, Eyj) — [D(@(U))]*" is continuous. To this end, it is
enough to prove that for each 1 </ < r the map

o Tpv e : D(UEY) = D(e(U)), &+ (0¥) 0gog™!

is continuous. The topology on D(U, E}}) is the inductive limit topology with respect
to {Ex (U, EY}) }kexc(u), S0 it is enough to show that for each K € K(U), 7' o Ty,
Ex(U, EY) — D(@(U)) is continuous. Note that 71! o Tgv 11 o [Ex (U, E)] € Eyx) (9(U)).
Considering that &, k) (¢(U)) = D(¢(U)), it is enough to show that

7Tl o TEV,U,(P : SK(U, E&) — 5¢(K)(§D(U))

is continuous. For all ¢ € Ex(U, E}}) and j € N we have

172" Tev, 1,0 (@) o) = 1(0) 050 07l p0) = 1E 19,1k 5

which implies the continuity (note that even an inequality in place of the last equality would
have been enough to prove the continuity). It remains to prove the continuity of Tgv 17,4 :
[D(e(U))]*" — D(U, E;). By Theorem 41 it is enough to show that for all K € K(¢(U)),
Tev,u,e  [Ex(@(U))]*" — D(U, EY) is continuous. Tt is clear that Tgv 17, ([Ex (¢(U))]*") €
Ep1(x) (UL EY). Since E,1(x) (U, EYf) — D(U, Ey)), it is sufficient to show that Tgv 1y, :
[Ex(p(U))]" = Epry (U, E}}) is continuous. To this end, by Theorem 41, we just need to
show that forall j € Nand 1 <[ < r there exists jy, . . ., jr such that

ITevu,p (81, 8010101 k) < UG

However, this obviously holds because

kGl x) -

1 Tev,u,p(C1r- - 60 l1,gj,01 (k) = 16111k -
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The adjoint of Tgv ¢ is
Tfo e : DU ED] — (ID(e(W))]*)"
<Tg\//u’(pu, (glr N ,ér)> = <M, TEV,U,(p(gl/ e r‘:r)> .

Note that, since Tgv 1 , is a linear topological isomorphism, T¢, |, 0 is also a linear topolog-
ical isomorphism (and in particular it is bijective). For every u € [D(U, E}})]*, Tf gl is

in ([D(@(U))]*")"; we can combine this with the bijective map
L: (D)) = DN, L(o) = (woi,...,00%)
(see Theorem 24) to send u € [D(U, E);)]* into an element of [D’ (¢(U))]*":
L(Tgo g, 0) = (Tge g gt0) 01, o) (Too gy ) 011),

where forall1 <1 <r, (T, (Pu) oi; € D'(p(U)) is given by

(T 1) 0 1)(@) = (Tio ) (1(2)) = (T ) 0,-2,0, & ,0,--,0)

Ith position
= <M,TEV,U,¢(O,...,O, ér ,0,...,0)>.
~~
Ith position
If we define gz 17, € D(U, Ey7) by
gl/é,ulgo(X) = TEV,U,(p(Or ey 0, g , 0, e ,0)(X)
~~
Ith position
-1
:(pv|E¥) o(0,...,0, ¢ ,0,---,0)0009(x),
~~
Ith position

then we may write

<(TEV,U,¢M) o il/C>D’(4)(LI))><D(4)(U)) = <u/gl,§,u,tp>[D(U,ELVI)]*XD(U,ELVI) .

Summary: We can associate with u € D'(U, Ey) = (D(U, E)}))* the following r distribu-
tions in D’ (¢(U)):
Vi<i<r a = TEV,U,(Puoil,

that is,
vEeD(p(U)) (@,8) = (ngizue)
where ¢ #1;,, € D(U, Ey) is defined by

-1
(0V|gy) "©(0,...,0, & ,0,...,0)09(x).
~—

Ith position

In particular,
pvoglréru,q,Ogo_l:(O,,,,,O, ¢ ,0,...,0),
~

Ith position

and so (p" o 8LEU,e © o) =¢
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Let us give a name to the composition of L with Tz, U that we used above. We set

Hpougi=LoTh

(D' (p())) ™,

Remark 31. Here we make three observations about the mapping Hev i1,
(1) Foreveryu € [D(U,E))]*

Hev i, ¢ [D(UEQ)]" — s L(The gy o) = ('),

supp[Hgv 1, u]' = suppit’ C @(suppu).

Indeed, let A = @(suppu). By Theorem 43, it is enough to show that if n € D(¢(U)) is such
that suppny C @(U) \ A, then it' (1) = 0. Note that

<ﬁl/77> = <u/gl,17,u,<p>'

So, by Remark 30 we just need to show that g; , 11, = 0 on an open neighborhood of suppu.

Let K = suppy. Clearly, U\ ¢~ (K) is an open neighborhood of suppu. We will show that
81,5, vanishes on this open neighborhood. Note that

Snte(x) = (V1) 71 (0,...,0,7 0 9(x),0,...,0).
| S —

Ith position

Since p¥|gy is an isomorphism and 1 = 0 on ¢(U) \ K, we conclude that g, 11, = 0 on

¢ Hp(U)\K) =U\ ¢~ (K).
(2)  Clearly, Hgv,,, © D'(U,Ey) — [D'(@(U))]*" preserves addition. Moreover, if f €

C®(U) and u € D'(U, Ey), then Hgv 1,4(fu) = (f o (p‘l)HEv,ulq,(u). Recall that H =

LOTEVUqJ

(Tev u,p(fu), (61, -, 6r)) = (fu, Tev u,p (81, -, 8r))
= (u, fTev u,p(81,---,6r))

= (u, Tgv U(p[(f (ST}
= (Tv ot (fo @) (1, 80))
=((foeg )TEV et (81, 8r))

(The third equality follows directly from the definition of Tgv 11 ,.) Therefore,

Tivup(fu) = (Fo ™ ) TEv gt

The fact that L((f o ¢~ 1) T} Vot u) = (foe NHL(T: BV (Pu) is an immediate consequence
of the definition of L.

(3)  Since Tgv , and L are both linear topological isomorphisms, HEv Ue = (LoTfv y (P)‘l :

(D'((U)))*" — D*(U, Ey}) is also a linear topological 1somorphzsm It is useful for our
later considerations to find an explicit formula for this map. Note that
-1

EV,U,¢ (L o TEV,U,(p)_l = (TEV,U,go)_l ° L_ (TE_V u (p) °© L_l
= (Tevup) o L7 = (Tev ) o L.

Recall that

L+ [D*(p(U))]*" = (D))", (o',...,
Tiv e : [(D(@(U)))*']" = D™ (U, Eyy) -

)= olom+... 40 om,,
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Therefore, for all & € D(U, E}))

Hyl (@ 0)(@) = (T (0" 0 1+ 4 07 0714, 8)

(Tg
(@' om +...+ 0" omy), TE)

(o' om+ v o), ((0V) ogogT ., (0Y) 0G0
Lol

ofog .

Remark 32. Suppose u € D'(M,E) is a regular distribution, that is, u = us where f €
Treg(M,E). We want to see whether the local components of such a distribution agree with
its components as an element of I' (M, E). With respect to the total trivialization triple (U, ¢, p)
we have

@) fe(fhf), fl=plofoe™,
(2) uf»—>(uf,. uf)

The question is whether uy = 1 fl? Here we will show that the answer is positive. Indeed, for all
¢ € D(e(U)) we have

('8) = upegigug) = [ zup 1= [ S@zugl Fav = [ @) fav
— 7l — (y-
_ /(P(u)fgdv_ (up, ).

Note that the above calculation in fact shows that the restriction of Hpv iy, to D(U, Ey) is Tt -

7. Spaces of Sobolev and Locally Sobolev Functions in R"

In this section, we present a brief overview of the basic definitions and properties
related to Sobolev spaces on Euclidean spaces.

7.1. Basic Definitions

Definition 25. Let s > 0 and p € [1,00]. The Sobolev-Slobodeckij space WP (R") is defined
as follows:

e Ifs=keNype[l, o),

WHP(R") = {u € LP(R") : [[ullygip ) == X 10°ulp < oo}
[v|<k

. fs=0e©1),pe i),
W@p R™) = LP(R . |1/l ( )|pd d %
®) = {1 € D) ulyorgany = ( [, Bt )} <.
e Ifs=0e(01),p=oc

WO (R") = {u € L°(R") : 1| ooy := esssup M < co}.
x,y€R" x#y ‘x y|

e Ifs=k+6,keNy0€c(0,1),pe]l,oc0],

WP (R") = {u € WRP(R") : [[ullwsr ) = ullio ey + 2 10" ulyyopgay < 0}
[v|=k
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Remark 33. Clearly, for all s > 0, WS (R") C LP(R"). Recall that LF(R") C L} (R") C
D’(R™). So, we may consider elements of W*¥ (R™) as distributions in D' (R"). Indeed, for s > 0,
p € (1,00), and u € D' (R") we define

wllwspwny == I fllwspmny if u = ug for some f € LP(R")
[/l s (rny := o0 otherwise '

As a consequence, we may write
WSP(R") = {u € D'(R") : [uflpen) < o0}

Remark 34. Let us make some observations that will be helpful in the proof of a number of important
theorems. Let A be a nonempty measurable set in R".

(1) We may write:

[0"u(x) — 0"u(y)|”
dxd
//RWXR" |x— oy

://AxA...dxdy+/A/Rn\A...dxdy+/n\A/A...dxdy+/n\A/”\A...dxdy.

In particular, if suppu C A, then the last integral vanishes and the sum of the two middle

integrals will be equal to 2 fA fR”\A ||j””(x)|"’

,y|n+6p

[0"u(x) = 0"u(y)|”
dxdy =
//R”XIR” |x—y|“+9?7 ey

// [0 u(x) — ' u)|” 5 4 +2// 1@
Axa |x—y\"+9r’ Y ma fx— y\nw /

(2) If Aisopen, K C A is compact and « > n, then there exists a number C such that for all
x € K we have

dydx. Therefore, in this case

1
<cC.
/R"\A [x—yl® W=

(C may depend on A, K, n, and « but is independent of x.) The reason is as follows: Let
R = %dist(K, A°) > 0. Clearly, for all x € K, the ball B(x) is inside A. Therefore, for all
x € K, R"\ A C R"\ Bg(x) which implies that for all x € K

1 1 z=y—x 1 1y (1
- 4 g/ B Vi & / 7 = o(S" / 1y,
/R"\A =y NBe(x) X —yI* Y R"\Bx(0) |2[* S R ™

which converges because & > n. We can let C = o(S"1) [ R 7T Lyn=1dy,
(3)  If Aiis bounded and o < n, then there exists a number C such that for all x € A

1
—  _dy <C.
/ux—w y=

(C depends on A, n, and « but is independent of x.) The reason is as follows: Since A is
bounded there exists R > 0 such that for all x,y € A we have |x —y| < R. So, forall x € A

1 n—1 k1 n—1
/ ——dy < o(S )/ —r"dr,
Alx—yl* 0o

which converges because x < 1.

Theorem 47. Let s > 0and p € (1,00). CX(R") is dense in WP (R™). In fact, the identity map
ipw : D(R") — WP (R") is a linear continuous map with dense image.
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Proof. The fact that C°(R") is dense in W*?(R") follows from Theorem 7.38 and
Lemma 7.44 in [38] combined with Remark 39. Linearity of ip y is obvious. It remains to
prove that this map is continuous. By Theorem 40 it is enough to show that

VK e K(R”),Vgo S 5K(Rn) E'] €N s.t H(ins/p(Rn) = H(PH],K .

Lets = m+6 where m € Ngand 6 € [0,1). If 0 # 0, by definition ||¢||yspgn) =
pllwme®ny + Ljvj=m [9"@lwop@n)- 1t is enough to show that each summand can be
bounded by a constant multiple of ||¢||; x for some j.

. Step1:1f 0 =0,

lolwmr@n = Y 10V @lr@y =Y. 1189l

[v|<m [v|<m
1
= Y UlellmxlK[P) = l@llmk,
[v|<m

where the implicit constant depends on m, p, and K but is independent of ¢.
¢  Step 2: Let A be an open ball that contains K (in particular, A is bounded). As it was
pointed out in Remark 34 we may write

0" (x) — "9 (y)|P
dxdy =
//ann |x7 |”+9P e

|0V (x) — V¢ / / [0V o (
P ddy +2 HCUICIIU
//AXA |x— Wp =+ na Jx— |n+6v yox

First note that R” is a convex open set; so by Theorem 6 every function f € Ex(R") is
Lipschitz; indeed, for all x,iy € R” we have |f(x) — f(y)| =< || fll1,x||* — v|. Hence

|av — oV (y , }/|p
//AxA |x y|n+op dxdy</ IE (PH1K/ = |n+6pdydx

. 1
= /A 10 (P|1,1</AMI+(9_1)pdydx-

By part 3 of Remark 34 [, Wdy is bounded by a constant independent of x;

also, clearly, ||0V¢||1,x < ||@|/m+1,k- Considering that |A| is finite we get

IBV —"p()I
dxdy <
//A><A y|”+9P xdy =l

Finally, for the remaining integral we have

e e
nax— y|"+9p nafx— y|"+9r’y /

because the inner integral is zero for x ¢ K. Now, we can write

10" ¢( / / 1
d dx < ———dydx.
//l‘{”\A ‘x |7l+9p yax Hq)” R\ A |x_y‘1’l+9p yax

By part 2 of Remark 34 for all x € K, the inner integral is bounded by a constant. Since
|K| is finite we conclude that

2
d dx <
[y Lo s < gl
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Hence
lullwsr@ny = N @llm+1k -
O]

Definition 26. Lets > 0and p € (1, c0). We define

—s,p" (on s Y\ * 1 1

WP (RY) = (WP(RY))" (-4 =1).
p p

Remark 35. Note that since the identity map from D(R™) to WP (R™") is continuous with dense
image, the dual space W =S¥ (R") can be viewed as a subspace of D' (R"). Indeed, by Theorem 25
the adjoint of the identity map, if, ; : W-s¥ (R") — D'(R") is an injective linear continuous
map and we can use this map to identify W5 (R") with a subspace of D'(R™). It is a direct
consequence of the definition of adjoint that for all u € W—5¥ (R™"), ipwit = ulpmwn). So, by
identifying u : WP (R") — R with u[prs) : D(R") — R, we can view WS# (R") as a
subspace of D' (R").

Remark 36.
* It is a direct consequence of the contents of pp. 88 and 178 of [8] that for m € Z and
l1<p<e

WHP(R™) = Hy'(R") = Fj5(R").
e It isadirect consequence of the contents of pp. 38, 51, 90 and 178 of [8] that for s ¢ Z and
l1<p<o
W (R") = B, ,(R").
Theorem 48. Foralls € Rand 1 < p < co, W¥P(R") is reflexive.

Proof. See the proof of Theorem 64. Additionally, see [39], Section 2.6, p. 198. [

Note that by definition for all s > 0 we have [W5? (R™)]* = W5 (R"). Now, since
WS (R™) is reflexive, [W =S¥ (R")]* is isometrically isomorphic to W¥?(R") and so they
can be identified with one another. Thus, for alls € Rand 1 < p < co we may write

[W*P (R")]* = WP (R").

Lets > 0and p € (1,00). Every function ¢ € C*(R") defines a linear functional
Ly : W9P(R") — R defined by

Ly(u) = /R” u@dx .

Ly is continuous because by Holder’s inequality
L)l = | [ x| < [uln e 191 ey < 0l oy ooy
Furthermore, the map L : C¥(R") — W~5# (R") which maps ¢ to L, is injective because
Ly =Ly —Vuec WPR") /IRnu(¢—¢)dx:0—>/IRn lp—¢)Pdx=0— 9 =19.
Thus, we may identify ¢ with L, and consider CZ°(R") as a subspace of W—sP' (R™).

Theorem 49. Forall s > 0and p € (1,00), C=(R") is dense in W5 (R"),
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Proof. The proof given in p. 65 of [1] for the density of LV in the integer order Sobolev
space W-m#', which is based on reflexivity of Sobolev spaces, works equally well for
establishing the density of C2°(R") in W=5#' (R"). O

Remark 37. As a consequence of the above theorems, for all s € R and p € (1, 00), WP (R") can
be considered as a subspace of D' (R"). See Theorem 25 and the discussion thereafter for further
insights. Additionally, see Remark 45.

Next we list several definitions pertinent to Sobolev spaces on open subsets of R".

Definition 27. Let Q) be a nonempty open set in R". Let s € Rand p € (1,).

(1)

(2)

(3)

(4)

o Ifs=keN,

WoP(Q) = {u € LP(Q) : [lullyiroy = 3 18"ullr(q) < oo} -
lv|<k

e Ifs=0¢€(01),

u P 1
WOP(Q) = {1 € LP(Q) : [ulyyop (g : //le ey |n+927| dxdy)? < oo} .

e Ifs=k+6,keNy60e(01),

WoP(Q) = {u € WP (Q) : [[ullwsr ) = lutllyiniay + X 10"ulwor(q) < o}
|vi=k
o Ifs<0,
s, 1 1
W (@) = (W (@) (4= 1),
p r
where for alle > 0and 1 < q < oo, Wy (Q) is defined as the closure of C(Q) in
W (Q).

WP (Q)) is defined as the restriction of WS (R™) to Q. That is, WP (Q)) is the collection
of all u € D'(Q) such that there is a v € WP (R") with v|q = u. Here v|q should be
interpreted as the restriction of a distribution in D' (R™) to a distribution in D' (Q)). WS (Q))
is equipped with the following norm:

sP(O)) — i f s, AT
by =y 56 Iolercan

WP (Q)) = {u € WP (R") : suppu C O} .
WP (Q)) is equipped with the norm |[u||sp ) = [l wsr @n)-

WP (Q) = {u = v|,v € W (Q)}. ®)

Again v|q should be interpreted as the restriction of an element in D'(R") to D'(Q)).
So WSP(Q) is a subspace of D'(Q). This space is equipped with the norm |ul| sy =
inf [|v]| s (mny where the infimum is taken over all v that satisfy the equality in Equation (3).
Note that two elements vy and vy of WP (Q) restrict to the same element in D'(Q) if and
only if supp(vy — vp) C 0QL. Therefore,

WP (Q)

s,p
W) = {v e WSP(R") : suppv C 0Q}
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(5) Fors > 0 we define
Woa (Q) = {u € WP (Q) : ext?),wu € WP (R")}.
We equip this space with the norm
H“ngg’(o) = Hext((]),R“”HWS'V(R")-

Note that previously we defined the operator ext?)’Rn only for distributions with compact
support and functions; this is why the values of s are restricted to be nonnegative in this
definition.

(6) Forall K € K(Q)) we define

WP (Q) = {u € WP(Q) : suppu C K},

with |[ull yer ) = lullwsr(c)-
(7)
Wemp(Q) = WM (Q).
KeK(Q)

This space is normally equipped with the inductive limit topology with respect to the fam-
ily {W;’p(Q)}KeK(Q). However, in these notes we always consider W?{,}ZHP(Q) as a
normed space equipped with the norm induced from W5 (Q}).

Remark 38. Each of these definitions has its advantages and disadvantages. For example, the
way we defined the spaces WP (Q)) is well suited for using duality arquments while proving the
usual embedding theorems for these spaces on an arbitrary open set () is not trivial; on the other
hand, duality arguments do not work as well for spaces WP (Q)) but the embedding results for
these spaces on an arbitrary open set Q) automatically follow from the corresponding results on R".
Various authors adopt different definitions for Sobolev spaces on domains based on the applications
in which they are interested. Unfortunately, the notation used in the literature for the various spaces
introduced above are not uniform. First note that it is a direct consequence of Remark 36 and the
definitions of By, ,(Q)), Hy(Q) and F}, ,(Q)) in [39] p. 310 and [40] that

wer(gyy = [ a0 = Hy(0) ifse
By p(Q) ifs ¢ Z

With this in mind, we have Table 2 which displays the connection between the notation used in this
work with the notation in a number of well-known references.

Table 2. Connection to notation employed in previous literature

This Manuscript Triebel [39] Triebel [40] Grisvard [5] Bhattacharyya [4]

WS (Q) W5 (Q) WP (Q)
WP () W5 (Q) W5 (Q) W5 (Q) WP (€)
WP (Q) Ws (Q) W5 ()
WP (Q) Wy (Q)
Wop (€2) W5 (Q) Wo (Q)
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Remark 39.
e Note that

||”||wkfp(0) + ) |aV”|w9m(Q) < ||”||Wkrp(0) + ) HaV“”wG,p(Q)
lv|=k |v|=k

~ Il + X (0l + 0uloren
|v|=k

= H””wk,p(n) + Z |avu|w9m(n) (since Z ||avu||LP(Q) < ||unk,P(Q))-
|v|=k lv|=k

Therefore, the following is an equivalent norm on W (Q))

lllwerccn = llmiriey + 3 18l mor
la|=k

1
e Forpe (1,00)anda,b> 0wehave (aP + bP)? ~ a+ b; indeed,
af +bP < (a+0b)P < (2max{a,b})’ <2F(a? +bP).
1
More generally, ifay, . . ., ay are nonnegative numbers, then (alp foah)r a4 Aan.

Therefore, for any nonempty open set () in R", s > 0, the following expressions are both
equivalent to the original norm on W (Q})

—_

lellwsrc) = [l g +‘Ek\a”ulwep 17,
1/

lellwsr() = [l +‘Z 10" ullfy0, )]+
=k

E\'—‘

wheres = k+6, k € Ny, 6 € (0,1).

7.2. Properties of Sobolev Spaces on the Whole Space R"

Theorem 50 (Embedding Theorem I, [39], Section 2.8.1). Suppose 1 < p < q < oo and
—o0 < t < s < cosatisfys— 12 > t— g. Then WSP(R") — W (R"). In particular,

P
WP (R) < WHP (R,

Theorem 51 (Multiplication by smooth functions, [12], p. 203). Lets € R, 1 < p < oo, and
¢ € BC®(R"). Then the linear map

my : WP (R") — WP (R"), u— Qu
is well-defined and bounded.

A detailed study of the following multiplication theorems can be found in [18].

Theorem 52. Let s;,sand 1 < p,p; < oo (i = 1,2) be real numbers satisfying
(i) si=s=>0,

(i) s € Ny,
1 1
(iii) s;—s>n(———),
| (Pi q) 1 1
(iv) s1+sy—s>n(—+——=)>0,
pr P2 P

where the strictness of the inequalities in items (iii) and (iv) can be interchanged.
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If u € WSvPi(R") and v € W52P2(R"), then uv € WP (R") and moreover the pointwise
multiplication of functions is a continuous bilinear map

WSLPL(RM) x Wo2P2(R™) — WS (RM).

Theorem 53 (Multiplication theorem for Sobolev spaces on the whole space, nonnegative
exponents). Assume s;,sand 1 < p; < p < oo (i = 1,2) are real numbers satisfying

(i) s;>s,
(i) s>0,
1 1
(iii) s;—s>n(——=),
i (pi q) o
(iv) s1+sy—s>n(——+——=).
pr p2 P

If u € WSWPi(R") and v € W52P2(R"), then uv € WP (R") and moreover the pointwise
multiplication of functions is a continuous bilinear map

WELPL(RM) x W22 (R™) — WP (RM).

Theorem 54 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents I). Assume s;,sand1 < p; < p < oo (i = 1,2) are real numbers satisfying

(i) s;>s5,
(i1) min{sl,sz} <0,
1 1
(iii) s;—s>n(—— =),
T
(iv) s1+sp—s>n(——+——=),
. Pll p2 P
(w) s1+sy>n(—+—-1)>0.
P1r P2

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map
WeLPL(R") x W2P2(R™) — WP (R™).

Theorem 55 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents II). Assume s;,sand1 < p,p; < oo (i = 1,2) are real numbers satisfying

(i) si>s,
(ii) min{sy,sp} > 0ands <0,
1 1
(iii) s; —s > n(pi p),
(iv) 51+s2—s>n(l+i—l)20,
pr P2 P
(v) s1+s3> n(pll + plz —1) (the inequality is strict).

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map
WeLPL(R") x W2P2(R™) — WP (R™).

Remark 40. Let us discuss further how we should interpret multiplication in the case where
negative exponents are involved. Suppose for instance s; < 0 (s may be positive or negative). A
moment’s thought shows that the relation

WEIPL(R™) x We2P2(R™) < WP (RM)

in the above theorems can be interpreted as follows: for all u € WS1P1L(R") and v € W*2P2(R"), if
{@i} in C*(R™) N Wo-P1(R") is any sequence such that ¢; — u in W¥-P1(R"), then
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(1)  Foralli, pjv € WSP(R") (multiplication of a smooth function and a distribution);

(2) ;v converges to some element g in WP (R") as i — oo;

3)  lIgllwsrwey = [[ullwsrrn (mey [0l wszva (n) where the implicit constant does not depend on u
and v;

(4) g€ WSP(R") is independent of the sequence { ¢;} and can be regarded as the product of u
and v.

In particular, p;v — uv in D' (R") and for all € CP(R")
(0, ) pr(mn) x () = UM (@70, ) pr () D(Rr) = (0 9i%P) D () < D) -

7.3. Properties of Sobolev Spaces on Smooth Bounded Domains

In this section, we assume that () is an open bounded set in R" with smooth bound-
ary unless a weaker assumption is stated. First we list some facts that can be useful in
understanding the relationship between various definitions of Sobolev spaces on domains.

*  ([4], p. 584) [Theorem 8.10.13 and its proof] Suppose s > 0 and 1 < p < oo. Then
WsP(Q)) = W3P(Q)) in the sense of equivalent normed spaces.
e ([40], pp. 481 and 494) For s > % —1, WsP(Q)) = WSP(Q). That is, for s > % -1

{v e W¥P(R") : suppv C 02} = {0} .

e Lets>0and1 < p < oco. Then fors # %, 1+ %,2 + %, ... (that is, when the fractional

part of s is not equal to %) we have

(1) ([4], p- 592) [Theorem 8.10.20] ngp Q) = Wg’p (Q)) in the sense of equivalent
normed spaces.

2)
ext g 1 (C2(Q), ||-lls,p) = WP (R™)

is a well-defined bounded linear operator.
®)

resgn () : W_s'p/(R”) — W_S"’/(Q) u— ulg
is a well-defined bounded linear operator.

Note that the connection between items (2) and (3) above can be seen as follows:

Let u € WP (R"). respnqu € W (Q) if and only if u|q : (D(Q),|.lsp) — Ris
continuous, that is, if

[(ula, @) pr(a)xD()]

sup < o0
0£¢eD(Q) @llwse )
We have
(1l ) pr (x| = (Xt g @) pr(riyx D(mr) | = |<u’eXt?),R”(P>W*S/P’(Rr1)><w8f7’(Rn)|

j ||1/l ||W75,p’ (Rm) ||eXt(()),R" ¢||Wg’p (Rm) -

So, the desired inequality holds if one can show that for all ¢ € D(Q),
llextey g @ll s oy = 1@ llwer ()

Next we recall some facts about extension operators and embedding properties of
Sobolev spaces. The existence of extension operator can be helpful in transferring known
results for Sobolev spaces defined on R” to Sobolev spaces defined on bounded domains.

Theorem 56 (Extension Property I [4], p. 584). Let (O C R" be a bounded open set with
Lipschitz continuous boundary. Then for all s > 0 and for 1 < p < oo, there exists a continuous
linear extension operator P : WP (Q) < W*P(R") such that (Pu)|q = u and || Pul|ysp gy <
Cllullwsp () for some constant C that may depend on s, p, and Q) but is independent of u.
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The next theorem states that the claim of Theorem 56 holds for all values of s (positive
and negative) if we replace W*? (Q)) with W37 (Q}).

Theorem 57 (Extension Property II [40], p. 487, [8], p. 201). Let (O C R" be a bounded L open set
with Lipschitz continuous boundary, p € (1,00) and s € R. Let R : WP (R") — W*P(Q) be the

restriction operator (R(u) = u|q). Then there exists a continuous linear operator S : WS (Q)) —
WsP(R") such that Ro S = Id.

Corollary 3. One can easily show that the results of Sobolev multiplication theorems in the
previous section (Theorems 52-55) hold also for Sobolev spaces on any Lipschitz domain as long as
all the Sobolev spaces involved satisfy We1(Q) = W1(Q) (and so, in particular, existence of an
extension operator is guaranteed). Indeed, if Py : W*1/P1(Q)) — WSIPL(R™) and P, : W*2P2(Q)) —
Ws2:P2(R™) are extension operators, then (Pyu)(Pyv)|q = uv and therefore,

[uollwsrq) = l[uollwsr ) < I[(Pra) (Poo) [l wseny = (| Prllwsi o ey [ P20l wsamz ()

= ullwsie ) llollwszez ) -

Remark 41. In the above Corollary, we presumed that (Pyu)(Pv)|q = uv. Clearly, if s; and
sy are both nonnegative, the equality holds. However, what if at least one of the exponents, say
s1, is negative? In order to prove this equality, we may proceed as follows: let {¢;} be a sequence
in C®(R") N W 1PL(R™) such that ¢; — Pyu in WoP1(R"). By assumption Ws1P1(Q)) =
WSLPL(QY), therefore the restriction operator is continuous and { ;| } is a sequence in C*(Q) N
Ws1P1(Q)) that converges to u in Wo1'P1(QY). For all p € C(Q)) we have

([(Pru) (P20)] o, ¥) pryxD() = <(P1“)(sz)f€ﬂ% Rn ) D/ (R7)x D(R7)
Remark4()

im (¢; (P,0), exty gn ) pr(Rn)x D(RY)
((PzU)IGDzEXtQRn W) D/(R") x D(RY)
= lim ((Py0), extd g (9il0¥)) pr () x D (R1)
im {(P>0)|0, ¢ilo¥) pr(@)«D(©)
= .11m<4’i|07’/1/’>D'(0)xD(Q)
1—00
= (uv, ¥) pr()xD(Q) -

Theorem 58 (Embedding Theorem II [5]). Let Q) be a nonempty bounded open subset of R"
with Lipschitz continuous boundary or Q = R™. If sp > n, then WP (Q) — L*(Q) N C°(Q)
and WP (Q)) is a Banach algebra.

Theorem 59 (Embedding Theorem III [18]). Let Q) be a nonempty bounded open subset of R"
with Lipschitz continuous boundary. Suppose 1 < p,q < oo (pdoes NOT need to be less than or
equal to q) and 0 < t < s satisfys — 2 > t—2 Ifs & No, additionally assume that s # t. Then

WP (Q)) — WH(Q). In particular, WS'F’( ) — Wi (Q).

Theorem 60. Let () be a nonempty bounded open subset of R" with Lipschitz continuous boundary.
Then u : Q — R is Lipschitz continuous if and only if u € WY (Q). In particular, every function
in BC1(Q) is Lipschitz continuous.

Proof. The above theorem is proved in Chapter 5 of [2] for open sets with C! boundary.
The exact same proof works for open sets with Lipschitz continuous boundary. O

The following theorem (and its corollary) will play an important role in our study of
Sobolev spaces on manifolds.
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||(P”||s,p

Theorem 61 (Multiplication by smooth functions). Let Q) be a nonempty bounded open set in
R"™ with Lipschitz continuous boundary.

(1)

(2)

(3)

Letk € Ngand 1 < p < oo. If € BCK(Q), then the linear map WP (Q) — WEP(Q)
defined by u — @u is well-defined and bounded.

Lets € (0,00) and 1 < p < oo. If ¢ € BCI1(Q) (all partial derivatives of ¢ up to and
including order |s| exist and are bounded and Lipschitz continuous), then the linear map
WsP(Q)) — WP (Q) defined by u — @u is well-defined and bounded.

Lets € (—00,0)and 1 < p < oo. If ¢ € BC®(Q), then the linear map WP (Q) —
WsP(Q)) defined by u — @u is well-defined and bounded.

Note: According to Theorem 60, when Q) is an open bounded set with Lipschitz continuous
boundary, every function in BC'(Q) is Lipschitz continuous. As a consequence, BC®'(Q) =
BC*®(Q)). Of course, as it was discussed after Theorem 6, for a general bounded open set () whose
boundary is not Lipschitz, functions in BC*®(Q)) are not necessarily Lipschitz.

Proof.

Remark 39

| pu

Step 1: s = k € Ny. The claim is proved in ([29], p. 995).

Step 2: 0 < s < 1. The proof in p. 194 of [41], with obvious modifications, shows the
validity of the claim for the case where s € (0,1).

Step 3: 1 < s ¢ N. In this case we can proceed as follows: Letk = [s|, 0 =s —k.

kpt 2 10" (9u)llep
|v|=k

= llullep + 35 Y- 10" PpoPully,

|v|=k B<v

= Jullgp + Z Z Haﬁqu’p (by steps 1 and 2; the implicit constant may depend on ¢)

= [Ju

= [lu

= [lu

= ||”||s,p-

spt 2, ) llu

[v/=k v

sp T Z Z ||a’3”||9,p

|v|=k B<v

spt 2 ) lullosipp (9P - WOHIBLP () — WPP (Q)is continuous)

|v|=k B<v
sp (0B <s= W (Q) — WiIElP ()

lv|=k B<v

Note that the embedding W57 (Q2) < WO*IBlP(Q) is valid due to the extra assump-
tion that () is bounded with Lipschitz continuous boundary (see Theorem 68 and
Remark 42).

Step 4: s < 0. For this case we use a duality argument. Note that since ¢ € C®(Q2), gu
is defined as an element of D’(Q)). Furthermore, recall that W5 (Q)) is isometrically
isomorphic to [CZ(Q2), ||.[| s ]* (see the discussion after Remark 10). So, in order
to prove the claim, it is enough to show that multiplication by ¢ is a well-defined
continuous operator from W*”(Q) to A = [CZ°(Q), ||| s ;7] *. We have

o sup | {91, 9)pr(e)xD ()] up {1, 99) pr(0y) x D ()]
A= =
veCE\{0} HUH_S/}’” veCe\{0} HvH—s,p’
Remark 45 ‘<1/l, (Pv>Ws’p(Q) XW()_S'V,(Q)|
= sup
0eC®\ {0} 9] —s,pr
< sup Il 9ol < lellsplioll—sp _ 4|5, p-
- veC\{0} | UH*SIPI B veCe\ {0} Hvufs,p’ ’
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Corollary 4. Let ) be a nonempty bounded open set in R" with Lipschitz continuous boundary.
Let K € K(Q). Suppose s € Rand p € (1,00). If ¢ € C®(Q), then the linear map Wi¥ (Q) —
WP (Q) defined by u — @u is well-defined and bounded.

Proof. Let U be an open set such that K ¢ U C U C Q. Let ¢ € C®(Q) be such that
¢ = 1on K and ¢ = 0 outside U. Clearly p¢ € CZ(Q) and thus ¢ € BC®!(Q) (see the
paragraph above Theorem 7). So, it follows from Theorem 61 that || ¢u||s, = |lul|s, where
the implicit constant in particular may depend on ¢ and 1. Now the claim follows from
the obvious observation that for all u € Wy” (Q)), we have you = gu. O

Theorem 62. Let (2 = R" or ) be a nonempty bounded open set in R" with Lipschitz continuous

boundary. Let K C Q) be compact, s € Rand p € (1,00). Then

(1) WP (Q) C Wy (Q). That is, every element of W (Q) is a limit of a sequence in C(Q2);

(2) ifKCV CK CQuwhereand K is compact and V is open, then for every u € W;’p (Q),
there exists a sequence in Cg;,(Q)) that converges to u in WP (()).

Proof.

(1) Letu € Wp'(Q). By Theorems 65 and 66, there exists a sequence {¢;} in C*(Q)
such that ¢; — u in W3P(Q)). Let ¢ € C(Q)) be such that ¢y = 1 on K. Since
C®(Q) C BC*'(Q), it follows from Theorems 51 and 61 that p¢; — Yu in WP (Q).
This proves the claim because y¢; € C®(Q) and pu = u.

(2) In the above argument, choose P € C°(Q)) such that y =1 on K and ¢ = 0 outside V.

O

Theorem 63 (([40], p. 496), ([39], pp. 317, 330, and 332)). Let Q) be a bounded Lipschitz

domain in R". Suppose 1 < p < 00,0 < s < L. Then C®(Q) is dense in WP (Q) (thus

WP (Q) = W7 (Q)). ’

7.4. Properties of Sobolev Spaces on General Domains
In this section, () and Q) are arbitrary nonempty open sets in R”. We begin with some
facts about the relationship between various Sobolev spaces defined on bounded domains.
* Supposes > 0and ) C Q. Then for all u € W*?(Q)), we have resq ru € W (QY').
Moreover, ([resq ortt||wsr () < ||M||Ws,p(0). Indeed, if welets = k+ 6

|9” —3"u(y)|” 1
lihwrion = llhwenery + 2 € - W dxdy)?
IaV —uy)lr 1
o ullen + X ([ f dxdy)}
‘“\Z<k e V|Zk Ix QY |n+9p )
0V u(x) =" u()? 1
< ‘EkHaWHLP(Q) = //on |x—y|”+9r7 dxdy)? = [[ullwsrq) -

So, resq oy : WP (Q) — WP (Q)) is a continuous linear map. Furthermore, as a
consequence, for every real number s > 0

WSP(Q)) < WS (Q)).

Indeed, if u € WP (Q)), then there exists v € W3 (R") such that resgs ov = 1 and
thus u € W*P(Q). Moreover, for every such v, |[ullysrq) = |lresrs qvllwsrq) <
[[9]|ws» (mn)- This implies that

, < inf : = P(Q) -
||u||wsx’(0) = veWS/P(l]R%),mQ:u HUHWSP(R”) ||uHWSl’(Q)
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¢  (learly, foralls > 0
Wy (Q2) — WSP(Q).

e  For every integer m > 0 ([5], p. 18)
Wy P (Q) € Wy? (QQ) € W™P(Q) C W™P(Q).

e Suppose s > 0. Clearly, the restriction map resgny : W% (R") — W% (Q)) is a
continuous linear map. This combined with the fact that C° (R") is dense in W7 (R")
implies that C°(Q)) := resgn o (CP(R")) is dense in W5 (Q)) for all s > 0.

e W9P(Q) is a closed subspace of W5 (R"). Closed subspaces of reflexive spaces are
reflexive, hence W** (Q)) is a reflexive space.

Theorem 64. Let () be a nonempty open set in R" and 1 < p < oo.
(1) Foralls >0, W5P(Q)) is reflexive.

(2)  Foralls >0, Wy"(Q) is reflexive.
(3) Foralls <0, WP(Q) is reflexive.

Proof.
(1) The proof for s € Ny can be found in [1]. Let s = k + 6 where k € Npand 0 < 6 < 1.
Let

r=card{v e Nj : |v| =k}.
Define P : W*?(Q) — Wk?(Q) x [LP(Q x Q)]*" by
[0V u(x) — "u(y)|
P(u) = (u, .
(u) =, )V._R

=yl

The space WP (Q) x [LP(Q x Q)]*" equipped with the norm

101 o)l = [ fllwkr ) + l1llr@xa) + - + lorllraxa)

is a product of reflexive spaces and so it is reflexive (see Theorem 9). Clearly, the
operator P is an isometry from W57 (Q) to WE? (Q) x [LP(Q x Q)]*". Since WP (Q))
is a Banach space, P(W*?(Q)) is a closed subspace of the reflexive space W*?(Q)) x
[LP(Q) x Q)]*" and thus it is reflexive. Hence WP (Q)) itself is reflexive.

2) W7 (Q) is the closure of CZ°(Q) in W57 (Q). Closed subspaces of reflexive spaces are
reflexive. Therefore, Wg’p (Q)) is reflexive.

(3) A normed space X is reflexive if and only if X* is reflexive (see Theorem 9). Since for
s < 0 we have W7 (Q) = [W, ™" , (Q)]*, the reflexivity of W*(Q)) follows from the

reflexivity of W, ¥ / (Q).
O

Theorem 65. Foralls < 0and1 < p < oo, CX(Q)) is dense in WP (Q}).

Proof. The proof of the density of L” in W™ in p. 65 of [1] for integer order Sobolev

spaces, which is based on the reflexivity of W, iy (Q)), works in the exact same way for
establishing the density of C°(Q) in W*#(Q)). O

Theorem 66 (Meyers-Serrin). Forall s > 0 and p € (1,00), C®(Q) N W5P(Q)) is dense in
WsP(Q)).

Next we consider extension by zero and its properties.
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Lemma 6 ([4], p. 201). Let Q be a nonempty open set in R" and u € Wy ¥ (Q) where m € Ny
and1 < p < co. Then

(1) V|a| <m, 0% = (/8;/11) as elements of D' (R"),
(2) i e W'rfl,p(Ri’l) w1th Hﬁ”wm,p(Rn) = ||1/lem,p(Q)

Here, il 1= ext%,Rnu and (gru) = ext?)’Rn (0%u).

Lemma 7 ([6], p. 546). Let Q be a nonempty open set in R", K € K(Q), u € Wg¥(Q) where
s€(0,1)and1 < p < co. Then ext)) p,u € W (R") and

lextey e llwer ey = llullwsr oy

where the implicit constant depends on n, p, s, K and Q).

Theorem 67 (Extension by Zero). Let s > 0 and p € (1, 00). Let Q) be a nonempty open set in
R" and let K € K(QY). Suppose u € Wi (Q). Then

(1) ext%’Rnu € WP (R"). Indeed, ||ext?)/RnuHWs,p(Rn) = [[ullwsp () where the implicit con-
stant may depend on s, p, n, K, Q) but it is independent of u € Wlsgp Q).
(2)  Moreover,

0
||ExtQ’]RnMHW5/P(R”) > ||”||W5*’(Q)'

In short, [|exty puttllwsp @y == [[llwsr (-

Proof. Letii = ext% rntt- If s € Ng, then both items follow from Lemma 6. So, let s = m + 0
where m € Ny and 6 € (0,1). We have

@]l wse ey = 1@ llwmp@ny + Y 10| o ()
[v|=m

L 6 v
en'l:rna HL[HWM,p(Q)—f— 2 |aVM|W6,p(Rn)

v|=m
Lemma 7
= ullwme) + Y 10" ullwer )
v|=m
= ullwsr () -
The fact that ||| yspwe) > [[t]lwsp(q) is a direct consequence of the decomposition stated
in item 1 of Remark 34. [

Corollary 5. Let s > 0and p € (1,00). Let Q) and Q) be nonempty open sets in R" with O/ C Q)
and let K € K(QY). Suppose u € Wi¥ (Q0'). Then

(1) extd, qu € WP (Q),

(2) Hextg)/,()u”WW’(Q) =~ [lullwsr -
Proof.
ue W (Q) = ext?)//R,,u € WP (R") = ext%/,R,,u|Q € WP(Q)).

As we know, WS#(Q)) < WSP(Q). Furthermore, it is easy to see that ext)), p,u|n =
ext%, ot Therefore, ext?)/ Qlt € WP (Q). Moreover,

||ext%//0u||ws,p(0) ~ ||ext?),R,, OeXt?)/’Quns,p(Rn) = ||eXt%//Rn1/les,p(Rn) ~ ||1/les,p(Q/) .

O
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Extension by zero for Sobolev spaces with negative exponents will be discussed in
Theorem 71.

Theorem 68 (Embedding Theorem 1V). Let (3 C R" be an arbitrary nonempty open set.

(1) Supposel < p < g <ooand0 <t <ssatisfys — 5 >t — 7. Then WsP(Q)) — Wh(Q)).

(2) Supposel <p <gq<ooand0 <t <ssatisfys— 2L >t — 2 Then Wg" (Q) = W (Q)
forall K € K(Q).

(3)  Forall ki, ky € Ngwithky < kyand 1 < p < co, WK2P(Q)) — WkP(Q).

(4) If0o<t<s<landl < p < oo, then WP (Q) — WiP(Q).

(5) If0<t<s<ocoaresuchthat |s| = [t] and 1 < p < oo, then WSP(Q) — W'P(Q).

6) If0<t<s<ooteNyandl < p < oo, then WP (Q) — Wi (Q).

Proof.
(1) This item can be found in ([39], Section 4.6.1).
(2) Forallu € Wi’ (Q) we have

[l wra o) = ||eXt((]),R"u||W"‘7(R") = HeXt?),]R"uHWS'V(R”) ~ [lullwsr(q) -

(3) This item is a direct consequence of the definition of integer order Sobolev spaces.
(4) Proof can be found in [6], p. 524.
(5) This is a direct consequence of the previous two items.
(6) This is true because W97 (Q)) — WslP(Q) — WhP(Q).
O

Remark 42. For an arbitrary open set Q) in R" and 0 < t < 1, the embedding WP (Q) —
WW(Q) does NOT necessarily hold (see, e.g., [6], Section 9). Of course, as it was discussed,
under the extra assumption that () is Lipschitz, the latter embedding holds true. So, if [s] # [t]
and t ¢ Ny, then in order to ensure that WP (Q)) — WP (Q)) we need to assume some sort of
reqularity for the domain Q) (for instance it is enough to assume Q) is Lipschitz).

Theorem 69 (Multiplication by smooth functions). Let Q) be any nonempty open set in R". Let
pe(l00)
(1) If0 <s < land ¢ € BCOY(Q) (that is, @ is bounded and ¢ is Lipschitz), then

my : WP (Q) — WP (Q)), U — Qu

is a well-defined bounded linear map.
(2) Ifk € Ngand ¢ € BCK(Q), then

my : WP (Q) — WEP(Q), u— Qu

is a well-defined bounded linear map.
(3) If-1<s<O0and¢ € BC>'(Q)ors € Z and ¢ € BC®(Q), then

my : WP(Q)) — WH(Q)), u— Qu

is a well-defined bounded linear map (@u is interpreted as the product of a smooth function
and a distribution).

Proof.

(1) Proof can be found in [6], p. 547.

(2) Proof can be found in [29], p. 995.

(3) The duality argument in Step 4 of the proof of Theorem 61 works for this item too.
O
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Remark 43. Suppose ¢ € BC™'(Q). Note that the above theorem says nothing about the
boundedness of the mapping my : WP (Q)) — W*P(Q) in the case where s is noninteger such
that |s| > 1. Of course, if we assume Q) is Lipschitz, then the continuity of m, follows from
Theorem 61. It is important to note that the proof of that theorem for the case s > 1 (noninteger)
uses the embedding W0 (Q)) < WK +0.p (Q) with k' < k which as we discussed does not hold
for an arbitrary open set Q). The proof for the case s < —1 (noninteger) uses duality to transfer the
problem to s > 1 and thus again we need the extra assumption of regularity of the boundary of Q).

Theorem 70. Let Q) be a nonempty open set in R", K € K(Q), p € (1,00), and —1 < s < 0or
s€Z  ors e [0,00). If p € C®(Q), then the linear map

WP(Q) = W' (Q),  u— gu
is well-defined and bounded.

Proof. There exists € C°(Q) such that = 1 on K. Clearly 9 € CP(Q) and if u €
WP (Q), pou = pu on Q. Thus without loss of generality we may assume that ¢ € C°(Q).
Since C*(Q) C BC®(Q) and C®(Q) C BC®!(Q), the cases where —1 < s < 0ors € Z~
follow from Theorem 69. For s > 0, the proof of Theorem 61 works for this theorem as
well. The only place in that proof that the regularity of the boundary of (2 was used was
for the validity of the embedding W57 (Q2) — W/*IAl?(Q)). However, as we know (see
Theorem 68), this embedding holds for Sobolev spaces with support in a fixed compact set
inside Q) for a general open set (), that is, for W/ (Q) < W?rlﬁ P (Q) to be true we do not
need to assume () is Lipschitz. [J

Remark 44. Note that our proofs for s < 0 are based on duality. As a result, it seems that for the
case where s is a noninteger less than —1 we cannot have a multiplication by smooth functions
result for W;’p(Q) similar to the one stated in the above theorem (note that there is no fixed compact
set K such that every v € C®(Q) has compact support in K. Thus, the technique used in Step 4 of
the proof of Theorem 61 does not work in this case).

Theorem 71. Lets < 0and p € (1,00). Let Q) and () be nonempty open sets in R" with (O C Q)

and let K € K(QY). Suppose u € Wi¥ (Q0'). Then

(1) Ifext%,rﬂu € WP(Q), then ||u[ywsp(cy) = ||ext%//0u||ws/p(0) (the implicit constant may
depend on K).

(2) Ifse (—oo,—1]NZor—1<s <0, then ext?-),’ou € WP (Q)) and ||ext?-2,’0u|\ws,p(0) ~
[wllwsr(cy). This result holds for all s < 0 if we further assume that () is Lipschitz or
O =R"

Proof. To be completely rigorous, let ip w : D(QY') — W, "7 / (QY) be the identity map and
let ity : WP (Q') — D'(Q)') be its dual with which we identify W*?(Q)') with a subspace
of D'(€Y'). Previously we defined ext?,  for distributions with compact support in ('. For
any u € Wi/ (Q)') we let

ext?),,nu = ext%,n oipwih,
which by definition will be an element of D'(Q)). Note that (see Remark 45 and the
discussion right after Remark 10)

| (ext%,,nu, ¥)p'()xD(Q)|

||eXt?)/,Qu||Ws’p(Q) = sup 9l
0£yeD(0) Plwr @)

|(u, 4’>D’(Q’)><D(Q’)|

||uHWS'V(Q/) = sup ” H
0#£9eD(CY) Pliw—sr' (v
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So, in order to prove the first item we just need to show that

O pricy / ext, ~u, )y
V04 geD@Q) IpeD) st (1, @) prayxpy| | {extey qt, ¥) priayx byl

”(P”wfs,p’((y) HIP”Wfs,p’(Q)

Let ¢ € D(QY). Define p = ext?),,Q(p. Clearly, ¢ € D(Q)) and ¢ = ¢ on '. Therefore,
<€Xt%/,0“/ ¥)pr)xp) = (W ¥la) prayxpr) = (@) oy xp(y) -
Moreover, since —s > 0
||¢was,p’(0) = ”eXt(())’,Q(PHWfs,p/(Q) = ||¢||W*S,P/(Q/) :

This completes the proof of the first item. For the second item we just need to prove that
under the given hypotheses

| <eXt(())',Q”/ V)<l 1, ?)pr(v)xD()]

VO#£peD(Q) JeeD()st

HIIJ”Wfs,n/(Q) n Hq)HW*S,P/(Q/)

To this end suppose i € D(Q)). Choose a compact set K such that K C K c K c Q. Fix
X € D(Q) such that x = 1 on K and supp x C (V. Clearly, ¥ = x1 on a neighborhood of K
and if we set ¢ = x¥|y, then ¢ € D(QY'). Therefore,

(extdy o1, ¥) pr(a)x D) = (Xt o1t X¥) pr() <Dy = (1 X¥lar) pr () xD(ey) = (4 @) pricv) < D) -

Furthermore, since —s > 0, we have

”(in—s/p’(gl) < ”eXt?‘z’,Q(PHV\/—s,p’(Q) = ”X’)b”w—s,p’(g) = ”lpnw—s/p’(g) .

The latter inequality is the place where we used the assumption that s € (—oo, —1] N Z or
—1 <s < 0or Q) is Lipschitz or (3 = R". This completes the proof of the second item. [

Corollary 6. Let p € (1,00). Let Q and QY be nonempty open sets in R" with O/ C Q) and let
K € K(Q). Suppose u € WiF (Q). It follows from Corollary 5 and Theorem 71 that

e Ifs € Ris not a noninteger less than —1, then

H”HWS'V(Q) = ||“stlp(n/) ,
e IfQis Lipschitz or QO = R", then for all s € R

H”HWS'P(Q) =~ ||M|\ws,p(g/).

Note that on the right hand sides of the above expressions, u stands for resqy yu. Clearly, ext‘?)/’Q o
resoou = u.

Theorem 72. Let Q) be any nonempty open set in R", K C Q) be compact, s > 0, and p € (1,0).
Then the following norms on Wy” (Q) are equivalent:

lilwss ) = lllioey + 5 184l wer ey
[v|=k

[”]WW(Q) = HMHW’W(Q) + Z |avu|w9/p(g) ’
1<|v<k

where s = k+6, k € Ny, 0 € (0,1). Moreover, if we further assume ) is Lipschitz, then the above
norms are equivalent on W5 (Q)).
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Proof. Clearly, for all u € WP(Q), [[ulwsr() < [u]wsr(q)- So, it is enough to show that
there is a constant C > 0 such that for all u € W (Q) (or u € WP (Q) if Q) is Lipschitz)

[ulwsr(q) < Cllullwsr(q) -

Foreach1 <i < k we have

Y. |avu|w9m(0) = ||”||wi+9rp(0) - H””wt}p(n)-
[v|=i
Thus
[ulwsr ) = llullwsr ) + Z Z |8Vu|wg,p(0)
1<i<k |v|=i
— Ity + . (Ielhwseriay = Ilwiey ) -
1<i<k

Therefore, it is enough to show that there exists a constant C > 1 such that

Y Nullwivory < (C=Dlulwsr)y+ X ullwir)

1<i<k 1<i<k

By Theorem 68, for each 1 < i < k, W"(Q) — W;re”[J (Q) (also, we have W57 (Q)) —
WiF0P(Q)) with the extra assumption that Q is Lipschitz); so there is a constant C; such
that [[ul|yirer) < Cillullwsr(q)- Clearly with C = 1+ Y¥~1 C; the desired inequality
holds. O

Remark 45. Let s > 0and 1 < p < oo. Here we summarize the connection between Sobolev
spaces and space of distributions.

(1)  Question 1: What does it mean to say u € D'(Q)) belongs to W% (Q))?
Answer:

ue D' (Q)isin W (Q) < u: (D(Q),
<= u: D(Q) — R has a unique continuous extension to 11 : Wy¥ (Q) — R

s,p) — Riis continuous

(2)  Question 2: How should we interpret W=7 (Q) C D’ (Q)?
Answer: i : D(Q) — Wy (Q) is continuous with dense image. Therefore, i* : WP (Q) —
D'(Q) is an injective continuous linear map. If u € W57 (Q), then i*u € D'(Q)) and

{1 @) pr()xp(@) = Dy g i) = (4 Phwsr @) swgr ()
So, i"u = u|p ) and if we identify with i*u with u we can write

(1, 9) 10 x D) = (1 @) est () e illyory = sup  Lr@ID@x0@)]
(Q)xD(Q2) Ws# (Q)xWyP () w—s#' (Q) 0speC(Q) ellwsr )

(3)  Question 3: How should we interpret WP (Q)) C D'(Q))?
Answer: It is a direct consequence of the definition of W*¥ (Q) that WP (Q)) — LP(Q))
for any open set Q). So, any f € W5P(Q) can be identified with the regular distribution
ug € D'(Q) where

uf, /f(p Ve e D).

(4)  Question 4: What does it mean to say u € D' (Q) belongs to WP (Q)?
Answer: It means there exists f € W*F(Q) such that u = uy.
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Remark 46. Let Q) be a nonempty open set in R" and f,g € CX(Q). Suppose s € R and
p e (L)

e Ifs>0, then

[(f, @) /() x D) | [o fodx|

(WAl —; = sup = su =
W' (Q) 0£peC(0)) lellwsre ) 0£peC®(Q) ¢llwsr )

So, forall ¢ € CZ(Q))

[ Fodxl < 1l ol ol

In particular, for g, we have

| S8 x| < Iy 8llmeoier

e Ifs < 0, we may replace the roles of f and g, and also (s, p) and (—s,p’) in the above
argument to get the exact same inequality: | [, fgdx| < ||f||W,s,p/(Q) g llwsr(qa)-

7.5. Invariance Under Change of Coordinates, Composition

Theorem 73 ([12], Section 4.3). Lets € Rand 1 < p < co. Suppose that T : R* — R" isa
C®-diffeomorphism (i.e., T is bijective and T and T~ are C*) with the property that the partial
derivatives (of any order) of the components of T are bounded on R" (the bound may depend on the
order of the partial derivative) and infgn |det T'| > 0. Then the linear map

WSP(R") — WP (R"), uruoT
is well-defined and is bounded.

Now, let U and V be two nonempty open sets in R"”. Suppose T : U — V is a bijective
map. Similar to [1] we say T is k-smooth if all the components of T belong to BC*(U) and
all the components of T~! belong to BCX(V/).

Remark 47. It is useful to note that if T is 1-smooth, then

i{}f|det T'|>0 and ir‘}f|det(T*1)’| > 0.

Indeed, since the first order partial derivatives of the components of T and T~ are bounded, there
exist postive numbers M and M such that forall x € Uandy € V

|det T'(x)] < M, \det (T71) (y)| < M.
Since |det T' (x)| x |det (T~1)(T(x))| = 1, we can conclude that forall x € Uandy € V

/ l —1y/ i
et T'(x)] > o=, |det (T7) () > 7

which proves the claim.

Remark 48. Furthermore, it is interesting to note that, as a consequence of the inverse function
theorem, if T : U — V is a bijective map that is C* (k € N) with the property that det T' (x) # 0
for all x € U, then the inverse of T will be Ck as well, that is, T will automatically be a ck-
diffeomorphism (see, e.g., Appendix C in [19] for more details).
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Remark 49. Note that since we do not assume that U and V are necessarily convex or Lipschitz,
the continuity and boundedness of the partial derivatives of the components of T do not imply that
the components of T are Lipschitz. (see the “Warning” immediately after Theorem 6).

Theorem 74 (([29], p. 1003), ([1], pp. 77-78)). Let p € (1, c0) and k € N. Suppose that U and
V are nonempty open subsets of R".

(1) IfT:U — Visal-smooth map, then the map
LP(V) — LP(U), u—uoT

is well-defined and is bounded.
(2) IfT:U — Visak-smooth map, then the map

WrP(V) = WEP(U),  uw—uoT
is well-defined and is bounded.

Theorem 75. Let p € (1,00) and k € Z~ (k is a negative integer). Suppose that U and V are
nonempty open subsets of R", and T : U — V is co-smooth. Then the map

WrP(V) — WEP(U),  uw—uoT
is well-defined and is bounded.
Proof. By definition we have (T*u denotes the pullback of u by T)

{T*w, @) pr(uyx D) |

I T ullyip) = sup
v p(U) (PGC?O(U) ||q0||wfk,p/(u)

= sup [(, |det(T~")' |9 o T™1) pr(vy ()]

peCe(U) H(infk,p’(u)
sup HuHWk”’(V) [|det(T~1)|p o T71||wfk,v/(V)

peC®(U) HQDHW—k,p’(u)

det(T1)/|eBC™ im0 0 TV
e j Sup || HWkP(V)Hq) HW k,p (V) ‘

@eC®(U) H(P”W—k,p’(u)

Since —k is a positive integer, by Theorem 74 we have ||¢ o T~! Hw,k,pl(v) mll| q0||w,k,,,/(u).
Consequently,
HT*”Hwkfp(u) = ||”Hwk,v(v) ‘
O

Theorem 76. Let p € (1,00) and 0 < s < 1. Suppose that U and V are nonempty open subsets of
R", T : U — Vis 1-smooth, and T is Lipschitz continuous on U. Then the map

WP (V) — WP (U), u—uoT
is well-defined and is bounded.

Proof. Note that

Theorem 74
o Tllwsery = o Tllpry + 1o Tlwsrwry = lulleevy + 1o Tlwspy -
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So, it is enough to show that [u o Tyspe ) = [u|wse(v)-

uoT)(x)—(uoT p 1
o Then - (//M I >|<x>_ |i+sp LY
w= T u(w)|p 1 1 %
., |T 1 () [P (et (a)] et )] 4

() a)l )
(/ /va |T—1(z) T () e 4200)

T is Lipschitz continuous on U; so, there exists a constant C > 0 such that
IT(x) = T(y)| < Clx—y| = |z —w| < C|T ' (2) = T~} (w)].

Therefore,

|u(z) —u(w)[? 3
e Tlwer u //V><V |z— |n+sp ey 924w) P = fulwss () -
O

Theorem 77. Let p € (1,00) and —1 < s < 0. Suppose that U and V are nonempty open subsets
of R", T : U — V is co-smooth, T~ is Lipschitz continuous on V, and |det(T~1)'| is in BC¥1 (V).
Then the map

WSP(V) — WP (U), ur—uoT

is well-defined and is bounded.

Proof. The proof of Theorem 75, with obvious modifications, shows the validity of the
above claim. [J

Remark 50. In the previous theorem, by assumption, the first order partial derivatives of the
components of T~1 are continuous and bounded. Furthermore, it is true that absolute value of a
Lipschitz continuous function and the sum and product of bounded Lipschitz continuous functions
will be Lipschitz continuous. Consequently, in order to ensure that |det(T~1)'| is in BCO'(V), it
is enough to make sure that the first order partial derivatives of the components of T~ are bounded
and Lipschitz continuous.

Theorem 78. Lets = k+ 6 wherek € N, 0 € (0,1), and let p € (1,00). Suppose that U and V
are two nonempty open sets in R"™. Let T : U — V be a Lipschitz continuous k-smooth map on U
such that the partial derivatives up to and including order k of all the components of T are Lipschitz
continuous on U as well. Then

(1)  Foreach K € IC(V) the linear map

T WP(v) > Wit (), ursuoT

(K)(

is well-defined and is bounded.
(2)  If we further assume that V is Lipschitz (and so U is Lipschitz), the linear map

T : WSP(V) - WP (U), ursuoT

is well-defined and is bounded.

Note: When U is a Lipschitz domain, the fact that T is k-smooth automatically implies that
all the partial derivatives of the components of T up to and including order k — 1 are Lipschitz
continuous (see Theorem 60). So in this case, the only extra assumption, in addition to T
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being k-smooth, is that the partial derivatives of the components of T of order k are Lipschitz
continuous on U.

Proof. Recall that C*(V) N W*? (V) is dense in W5 (V). Our proof consists of two steps:
in the first step we addditionally assume that u € C®(V). Then in the second step we
prove the validity of the claim for u € WIS<’p (V) (or u € W¥P(V) with the assumption that
V is Lipschitz).

. Step 1: We have

[uo T”WSJ’(U) = [luo THWk,p(u) + Z 0" (1o T)|W9/P(u)
lv|=k

Theorem 74 v
H”HWk,p(v) + Z 0" (uo T)|w9/P(u) .
lv|=k

Since u and T are both C¥, it can be proved by induction that (see, e.g., [1])

FuoT)(x)= Y Myp(x)[@Pu)oT)(x),
B<v,1<B]

where M, g(x) are polynomials of degree at most || in derivatives of order at most |v|
of the components of T. In particular, M, 5 € BCY1(U) . Therefore,

19 (0 Tlygoruy < 19" (o Dllwosy = 1| X Mup()[(@Pu) 0 TV lyer
B<v,1<|B]
Theorem 69
= Z [[(9Pu) o THW‘%V(U) = Z [(9Pu) o TllLry + |(0Pu) o T|w0,n(u)
p<v1<|p| B<v,1<|B]

Theorems 74 and 76
= Z Haﬂ””u’(v) + |aﬁu|w<’m(v) < ||”Hwkfp(v) + 2 ‘aﬁu‘wf%ﬂ(v) :
B<v1<|Bl B<v,1<|B|

(The fact that 9Pu belongs to Wo? (V) < LP (V) is a consequence of the definition of
the Slobodeckij norm combined with our embedding theorems for Sobolev spaces of
functions with fixed compact support in an arbitrary domain or embedding theorems
for Sobolev spaces of functions on a Lipschitz domain). Hence

[0 Tlysp ) = ||”Hwkfp(v) + Z Z |aﬁ”|w9,p(v)
1<|v|<k p<v1<|p|

Theorem 72
= [llwrr vy + % [ ulwery = lullwsr(vy -
1<|a|<k

Note that the last equivalence is due to the assumption that u € WIEZP(V) (oru €
W*P (V) with V being Lipschitz).

e  Step 2: Now suppose u is an arbitrary element of W;" (V) (or W5? (V) with V being
Lipschitz). There exists a sequence {u, },>1 in C®°(V) such that u,, — uin WP (V).
In particular, {u,,} is Cauchy. By the previous steps we have

I T tm — T ugllwswry =2 Mttm — wallwsr vy — 0 (asm,| — o).

Therefore, {T*u,,} is a Cauchy sequence in the Banach space W5 (U) and subse-
quently there exists v € W*?(U) such that T*u,, — v as m — co. It remains to show
that v = T*u as elements of W*?(U). As a direct consequence of the definition of
W*8P-norm (s > 0) we have
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T wm — U”LV(U) < |[|T*um — Z’”WW’(U) =0,
[t = ull e vy < lltm — ullwsp vy — 0.

Note that by Theorem 74, u,, — u in LP(V') implies that T*u,, — T*u in L (U). Thus
T*u = v as elements of L”(U) and hence as elements of W*? (U).
O

Theorem 79. Let p € (1,00) and s < —1 be a noninteger number. Suppose that U and V are
two nonempty Lipschitz open sets in R" and T : U — V is a co-smooth map. Then the linear map

T : W¥P(V) — W*P(U), u—uoT
is well-defined and is bounded.
Note: Since V is a Lipschitz domain, the fact that T is co-smooth automatically implies that T~
and all the partial derivatives of the components of T~1 are Lipschitz continuous (see Theorem 60).

Proof. The proof is completely analogous to the proof of Theorem 75. We have

(T*w, @) pr(uyx (W)

T ullwsry = sup
w eeC®(U) ||(p||w—s,p’(u)
B [(u, |det(T~") |9 o T~1) privyxp(v) |
= sup
PeCE(U) 1l )

tlwsr ) I1det(T 1Y [0 Ty oy

||§0was,p/(u)

det(T-1)|eBC(V) Nutllwsr vy ll@ 0 T~ st 1)

PN

|| (PH w—s¥' (U)

Since —s > 0, it follows from the hypotheses of this theorem and the result of Theorem 78
that |[¢ o T~! ”W*SW’(V) = HcpHW,s,,,/(u). Consequently,
1T ullwsr @y =2 ullwsrv) -

O

Lemma 8. Let U and V be two nonempty open sets in R". Suppose T : U — V (T =
(TY,...,T")) is a C*F'-diffeomorphism for some k € Ng and let B C U be a nonempty bounded
open set such that B C B C U. Then

(1) T:B— T(B)isa (k+ 1)-smooth map.

(2) T:B— T(B)and T~': T(B) — B are Lipschitz (the Lipschitz constant may depend on B).
(3) Foralll <i<mnand|a| <k 9*T' € BC¥(B) and 9*(T~')' € BCH(T(B)).

Proof. Item 1 is true because B is compact and so T(B) is compact and continuous functions
are bounded on compact sets. Items 2 and 3 are direct consequences of Theorem 7. [

Theorem 80. Let s € Rand p € (1,00). Suppose that U and V are two nonempty open sets
inR" and T : U — V is a C®-diffeomorphism (if s > 0 it is enough to assume T is a Cls/+1-
diffeomorphism). Let B C U be a nonempty bounded open set such that B C B C U. Let
u € WP (V) be such that suppu C T(B) (note that if suppu is compact in 'V, then such a B exists).
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(1) Ifsis NOT a noninteger less than —1, then

[0 Tllwsrry = Nlullwsr(v) -

(The implicit constant may depend on B but otherwise is independent of u.)
(2)  IfUand V are Lipschitz or R", then the above result holds for all s € R.

Proof. If sis an integer or —1 < s < 1, or if U and V are Lipschitz or R" and s € R then as
a consequence of the above lemma and the preceding theorems we may write

Corollary 6 Corollary 6
luwoTlwsrwry =" lNuoTlwsrpy = lullwsrry = lullwsr(v)-

For general U and V, if s = k + 0, we let Bbean open set such that Bisa compact subset of
U and B C B. We can apply the previous lemma to B and write

Corollary 6 Theorem 78 Corollary 6
lwoTlwsry =" lueTlhwrg = lullw ey = lullwer)-

O

Theorem 81 ([42]). Lets € [1,00),1 < p < oo, and let

s, ifsisan integer
m= .
|s| +1, otherwise

IfF € C"(R) is such that F(0) = 0and F,F, ..., F" € L®(R) (in particular, note that every
F € CZ(R) with F(0) = 0 satisfies these conditions), then the map u — F(u) is well-defined and
continuous from WP (R") N WLSP(R") into WP (R™).

Corollary 7. Let s, p, and F be as in the previous theorem. Moreover, suppose sp > n. Then the
map u — F(u) is well-defined and continuous from W>? (R") into WP (R™). The reason is that
when sp > n, we have WP (R") — WLsP(R"),

7.6. Differentiation

Theorem 82 (([4], pp. 598-605), ([5], Section 1.4)). Lets € R, 1 < p < oo, and a € N.

Suppose () is a nonempty open set in R". Then

(1) The linear operator 3* : WP (R™) — W5~ |2l.P(R™") is well-defined and bounded.

(2)  Fors < 0, the linear operator 3* : WP (Q) — WS~1€LP (Q) is well-defined and bounded.

(3) Fors > 0and |a| < s, the linear operator 9* : WP (Q)) — W3~ 14bP (Q)) is well-defined and
bounded.

(4)  If Q) is bounded with Lipschitz continuous boundary, and if s > 0, s — % # integer (i.e., the

fractional part of s is not equal to %), then the linear operator 9% : WP (Q2) — W3~18lP(Q))
for |a| > s is well-defined and bounded.

Remark 51. Comparing the first and last items of the previous theorem, we see that not all the
properties of Sobolev—Slobodeckij spaces on R" are fully inherited by Sobolev-Slobodeckij spaces on
bounded domains even when the domain has Lipschitz continuous boundary (note that the above
difference is related to the more fundamental fact that for s > 0, even when Q) is Lipschitz, C°())
is not necessarily dense in WP (Q) and subsequently W—S¥' (Q) is defined as the dual of W, (Q)
rather than the dual of W5P (Q)) itself). For this reason, when working with Sobolev spaces on
manifolds, we prefer super nice atlases (i.e., we prefer to work with coordinate charts whose image
under the coordinate map is the entire R"). The next best choice would be GGL or GL atlases.
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7.7. Spaces of Locally Sobolev Functions

Material of this section are taken from our manuscript on the properties of locally
Sobolev-Slobodeckij functions [17].

Definition 28. Lets € R, 1 < p < oo. Let Q) be a nonempty open set in R". We define

WP (Q):={ueD(Q):Vp € CX(Q) ¢uec WPQ)}.

loc

WP (Q) is equipped with the natural topology induced by the separating family of seminorms

loc

{I-lg}pece(q)} where

loc

Vu e Wii(Q) @eCP(Q)  |ulp:=lgullwsr(q)-
Theorem 83. Lets € R, 1 < p < oo, and o € Nyj. Suppose () is a nonempty bounded open set in
R" with Lipschitz continuous boundary. Then

(1)  The linear operator 0* : WlS of (R") — Wi llp (R™) is well-defined and continuous.

loc

(2) Fors < 0, the linear operator 0" : Wfof(Q) — WZSOZ“X"p(Q) is well-defined and continuous.
(3) Fors > 0and |a| < s, the linear operator 0" : Wlsof(Q) — WISOZ‘“I”’(Q) is well-defined and
continuous.

(4) Ifs>0s— % # integer (i.e., the fractional part of s is not equal to %), then the linear
operator 0" : Wlsof(Q) — W57|“"p(0)for la| > s is well-defined and continuous.

loc

The following statements play a key role in our study of Sobolev spaces on Riemannian
manifolds with rough metrics.

Theorem 84. Let Q) be a nonempty bounded open set in R" with Lipschitz continuous boundary
or () = R". Suppose u € WlS (;f (Q)) where sp > n. Then u has a continuous version.

Lemma 9. Let QO = R" or Q) be a bounded open set in R" with Lipschitz continuous boundary.
Suppose s1,52,5 € Rand 1 < pq, pa, p < oo are such that

WSIPL(Q) x W22 (Q)) > WS (Q)).

Then

W) W (Q) x W (Q) = Wi (Q),

(2)  Forall K € K(Q), WXP(Q) x WZP(Q) < WSP(Q). In particular, if f € W, (Q),
then the mapping u — fu is a well-defined continuous linear map from W;z'p 2(Q) to
WsP(Q)).

Remark 52. It can be shown that the locally Sobolev spaces on ) are metrizable, so the continuity
of the mapping
WIPL(Q) x W2P2H(Q) — WP (Q),  (u,0) > uv

loc loc loc

in the above lemma can be interpreted as follows: if u; — w in W, 7' (Q) and v; — v in W2 (Q),
then u;v; — uv in WlS Of (Q). Furthermore, since Wlsf’p *(Q) is considered as a normed subspace of
Ws2P2(Q)), we have a similar interpretation of the continuity of the mapping in item 2.

Lemma 10. Let Q) = R" or let Q) be a nonempty bounded open set in R" with Lipschitz continuous
boundary. Let s € R and p € (1, 00) be such that sp > n. Let B : QO — GL(k,R). Suppose for all
x € Qand1<i,j <k Bjj(x) € WI(Q). Then

(1) det B e W,7(Q).

loc

(2)  Moreover, if for each m € N By, : Q — GL(k,R) and for all 1 < i,j < k (Bu);j — Bjj in
W;P(Q), then det B, — det B in W,s(;f(Q)-

loc
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Theorem 85. Let 3 = R”" or let Q) be a nonempty bounded open set in R" with Lipschitz
continuous boundary. Let s > 1 and p € (1,00) be such that sp > n.

(1)  Suppose that u € Wlsof(ﬂ) and that u(x) € I for all x € Q) where I is some interval in R. If
F : I — Ris a smooth function, then F(u) € Wlof(ﬂ)

(2)  Suppose that uy, — u in Wfof(ﬂ) and that for allm > 1and x € Q, uy,(x), u(x) € I where
I is some open interval in R. If F : I — R is a smooth function, then F(u,,) — F(u) in
W, (Q).

(3) IfF : R — Risasmooth function, then the map taking u to F () is continuous from W,¥ (Q2)
to WP (Q).

loc

8. Lebesgue Spaces on Compact Manifolds

Let M" be a compact smooth manifold and E — M be a smooth vector bundle of
rank 7.

Definition 29. A collection {(Uy, P, Pu, Pa) }1<a<N Of 4-tuples is called an augmented total
trivialization atlas for E — M provided that {(Uy, Qu, Pa) }1<a<N is a total trivialization atlas
for E — M and {4} is a partition of unity subordinate to the open cover {Uy}.

Let { (U, ¢u, Par Pu) F1<a<n be an augmented total trivialization atlas for E — M. Let
g be a continuous Riemannian metric on M and (.,.) g be a fiber metric on E (we denote the
corresponding norm by |.|g). Suppose 1 < g < co.
(1) Definition A: The space L7(M, E) is the completion of C*®(M, E) with respect to the
following norm:

N r
[|u HL’i M,E) Z Z ||Pa )o@y HM((pa (Up))

Note that for this definition to make sense it is not necessary to have metric on M or
fiber metric on E.
(2) Definition B: The space L7(M, E) is the completion of C*°(M, E) with respect to the

following norm:
|ulLa(m ) (/ |”|qdvg)

(3) Definition C: The metric g defines a measure on M. Define the following equivalence
relation on I'(M, E):
U~V U="0a.e.

We define

{u e T(M,E) : ||u = [y lulldVv, < oo}

(s

~

LI(M,E) :=

For g = co we define

{u € T(M,E) : [|u|poo () = esssup|u|p < oo}

L”(M,E) :=
Note: We may define negligible sets (sets of measure zero) on a compact manifold using
charts (see Chapter 6 in [43]); it can be shown that this definition is independent of the
charts and equivalent to the one that is obtained using the metric g. So, it is meaningful to
write u = v a.e even without using a metric.

Theorem 86. Definition A is equivalent to Definition B (i.e., the norms are equivalent).
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Proof. Our proof consists of four steps:

e Step 1: In the next section it will be proved that different total trivialization atlases and
partitions of unity result in equivalent norms (note that L1 = W04). Therefore, without
loss of generality we may assume that { (Ux, ¢a, Pa) }1<a<N is a total trivialization atlas
that trivializes the fiber metric (.,.)r (see Theorem 37 and Corollary 2). So, on any
bundle chart (U, ¢, p) and for any section u we have

r
uzoe ™ =(wu)pogt =Y (pouog ).
=1
. Step 2: In this step we show that if there is 1 < § < N such that suppu C U,g, then
q . 1 1119
Jul] LI(M,E) /M‘”’EdVSN;wﬂouo% ”Lq(%(uﬁ))'

We have

qu:/ 1y, [det(gii o @: 1) (x) dx' ... dx"
/. lutavg |y (1l 951 et 9 D .

~ e(ll )(|M|E o (P/gl)q dxl.. . dx" ( det(gij o ¢5')(x) is bounded by positive constants)
B\~p

- q
~ 2|Pﬁou0(p del-..dx" (\/ﬂgzwﬂ)

ep(Up) 1=

~/{Pﬁuﬁ)2|pﬁouogoﬁlwdx A ()~ Yd])

T
— l =119 4,1 no_ l =19
lZ‘{/W(uﬁ) logouogg'|Tdx’ .. dx —lzzlupﬁOMO(pﬁ HL”((Pﬁ(Uﬁ))'
e Step 3: In this step we will prove that for all u € C*(M, E)

q
|“|Lq M,E) ;W“”W(M,}s)'

We have
14V, L av gl . . .
L‘7 M,E) ‘M | Z 1’[)‘7 |u| g ({ T, l/)g } is a partition of unity subordinate to {U,x})
R
1
~Y /u ¢Z|u\%dVg (Z o is bounded by positive constants)
a U B

= Z/u |4’a”‘?gdvg = Z/M |1p,,4u|quVg
= ;|¢W”|Zq(M,E)‘

e  Step 4: Let u be an arbitrary element of C*(M, E). We have

Step3 1
E X160 ()2 00 g, 1 = Il

|u|m ME) — ZWJ’XMLW M,E)

O

Step
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9. Sobolev Spaces on Compact Manifolds and Alternative Characterizations
9.1. The Definition

Let M" be a compact smooth manifold. Let 7z : E — M be a smooth vector bundle
of rank r. Let A = {(Uy, ¢u, Pu, Pu) H<a<n be an augmented total trivialization atlas for
E — M. Foreach1 < a < N, let H, denote the map HEVIUM(’)‘X which was introduced in
Section 6.

Definition 30.

N r
WM, E; A) = {u € D'(M,E) : [|ullweaazi0) = 3 3 ITHa($att)]) [lwea (g (o)) < 0} -
a=11=1

Remark 53.
(1) Ifu e W (M,E; A) is a reqular distribution, it follows from Remark 32 that

N r
||u||Wfr‘7(M,E;A) = E E ) o @u wa (pa(Uy)) -
a=11=1

(2) It is clear that the collection of functions from M to R can be identified with sections of the
vector bundle E = M x R. For this reason W1 (M; A) is defined as W1 (M, M x R; A).
Note that in this case, for each a, p is the identity map. So, we may consider an augmented
total trivialization atlas A as a collection of 3-tuples {(Uy, ¢, Yu) }1<a<N- In particular, if
u € We(M; A) is a reqular distribution, then

N
lullweaan) = Y- 11 (@att) 0 @5 lweagu (i) -
a=1

(3)  Sometimes, when the underlying manifold M and the augmented total trivialization atlas
are clear from the context (or when they are irrelevant), we may write W1 (E) instead

of We1(M, E; A). In particular, for tensor bundles, we may write We1(TFM) instead of
Wel (M, TEM; A).

Remark 54. Here is a list of some alternative, not necessarily equivalent, characterizations of
Sobolev spaces.

(1)  Suppose e > 0.

N r
WA (M, E; A) = {u € LYME) : [[ullwen g = Y. 3 10 1) 0 9 e (g (1) < 0}

a=11=1

(2)

N r
WM, E; A) = {u € D'(M,E) : [|ullweaqein) = Yo 3 et ugo) o [Ha (att)] | wea gy < o0}

=1]l=

2
—_

(3)

W (M, E;A) = {u € D'(M,E) : [Ho(uus,)]' € W (gu(Un)), V1 <a <N, ¥V1<1<r}.

(4)  W@I(M,E; A) is the completion of C® (M, E) with respect to the norm

;
||”||ww M,E;A) Z Z )o@y HW“? (@a(Uy)) -
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(5) o  Let g be a smooth Riemannian metric (i.e., a fiber metric on TM). So, ¢~ ' is a fiber
metric on T* M.
e Let (., .)g bea smooth fiber metric on E.
o Let VE be a metric connection in the vector bundle 7t : E — M.
For k € No, WK (M, E; g, VE) is the completion of C*° (M, E) with respect to the following
norm:

k . 1 k 1
— Evio 19 V7 — E E, 1 i
||u||Wk/q(M,E,.g,vE) = (Z (VEYull,)T = (Z/M |V-...V u|(T*M)®,-®EdVg)4 )
=0 =0 i times
In particular, if we denote the Levi Civita connection corresponding to the smooth Riemannian
metric ¢ by V, then W (M; g) is the completion of C®°(M) with respect to the follow-
ing norm

ko 1 k 1
— 9\V7 — q q
lullwia gy = (3 [V7lf) T = (Z/M Y. Tull, dV)T.
i=0 i=0 i
1 times
In the subsequent discussions we will study the relation between each of these alternative descriptions
of Sobolev spaces and Definition 30.

Remark 55. As it is discussed for example in [18], Sobolev-Slobodeckij spaces on R" with non-
integer smoothness degree can be defined using real interpolation. Indeed, for s € R\ Z and
6 =s—|s],

WP (R") = (WLSJ,p(Rn), WLSJ“'P(]R”))W.
One may use any of the previously mentioned descriptions to define W1 (M, E) for k € 7, and
then use real interpolation to define We1(M, E) for e ¢ 7. We postpone the study of this approach
to an independent manuscript with focus on the role of interpolation theory in investigation of Bessel
potential spaces and Sobolev—Slobodeckij spaces on compact manifolds.

An important question is whether our definition of Sobolev spaces (as topological
spaces) depends on the augmented total trivialization atlas A. We will answer this question
at 3 levels. Although each level can be considered as a generalization of the preceding
level, the proofs will be independent of each other. The following theorems show that at
least when e is not a noninteger less than —1, the space W*9(M, E; A) and its topology are
independent of the choice of augmented total trivialization atlas.

Remark 56. In the following theorems, by the equivalence of two norms ||.||1 and ||.||2 we mean
there exist constants Cq and Cy such that

Cill-ll < 2 £ Gl s

where C1 and Cp may depend on

n/ el q/ qDlX/ uDC/ @ﬁ/ l:[‘B/ lpm lﬁﬁ .

Theorem 87 (Equivalence of norms for functions). Let ¢ € Rand q € (1,00). Let A =
{(Us, 9u, o) r<a<n and Y = {(Ug, ¢p, ¥p) t1<p<i be two augmented total trivialization at-
lases for the trivial bundle M x R — M. Furthermore, let VW be any vector subspace of W1 (M;Y )
whose elements are regular distributions (e.g., C*(M)).

(1)  If e is not a noninteger less than —1, then W is a subspace of W1(M; A) as well, and the
norms produced by A and Y are equivalent on V.
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(2) If e is a noninteger less than —1, further assume that the total trivialization atlases corre-
sponding to A and Y are GLC. Then W is a subspace of W1 (M; A) as well, and the norms
produced by A and Y are equivalent on W.

Proof. Letu € T'yeq(M). Our goal is to show that the following expressions are comparable:

N
Z 1(att) © 92 llwea (o)) -
a=1

M= 1

1(p1e) © @5 lwea (g -

Il
—_

p

To this end it suffices to show that foreach1 < a < N
N
1 (att) 0 9! lwea(gu () = Z, (Ppu) °Pg HW"‘I(gJﬁ(Uﬁ))
We have

[ ($att) 0 @y kul (pa(Un)) = Z Pp(au Oq’ulewe/ﬂ(qoa(ua))
< Z 1$p(att) © 93 llwea (gu(ua))

N
Z (Ppate) © @z lyyea (pu(UnNTp)) -

The last equality follows from Corollary 6 because (Pgipqtt) o @, ! has support in the
compact set @ (supp Y Nsupp Pg) C ¢ (Us N Ug). Note that here we used the assumption
that if e is a noninteger less than —1, then ¢, (U, ) is Lipschitz or the entire R". Clearly,

N
ﬂ; 1(Pptpa) © @2 llwen (g, uyrity)) = ﬁ; 1(Ppgute) 0 @5 © @6 © @i lwen(gu(uunitiy)) -
Since gg o ¢, ' oo (Us N Ug) — (U N Up) is a C®-diffeomorphism and (Pgipau) o (;3!;1
has compact support in the compact set @ig(supp 1o Nsupp ) € ¢p(Uy N Ug), it follows
from Theorem 80 that

N N
Z, (Fptpatt) © G5 0 G 0 @i lwea (g () Z (Fptpatt) © G5 Hlwea gy (Uit -

Note that here we used the assumption that if e is a noninteger less than —1, then the two
total trivialization atlases are GL compatible. As a direct consequence of Corollary 5 and
Theorem 71 we have

[ (Pptpat) o @Elnwaq(@ﬁ(umaﬁ)) ~ ||(Pppan) © (f’gl me((pﬁ(aﬁ))
= [1(¢a 0 5 ) [(@p1t) © @5 lwen(g(815))



Mathematics 2022, 10, 522

74 of 103

Now, note that ¢, o gblgl € C®(¢p(Up)) and (Ppu) o qbgl has support in the compact set
@p(supp Pg). Therefore, by Theorem 70 (for the case where e is not a noninteger less than
—1) and Corollary 4 (for the case where e is a noninteger less than —1) we have

1o @5 Bpt) 0 5 Wwenapicty)) = 1510 0§ lmen o) -
Hence

N
| (ae) © @i llweagu ) = Z ($pu) © 5 lwen gy -
O

Theorem 88 (Equivalence of norms for regular sections). Let ¢ € Rand q € (1,00). Let

A = {(Un, u, P, Pu) hr<a<n and Y = {(Uﬁ, Pp, 0 lﬁﬁ)}lgﬁgﬂj be two augmented total triv-

ialization atlases for the vector bundle E — M. Furthermore, let VW be any vector subspace of

We1(M, E; Y) whose elements are regular distributions (e.g., C*°(M, E)).

(1)  If e is not a noninteger less than —1, then W is a subspace of W*1(M, E; A) as well, and the
norms produced by A and Y are equivalent on V.

(2) If e is a noninteger less than —1, further assume that the total trivialization atlases corre-
sponding to A and Y are GLC. Then W is a subspace of W*1(M, E; A) as well, and the norms
produced by A and Y are equivalent on V.

Proof. Let u € I'yee(M, E). Our goal is to show that the following expressions are compara-
ble:

N r

Y Y llok o (wa) 0 @3 Hlwea(gu () -

a=1I1=1

2

ﬁ; E 165 © (Bpu) © @5 lweagyaip)) -

To this end, it is enough to show that foreach1 <a < Nand1 <I<r

N r
Ik () o s ey = 32 35 185 () 05 e -
We have

N
”pzx (IP,XM) © (sz ”W“f (¢a(Uy)) ”ptx Z O (Pa ”W‘@ (pa(Ua))

o (Pptpatt) © @i lweagn ()

IN
=
=

T
1L

12
1=
=

(l/Jﬁlpﬂc )o@, ||wua (¢a(UxNlg)) -

T
X

The last equality follows from Corollary 6 because pl, o (Pgpaut) o @, ! has support in the
compact set @ (supp Y Nsupp Pg) C ¢a(Us N Ug). Note that here we used the assumption
that if e is a noninteger less than —1, then ¢, (U, ) is either Lipschitz or equal to the entire
R". Note that
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Z ||sz 1/Jﬁ1/’o< u)o Po ||Wfq (pa(Uang))

= Z ok © (Ppipart) o 5" © @ o P lwea(pu( (UaNllg))

TheoremSO
Z ||Pa ‘Pﬁ%”)o% wa(%(umuﬁ))

N
= 2 10 05 lek (850 05 ey

= ﬁZ:l [ (a0 9’3?) [0 df/q_’go(l/}ﬁ“) ° 43;;1} HWE"i(q”)ﬁ(Uaﬁl:lﬁ))
- >

N
= ﬁzl | (¢ o gblgl) [0 7" 0Py 0 qD/;l odgo (ﬁﬁu) o gblgl] \|We,q(¢ﬁ(umaﬁ)) .

Let vg : ¢g(Ug) — E be defined by vg(x) = (Pgu) o (plgl. Clearly 7(vg(x)) = q”)l; (x).
Therefore,

Pp(vp(x)) = ((vp(x)), pp(vp(x))) = (5" (x), p(vp(x))) -
Forall x € @g(U, N Ug) we have

7' 0 Py 0 D5 (Bp(0()))
= 71’ 0 @y 0 Dy (95 (), Pp(0p(x)))
R o (57 (6), Tup(§5 (1)) Pp (vp(x)))
= 7up(75 () p(ep().

Let Ayg = Tup 0 gb/gl on @g(Uy N Upg). So, we can write

||Pfx o (pau) o (Pofl ||W""i(¢5(uaﬂflﬁ))

I
1=

1 © 957) (x) [711 0 Awp ()05 (08 ()] lwea (g uantiy)

T
I

.
||(1P1x o (Pﬁ [Z{ ltP,g (vp(x))] ||werq(¢ﬁ(umaﬁ))
=

M=z =
M\

IN

(a0 G5 () (Aup ()16 (08 () llwea (g 1,181, -

=
Il
MR
-
I
—

Now, note that (A,g(x)); arein C®(¢p (U, N Upg)) and (n © qblgl)(x)pg(vﬂ(x)) has support
inside the compact set ¢ (supp g N supp 9y ). Therefore, by Theorem 70 (for the case where

e is not a noninteger less than —1) and Corollary 4 (for the case where e is a noninteger less
than —1), we have

r

t:Zl 1 0 G5 1) (x) (Aup ())1083 (08 (X)) lwea (g, (uatty)) = t:Zl 1 0 §51) ()00 () I we (5 uurtry ) -
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Therefore,

ok © (att) o 4’;1||wm (pu(Uy))

PN

i Mﬂ

[ ($a o 905 )(x)ﬁ/tg(vﬁ(x)) HW'?M(@;(U,XQH,;))

M=z M= £
-

1

1 0 G5 1) ()0 (0 (X)) llyen (g(815))

=
Il
—
-
Il
-

(Here we used Corollary 5 and Theorem 71)

N r
=Y Y 16 (0p0)) lwea (g1
B=1t=1

(Here we used Theorem 70 and Corollary 4)
N r , ~ .
=2 2 I8 o (Pp1e) 0 G5 lwea gy ciy) -
p=1t=1

O

Theorem 89 (Equivalence of norms for distributional sections). Let e € R and q € (1,00).

Let A = {(Un, @u, par Pu) Y1<a<n and Y = {(Ug, ¢p, fp, ¥p) t1<p<n be two augmented total

trivialization atlases for the vector bundle E — M.

(1)  Ifeis not a noninteger less than —1, then We1(M, E; A) and W1 (M, E;Y) are equivalent
normed spaces.

(2)  Ifeis anoninteger less than —1, further assume that the total trivialization atlases correspond-
ing to A and Y are GLC. Then W1(M, E; A) and W1 (M, E;Y) are equivalent normed
spaces.

Proof. Let u € D'(M, E). We want to show the following expressions are comparable:

1=
b

[ Ha ($u1)] e gy 1)) -

=
Il
—_
-
Il
—_

e (Pp)] lwea gy (a1p)) -

=
M‘

Il
—_
Il
—

To this end it is enough to show that foreach1 <a < Nand1 <[ <r

N r
[ Ha (o)) I wea (g (110)) = Z E W llwea gy -

We have ) )
1 N - 1 Remark 31 N
[Hao (Yaut)]’ = [Ha([;l lpﬁ%t”)] = Z Hy( lPﬁ‘Pvz

In what follows we will prove that

r

[Ha (Gppart)]' = ) ((Aap)i[Hp(Ppypart)]’) o po @z, (4)

i=1

for some functions (Aug)i, (1 < i < r)in C®(@g(Uy N Upg)). For now let us assume the
validity of Equation (4) to prove the claim.
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|1 [Ha (o))’ lwea (gn (1)) = | Z H, (Pptpatt)]' [ wea (gn (U2)

N
< Y I Ha (i) lwea (g (u))
=1

Corollar

N
Y
; || [ Ha( 1}’,3%” ] ||weq (9 (UxNUg))

(note that by Remark 31 [Ha(lpﬂlpau)]l has support in the compact set @, (supp ¥, N supp $g))

N r

= ﬁZ | Z% ((Aap)i[Hp(Fptpan)]’) © o © 92 llwen (g, (uantsy))

N r ]
< Z Z I ((Aaﬁ)il [Hﬂ(tpz’ﬁll’tx”)]l) opgo ¢;1|‘Werq((pa(umilﬁ))

Z 2 aﬁ il H/S lpﬁlpa“)] HWM (¢p(Unlp))

I
1=
m‘

| (Aup )it (Yo © (P,El)[Hﬁ(lﬁﬁu)]iHwe,q((pﬁ(uamaﬁ))

Il
—_
Il
—_

A
1=
™~

[ (a0 4’,5 )[Hﬂ(lpﬁ”)]iHwaq(@ﬁ(umflﬁ))

B=1i=1
N r o )
~ ) Y (a0 N )[Hﬁ(l/)ﬁ”)]lHWW(%(aﬁ))
B=1li=1
(Here we used Corollary 5 and Theorem 71)

2

= Y Y WA (@) llwen (gy81))

B=1i=1
(Here we used Theorem 70 and Corollary 4).

So, it remains to prove Equation (4). Since supp|H(§gysu)]" is inside the compact set
@a (supptpu Nsuppp) € @u(Ux N Up), it is enough to consider the action of [Hy (Patputt)]’
on elements of C®(¢a(Ux NUp)). §po ¢yt : @u(Uy NU) — dp(Us NUp) is a C-
diffeomorphism. Therefore, the map

COp(Un NUp)] = COlpu(Un NUg)], > 10¢g0 "

is bijective. In particular, an arbitrary element of CZ°[¢, (Uy N Ug)] has the form 77 0 gig o ¢, !
where 7 is an element of CZ°[@g(Ux N Ug)].
Forall 7 € C®[¢g(Ux N Ug)] we have (see Section 6.2.2)

([Ha(Bppate)]'s 110 §p 0 @0 = (Ppvatn &), o cit) (5)

&
where gl,qo(pﬁo(pgl stands for 810 Fpogi  Un e’
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Forally € @q(Ux N Up) wehave (x = ¢, ' (y))

Pal £y © 81 oggope © % W) = (0,0, 0 950 9 (¥),0,...,0),

* Ith position

N e -1 _ ~ -1
Pp 08,0 P (Ppopa (¥) =(0,...,0,10@p0 9y (),0,...,0).

x Ith position

Therefore, for all y € ¢, (U N Ug)
Pal £ © 81 g gopet ©Pu (V) = Pf &, o9 v),
which implies that on U, N 1:15

giﬂo%oq);l = lpale/ ™" © (g ey ngn' (6)

It follows from Lemma 4 that for all 2 € E

05 1ey] o lod |ey] ™ o [0 1ey] () = Tfi(xd)(ﬁglg,y(a))-

That is, )
lox ey )™t o [0y ] (a) = (981 gy ) (7P () (B |y (2)))].

Fora = gf,ﬂ(x) we have

o1y (@) = ¥ 5 (8, (1)) = (0., 0,70 §5(x),0,...,0).

Ith position
So,
TB’X
< 11
[o¥ 1) o [ ev] 0 &5, = [y ey TP () (B ey (31, ()] = [ ev) (o gp) | & |)
P
(0 ¢p)Th)" 0
_ 0 :
=logley] (| el o,
0 (110 )"
= SRR TN )

Lt} @5 )y r(eh ops )y
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It follows from (5)—(7) that for all 7 € CZ[¢p(Us
([Ha (1,[7/31,0,114)]1 nodggog,!) =
Zg ﬁzx -,1

i=1 11 O(Pp

(Ppa

Y ([Fp(Ppyan)]’, (v, ’f“oqs;l)m

I
-

Il
—

" 0 o5 ") [Hp(Fpar)] 1)

I
Ingh
—~
—

I
M-I
e

Il
—

((th" o

=

1 )
det(¢a o (Pﬁ_l)

|
rjﬁ

Il
_

w, [pd gy ]!

o5 ) Hp(Fpyun)]'s 170 G0 ' 0

N a/g)]

o[} les) o 3l

(@a 0 (f’g_l»

(T 0 95 ) [Ap(Fptpart)] 0 G0 9o Gpo o).

For the last equality we used the following identity

(e (40 T), ) =

Hence
Ha(fppa)]! =

and consequently letting

1
(Awp)it =

leads to (4). O

det(@q © (ﬁ,}l)

(u,po T71Y.

o @y ) [Hp(Pppart)) 0 Gpo oy,

CARY

Remark 57. Note that the above theorems establish the full independence of We1(M, E; A) from A
at least when e is not a noninteger less than —1. So, it is justified to write W*1(M, E) instead of
WeA(M, E; A) at least when e is not a noninteger less than —1. Additionally, see Remark 61.

9.2. The Properties
9.2.1. Multiplication Properties

Theorem 90. Let M" be a compact smooth manifold and E — M be a vector bundle with rank
r. Let A = {(Ux, P, Pu, o) }1<a<N be an augmented total trivialization atlas for E. Suppose

ecR ge(l,00), 1€ C®M
trivialization atlas of A is GGL. Then the linear map

my : W (M, E; A) — WeA

is well-defined and bounded.

(M,E;\), uw~nu

). If e is a noninteger less than —1, further assume that the total
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Proof.
N r
1l | wea ar,Esn) - ZZ (Ha (arru))! lwea (gu (u1,))

Romark ZZII(ﬂo% (o (a10)) lwea g )

R
,_-
N

N r
2 2 (Ha () Hwerq(%(ua)) = [lullwea(am,e;n) -

For the case where ¢ is not a noninteger less than —1, the last inequality follows from
Theorem 70. If e is a noninteger less than —1, then by assumption ¢, (Uy) is either entire
R" or is Lipschitz, and the last inequality is due to Theorem 51 and Corollary 4. O

Theorem 91. Let M" be a compact smooth manifold and E — M be a vector bundle with rank r.
Let A be an augmented total trivialization atlas for E. Let s1,52,5 € Rand py, pa,p € (1,00). If
any of s1, s, or s is a noninteger less than —1, further assume that the total trivialization atlas of A
is GL compatible with itself.

(1) If s1, sp, and s are not nonintegers less than —1, and if WoP1(R") x Ws2P2(R") —
WP (R™), then

WELPL(M; A) x WP (M, E; A) < WP (M, E; A).

(2)  If sy, sp, and s are not nonintegers less than —1, and if W31-P1(Q)) x W2P2(Q)) — WP (Q)),
for any open ball Q), then

WSIPL(M; A) x W2P2 (M, E; A) < W™ (M, E; A).

(3) Ifany of sy, sp, or s is a noninteger less than —1, and if W¥-P1(Q)) x W2P2(Q)) — WP (Q))
for QO = R" and for any bounded open set Q) with Lipschitz continuous boundary, then

WSUPL(M; A) x W2P2(M, E; A) < WP (M, E; A) .

Proof.

(1) Let Ay = {(Ux, ¢a, Pa, Pa) }1<a<n be any augmented total trivialization atlas which
is super nice. Let Ay = {(Uw, Pu, Pa, Pu) 11<a<n Where foreach 1 < a < N, ¢, =

JE Note that —g1— 0 gr1 € BC®(¢y(Uy)). For f € WS (M;A) and u €
Lo V5 Zﬁ* ;

We2P2(M, E; A) we have

N r
HquWSfP(M,E;A) = Hf”HWSfP(M,E;Az) = Z Z [Ha (P (fur) ]]||wsr’ (pa(Uy))
a=1 :

N r )
;Z (Yaf) © @ V[ Ha ($ats)Vllwsr (gn ()
N

N

(Z (Yaf) o @y lwst P1 (@ (Uy)) )( ). Z: [Ha ($a1t)] ||W52'”2(<Pa(ua)))

a=1

= || fllws1m (M;Ay) ||u||W52/P2(M,E;A1) =~ || f w1, (M;A) H”HWSWZ(M,E;A) ‘

(2) We can use the exact same argument as item 1. Just choose A to be “nice” instead of
“super nice”.
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(3) The exact same argument as item 1 works. Just choose A; = A. (The equality
| fullwsraneny = [ fullwse(m En,) holds due to the assumption that A = A; is GL
compatible with itself.)

O

Remark 58. Suppose e is a noninteger less than —1 and q € (1, 00). We will prove that if A and
A are two augmented total trivialization atlases and each of A and A is GL compatible with itself,
then We1(M, E; A) = W1 (M, E; A) (see Remark 61). Considering this and the fact that we can
choose A1 to be super nice (or nice) and GL compatible with itself (see Theorem 34 and Corollary 1),
we can remove the assumption “sq, sp, and s are not nonintegers less than —1” from part 1 and part
2 of the preceding theorem.

9.2.2. Embedding Properties

Theorem 92. Let M" be a compact smooth manifold. Let 7t : E — M be a smooth vector bundle

of rank r over M. Let A be an augmented total trivialization atlas for E. Let e1,e, € R and

71,92 € (1,00). If any of ey or ey is a noninteger less than —1, further assume that the total

trivialization atlas in A is GGL.

(1) If ey and ey are not nonintegers less than —1 and if WerT (R") — We42(R"), then
Weri (M, E; A) — W2 (M, E; A).

(2)  If e and ey are not nonintegers less than —1 and if WeT (Q) — W242(Q)) for all open
balls O C R", then WerTL (M, E; A) — W42 (M, E; A).

(3) If any of ey or ey is a noninteger less than —1 and if We91(Q)) — We242(Q) for Q =
R" and for any bounded domain (0 C R" with Lipschitz continuous boundary, then
Wer (M, E; A) — W2 (M, E; A).

Proof.

(1) Let Ay = {(Ux, o, Pa, Pa) F1<a<n be any augmented total trivialization atlas for E
which is super nice. We have

N r
[l wezz (v, E5m) 2= Nllweaaz (v, ;) Z Z [He (patt)] HWL’z'ﬂZ(%(ua))

N r
ZZ 1THz (faa)] lwers gy (1))
a=11=1

= [[ullwerm (MEA) = 4]l pyer (M,E;A)

(2) We can use the exact same argument as item 1. Just choose A to be “nice” instead of
“super nice”.
(8) The exact same argument as item 1 works. Just choose A1 = A.
O

Remark 59. If we further assume that A is GL compatible with itself, then we can remove the
assumption “eq and ey are not nonintegers less than —1” from part 1 and part 2 of the preceding
theorem. (see the explanation in Remark 58).

Theorem 93. Let M" be a compact smooth manifold. Let 7t : E — M be a smooth vector bundle
of rank r over M equipped with fiber metric (.,.)g (so it is meaningful to talk about L* (M, E)).
Suppose s € Rand p € (1,00) are such that sp > n. Then WP (M, E) < L®°(M, E). Moreover,
every element u in W5¥ (M, E) has a continuous version (note that since s is not a noninteger less
than —1, the choice of the augmented total trivialization atlas is immaterial).
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Proof. Let {(Ux, ¢a, Pa) }1<a<N be a nice total trivialization atlas for E — M that trivializes
the fiber metric. Let {{, }1<,<N be a partition of unity subordinate to {U, }. We need to
show that for every u € W** (M, E)

ulro ey = ullwsr () -

Note that since s > 0, WP (M, E) — LP(M, E) and we can treat u as an ordinary section of
E. We prove the above inequality in two steps:

*  Step 1: Suppose there exists 1 < f < N such that suppu C Up. We have

|| (p,p) = esssup [u|g = esssup |ulE

xeM XEUﬁ

T
= esssup \/ Y. |p% ouo (pl;l |2 (by assumption the triples trivialize the metric)
ye(l’ﬁ(uﬁ) 1=1

T 14
< esssup )_ |pfgouoq)gl| < ) esssup |P550”O§9;1‘
yegp(Up) I=1 I=1ycgp(Up)

=

r

Y ||P;3 ouo q’ngL""((pﬁ(Uﬁ))

1

1

=1

.
loj ouo §0§1strn(q)ﬁ(uﬁ)) (sp > nso W (gg(Up)) — L=(9p(Up))) -

=1

e Step 2: Now, suppose u is an arbitrary element of W*? (M, E). We have

N N
ulomey = | Y Yuttliopy < Y [Watt] o)

a=1 a=1
Stepl N r

= Y Y llok o pauo Pu llwsr(gu(un)) = Nl wer(a ) -
a=11=1

Next we prove that every element u of W¥? (M, E) has a continuous version. Note that for
allx € Uy,

Yort(x) = D1 (x, 04 0 Yatt, ..., P © Patt).
Furthermore, foralll <] <rand1 < a < N we have

Pfx SRUAS ‘ijl € W (@u(Uy)) -

Therefore, p!, o 41 o p; ! has a continuous version which we denote by v!,. Suppose Al is
the set of measure zero on which v, # pl, o pu o @ 1. Let A, = UlngrAfx- Clearly, A, is
a set of measure zero. Since @, : Uy — ¢4 (U, ) is a diffeomorphism, B, := ¢, 1 (A,) is a
set of measure zero in U, (In general, if M and N are smooth n-manifolds, F : M — Nisa
smooth map, and A C M is a subset of measure zero, then F(A) has measure zero in N.
See p. 128 in [19]).

Clearly,

(x, 0 0 @u,..., 0% 0 @) = (x,01 0 huus, ..., 00 0 Paur).

on U, \ B,. So,
wﬂ( = CI);l(x,vio (P(X,...,vg oqoa) == ¢;1(x/p}¢ inﬂéul""p; Olplxu) = lplxu

on U, \ By. Note that w, : U, — E is a composition of continuous functions and so it is
continuous on U,. Let &, € CZ°(Uy) be such that &, = 1 on suppyy. So {xwa = Pau on
M\ B,. Consequently, if we let w = 22121 CaWy, then w is a continuous function that agrees
with u = Zt{?’:l ou on M\ Bwhere B = Uj<,<nBy. O
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9.2.3. Observations Concerning the Local Representation of Sobolev Functions

Let M" be a compact smooth manifold. Let E — M be a smooth vector bundle of rank
r over M. As it was discussed in Section 6, given a total trivialization triple (Ua, Qus Pu), WE
can associate with every u € D’'(M, E) and every f € I'(M, E), a local representation with
respect to (Uy, Pu, Pu):

wes (@', @) € [D(ga(Ua))), i = [Haluly,)]',
f=(fY o ) € [Fune(go(Ua), R),  f' =plo (flu) oo,

and of course, as it was pointed out in Remark 32, the two representations agree when
u is a regular distribution. The goal of this section is to list some useful facts about the
local representations of elements of Sobolev spaces. In what follows, when there is no
possibility of confusion, we may write H, (1) instead of H, (u|y1,), or o), o f o g7 ! instead

of o}y o (flu,) © @it

Theorem 94. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r.
Suppose A = {(Uw, Pu, Pa, Ya) Yoy is an augmented total trivialization atlas for E — M. Let
u € D'(ME), e € Randq € (1,00). Ifforall1 < a < Nand1 < j < r, [Hy(u)J €
W T (@ (Uy)), then u € W (M, E; A).

loc

Proof.

N r )
H”HWW(M,E;A) = Z Z ||[ch(%”)]]||werq(%(ua))

=
Il

—
-
Il

_

Now, note that ¢, 0 95! : @4 (U,) — R is smooth with compact support (its support is in
the compact set ¢, (supp 1 )). Therefore, it follows from the assumption that each term on
the right hand side of the above equality is finite. [

Remark 60. Note that, as opposed to what is claimed in some references, it is NOT true in general
that if u € W1 (M, E; \), then the components of the local representations of u will be in the
corresponding Euclidean Sobolev space; that is, u € W1 (M, E; A) does not imply that for all
1<a<Nand1<j<r [Hy(u)) € Wo(pu(Uy)). Consider the following example:
M=S'e=0,g=1,and f: M — R defined by f = 1. Clearly f € WO(M) = L' (S'). Now,
consider the atlas A = {(Uy, ¢1), (Ua, ¢2) } where

U =s"\ {01}, @y =7,

=S\ {0~} aly) =

(stereographic projection) .

+ | R <
<

Clearly, fo ;' = fop,' = land ¢1(U1) = ¢2(Uz) = R. So, fo ey and fo @5 do not
belong to L (@1 (U7)) or L (¢2(U2)).

However, the following theorem holds true.
Theorem 95. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let

e € Rand q € (1,00). Suppose A = {(Ux, P, P, tpa)}i\le is an augmented total trivialization
atlas for E — M. If e is a noninteger less than —1 further assume that A is GL compatible with
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itself. Let u € W1 (M, E; A) be such that suppu C'V C V C Ug for some open set V and some
1<B<N.Thenforalll <i<r, [Hﬁ(u)]i € W (pp(Ug)). Indeed,

||[Hﬁ(”)]i||ww((pﬁ(uﬁ)) < ullwea(am,en) -

Proof. Let A1 = {(Un, @, Pas %) ", where {{s }1<,<n is a partition of unity subordinate
to the cover {Uy }1<4<n such that lpﬂ = 1 on a neighborhood of V (see Lemma 3). We have

| (Hp () lwes g ug)) = 1B 510 wes g )
N r
<) Z ) llwen (g, (1)
a=1j=1
= |lu Hw“? (ME;A) = ||”||w~l (M,EA) *

O

Corollary 8. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e € Rand g € (1,00). Suppose A = {(Us, Pu, Pu, Pu) Y1, is an augmented total trivialization
atlas for E — M. If e is a noninteger less than —1 further assume that A is GL compatible with
itself. Ifu € W1 (M, E; A), then forall1 < a < Nand1 <i <r, [Hy(u )] (i.e., each component
of the local representation of u with respect to (Uy, @u, pa)) belongs to W, 1 (¢ (Uy)). Moreover, if
¢ € C(@u(Ua)), then

||§[Ha(“)VHWW(%(U,X)) = [ullweaagsn) -

where the implicit constant may depend on ¢.

Proof. Define G: M — Rby

o, ifpe Uy,
G(p) = {‘3 R
ifp & U,

Clearly, G € C®(M). So, by Theorem 90, Gu € W%1(M, E; A). Furthermore, since { €
C(@a(Uy)), there exists a compact set K such that

supp ¢ C KCKC Pa(Uy) -

Consequently, there exists an open set Vj, (e.g., Vi = ¢; ' (K)) such that

supp (Gu) C supp(&o ¢n) C Vu €V, C U,.
So, by Theorem 95, [Hy (Gu)] € W (¢4 (U, )) and

H[Ha(G”)]i||we/q(%(ua)) =2 ||Gullwesmen) = lullweam g -

Now, we just need to notice that on ¢, (Uy),

[Ho(Gu))' = (G o ") [Hu(w)]" = {[Ha ()]

O

9.2.4. Observations Concerning the Riemannian Metric

The Sobolev spaces that appear in this section all have nonnegative smoothness
exponents; therefore, the choice of the augmented total trivialization atlas is immaterial
and will not appear in the notation.
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Corollary 9. Let (M",g) be a compact Riemannian manifold with ¢ € WP (T>M), sp > n. Let
{(Uy, @u, pa) }1<a<n be a standard total trivialization atlas for T>M — M. Fix some a and denote
the components of the metric with respect to (Ux, ¢u, Pa) by gij : Ux — R (gij = (0a)ijo g)- A

an immediate consequence of Corollary 8 we have

gl]ogo;l lgc(q)“(u“))

Theorem 96. Let (M",g) be a compact Riemannian manifold with ¢ € WSP(T2M), sp > n,
s > 1. Let {(Ux, ¢a, pa) }1<a<N be a GGL standard total trivialization atlas for T2M — M. Fix
some a and denote the components of the metric with respect to (Ux, @a, o) by gij * Ux — R
(8ij = (pa)ij 08) Then

(1) detgy € loc (qo,x(ua)) where ga( x) is the matrix whose (i, j)-entry is g;j o o7t

(2) \Jdetgo gy det g € Wil (9u(Us)),

(3) m [oc((Pa(ua))

Proof.

(1) By Corollary 8, g;; o ¢, ! is in W"(¢a(Us,)). So, it follows from Lemma 10 that
detg, € Wlo’f(fpa(ua)).

(2) This is a direct consequence of item 1 and Theorem 85.

(3) This is a direct consequence of item 1 and Theorem 85.
O

Theorem 97. Let (M",g) be a compact Riemannian manifold with g € WSP(T2M), sp > n,
s > 1. Then the inverse metric tensor g~ (which is a (g) tensor field) is in WP (T, M).

Proof. Let {(Ux, ¢, pa) }1<a<n be a GGL standard total trivialization atlas for T2M — M.
Let {1a }1<a<n be a partition of unity subordinate to {U, }1<,<n. We have

N ..
||871||w5fﬁ(T2M) =Y ) llgag?o G"El”w&v((pa(ua))'

a=1 ij

So, it is enough to show that for all i, j and &, '/ o ¢! is in Wloc (¢a(Uy))- Let B = (Bjj)
where Bjj = gijo @5 !. By assumption, g € WP (T?M); it follows from Corollary 8that B;; €

l s P (@ (Uy)). Our goal is to show that the entries of the inverse of B are in W l s Ppa(Uy)).
Recall that

Ly _ (=D
(B~ )ij = dotg M/

where M;; is the determinant of the (n — 1) x (n — 1) matrix formed by removing the
jth row and ith column of B. Since the entries of B are in WZS Of (¢pa(Uy)), it follows from
Lemma 10 and Theorem 85 that 715 and M;j are in Wl o (go,x(ll,x)) Furthermore, sp > 1, so

l i P (@q(Uy)) is closed under multrphcatlon Consequently, (B~1);; jisin W, s Plpu(Uy)). O

Corollary 10. Let (M",g) be a compact Riemannian manifold with ¢ € WSP(T?>M), sp > n,
s > 1. {(Un, ¢a) }1<a<N be a GGL smooth atlas for M. Denote the standard components of
the inverse metric with respect to this chart by g : U, — R. As an immediate consequence of
Theorem 97 and Corollary 8 we have

gl]O(Pt;1 loc ((Pﬂt(uﬂt))

Furthermore, since

1 -
Tjopa' = 58" (0ign + g — digij) o oa
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it follows from Corollary 9, Lemma 9, Theorem 83, and the fact that
W (9o (Un)) x W (@0 (Ua)) > WP (@u(Usy)) that

1,
FEO(PW € W[Soc p(‘PlX(ulX))

9.2.5. A Useful Isomorphism

Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Lete €
Rand g € (1,00). Suppose A = {(Uy, ¢u, pa, Pu) 11, is an augmented total trivialization
atlas for E — M. Given a closed subset A C M, We (M, E; A) is defined to be the subspace
of W41(M, E; A) consisting of u € W%1(M, E;A) with suppu C A. Fix1 < < N and
suppose K C Ug is compact. Then each element of Wy’ (M, E; A) can be identified with an
element of D'(Uy, Euﬁ) under the injective map u € W7 (M, E; A) € D'(M,E) — u|y €
D'(Upg, Euy)- So, we can restrict the domain of Hg : [D(Ug, Eﬁﬂ)]* — (D' (gp(Ug)))*" to
Wféq (M, E; A) which associates with each element u € Wl‘i’q (M, E; A), the r components of
Hg(u) = (ﬁé, > ,ﬁ%) (here Hg stands for Hpv iy, ¢,)-

Lemma 11. Consider the above setting and further assume that if e is a noninteger less than —1,
then the total trivialization atlas in A\ is GL compatible with itself. Then the linear topological
isomorphism Hg : [D(Usg, E&ﬁ)]* = D'(Ug, Euﬁ) — (D'(@p(Upg)))*" restricts to a linear
topological isomorphism

B - WY (MLE; ) = WS (95(Ug))) ™

Proof. In order to simplify the notation we will use (U, ¢,p), H, H, and @' instead of
(Uﬁ, Pps p,g), H/g, Hﬁ, and ﬁ’ﬁ In order to prove this claim, we proceed as follows:

(1)  First we show that suppii’ C ¢(K).

(2) Next we show that if u € W¢'(M, E; A), then [wllwea (v, sn) = Tiea HﬁlHWe,q((P(u))
which proves that:

(i) ii! is indeed an element of W% (@ (U));

(ii) H is continuous.

Note that (i) together with the fact that suppii! C ¢(K) shows that i’ is indeed an
element of W'/ o(K )( @(U)) so H is well-defined.

(8) We prove that His injective.

(4) In order to prove that H is surjective we use our explicit formula for H~! (see
Remark 31).

Note that the fact that H is bijective combined with the equality

ol wea (ar,Esm) = Xl || ! [[wes(p(ury) implies that A~ is continuous as well.

Here are the proofs:

(1) This item is a direct consequence of item 1 in Remark 31.

(2) Define the augmented total trivialization atlas Ay by Ay = {(Us, ¢a, pa, Pu) 14
where {4 }1<4<n is a partition of unity subordinate to {Uy }1<«<n such that 5 = 1
on a neighborhood of K. Note that for each &, i, > 0 and ) ¢, = 1. Thus, the
assumption 1/715 =1 on K implies that (), = 0 on K for all & # B. We have

N r
HMHW"/‘I(M,E;A) = Hu”WW(M,E;Al) = Z 2 ”W‘q(%(ua))
a=1]=1

r

=Y I (H@p))' llwea (g (1)) 2 M lweag ()

=1 =1

<
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Note that suppu C K and §g = 1 on K, so fgu = u|y as elements of D' (U, Ey).
Therefore, H(¢gu) = H(u) = (a',...,a").
(3) H is injective because it is a restriction of the injective map H.

(4) Let (v',...,0") € [W;’gK)((p(U))]X’. Our goal is to show that H~!(v},...,0") €

W;’q(M, E;\) ~ Wli’q(M, E; A1) (this implies that H is surjective). By Remark 31,
forall§ € D(U, E;)

H (0!, 0")(§) = L o'(pY) oo g™ ).

First note it follows from Remark 30 that suppH ! (0!, ...,v") C K; indeed, if supp& C
U\ K, then o ¢! = 00n ¢(K). So, (0¥) 0 &0 @1 = 00on ¢(K). Thatis, supp|[(p")’ o
Eop ] C p(U)\ ¢(K). Thus, foralli, v'[(p" ) o &0 ¢~ 1] = 0 (because, by assumption,
suppv’ C ¢(K)). This shows that if suppé C U \ K, then H~1(v!,...,v")(&) = 0.
Consequently, suppH~1(o!,...,0") C K.

Furthermore, we have

.
IH (0" o) lweaa i) = 3 10 lwea gy < oo
=1

So, H-1(v!,--- ,0") € WY (M, E; A).
O

It is clear that u € W1(M, E; A) if and only if for all a, Pp,u € WI?Z(M, E; A) where
Ky can be taken as any compact set such that suppy, C Ky C U,. In fact as a direct
consequence of the definition of Sobolev spaces and the above mentioned isomorphism
we have

ue W (M,E;A) <= V1<a<N H(pu)€ [W;f(supp%)(%(ua))}w
= V1I<a <N pou€ Woioy (M EA)

9.2.6. Completeness; Density of Smooth Functions

Our proofs for completeness of Sobolev spaces and density of smooth functions are
based on the ideas presented in [24].

Lemma 12. Let M" be a compact smooth manifold and E — M be a vector bundle of rank
r. Lete € Rand q € (1,00). Suppose A = {(Un, Pu, Pu, l/J,X)}i\Izl is an augmented total
trivialization atlas for E — M. If e is a noninteger less than —1 further assume that A is GL
compatible with itself. Let K, be a compact subset of U, that contains the support of {,. Let
S: W (M,E;A) — T2, WIZV (M, E; A\) be the linear map defined by S(u) = (pq1u, ..., Ppnu).
Then S : W (M, E; A) — S(W®1(M,E;A)) C T2, W;(’j(M, E; A) is a linear topological
isomorphism. Moreover, S(W®1(M, E; A)) is closed in [T, W;’Z(M, E;N).

Proof. Each component of S is continuous (see Theorem 90), therefore S is continuous.
Define P : [T\_, W¢'(M, E) — W1(M, E) by

P(Z)1,...,UN) = Zvi.
i

Clearly, P is continuous. Furthermore, PoS = id. Now the claim follows from
Theorem 23. [

Theorem 98. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e €Rand g € (1,00). Suppose A = {(Uy, Pu, P, Ya) }N_; is an augmented total trivialization

a=1
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atlas for E — M. If e is a noninteger less than —1 further assume that A is GL compatible with
itself. Then W*1(M, E; A) is a Banach space.

Proof. According to Lemma 11, foreach1 < a < N, WI?Z(M, E; A) is isomorphic to the
Banach space [W;,S(Ka) (¢a(Ua))]*". So T, W1 (M, E; A) is a Banach space. A closed
subspace of a Banach space is Banach. Therefore, S(W%1(M, E; A)) is a Banach space.

Since S is a linear topological isomorphism onto its image, W*9(M, E; A) is also a Banach
space. [

Theorem 99. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e € Rand q € (1,00). Suppose A = {(Ux, P, P, lp,x)}yzl is an augmented total trivialization
atlas for E — M. If e is a noninteger less than —1 further assume that A is GL compatible with
itself. Then D(M, E) is dense in W1 (M, E; A).

Proof. Let K, = supp,. Foreach 1 < & < N, let V;, be an open set such that
Kagvzxgvagua-

Suppose u € W (M,E;A) and let uy, = u. Clearly, suppu, C K,. Furthermore,
according to Lemma 11, for each « there exists a linear topological isomorphism
H,: W

PME) — W (ga(Ua))]"

Note that Hy () € [W;’Z( Ky (¢a(Uy))]*". Therefore, by Lemma 62 there exists a sequence
{(7a)i} in [C;‘; (V) (¢a(Uy))]*" (of course we view each component of (77,); as a distribu-
tion) that converges to H,(iy) in W% norm as i — 0. Since H, is a linear topological

isomorphism, we can conclude that

A

Hy ' ((7a)i) = e, (in W‘e—,’q(M, E;A)asi— c0).

(Note that if a sequence converges in W;’q(M, E; A) where A is a closed subset of M, it also
obviously converges in W7(M, E; A).) Let & = YN, Hy '((44);)- This sum makes sense
because, as we will shortly prove, each summand is in C° (U, E,) and so by extension by
zero can be viewed as an element of C*°(M, E). Clearly §; — Y, uy = uin W1 (M, E; A).
It remains to show that for each i, &; is in C*(M, E). To this end, it suffices to show
thatif x = (x,...,x") € [C®(@a(Uy))]*", then Hy(x) is in C®°(U,, Ey) and so can
be considered as an element of C®(M, E) (by extension by zero). Note that H, !(x) is
compactly supported in U, because by definition of H, any distribution in the codomain of
A, ! has compact support in V. So, we just need to prove the smoothness of H; ! (x). That
is, we need to show that there is a smooth section f € C*(Uy, Ey, ) such that u; = A7 (x).
It seems that the natural candidate for f(x) should be (p|g,) ™! © x © @u(x). In fact, if we
define f by this formula, then F, (u £) = Hy(us) and by Remark 32 Hy (1) is a distribution
that corresponds to the regular function (f',..., f') = py o f o ¢ '. Obviously,

02 © £ 0 91 e (x) = Pa© (alE,) ™ 0 X 0 Pa 0 9 g (x) = Xl gu(x) -

So, the regular section f(x) = pa|1;1 o x o @« (x) corresponds to F; ! (x) and we just need to
show that f is smooth; this is true because f is a composition of smooth functions. Indeed,

F(x) = palg) 0 x o gul(x) = D (x, x 0 pu(x)) = f =D o (Id, x 0 gu),

and all the maps involved in the above expression are smooth. [
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9.2.7. Dual of Sobolev Spaces

Lemma 13. Let M" be a compact smooth manifold and let 7t : E — M be a vector bundle of rank r
equipped with a fiber metric (., ). Lete € Rand q € (1,00). Suppose A = { (U, Pu, pu, Pu) 14
is an augmented total trivialization atlas for E — M which trivializes the fiber metric. If e is a
noninteger less than —1 further assume that the total trivialization atlas in A is GGL.

Fix a positive smooth density p on M (for instance we can equip M with a smooth Riemannian
metric and consider the corresponding Riemannian density). Let T : D(M, E) — D(M, E") be the
map that sends ¢ to Tz where T¢ is defined by

VxeM Tg(x) tEx =Dy, aw— <a/§(x)>E V(x)

Then T is a linear bijective continuous map. Moreover, T : (C®(M, E), ||.[lwes(pm,E:n)) —
(C®(M, EY), ||-lwea(am,ev;avy) is a topological isomorphism.

Note: Since M is compact, D(M,E) and D(M,E") are Frechet spaces. So, by
Theorem 17, the continuity of the bijective linear map T : D(M, E) — D(M, EV) implies
the continuity of its inverse. Thatis, T : D(M,E) — D(M,E") is a linear topological
isomorphism. As a consequence, the adjoint of T is a well-defined bijective continuous
map that can be used to identify D’'(M, E) = [D(M, EV)|* with [D(M, E)]*.

Proof. The fact that T is linear is obvious.
* T is one-to-one: Suppose ¢ € D(M, E) is such that Tz = 0. Then

VyeM Tgx)=0=VxeM,VacE; [Tg(x)](a)=0
= VxeM,VacE, {(af(x)pg=0
=VxeM ((x),¢(x)p=0=VxeM ¢(x)=0.

e Tisonto: Letu € D(M,EY). Our goal is to show that there exists ¢ € D(M, E) such
that u = Tz. Note that

VyeM u(x)=Ts(x) <= VYVxec MVacEx (a¢(x))rpu(x)=I[u(x)(a).

Since Dy is 1-dimensional and both u(x) (which is a positive smooth density) and
[u(x)][a] belong to Dy, there exists a number b(x, a) such that

[u(x)](a) = b(x,a)u(x) .
So, we need to show that there exists { € D(M, E) such that
Vx e MVae€ Ey (a,&(x))g = b(x,a).

The above equality uniquely defines a functional on E, which gives us a unique
element ¢(x) € Ey by the Riesz representation theorem. It remains to prove that ¢ is
smooth. To this end, we will show that for each a, |, is smooth. Let (sq,...,s,) bea
smooth orthonormal frame for Eyj, .

Vxe U, &©x)=2(x)si(x)+...+&(x)sr(x).
It suffices to show that &1, ..., & are smooth functions (see Theorem 36). We have
¢'(x) = (5(x),si(x))E-

It follows from the definition of (x) that

[4(2)] s (x)]

Il
—~
L
—~

=
—
™
—

=
~—
~
]
=
—~

=
-
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Therefore, & (x) satisfies the following equality
[(x)][si(x)] = & (x)p(x).
That is, if we define a section of D — U, by

[u,s;] : Uy = D, x— [u(x)][si(x)],

then & is the component of this section with respect to the smooth frame {z(x)} on
U,. The smoothness of (ji follows from the fact that if N is any manifold, E — N is a
vector bundle and u and v are in (N, EY) and £(N, E), respectively, then [u,v] is in
£(N, D); indeed, the local representation of [, v] is ¥; #'%' which is a smooth function
because ii! and 3 are smooth functions.

e T:D(M,E)— D(M,E") is continuous:
We make use of Theorem 20. Recall that

(1) The topology on D(M, E) is induced by the seminorms:
V1<I<rV1<a <N, YkeNVKC Uicompact)  praik(8) = lloa oG o ealg, k-
(2) The topology on D(M, EV) is induced by the seminorms:
V1<1<rV1<a<NVkeNVKC Uscompact)  qiuir() = [l(eX) o110 @3 llg a0 -
Forall ¢ € D(M, E) we have
ek (Te) = 11(02)" © Te 0 93 g k0 = 10D,0,) © (Tz 0 @) © (0ale,) ™ (e1) g ()
—_—
s1(%)
where (eq, ..., e,) is the standard basis for R". Let y = ¢, (x). Note that
[Te(@x (W)ls1(x)] = (s1(x), §(x))p pe(x).

Therefore, if we define the smooth function f, on U, by p(x) = fo(x)|dx! A ... Adx"|,
then

(0D,9,) © (Tz o @) 0'51(x) = (51(x), &) Efu(x) = &' (%) fulx) = (ph 0G0 92 (¥) (fa0 0 () - ®)
So, if we let

C=  max B(f. oL ,
ye%(K),\ﬁ\gk| (fao g (v))]

then

1ok (Te) = 1(ph 0 €0 @ ' (1)) (fa © @ W)l iy < Cllok © &0 @2 W)l g0k = C Prak i (€) -

o T:(C®°(M,E),|lleq) = (C°(M,E),|.|leq) is a topological isomorphism:

N r
Gl weameny = 3 ), ok © Pag @Zlﬂwm((pa(ua)) ,
—1i=1

2

M=

Y- 1)) 0 ¥a Tz 0 95 Hlwea g (1)) -
-1

I Tellwea(m,v,nvy =
1

14

By Equation (8), we have

(o) o puTz 0 9t = pp,g, © (PaTr 0 @z t) 051(x) = (P o Yal o @z ) (fuo @ t).
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Therefore,
S ! 1 1
I Tellweameviavy = Y Y 100w 0 Wad 0 95 ) (fa © @ ) lwea (g u)) -
Now, we just need to notice that f, o ;! is a positive function and belongs to

C®(¢a(Ua)) (so — —7 is also smooth) and ok 0 P& 0 @7 ! has support in the compact
set ¢q (supp(¥y)) to conclude that

¢ lweamE:n) = | Tellwea(a,ev;avy -
O

Lemma 14. Let M" be a compact smooth manifold and let 7t : E — M be a vector bundle of rank r
equipped with a fiber metric (., ). Lete € Rand g € (1,00). Suppose A = { (U, Pu, pu, Pu) 14
is an augmented total trivialization atlas for E — M. If e is a noninteger less than —1 further assume
that the total trivialization atlas in A is GGL. Then D(M, E) «— W®1(M, E) — D'(M, E).

Proof. We refer to [24] for discussion about the case where e € Z. For e € R\ Z we have

W (M, E; A) — WLLI(M,E; A) — D'(M,E),
D(M,E) — WLlFV1(M, E; A) — W*1(M,E; A).

O

Theorem 100. Let M" be a compact smooth manifold and let T : E — M be a vector bun-
dle of rank r equipped with a fiber metric (.,.)g. Let e € R and q € (1,00). Suppose A =
{(Un, Pu, Pas Pu) }fx\’:l is an augmented total trivialization atlas for E — M which trivializes the
fiber metric. If e is a noninteger whose magnitude is greater than 1 further assume that the total
trivialization atlas in A is GL compatible with itself. Fix a positive smooth density y on M.

Consider the L? inner product on D(M, E) defined by

(u,v)y = /];/I(u,v),gy.

Then
i () extends uniquely to a continuous bilinear pairing
(,)2 : Wel (M, E; A) x W4 (M,E; A) — R (We are using the same notation (i.e.,
(., .)2) for the extended bilinear map!)

(i) Themap S: W4 (M, E; A) — [W&1(M, E; A)|* defined by S(u) = I, where

Lot WAMEA) = R, L(v) = (1,0)

is a well-defined topological isomorphism.
In particular, W%1(M, E; A)]* can be identified with W=7 (M, E; A).

Proof.
(1) By Theorem 8, in order to prove (i) it is enough to show that
()2 (CT(ME), [l —eq) X (CT(M,E), [|-[leq) — R
is a continuous bilinear map. Denote the corresponding standard trivialization map
for the density bundle D — M by pp,q,. Let Ay = {(Uy, %,Pmlﬁa)}i\]:l be an
augmented total trivialization atlas for E where §, = ¥2__ Note that x5 ©

Lp-1 ¥ o1 5
¢! € BC®(gu(Uy)). Let Ky = suppyps. Recall that on U, we may write y =
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@)
®)

4)

hyldx! A -+ A dx"| where hy = 0D,¢, © ¥ is smooth. Moreover, for any continuous
function f : M — R,

/M fu

N
;/M‘Paf.”
N —1\* (.7,
S Y RCRN YD
al 7 -1 —1y*
=L [, Bef oo
N ~
= Z/, (faf 0 9u ) (ha o 9i ')AV

oy € BC™(pu(Un))).

= (W2 f o V) (Waha 0 o 1) dV !
L[ EFon o0 s

Therefore, we have

[ wo)enl = | %/ il 0)en]

<| Z/ (¥R (1,0) 0 93 ) (uha 9 )V,

Since by assumption the total trivialization atlas in A trivializes the metric, we get

YRUITEDY

Remark 46

}:|/ ($50 97 ') (Y © 97 181) ($uha © 9 )V

a=1i=

N r
lelH lptxo(pzx ”W eq (@a(Uy)) H lpﬂtoq)tx )(lpﬂh O Py )HW"?(%(U&))
a=1i=

ZH lpﬂtoq)zx )HW e ( (@a(Uy) H(lplxoq)a 0; HW“I (¢a(Uy))

i=

N r N r
Z Z H Yo © @y ul HW eq’ (9a(Uy)) Z Z H Yo 0 4794 HW“I(%(U‘,‘))]

a=1i=1 a=1i=1

Mz

I
—

14

= ||u ||W (M,E;A) HUHWW (MEA) +

For each u € W_e'q/(M, E; A), 1, is continuous because (., .); is continuous. So, § is
well-defined.
S is a continuous linear map because

- S(u)v
Vue W (MEA) |IS(u)lwea(m,esn)) = Sup |U||()|
0£vEWA (M,E;A) Wei(M,E;A)
u,0)s
= s O )

0£vEWET (M,E;A) [vllwea (am,En)

where C is the norm of the continuous bilinear form (., .),.
S is injective: suppose u € W44 (M, E; A) is such that S(u) = 0, then

Vo e WAM,EA) 1,(0) = (u,0) =0.

We need to show that u = 0.
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®)

e Step 1: For ¢ and 7 in D(M, E) we have

(¢, m)2 = (ug, TH) [D(M,EV)] x D(M,EV) -

where T is the map introduced in Lemma 13 (note that if we identify D(M, E)
with a subset of [D(M, EY)]*, then we may write ¢ instead of uz on the right
hand side of the above equality). The reason is as follows:

(g, T) (D2 ) DMEY) = /M[T,7 (0)][é(x)]  (by definition of ).
Recall that by definition of T, we have
VxeM VackE, [Ty (x)][a] = (a,n(x))Ep.

In particular,
[Ty(0)][G )] = (&(x), m(x))E -

Therefore,
(e, T) (o <o) = [ (€0 () em = (Ema
e Step2: Forwe W% (M,E;A)and 5 € D(M,E) C W(M, E; A) we have

(w, )2 = (W, TN) | D(MEV)]* xD(MEV) -

Indeed, let {¢,,} be a sequence in D(M, E) that converges to w in W47 (M, E; A).
Note that W44 (M, E; A) < [D(M, E)]*, so the sequence converges to w in
[D(M, EY)]* as well. By what was proved in the first step, for all m

(Cm )2 = (Cm, TN) | D(M,EV)* x D(ME) -

Taking the limit as m — oo proves the claim.
e Step 3: Finally note that forallv € D(M, E) C W*1(M, E; A\)

(T"u, ) p(m,E)) xD(M,E) = (U TO) [D(M,EV))* xD(MEV) = (#,0)2 = 0.

Therefore, T*u = 0 as an element of [D(M, E)|*. T is a continuous bijective map,
so T* is injective. It follows that u = 0 as an element of [D(M, EV)|* and sou = 0
as an element of W47 (M, E; A).
S is surjective. Let F € [W%1(M, E; A)]*. We need to show that there is an element
uecwed (M, E; A) such that S(u) = F. Since D(M, E) is dense in W%1(M, E; A), it
is enough to show that there exists an element u € W—*4 (M, E; A) with the property that

V¢eD(ME) F(&) = (1,8

Note that, according to what was proved in Step 2,
(u,8)2 = (u, TC) DMV ) xD(M,EV) = (T U, C) [D(M,E)]* x D(M,E) -
So, we need to show that there exists an element u € W4 (M, E; A) such that

V¢ e D(ME) F(¢) = (T"u,¢)[p(ME)xDM,E) -

Since D(M, E) < W*1(M, E; A), F|p(pm,g) is an element of [D(M, E)]*. We let

w:= [T (Flp,g) € [D(M,EY)]*.
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Clearly, u satisfies the desired equality (note that [T~!]* = [T*]~1). So, we just need
to show that u is indeed an element of W47 (M, E; A). Note that

€W (ME;A) <= V1 <a<N Hy(pau) € (W, pprpe) (92 (Ua )]

Since supp(ya1t) C suppiy, it follows from Remark 31 that
V1<1<r supp([Ha($utt)]') C gu(suppye) .
It remains to prove that [Hy (pau)]' € W27 (¢, (Uy)). Note that

fore>0 (W5 (gu(Ua))]* = W (gu(Ua)),
fore <0 [We (gu(Ua))]" = W (g (Un))]* = Wy ™7 (9u(Ua)) € W (9u(Un)) -

Consequently, for all e

[Wo (9u(Ua))]* € W7 (a(Un)) -

Therefore, it is enough to show that

[Ha(%“)}l € [Wérq((l’a(ua))]*~

To this end, we need to prove that

[Hﬂc(lpau)]l (CE(@a(Ua)), ||||eq) —R

is continuous. For all € C® (¢, (Uy)) we have

[Ha(pau)]'(8) = (Pacths 818,90 ) D (U EY, )1 DU EY, ) = (s Pa81EUnpa) [D(MEY)]* x D(MEY)
= ([T Flp(m,E) $a81,8Usga) [D(ME)]* x D(MEY)

= (Flpamey T~ (W86, Unspu)) D (M) xDME) = F(T ™ (Y0816, Unsgn)) -
Thus, [H, (pu)]" is the composition of the following maps:

(C2(u(U), leq) = W (@u(U)] " 1 CR (u(U))T — WEL L (M EY; AY) 1 C (M, EY)
= (C¥(M,E), [[leg) » R

¢ (0,0, (Yu 09z 1)E,0,...,0) = Hi o (0,...,0, (a0 9 1)E,0, -+, 0) = $agi g, g
\—\,_J
Ith position

= T (a8 U ) = F(T 7 (Y081, Un00))

which is a composition of continuous maps.
(6) S : W (M,E;A) — [W(M,E;A)]* is a continuous bijective map, so by the
Banach isomorphism theorem, it is a topological isomorphism.
O

Remark 61.

(1) The result of Theorem 100 remains valid even if A = {(Ux, Pu, Pu, Pa) } does not trivialize
the fiber metric. Indeed, if e is not a noninteger whose magnitude is greater than 1, then the
Sobolev spaces W and W41 are independent of the choice of augmented total trivialization
atlas. If e is a noninteger whose magnitude is greater than 1, then by Theorem 37 there exists
an augmented total trivialization atlas A = {(Uy, ¢u, Pu, Pa) } that trivializes the metric and
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has the same base atlas as A (so it is GL compatible with A because by assumption A is GL
compatible with itself). So, we can replace A by A.

(2) Let A be an augmented total trivialization atlas that is GL compatible with itself. Let e
be a noninteger less than —1 and q € (1,00). By Theorem 100 and the above observa-
tion, W1 (M, E; A) is topologically isomorphic to [W~=%4 (M, E; A)]*. However, the space
W= (M, E; A) is independent of A. So, we may conclude that even when e is a noninteger
less than —1, the space W1 (M, E; A) is independent of the choice of the augmented total
trivialization atlas as long as the corresponding total trivialization atlas is GL compatible
with itself.

9.3. On the Relationship between Various Characterizations
Here we discuss the relationship between the characterizations of Sobolev spaces
given in Remark 54 and our original definition (Definition 30).

(1) Supposee > 0.
N r i 1
W (M, E; A) = {u € LI(ME) : [ullwonianz) = Y 3 10)' © ($at) 0 @3 e guuy) < 003 -
x=1[=1

As a direct consequence of Theorem 92, for e > 0, W*1(M, E; A) — L1(M, E) with
the original definition of W%7(M, E; A). Therefore, the above characterization is
completely consistent with the original definition.

2)
N r 0
W (M, E;A) = {u € D'(M,E) : [[ullwea(m,E:n) = Z Z lextd 1)z [Ha ($ai0)] | wea gy < co} .

It follows from Corollary 6 that

. If e is not a noninteger less than —1, then

THa (9et0) ] e (g ) = N1XE), (11, [Hac ()] wea (g

e Ifeisanoninteger less than —1 and ¢, (U,) is R" or a bounded open set with
Lipschitz continuous boundary, then again the above equality holds.

Therefore, when e is not a noninteger less than —1, the above characterization com-
pletely agrees with the original definition. If e is a noninteger less than —1 and the
total trivialization atlas corresponding to A is GGL, then again the two definitions
agree.

3)
We(M,E;A) = {u € D'(M,E) : [Ha(u|y,)])' € W, (9a(Us)), V1< a <N, V1<I<r}.

It follows immediately from Theorem 94 and Corollary 8 that the above character-
ization of the set of Sobolev functions is equivalent to the set given in the original
definition provided we assume that if e is a noninteger less than —1, then A is GL
compatible with itself.

(4) W@I(M,E;A) is the completion of C*°(M, E) with respect to the norm

N r
el wea (ar,En) = 2 2 o (att) o @y llea (pu(Uy)) -

It follows from Theorem 99 that if e is not a noninteger less than —1 the above charac-
terization of Sobolev spaces is equivalent to the original definition. Furthermore, if e is
anoninteger less than —1 and A is GL compatible with itself, the two characterizations
are equivalent.
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Now, we will focus on proving the equivalence of the original definition and the fifth
characterization of Sobolev spaces. In what follows instead of ||.||Wk,q( M,Eg,vE) We just
write |'|w’<r'1( M,E)" Furthermore, note that since k is a nonnegative integer, the choice of the
augmented total trivialization atlas in Definition 30 is immaterial. Our proof follows the
argument presented in [44] and is based on the following five facts:

e Factl: Let u € C*(M, E) be such that suppu C Ug for some 1 < B < N. Then

q 1
T Ve = 1oy 24205 gy

ul

e Fact2: Let u € C*(M, E) be such that suppu C Ug for some 1 < B < N. Then

; 2 H((VE) )]1 Js (Pﬁ Hm (pp(Ug))*

k
q ~
|M|Wk'q(M,E) - Z

s=0a 1<j,e js<n
Proof.
- E
|u|qu (ME) — Z [(VE)? ”IM(M T*M)®IQE)

s=0

g f) ) DD D N (S k) ozt

o~ \ .

s=0a=11<j;,js<n N s B L1(gp(Up))
components w.r.t (Ug, pg, 0p)
O

e Fact3: Let u € C*(M, E) be such that supp u C Ug for some 1 < B < N. Then

r
14l wea () = l; loj ouo 05 lweapg(uy) -

Proof.  Let {¢} be a partition of unity such that s = 1 on supp u (note that since
elements of a partition of unity are nonnegative and their sum is equal to 1, we can
conclude that if « # B then ¢, = 0 on supp u). We have

r
([l wea () Z Z 10k © (att) 0 @y HW‘-"? (pa(Uy))

r r
= Z llog © (¥gu) © @ lwea (g (up)) ; |P550“O¢El||werq(<pﬁ(uﬁ))-

O

e Fact4: Letu € C®°(M,E). Then for any multi-index y and all 1 < < r we have (on
any total trivialization triple (U, ¢, p)):

AT EY S B SN SIS (VEru) o9l

s< a=11<j1,js<n

sum over all components of (VE)*u

Proof.  For any multi-index v = (71, ..., vn) we define seq 7 to be the following list
of numbers:
seqy=1...12---2...n...n.
TR~
71 times 7y times Yn times
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Note that there are exactly |y| = y1 + ...+ 9, numbers in seqy. By Observation 2 in
Section 5.5.4 we have

1 _
((VE)Mu)sequo(P 1237[plouo(p +Z E Cua0*[p" cuo ¢~ ]
a=1 a:|a| <|7]|
Thus

' w0t = (VE)Thu), 097 =Y 3 Cud*p"oucg™],

a=1 aelal<|]

,
(VOu) o0 =Y Y Cadflolouce™],
b=1 pipI<a]

oo

where the coefficients Cy,, Cﬂb, etc. are polynomials in terms of christoffel symbols
and the metric and so they are all bounded on the compact manifold M. Consequently,

r
9o ouog™| = 1 Y (VEyPu)? . opptl.
s<|v] a=11<jy, js<n
\_\/_/

sum over all components of (VE)Su

O

e Fact5: Let f € C®°(M,E) and u € W&1(M, E) where E is another vector bundle over
M. Then

Hf®”||wk,@(M,E®E) = ||”||Wk/q(M,E)/
where the implicit constant may depend on f but it does not depend on u.
Proof.  Let {(Us, ¢, pa) }1<a<n and {(Us, %,Pa)}1<a<z\] be total trivialization at-
lases for E and E, respectively. Let {sxq = p; (es)}._; be the corresponding local
frame for E on Uy and {t,, = f, '(ey)}]_, be the corresponding local frame for E

onU,. LetG:{1,...,r} x{1,...,7} — {1,...,r7} be an arbitrary but fixed bijective
function. Then {(Uy, ¢a, 0x)} is a total trivialization atlas for E ® E where

Pa(Saa @ tap) = €G(ap) (as an element of R'T),

and it is extended by linearity to the E ® E|;;,. Now we have

I
M=
M*
M\l

1f @ ullyka(m ek 165" © (Yuf @ u) o fPa_1||wk,q(%(um))

2
Il
_
S
Il
—_
S
Il
=

[
M=
-
MN!

[ (a0 %71)(]:5 © 90071)(142 © ?ojl)HWkﬂ(%(uu)) ,

=
Il
_
S
I
—_
S
Il
_

where f = ffs,, and u = ult, , on U,. Clearly f% o ;' € C*(¢u(Uy)). Therefore,
N 7 .
If® u”wk,q(M/E@E‘) = Z Z (a0 %( u ° Py )Hwqu(%(ua)) = HMHWW(M,E)'
a=1b=1
O

e PartI: First we prove that HMHW""?(M,E) = |u|Wkr‘7(M,E)'

(1) Case 1: Suppose there exists 1 < f < N such that supp u C Up. We have
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Fact3 !
HuHqu(ME) Z ”pﬂouoqgﬁ ||qu 47/5 U,B = ; Z< ||a’)/ pﬁouoq)ﬁ )HL’? (PB U/S))

Fact42 Z Z 2 2 ||((VE) )]1 Js (PﬁluL‘i((pﬂ (Ug))

1=1 |y[<ks<[y] a=1 1<, mjs<n

=530 DD DN ([(C0 A FRPT ol TS

s=0a=11<jy,...,js<n
Fact 2 q
- |u|Wk'7(M,E)

(2) Case 2: Now let u be an arbitrary element of C*°(M, E). We have

N
||”Hwqu(M,E) =l Z l/’vc””wqu(M,E) <) HI;L’DL”HWW(M,E)

(by what was proved in Case 1)

IA
Mz

|Yattlyya )

=
Il
_

|M|qu M,E) |”‘Wkrﬂ(M,E)'

Mz

=
Il
—

We note that the last inequality holds because
Z 1OV () 7enpyoi)
Eyi—j, |19
= Z(;) | Z < >V]‘/’“ (V2 ]u’|Lﬂ(M,(T*M)®f®E)
1

ac

k i
E
= ZZ V l]u” M,(T*M)®(-)QE)
=0 :

|¢“u|?,vk,q(M E)

les]
c-v-

k
j 2 VE M” T*M)®5®E *| ‘qu ME)
5=0

e Part II: Now we show that |”‘W’W(M,E) = Hu||wk,q(M,E).
(1) Case 1: Suppose there exists 1 < < N such that suppu C Uy.

r
; Z ||((VE) )]1 Js goﬁl”lﬂ((pﬁ U/;))

s,
WX (M,E) 1<jps<n

Observatlon 1in5.5.4 ! !
2 2 | 2 2<Cﬁl)?1---jsa” NG >HM (pp(Up))
a=11<jy,..js<n - |y]<s1=1 |
pgou

r
= 2 ||aﬂ(ulo¢[;l)||{zq(4)ﬁ(uﬁ) Z”u O(P‘Blnwkq((Pﬁ uﬁ
k



Mathematics 2022, 10, 522 99 of 103
(2) Case 2: Now let u be an arbitrary element of C*°(M, E).
N N
|l wra(a ey = | ). Yattlyra ey < Y | a1t | yia )

a=1 a=1

Casel N act3

= ) 1atellwha an ) e Z Y llek o )oga HW’”’ (¢a (Ua))
a=1 a=1[=1

= ||”HW’©!7(M,E)'

10. Some Results on Differential Operators

Let M" be a compact smooth manifold. Let E and E be two vector bundles over M of
ranks r and 7, respectively. A linear operator P : C*(M, E) — I'(M, E) is called local if

Vue C®(M,E) supp Pu C supp u.

If P is a local operator, then it is possible to have a well-defined notion of restriction of P to
opensets U C M, thatis, if P: C*°(M,E) — I'(M, E)islocaland U C M is open, then we
can define a map

P‘u : C°°(U, Eu) — F(U, Eu)

with the property that
Vue C®(ME)  (Pu)lu=Plu(ulu).

Indeed, suppose u, i € C*(M, E) agree on U, then as a result of P being local we have
supp (Pu — Pii) C supp (u — 1) C M\ U.

Therefore, if u|y = ii|y, then (Pu)|y = (Pi)|y. Thus, if v € C®°(U,Ey) and x € U,
we can define (P|7)(v)(x) as follows: choose any u € C®(M,E) such that u = v on a
neighborhood of x and then let (P|i;)(v)(x) = (Pu)(x).

Recall that for any nonempty set V, Func(V,R!) denotes the vector space of all
functions from V to R!. By the local representation of P with respect to the total triv-

ialization triples (U, ¢,p) of E and (U, ¢,p) of E we mean the linear transformation
Q:C*(p(U),R") — Func(p(U),R") defined by

Q(f) =poP(p " ofog)og™
Note that p~! o f o ¢ is a section of E; — U. Furthermore, note that for all u € C*(M, E)
po(P(ulu)) o™ = Qlpo (ulu)o ™). ©)

Let us denote the components of f € C®(¢(U),R") by (f',..., 7). Then we can write
Q(f1,~ L fN) = (h',..., W) where forall1 < k < 7

is linear
)Q = TKO

W =moQ(fY..., f Q(f4,0,...,0) + ...+ M0 Q(0,...,0,f").
So, if foreach1 < k <7and 1 <i < rwe define Qy,; : C®(¢(U),R) — Func(¢(U),R) by

Qki(g) = m 0 Q(0,...,0, ¢ ,0,...,0),
—~—

then we have

QU v ) = (X QulF)re, Y QulF).
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In particular, note that the sth component of g o Puo ¢!, thatis ¢° o Puo ¢!, is equal to
the sth component of Q(p' cuo @1, ,p" ouo ¢~!) (see Equation (9)) which is equal to

Y Qi(p'ouog™t).
i=1

Theorem 101. Let M" be a compact smooth manifold. Let P : C*(M,E) — T(M,E) be a

local operator. Let A = {(U,X,qomp“,%)}KKN and A = {(Ug, @a, Par Yu) 1<a<nN be two
augmented total trivialization atlases for E and E, respectively. Suppose the atlas {(Uy, ¢a) }1<a<N
is GL compatible with itself. For each 1 < a < N, let Q* denote the local representation of P
with respect to the total trivialization triples (Uy, @, po) and (Uy, @a, On) of E and E, respectively.
Supposee,é € R,1 < g, < oo, and foreachl <a < N,1<i<#andl1 <j<r,

2 (C2(gu(Ua)), N-lleq) = Wik (@a(Un))

is well-defined and continuous and does not increase support. Then

e P(C®(M,E)) C Wo(M,E;A),

o P : (C°(ME),|lleg) = W (M,E;A) is continuous and so it can be extended to a
continuous linear map P : W1 (M, E; A) — W% (M, E; A).

Proof. First note that
N 7
1Pl wea(m ga) = Z Z o ($a(Pu) © 9 et (gu(un) -
a=1i=1

N r
el wea(aen) = 3 Y ||Prx (Yart) © @y ||w~7 (pa(U)) -
a=1j=1

It is enough to show thatforall1 <a < N,1 <i <7

N r
18 © ($u (P11)) © 9 Ml we g (1)) Z ZHPg (1) © 95 lwen (gp(uy))

We have

19 © (a(Pu)) 0 ¢! ||wm'((pa<ua>> = [1(¢u 0 9" - (B 0 (Pu) © 9 ) llwes (g (1))
N

< Z (a0 @i ") Z ¥pu) © 9 ) lwea (gu ()

(see the paragraph above Theorem 101)

< Z ZH lptxoq)tx ’ 1]( (l/J/gu)Oq),x )HWB’?((pa(LLx))

N r . 1
= 52 Yo (a0 @) - Q5iok © (Gwpn) 0 9 ) lwei (g () -

where § € C°(U,) is a fixed function such that { = 1 on supp ¢,. Using the assumption
that Q‘l?;- (CE(@a(Ua)) N-Nleq) — Weq(q)a(u,x)) is continuous we get

loc

o (a(Pu)) © 95 llwed (g (1)) Z Z ok © (E9pu) © o llwe (g (uie)) -

Note that p{; o (Gpgu) o gt = (Epgo ') (p{,( ou o @y ') has compact support in @, (U, N
Uﬁ). So, it follows from Corollary 6 that
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ok o (Cpu) © 9 lwea (g () = Nl © (Epe) © @i llwen gy (uantiy) -
Therefore,
195 © (¥a(P1)) © 2 e (gu (1))

= 2 2 ok o (&pput) o @y Hlyea (@a(UaNUp))

= Z Z ok © (Cppu) o fPﬁ O PpO Py ||weq (¢a (UxUp))

Theorem 80

N r
Z Z o (Cypu) o pg ||weq((pﬁ(umuﬁ))

So, it is enough to prove that ||p{x o (§ppu) o ‘PngWBr‘i((pf;(umuﬁ)) can be bounded by

ZﬁN:1 Z]r.zl ||p;3 o (ppu) o q)lgl ||We,q(q)‘8(uﬁ)). Since this can be done in the exact same way
as the proof of Theorem 88, we do not repeat the argument here.

Here we will discuss one simple application of the above theorem. Let (M", g) be
a compact Riemannian manifold with ¢ € W57 (M, TZM), sp > n,and s > 1. Consider
d: C®(M) — C®(T*M). The local representations are all assumed to be with respect to
charts in a super nice total trivialization atlas that is GL compatible with itself. The local
representation of d is Q : C*(¢(U)) — C®(¢(U),R") which is defined by

Qf)(a) = pod(p~ o fog) o9 (a)
=50 (2 o1y @)
- af ).

axl‘”" “oxm !

Here we used p = Id and the fact that if g : M — R is smooth, then

d(gogp! ;
(d)(p) = Q82|

Clearly, each component of Q is a continuous operator from (C(@(U)), |.|leq) to
Weli(p(U)) — W, _ 1’q( (U)) (see Theorem 82; note that ¢(U) = R"). Hence d can

loc
be viewed as a continuous operator from W4 (M) to We=14(T*M).

Several other interesting applications of Theorem 101 can be found in [16].

11. Conclusions

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential operators
in nonsmooth setting. In this manuscript, we focused on establishing certain fundamental
properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding
the behavior of elliptic differential operators on compact manifolds. In particular, we built
a general framework for developing multiplication theorems, embedding results, etc. for
Sobolev-Slobodeckij spaces on compact manifolds. We paid special attention to spaces with
noninteger smoothness order and to general sections of vector bundles. We established in
particular that, aslongas1 < g < cocande >0ore € Z,

e  Various common standard characterizations of W% (as discussed in Section 9) are
equivalent;
®  The local charts definition of W1 is independent of the chosen atlas;
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*  Nice properties of W% for smooth domains in R" (such as embedding properties and
multiplication properties) will carry over to W% of sections of vector bundles.

Furthermore, we noticed that the local representations of elements of W*1 (for functions on
M or, more generally, sections of vector bundles) will not necessarily be in the corresponding
Euclidean Sobolev-Slobodeckij space; they should be viewed as elements of locally Sobolev-
Slobodeckij spaces on the Euclidean space (we have devoted a separate manuscript [17] to
the study of the properties of locally Sobolev-Slobodeckij spaces on the Euclidean space).
In the same spirit, in Section 10 we observed that locally Sobolev-Slobodeckij spaces can
be considered as the appropriate target spaces in the study of the local representations of
differential operators between Sobolev—Slobodeckij spaces of sections of vector bundles.
For the case where ¢ < —1 is noninteger, we were not able to prove the validity of these
properties in a general setting; however, by introducing notions such as “geometrically
Lipschitz atlases”, we found sufficient conditions that guarantee the validity of similar
results as those we have for the case where e € Z.
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