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The study of certain differential operators between Sobolev spaces of sections of vector bundles on compact manifolds equipped
with rough metric is closely related to the study of locally Sobolev functions on domains in the Euclidean space. In this paper, we
present a coherent rigorous study of some of the properties of locally Sobolev-Slobodeckij functions that are especially useful in
the study of differential operators between sections of vector bundles on compact manifolds with rough metric. The results of this
type in published literature generally can be found only for integer order Sobolev spacesWm,p or Bessel potential spaces Hs. Here,
we have presented the relevant results and their detailed proofs for Sobolev-Slobodeckij spacesWs,p where s does not need to be an
integer. We also develop a number of results needed in the study of differential operators on manifolds that do not appear to be in
the literature.

1. Introduction

It is well-known that Sobolev spaces play a key role in the
study of elliptic partial differential equations (PDEs) on
domains in ℝn. There are many resources for properties of
integer order Sobolev spaces of functions and their applica-
tions in PDEs (see, e.g., [1–3]). Also, there are variety of
resources for properties of real order Sobolev spaces of func-
tions and their applications (see, e.g., classical references such
as [4–8] or more recent works such as [9–13]). Likewise, the
study of elliptic PDEs onmanifolds naturally leads to the study
of Sobolev spaces of functions and more generally Sobolev
spaces of sections of vector bundles on manifolds. As it turns
out, the study of certain differential operators between Sobolev
spaces of sections of vector bundles on manifolds equipped
with rough metric and the study of low regularity geometry
on Riemannian and semi-Riemannian manifolds are closely
related to the study of spaces of locally Sobolev functions on
domains in the Euclidean space (see, e.g., [14–16]).

In this paper, we focus on certain properties of spaces of
locally Sobolev functions that are particularly useful in the
study of differential operators on manifolds. Our work can

be viewed as a continuation of the excellent work of Antonic
and Burazin [17]; their work is mainly concerned with the
properties of spaces of locally Sobolev functions with integer
smoothness degree. In particular, they study the following
fundamental questions for locally Sobolev spaces with inte-
ger smoothness degree:

(i) Topology and metrizability

(ii) Density of smooth functions

(iii) Reflexivity and the nature of the dual

(iv) Continuity of differentiation between certain spaces
of locally Sobolev functions

Our main goal here is to provide a self-contained manu-
script in which the known results are collected and stated in
the general setting of Sobolev-Slobodeckij spaces and then
develop certain other results that are useful in the study of
differential operators on manifolds. In particular, we will
discuss the following topics:

(i) General embedding results
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(ii) Pointwise multiplication

(iii) Invariance under composition

The results of this type and other related results have been
used in the literature—particularly in the study of Einstein con-
straint equations on manifolds equipped with rough metric—-
without complete proof. This paper should be viewed as a
part of our efforts to fill some of the gaps. Interested readers
can find other results in this direction in [13, 15, 16, 18]. Our
hope is that the detailed presentation of this manuscript, along
with these other four manuscripts, will help in better under-
standing the structure of the proofs and the properties of
Sobolev-Slobodeckij spaces and locally Sobolev functions.

2. Notation and Conventions

Throughout this paper, ℝ denotes the set of real numbers,ℕ
denotes the set of positive integers, andℕ0 denotes the set of
nonnegative integers. For any nonnegative real number s,
the integer part of s is denoted by bsc. The letter n is a pos-
itive integer and stands for the dimension of the space. For
all k ∈ℕ, GLðk,ℝÞ is the set of all k × k invertible matrices
with real entries.

Ω is a nonempty open set in ℝn. The collection of all com-
pact subsets of Ω will be denoted by KðΩÞ. If FðΩÞ is any
function space on Ω and K ∈KðΩÞ, then FKðΩÞ denotes the
collection of elements inFðΩÞwhose support is insideK. Also,

Fcomp Ωð Þ = ∪
K∈K Ωð Þ

FK Ωð Þ: ð1Þ

If Ω′ ⊆Ω and f : Ω′ ⟶ℝ, we denote the extension by
zero of f to the entire Ω by ext0

Ω′ ,Ω f : Ω⟶ℝ, that is,

ext0
Ω′ ,Ω f xð Þ = f xð Þ, if x ∈Ω′,

0, otherwise:

(
ð2Þ

Lipschitz domain inℝn refers to a nonempty bounded open
set in ℝn with Lipschitz continuous boundary. We say that a
nonempty open set Ω ⊆ℝn has the interior Lipschitz property
provided that for each compact set K ∈KðΩÞ there exists a
bounded open setΩ′ ⊆Ω with Lipschitz continuous boundary
such that K ⊆Ω′.

Each element of ℕn
0 is called a multi-index. For a multi-

index α = ðα1,⋯,αnÞ ∈ℕn
0 , we let jαj≔ α1 +⋯ + αn. Also, for

sufficiently smooth functions u : Ω⟶ℝ (or for any distribu-
tion u), we define the αth order partial derivative of u as follows:

∂αu≔
∂ αj ju

∂xα11 ⋯ ∂xαnn
: ð3Þ

We use the notation A≼B to mean A ≤ cB, where c is a pos-
itive constant that does not depend on the nonfixed parameters
appearing in A and B. We write A ≃ B if A≼B and B≼A.

If X and Y are two topological spaces, we use the nota-
tion X↪Y to mean X ⊆ Y , and the inclusion map is
continuous.

3. Background Material

In this section, we collect some useful tools and facts we will
need from topology and analysis. Statements without proof
in this section are mainly taken from Rudin’s functional
analysis [19], Grubb’s distributions and operators [20],
excellent presentation of Reus [21], Treves’ topological vec-
tor spaces [22] and the reference [16], or are direct conse-
quences of statements in the aforementioned references.

3.1. Topological Vector Spaces

Definition 1. A topological vector space is a vector space X
together with a topology τ with the following properties:

(i) For all x ∈ X, the singleton fxg is a closed set

(ii) The maps

x, yð Þ↦ x + y  fromX × X intoXð Þ,
λ, xð Þ↦ λx  fromℝ × X intoXð Þ,

ð4Þ

are continuous where X × X and ℝ × X are equipped
with the product topology

Definition 2. Suppose ðX, τÞ is a topological vector space and
Y ⊆ X.

(i) Y is said to be convex if for all y1, y2 ∈ Y and t ∈ ð0
, 1Þ it is true that ty1 + ð1 − tÞy2 ∈ Y

(ii) We say Y is bounded if for any neighborhood U of
the origin (i.e., any open set containing the origin),
there exits t > 0 such that Y ⊆ tU

Definition 3. Let ðX, τÞ be a topological vector space. X is
said to be metrizable if there exists a metric d : X × X⟶
½0,∞Þ whose induced topology is τ. In this case, we say that
the metric d is compatible with the topology τ.

Theorem 4 ([19, 20]). Let ðX, τÞ be a topological vector space.
The following are equivalent:

(i) X is metrizable

(ii) There exists a translation invariant metric d on X
whose collection of open sets is the same as τ. Trans-
lation invariant means

∀x, y, a ∈ X d x + a, y + að Þ = d x, yð Þ ð5Þ

(iii) X has a countable local base at the origin

(Recall that a subcollection B of τ is said to be a local
base at the origin if for any open set U containing the origin
there is B ∈B such that 0 ∈ B ⊆U .)
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Remark 5. It can be shown that if d1 and d2 are two transla-
tion invariant metrics that induce the same topology on X,
then the Cauchy sequences of ðX, d1Þ will be exactly the
same as the Cauchy sequences of ðX, d2Þ.

Definition 6. Let ðX, τÞ be a topological vector space. We say
ðX, τÞ is locally convex if it has a convex local base at the
origin.

Definition 7. Let ðX, τÞ be a metrizable locally convex topo-
logical vector space. Let d be any translation invariant metric
on X that is compatible with τ. We say that X is complete if
and only if the metric space ðX, dÞ is a complete metric
space. A complete metrizable locally convex topological vec-
tor space is called a Frechet space.

Definition 8. A seminorm on a vector space X is a real-valued
function p : X ⟶ℝ such that

∀x, y ∈ X  p x + yð Þ ≤ p xð Þ + p yð Þ,
∀x ∈ X ∀α ∈ℝ p αxð Þ = αj jp xð Þ:

ð6Þ

If P is a family of seminorms on X, then we say P is sep-
arating provided that for all x ≠ 0, there exists at least one
p ∈P such that pðxÞ ≠ 0 (that is, if pðxÞ = 0 for all p ∈P ,
then x = 0). It easily follows from the definition that any
seminorm is a nonnegative function.

Theorem 9. Suppose that ðX, k:kXÞ is a normed space. Let
p : X ⟶ℝ be a seminorm on X. If p is continuous, then
there exists a constant C > 0 such that

∀x ∈ X p xð Þ ≤ C xk kX : ð7Þ

Proof. p is continuous at 0 so there exists δ > 0 such that if
kxkX ≤ δ, then jpðxÞj < 1. If x ≠ 0, then δðx/kxkXÞ has norm
equal to δ, and so for all x ≠ 0, pðδðx/kxkXÞÞ < 1. Hence, for
all x ≠ 0, we have

p xð Þ ≤ 1
δ

xk kX : ð8Þ

Since pð0Þ = 0, clearly the above inequality also holds for
x = 0.

Definition 10. Suppose P is a separating family of semi-
norms on a vector space X. The natural topology induced
by P is the smallest topology on X that is translation invari-
ant and with respect to which every p ∈P is a continuous
function from X to ℝ. (Recall that translation invariant
means if U ⊆ X is open, then U + x is open for every x ∈ X.)

Remark 11. Suppose that P and P ′ are two separating fam-
ily of seminorms on a vector space X. Let τ and τ′ be the
corresponding natural topologies on X. It follows immedi-
ately from the definition that if (1) p : ðX, τ′Þ⟶ℝ is con-
tinuous for each p ∈P and (2) p′ : ðX, τÞ⟶ℝ is
continuous for each p′ ∈P ′, then τ = τ′.

The following theorem can be viewed as an extension of
Theorem 9.

Theorem 12 ([21], page 157). Let X be a vector space and
suppose P is a separating family of seminorms on X. Equip
X with the corresponding natural topology. Then, a seminorm
q : X⟶ℝ is continuous if and only if there exist C > 0 and
p1,⋯, pm ∈P such that for all x ∈ X

q xð Þ ≤ C p1 xð Þ+⋯+pm xð Þð Þ: ð9Þ

Theorem 13 ([19, 20]). Suppose P is a separating family of
seminorms on a vector space X and τ is the corresponding
natural topology on X. Then, ðX, τÞ is a locally convex topo-
logical vector space. Moreover, if P = fpkgk∈ℕ is countable,
then the locally convex topological vector space ðX, τÞ is
metrizable, and the following translation invariant metric
on X is compatible with τ:

d x, yð Þ = 〠
∞

k=1

1

2k
pk x − yð Þ

1 + pk x − yð Þ : ð10Þ

Corollary 14. Suppose P is a countable separating family of
seminorms on a vector space X and τ is the corresponding
natural topology on X. Then, ðX, τÞ is a Frechet space if
and only if it is complete.

Theorem 15 ([23], Sections 6.4 and 6.5). Let ðX, τÞ be a
locally convex topological vector space. Then, there exists a
separating family of seminorms on X whose corresponding
natural topology is τ.

Theorem 16 ([19], page 28). Suppose P is a separating fam-
ily of seminorms on a vector space X and τ is the correspond-
ing natural topology on X. Then, a set E ⊆ X is bounded if
and only if pðEÞ is a bounded set in ℝ for all p ∈P .

Corollary 17. Suppose P is a separating family of seminorms
on a vector space X and τ is the corresponding natural topol-
ogy on X. It follows from Theorem 12 and Theorem 16 that if
E ⊆ X is bounded, then for any continuous seminorm q : ðX,
τÞ⟶ℝ, qðEÞ is a bounded set in ℝ.

Theorem 18 ([20], page 436, [23], Section 6.6). Let ðX, τÞ be
a topological vector space. Suppose Q is a separating family of
seminorms on a vector space Y and τ′ is the corresponding
natural topology on Y . Then, a linear map T : ðX, τÞ⟶
ðY , τ′Þ is continuous if and only if for each q ∈Q, q ∘ T is
continuous on X.

Theorem 19 ([20]). Let X be a Frechet space and let Y be a
topological vector space. When T is a linear map of X into
Y , the following two properties are equivalent:

(1) T is continuous

(2) xn ⟶ 0 in X ⇒ Txn ⟶ 0 in Y
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Theorem 20 ([19, 20]). Let X and Y be two vector spaces and
suppose P and Q are two separating families of seminorms
on X and Y , respectively. Equip X and Y with the correspond-
ing natural topologies. Then,

(1) A sequence xn converges to x in X if and only if for all
p ∈P , pðxn − xÞ⟶ 0

(2) A linear operator T : X⟶ Y is continuous if and
only if ∀q ∈Q∃c > 0, k ∈ℕ, p1,⋯, pk ∈P  such that

 ∀x ∈ Xjq ∘ TðxÞj ≤ c max
1≤i≤k

piðxÞ

(3) A linear operator T : X ⟶ℝ is continuous if and
only if ∃c > 0, k ∈ℕ, p1,⋯, pk ∈P  such that ∀x
∈ X jTðxÞj ≤ c max

1≤i≤k
piðxÞ

Definition 21. Let ðX, τÞ be a locally convex topological vec-
tor space.

(i) The weak topology on X is the natural topology
induced by the separating family of seminorms
fpFgF∈X∗ where

∀F ∈ X∗ pF : X⟶ℝ, pF xð Þ≔ F xð Þj j: ð11Þ

It can be shown that this topology is the smallest
(weakest) topology with respect to which all the
linear maps in ½ðX, τÞ�∗ are continuous. A sequence
fxmg converges to x in X with respect to the weak
topology if and only if FðxmÞ⟶ FðxÞ in ℝ for all
F ∈ X∗. In this case, we may write xm ⇀ x. We
denote the weak topology on X by σðX, X∗Þ. It can
be shown that ½ðX, τÞ�∗ is the same set as
½ðX, σðX, X∗ÞÞ�∗

(ii) The weak ∗ topology on X∗ is the natural topology
induced by the separating family of seminorms
fpxgx∈X where

∀x ∈ X px : X
∗ ⟶ℝ, px fð Þ≔ f xð Þj j: ð12Þ

It can be shown that this topology is the weakest
topology with respect to which all the linear maps
f f ↦ f ðxÞgx∈X (from X∗ to ℝ) are continuous. A
sequence f f mg converges to f in X∗ with respect
to the weak∗ topology if and only if f mðxÞ⟶ f ðxÞ
in ℝ for all x ∈ X. We denote the weak∗ topology on
X∗ by σðX∗, XÞ

(iii) The strong topology on X∗ is the natural topology
induced by the separating family of seminorms
fpBgB⊆Xbounded where for any bounded subset B of
X,

pB : X∗ ⟶ℝ  pB fð Þ≔ sup f xð Þj j: x ∈ Bf g:
ð13Þ

(It can be shown that for any bounded subset B of X
and f ∈ X∗, f ðBÞ is a bounded subset of ℝ; see
Theorem 16 and Theorem 28)

Remark 22.

(1) If X is a normed space, then the topology induced by
the norm

∀f ∈ X∗  fk kop = sup
∥x∥X=1

f xð Þj j ð14Þ

on X∗ is the same as the strong topology on X∗ ([22],
page 198)

(2) In this manuscript, unless otherwise stated, we con-
sider the topological dual of a locally convex topo-
logical vector space with the strong topology. Of
course, it is worth mentioning that for many of the
spaces that we will consider (including X =EðΩÞ
or X =DðΩÞ where Ω is an open subset of ℝn), a
sequence in X∗ converges with respect to the weak∗

topology if and only if it converges with respect to
the strong topology (for more details on this, see
the definition and properties of Montel spaces in
Section 34.4, page 356 of [22])

Theorem 23. Let ðX, τÞ be a locally convex topological vector
space. Then, the evaluation map

J : X, τð Þ⟶ X∗∗ ≔ X∗, strong topologyð Þ½ �∗, J xð Þ Fð Þ≔ F xð Þ,
ð15Þ

is a well-defined injective linear map. (X∗∗ is called the bidual
of X).

Definition 24. Let ðX, τÞ be a locally convex topological vec-
tor space. Let τ′ denote the strong topology on X∗∗ as the
dual of ðX∗, strong topologyÞ.

(i) If the evaluation map J : ðX, τÞ⟶ ðX∗∗, τ′Þ is
bijective, then we say that ðX, τÞ is a semireflexive
space

(ii) If the evaluation map J : ðX, τÞ⟶ ðX∗∗, τ′Þ is a
linear topological isomorphism, then we say that
ðX, τÞ is a reflexive space

Theorem 25 ([24], pages 16 and 17).

(i) Strong dual of a reflexive topological vector space is
reflexive

(ii) Every semireflexive space whose topology is defined
by the inductive limit of a sequence of Banach spaces
is reflexive

(iii) Every semireflexive Frechet space is reflexive
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Theorem 26. Let ðX, τXÞ and ðZ, τZÞ be two locally convex
topological vector spaces. For all x ∈ X, let lx : X∗ ⟶ℝ be
the linear map defined by lxð f Þ = f ðxÞ. Then,

(1) a linear map T : ðZ, τZÞ⟶ ðX, σðX, X∗ÞÞ is contin-
uous if and only if for all F ∈ ½ðX, τXÞ�∗, the linear
map F ∘ T : ðZ, τZÞ⟶ℝ is continuous

(2) a linear map T : ðZ, τZÞ⟶ ðX∗, σðX∗, XÞÞ is
continuous if and only if for all x ∈ X, the linear
map lx ∘ T : ðZ, τZÞ⟶ℝ is continuous

Theorem 27 ([21], page 163, [20], page 46). Let X and Y be
locally convex topological vector spaces and suppose T : X
⟶ Y is a continuous linear map. Either equip both X∗

and Y∗ with the strong topology or equip both with the
weak∗ topology. Then,

(1) the map

T∗ : Y∗ ⟶ X∗  T∗y, xh iX∗×X = y, Txh iY∗×Y ð16Þ

is well-defined, linear, and continuous. (T∗ is called
the adjoint of T)

(2) If TðXÞ is dense in Y , then T∗ : Y∗ ⟶ X∗ is injective

Theorem 28 ([19], page 70). Let ðX, τÞ be a locally convex
topological vector space. Then, a set E ⊆ X is bounded with
respect to τ if and only if it is bounded with respect to
σðX, X∗Þ.

Corollary 29. If ðX, τÞ is a locally convex topological vector
space and xn ⇀ x (i.e., xn converges to x with respect to σðX
, X∗Þ), then fxng is bounded with respect to both τ and σðX
, X∗Þ.

Theorem 30. Let ðX, τXÞ and ðY , τYÞ be two locally convex
topological vector spaces. If T : ðX, τXÞ⟶ ðY∗, σðY∗, YÞÞ
is continuous, then T : ðX, σðX, X∗ÞÞ⟶ ðY∗, σðY∗, YÞÞ is
continuous. In particular, if un ⇀ u (i.e., un converges to u
with respect to σðX, X∗Þ), then TðunÞ⟶ TðuÞ in ðY∗, σð
Y∗, YÞÞ.

Proof. For all y ∈ Y , let ly : Y∗ ⟶ℝ be the map lyðFÞ = FðyÞ.
By Theorem 26, T : ðX, σðX, X∗ÞÞ⟶ ðY∗, σðY∗, YÞÞ is con-
tinuous if ly ∘ T : ðX, σðX, X∗ÞÞ⟶ℝ is continuous for all y
∈ Y . Let y ∈ Y .

(1) By definition of the weak∗ topology on Y∗, we know
that the linear map ly : Y

∗ ⟶ℝ is continuous

(2) By assumption T : ðX, τXÞ⟶ ðY∗, σðY∗, YÞÞ is a
continuous linear map

Therefore, ly ∘ T belongs to ½ðX, τXÞ�∗. Since σðX, X∗Þ is
the weakest topology on X that makes all elements of

½ðX, τXÞ�∗ continuous, we can conclude that ly ∘ T : ðX, σðX,
X∗ÞÞ⟶ℝ is continuous.

Theorem 31 ([25], page 13). Let ðX, τÞ be a Frechet space.
Then, X is reflexive if and only if every bounded set E in X
is relatively weakly compact (i.e., the closure of E with respect
to σðX, X∗Þ is compact with respect to σðX, X∗Þ).

Theorem 32 ([26], page 167). Let ðX, τÞ be a separable
Frechet space. If E ⊆ X is relatively weakly compact, then
every infinite sequence in E has a subsequence that converges
in ðX, σðX, X∗ÞÞ.

The next theorem is an immediate consequence of the
previous theorems.

Theorem 33. Suppose that ðX, τÞ is a separable reflexive Fre-
chet space. Then, every bounded sequence in ðX, τÞ has a
weakly convergent subsequence, that is, a subsequence that
converges with respect to σðX, X∗Þ.

Theorem 34 ([27], page 61). Let X and Y be two Banach
spaces. Let T : X⟶ Y be a linear map. Then, T is contin-
uous if and only if it is weak-weak continuous; that is, T
: ðX, k:kXÞ⟶ ðY , k:kYÞ is continuous if and only if T : ð
X, σðX, X∗ÞÞ⟶ ðY , σðY , Y∗ÞÞ is continuous.

Theorem 35. Let X be a Banach space and Y be a closed sub-
space of X with the induced norm. Suppose that ym is a
sequence in Y and y ∈ Y . If ym ⟶ y in ðX, σðX, X∗ÞÞ, then
ym ⟶ y in ðY , σðY , Y∗ÞÞ.

Proof. This is a direct consequence of the fact that the fol-
lowing two topologies on the space Y are the same (see
[27], page 70):

(1) The topology induced by σðX, X∗Þ
(2) The topology σðY , Y∗Þ

Definition 36. Let X be a vector space and let fXαgα∈I be a
family of vector subspaces of X with the property that

(i) for each α ∈ I, Xα is equipped with a topology that
makes it a locally convex topological vector space,
and

(ii) ∪α∈IXα = X

The inductive limit topology on X with respect to the
family fXαgα∈I is defined to be the largest topology with
respect to which

(1) X is a locally convex topological vector space, and

(2) all the inclusions Xα ⊆ X are continuous
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Theorem 37 ([21]). Let X be a vector space equipped with the
inductive limit topology with respect to fXαg as described
above. If Y is a locally convex vector space, then a linear
map T : X⟶ Y is continuous if and only if TjXα

: Xα ⟶

Y is continuous for all α ∈ I.

Definition 38. Let X be a vector space and let fXjg j∈ℕ0
be an

increasing chain of subspaces of X:

X0 ⊊ X1 ⊊ X2 ⊊⋯: ð17Þ

Suppose that

(i) each Xj is equipped with a locally convex topology τj

(ii) for each j, the inclusion ðXj, τjÞ↪ðXj+1, τj+1Þ is a lin-
ear topological embedding with closed image

Then, the inductive limit topology on X with respect to
the family fXjg j∈ℕ0

is called a strict inductive limit topology.

Theorem 39 ([21]). Suppose that X is equipped with the strict
inductive limit topology with respect to the chain fXjgj∈ℕ0

.

Then, a subset E of X is bounded if and only if there exists
m ∈ℕ0 such that B is bounded in Xm.

3.2. Function Spaces and Distributions

Definition 40. Let Ω be a nonempty open set in ℝn and m
∈ℕ0.

C Ωð Þ = f : Ω⟶ℝ : f is continuousf g,
Cm Ωð Þ = f : Ω⟶ℝ : ∀ αj j ≤m ∂α f ∈ C Ωð Þf g C0 Ωð Þ = C Ωð Þ� �

,

BC Ωð Þ = f : Ω⟶ℝ : f is continuous and bounded onΩf g,
BCm Ωð Þ = f ∈ Cm Ωð Þ: ∀ αj j ≤m ∂α f is bounded onΩf g,

C∞ Ωð Þ = ∩
m∈ℕ0

Cm Ωð Þ, BC∞ Ωð Þ = ∩
m∈ℕ0

BCm Ωð Þ,

C∞
c Ωð Þ = f ∈ C∞ Ωð Þ: support of f is an element of K Ωð Þf g:

ð18Þ

Let 0 < λ ≤ 1. A function F : Ω ⊆ℝn ⟶ℝk is called λ
-Holder continuous if there exists a constant L such that

F xð Þ − F yð Þj j ≤ L x − yj jλ ∀x, y ∈Ω: ð19Þ

Clearly, a λ-Holder continuous function on Ω is uni-
formly continuous on Ω. 1-Holder continuous functions
are also called Lipschitz continuous functions or simply
Lipschitz functions. We define

BCm,λ Ωð Þ = f : Ω⟶ℝ : ∀ αj j ≤m ∂α f is λf
−Holder continuous and boundedg

= f ∈ BCm Ωð Þ: ∀ αj j ≤m ∂α f is λf
−Holder continuousg,

BC∞,λ Ωð Þ≔ ∩
m∈ℕ0

BCm,λ Ωð Þ: ð20Þ

Theorem 41 [20]. Let Ω be a nonempty open set in ℝn and
let K ∈KðΩÞ. There is a function ψ ∈ C∞

c ðΩÞ taking values
in ½0, 1� such that ψ = 1 on a neighborhood containing K .

Theorem 42 (exhaustion by compact sets) [20]. Let Ω be a
nonempty open subset of ℝn. There exists a sequence of com-
pact subsets ðKjÞj∈ℕ such that ∪j∈ℕK̊j =Ω and

K1 ⊆ K˚2 ⊆ K2 ⊆⋯⊆ K˚ j ⊆ Kj ⊆⋯: ð21Þ

Moreover, as a direct consequence, if K is any compact
subset of the open set Ω, then there exists an open set V such
that K ⊆ V ⊆ �V ⊆Ω.

Theorem 43 [20]. Let Ω be a nonempty open subset of ℝn.
Let fKjgj∈ℕ be an exhaustion of Ω by compact sets. Define

V0 = K˚4,∀j ∈ℕ V j = K˚ j+4 \ Kj: ð22Þ

Then,

(1) each V j is an open bounded set and Ω = ∪jV j

(2) the cover fVjg j∈ℕ0
is locally finite in Ω; that is, each

compact subset of Ω has nonempty intersection with
only a finite number of the V j’s

(3) there is a family of functions ψj ∈ C
∞
c ðΩÞ taking

values in ½0, 1� such that supp ψj ⊆V j and

〠
j∈ℕ0

ψj xð Þ = 1 for all x ∈Ω ð23Þ

Let Ω be a nonempty open set in ℝn. For all φ ∈ C∞ðΩÞ, j
∈ℕ, and K ∈KðΩÞ, we define

φk kj,K ≔ sup ∂αφ xð Þj j: αj j ≤ j, x ∈ Kf g: ð24Þ

For all j ∈ℕ and K ∈KðΩÞ, k:kj,K is a seminorm on
C∞ðΩÞ. We define EðΩÞ to be C∞ðΩÞ equipped with the
natural topology induced by the separating family of semi-
norms fk:kj,Kgj∈ℕ,K∈KðΩÞ. It can be shown that EðΩÞ is a

Frechet space.
For all K ∈KðΩÞ, we define EKðΩÞ to be C∞

K ðΩÞ
equipped with the subspace topology. Since C∞

K ðΩÞ is a
closed subset of the Frechet space EðΩÞ, EKðΩÞ is also a
Frechet space.

We define DðΩÞ = ∪K∈KðΩÞEKðΩÞ equipped with the
inductive limit topology with respect to the family of vector
subspaces fEKðΩÞgK∈KðΩÞ. It can be shown that if fKjgj∈ℕ0

is an exhaustion by compacts sets of Ω, then the inductive
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limit topology on DðΩÞ with respect to the family fEK j
g
j∈ℕ0

is exactly the same as the inductive limit topology with
respect to fEKðΩÞgK∈KðΩÞ.

Remark 44. Suppose Y is a topological space and the map-
ping T : Y ⟶DðΩÞ is such that TðYÞ ⊆EKðΩÞ for some
K ∈KðΩÞ. Since EKðΩÞ↪DðΩÞ, if T : Y ⟶EKðΩÞ is con-
tinuous, then T : Y↪DðΩÞ will be continuous.

Theorem 45 (convergence and continuity for EðΩÞ). Let Ω
be a nonempty open set in ℝn. Let Y be a topological vector
space whose topology is induced by a separating family of
seminorms Q.

(1) A sequence fφmg converges to φ in EðΩÞ if and only
if kφm − φkj,K ⟶ 0 for all j ∈ℕ and K ∈KðΩÞ

(2) Suppose T : EðΩÞ⟶ Y is a linear map. Then, the
following are equivalent:

(i) T is continuous

(ii) For every q ∈Q, there exist j ∈ℕ and K ∈KðΩÞ,
and C > 0 such that

∀φ ∈E Ωð Þ q T φð Þð Þ ≤ C φk kj,K ð25Þ

(iii) If φm ⟶ 0 in EðΩÞ, then TðφmÞ⟶ 0 in Y

(3) In particular, a linear map T : EðΩÞ⟶ℝ is contin-
uous if and only if there exist j ∈ℕ and K ∈KðΩÞ,
and C > 0 such that

∀φ ∈E Ωð Þ  T φð Þj j ≤ C φk kj,K ð26Þ

(4) A linear map T : Y ⟶EðΩÞ is continuous if and
only if

∀j ∈ℕ,∀K ∈K Ωð Þ∃C > 0, k ∈ℕ, q1,⋯,
qk ∈Q such that ∀y T yð Þk kj,K
≤ C max

1≤i≤k
qi yð Þ

ð27Þ

Theorem 46 (convergence and continuity for EKðΩÞ). Let Ω
be a nonempty open set in ℝn and K ∈KðΩÞ. Let Y be a
topological vector space whose topology is induced by a sepa-
rating family of seminorms Q.

(1) A sequence fφmg converges to φ in EKðΩÞ if and only
if kφm − φkj,K ⟶ 0 for all j ∈ℕ

(2) Suppose T : EKðΩÞ⟶ Y is a linear map. Then, the
following are equivalent:

(i) T is continuous

(ii) For every q ∈Q, there exists j ∈ℕ and C > 0 such
that

∀φ ∈EK Ωð Þ q T φð Þð Þ ≤ C φk kj,K ð28Þ

(iii) If φm ⟶ 0 in EKðΩÞ, then TðφmÞ⟶ 0 in Y

Theorem 47 (convergence and continuity for DðΩÞ). Let Ω
be a nonempty open set in ℝn. Let Y be a topological vector
space whose topology is induced by a separating family of
seminorms Q.

(1) A sequence fφmg converges to φ in DðΩÞ if and only
if there is a K ∈KðΩÞ such that supp φm ⊆ K and
φm ⟶ φ in EKðΩÞ

(2) Suppose T : DðΩÞ⟶ Y is a linear map. Then, the
following are equivalent:

(i) T is continuous

(ii) For all K ∈KðΩÞ, T : EKðΩÞ⟶ Y is
continuous

(iii) For every q ∈Q and K ∈KðΩÞ, there exists j ∈ℕ
and C > 0 such that

∀φ ∈EK Ωð Þ q T φð Þð Þ ≤ C φk kj,K ð29Þ

(iv) If φm ⟶ 0 in DðΩÞ, then TðφmÞ⟶ 0 in Y

(3) In particular, a linear map T : DðΩÞ⟶ℝ is contin-
uous if and only if for every K ∈KðΩÞ, there exists
j ∈ℕ and C > 0 such that

∀φ ∈EK Ωð Þ  T φð Þj j ≤ C φk kj,K ð30Þ

Remark 48. Let Ω be a nonempty open set in ℝn. Here are
two immediate consequences of the previous theorems and
remark:

(1) The identity map

iD,E : D Ωð Þ⟶E Ωð Þ ð31Þ

is continuous (that is, DðΩÞ↪EðΩÞ)
(2) If T : EðΩÞ⟶EðΩÞ is a continuous linear map

such that supp ðTφÞ ⊆ supp φ for all φ ∈EðΩÞ (i.e.,
T is a local continuous linear map), then T restricts
to a continuous linear map from DðΩÞ to DðΩÞ.
Indeed, the assumption supp ðTφÞ ⊆ supp φ implies
that TðDðΩÞÞ ⊆DðΩÞ. Moreover T : DðΩÞ⟶Dð
ΩÞ is continuous if and only if for K ∈KðΩÞ T
: EKðΩÞ⟶DðΩÞ is continuous. Since TðEKðΩÞÞ
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⊆EKðΩÞ, this map is continuous if and only if T
: EKðΩÞ⟶EKðΩÞ is continuous (see Remark 44).
However, since the topology of EKðΩÞ is the induced
topology from EðΩÞ, the continuity of the preceding
map follows from the continuity of T : EðΩÞ⟶E

ðΩÞ

Theorem 49. Let Ω be a nonempty open set in ℝn. Then D
ðΩÞ is separable.

Definition 50. Let Ω be a nonempty open set in ℝn. The
topological dual of DðΩÞ, denoted D′ðΩÞ ðD′ðΩÞ =
½DðΩÞ�∗Þ, is called the space of distributions on Ω. Each
element of D′ðΩÞ is called a distribution on Ω. The action
of a distribution u ∈D′ðΩÞ on a function φ ∈DðΩÞ is
sometimes denoted by hu, φiD′ðΩÞ×DðΩÞ or simply hu, φi.

Remark 51. Every function f ∈ L1locðΩÞ defines a distribution
uf ∈D′ðΩÞ as follows

∀φ ∈D Ωð Þ uf φð Þ≔
ð
Ω

fφdx: ð32Þ

In particular, every function φ ∈EðΩÞ defines a distribu-
tion uφ. It can be shown that the map i : EðΩÞ⟶D′ðΩÞ
which sends φ to uφ is an injective linear continuous map
([21], page 11). Therefore, we can identify EðΩÞ with a sub-
space of D′ðΩÞ; we sometimes refer to the map i as the
“identity map.”

Theorem 52 ([20], page 47). Let Ω be a nonempty open set in
ℝn. Equip D′ðΩÞ with the weak∗ topology. Then, under the
above identification, C∞

c ðΩÞ is dense in D′ðΩÞ.

Theorem 53 ([22], page 302). Let Ω be a nonempty open set
in ℝn. Equip D′ðΩÞ with the strong topology. Then, under the
identification described in Remark 51, C∞

c ðΩÞ is sequentially
dense in D′ðΩÞ.

Remark 54.

(i) Clearly sequential density is a stronger notion than
density. So C∞

c ðΩÞ is dense in ðD′ðΩÞ, strong
topology)

(ii) Recall that, according to Remark 22, a sequence con-
verges in ðD′ðΩÞ, weak∗Þ if and only if it converges
in ðD′ðΩÞ, strong topology). This together with the
fact that weak∗ topology is weaker than the strong
topology implies that convergent sequences in both
topologies converge to the same limit. Therefore, it
follows from Theorem 53 that C∞

c ðΩÞ is sequentially
dense in ðD′ðΩÞ, weak∗Þ. Hence, Theorem 52 can be
viewed as a corollary of Theorem 53

Theorem 55 ([21], page 9). DðΩÞ is reflexive. So
½ðD′ðΩÞ, strong topologyÞ�∗ can be identified with the topo-
logical vector space DðΩÞ.

Definition 56 (restriction of a distribution). Let Ω be an open
subset of ℝn and V be an open subset of Ω. We define the
restriction map resΩ,V : D′ðΩÞ⟶D′ðVÞ as follows:

resΩ,Vu, φ
� �

D′ Vð Þ×D Vð Þ ≔ u, ext0V ,Ωφ
� �

D′ Ωð Þ×D Ωð Þ: ð33Þ

This is well-defined; indeed, resΩ,V : D′ðΩÞ⟶D′ðVÞ is
a continuous linear map as it is the adjoint of the continuous
map ext0V ,Ω : DðVÞ⟶DðΩÞ. Given u ∈D′ðΩÞ, we some-
times write ujV instead of resΩ,Vu.

Definition 57 (support of a distribution). Let Ω be a non-
empty open set in ℝn. Let u ∈D′ðΩÞ.

(i) We say u is equal to zero on some open subset V of
Ω if ujV = 0

(ii) Let fVigi∈I be the collection of all open subsets of Ω
such that u is equal to zero on Vi. Let V = ∪i∈IVi.
The support of u is defined as follows:

supp u≔Ω \ V ð34Þ

Note that supp u is closed in Ω but it is not necessarily
closed in ℝn.

Theorem 58 ([21]). Let Ω be a nonempty open set in ℝn and
let u ∈D′ðΩÞ. If φ ∈DðΩÞ vanishes on a neighborhood con-
taining supp u, then uðφÞ = 0.

Theorem 59 ([21]). Let fuig be a sequence in D′ðΩÞ, u ∈D
ðΩÞ, and K ∈KðΩÞ such that ui ⟶ u in D′ðΩÞ and supp
ui ⊆ K for all i. Then, also supp u ⊆ K .

Theorem 60 ([28], page 38). LetΩ be a nonempty open set in
ℝn. Suppose that fTig is a sequence in D′ðΩÞ with the prop-
erty that for all φ ∈DðΩÞ, limi⟶∞hTi, φiD′ðΩÞ×DðΩÞ exists.

Then, there exists T ∈D′ðΩÞ such that

∀φ ∈D Ωð Þ  T , φh iD′ Ωð Þ×D Ωð Þ = lim
i⟶∞

Ti, φh iD′ Ωð Þ×D Ωð Þ:

ð35Þ

Definition 61 (Sobolev-Slobodeckij spaces). Let Ω be a non-
empty open set in ℝn. Let s ∈ℝ and p ∈ ð1,∞Þ.
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(i) If s = k ∈ℕ0,

Wk,p Ωð Þ = u ∈ Lp Ωð Þ: uk kWk,p Ωð Þ ≔ 〠
νj j≤k

∂νuk kLp Ωð Þ<∞
( )

ð36Þ

(ii) If s = θ ∈ ð0, 1Þ

Wθ,p Ωð Þ = u ∈ Lp Ωð Þ: uj jWθ,p Ωð Þ ≔
ð ð

Ω×Ω

u xð Þ − u yð Þj jp
x − yj jn+θp

dxdy

 !1/p

<∞
( )

ð37Þ

(iii) If s = k + θ, k ∈ℕ0, θ ∈ ð0, 1Þ,

Ws,p Ωð Þ = u ∈Wk,p Ωð Þ: uk kWs,p Ωð Þ ≔ uk kWk,p Ωð Þ + 〠
νj j=k

∂νuj jWθ,p Ωð Þ<∞
( )

ð38Þ

(iv) Ws,p
0 ðΩÞ is defined as the closure of C∞

c ðΩÞ in
Ws,pðΩÞ

(v) If s < 0,

Ws,p Ωð Þ = W−s,p′
0 Ωð Þ

� �∗
 

1
p
+

1
p′

= 1
� 	

ð39Þ

(vi) For all compact sets K ⊂Ω, we define

Ws,p
K Ωð Þ = u ∈Ws,p Ωð Þ: supp u ⊆ Kf g ð40Þ

with kukWs,p
K ðΩÞ ≔ kukWs,pðΩÞ. Note that for s < 0,

Ws,pðΩÞ can be viewed as a subspace of D′ðΩÞ
(see Theorem 68), and the support of u ∈Ws,pðΩÞ
is interpreted as the support of a distribution.

(vii) Ws,p
compðΩÞ≔ ∪K∈KðΩÞW

s,p
K ðΩÞ. Ws,p

compðΩÞ is
equipped with the inductive limit topology with
respect to the family of vector subspaces
fWs,p

K ðΩÞgK∈KðΩÞ. It can be shown that if
fKjgj∈ℕ0

is an exhaustion by compacts sets of Ω,

then the inductive limit topology on Ws,p
compðΩÞ

with respect to the family fWs,p
K j
ðΩÞg

j∈ℕ0
is exactly

the same as the inductive limit topology with
respect to fWs,p

K ðΩÞgK∈KðΩÞ

Theorem 62. Let Ω be a nonempty open set in ℝn, s ≥ 1, and
1 < p <∞. Then, u ∈Ws,pðΩÞ if and only if u ∈ LpðΩÞ, and
for all 1 ≤ i ≤ n, ∂u/∂xi ∈Ws−1,pðΩÞ.

Proof. We consider two cases:

Case 1: s = k ∈ℕ.

u ∈Wk,p Ωð Þ⟺ u ∈ Lp Ωð Þand ∂αu ∈ Lp Ωð Þ ∀1 ≤ αj j ≤ k

⟺u ∈ Lp Ωð Þ and ∂β ∂u
∂xi


 �
∈ Lp Ωð Þ ∀0 ≤ βj j ≤ k − 1, 1 ≤ i ≤ n

⟺u ∈ Lp Ωð Þ and ∂u
∂xi

∈Wk−1,p Ωð Þ ∀1 ≤ i ≤ n

ð41Þ

Case 2: s = k + θ, k ∈ℕ, and 0 < θ < 1.

u ∈Ws,p Ωð Þ⟺ u ∈Wk,p Ωð Þ and ∂νu xð Þ − ∂νu yð Þ
x − yj jn/p+θ

∈ Lp Ω ×Ωð Þ∀ νj j = k

⟺ u ∈ Lp Ωð Þ and ∂u
∂xi

∈Wk−1,p Ωð Þ∀1 ≤ i

≤ n and
∂νu xð Þ − ∂νu yð Þ

x − yj jn/p+θ
∈ Lp Ω ×Ωð Þ∀ νj j = k

⟺ u ∈ Lp Ωð Þ and ∂u
∂xi

∈Wk−1,p Ωð Þ and
∂β ∂u/∂xi
� �

xð Þ − ∂β ∂u/∂xi
� �

yð Þ
x − yj jn/p+θ

∈ Lp Ω ×Ωð Þ∀ βj j

= k − 1∀1 ≤ i ≤ n

⟺ u ∈ Lp Ωð Þ and ∂u
∂xi

∈Ws−1,p Ωð Þ ∀1 ≤ i ≤ n

ð42Þ

Remark 63. Let Ω be a nonempty open set in ℝn, s ∈ℝ, and
1 < p <∞. Clearly for s ≥ 0, C∞

c ðΩÞ ⊆Ws,pðΩÞ. For s < 0, it is
easy to see that for all φ ∈ C∞

c ðΩÞ, the map lφ : W−s,p′
0 ðΩÞ

⟶ℝ which sends u ∈W−s,p′
0 ðΩÞ to

Ð
Ω
uφ dx belongs to

½W−s,p′
0 ðΩÞ�

∗
=Ws,pðΩÞ. The map φ↦ lφ is one-to-one and

we can use it to identify C∞
c ðΩÞ with a subspace of Ws,pðΩÞ;

we sometimes refer to the map that sends φ to lφ as the “iden-
tity map.” So we can talk about the identity map from C∞

c ðΩÞ
to Ws,pðΩÞ for all s ∈ℝ.

Theorem 64 ([16]). Let Ω be a nonempty open set in ℝn,
s ≥ 0, and 1 < p <∞. Then, Ws,pðΩÞ is a reflexive Banach
space.

Corollary 65. Let Ω be a nonempty open set in ℝn, s ≥ 0, and
1 < p <∞. A closed subspace of a reflexive space is reflexive,
so Ws,p

0 ðΩÞ is reflexive. Dual of a reflexive Banach space is a

reflexive Banach space, so W−s,p′ðΩÞ is a reflexive Banach
space.

Remark 66. Let Ω be a nonempty open set in ℝn, s ≥ 0, and
1 < p <∞. Since Ws,p

0 ðΩÞ is reflexive, it can be identified

with ½Ws,p
0 ðΩÞ�∗∗ and we may write ½W−s,p′ðΩÞ�∗ =Ws,p

0 ðΩÞ
and talk about the duality pairing hu, f i

Ws,p
0 ðΩÞ×W−s,p ′ ðΩÞ. To

be more precise, we notice that the identification of
½Ws,p

0 ðΩÞ�∗∗ and Ws,p
0 ðΩÞ is done by the evaluation map
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J : Ws,p
0 Ωð Þ⟶ Ws,p

0 Ωð Þ� 
∗∗
 J uð Þ f½ � = f uð Þ: ð43Þ

Therefore, for all u ∈Ws,p
0 ðΩÞ and f ∈W−s,p′ðΩÞ,

u, fh iWs,p
0 Ωð Þ×W−s,p ′ Ωð Þ = J uð Þ, fh i Ws,p

0 Ωð Þ½ �∗∗×W−s,p ′ Ωð Þ

= f uð Þ = f , uh iW−s,p ′ Ωð Þ×Ws,p
0 Ωð Þ:

ð44Þ

Theorem 67. Let Ω be a nonempty open set in ℝn, s ≥ 0, and

1 < p <∞. Then, C∞
c ðΩÞ is dense in W−s,p′ðΩÞ. We may

write this as W−s,p′
0 ðΩÞ =W−s,p′ðΩÞ.

Proof. Our proof will be based on a similar argument given
in page 65 of [1]. Let φ↦ lφ be the mapping introduced in
Remark 63. Our goal is to show that the set

V ≔ lφ : φ ∈ C∞
c Ωð Þ� � ð45Þ

is dense in W−s,p′ðΩÞ. To this end, it is enough to show that

if F ∈ ½W−s,p′ðΩÞ�∗ is such that FðlφÞ = 0 for all φ ∈ C∞
c ðΩÞ,

then F = 0. Indeed, let F be such an element. By reflexivity
of Ws,p

0 ðΩÞ, there exists f ∈Ws,p
0 ðΩÞ such that

∀v ∈W−s,p′ Ωð Þ F vð Þ = v fð Þ: ð46Þ

Thus, for all φ ∈ C∞
c ðΩÞ, we have

0 = F lφ
� �

= lφ fð Þ =
ð
Ω

f xð Þφ xð Þ dx: ð47Þ

So, by the fundamental lemma of the calculus of varia-
tions (see [27], page 110), we have f = 0 (as an element of
Ws,pðΩÞ ⊆ L1locðΩÞ) and therefore F = 0.

Theorem 68. Let Ω be a nonempty open set in ℝn, s ∈ℝ, and
1 < p <∞. Equip D′ðΩÞ with weak∗ topology or strong topol-
ogy. Then

D Ωð Þ↪Ws,p Ωð Þ↪D′ Ωð Þ: ð48Þ

Proof. Recall that the convergent sequences in D′ðΩÞ
equipped with strong topology are exactly the same as the
convergent sequences of D′ðΩÞ equipped with the weak∗

topology (see Remark 22). This together with Theorem 19
implies that in the study of the continuity of the inclusion
map from Ws,pðΩÞ to D′ðΩÞ, it does not matter whether
we equip D′ðΩÞ with the strong topology or weak∗ topology.
In the proof, as usual, we assume D′ðΩÞ is equipped with the
strong topology. We consider two cases:

Case 1: s ≥ 0. The continuity of the embedding DðΩÞ↪
Ws,pðΩÞ has been studied in [16]. Also clearly Ws,pðΩÞ↪
LpðΩÞ↪D′ðΩÞ. The former continuous embedding holds
by the definition of Ws,pðΩÞ and the latter embedding is
continuous because if um ⟶ 0 in LpðΩÞ, then for all φ
∈DðΩÞ,

um, φh iD′ Ωð Þ×D Ωð Þ − 0
��� ��� = ð

Ω

umφ dx
����

���� ≤ umk kp φk k∞ ⟶ 0:

ð49Þ

So, um ⟶ 0 in D′ðΩÞ. This implies the continuity of
the inclusion map from LpðΩÞ to D′ðΩÞ by Theorem 19

Case 2: s < 0. Since W−s,p′
0 ðΩÞ↪W−s,p′ðΩÞ, it follows

from previous case that W−s,p′
0 ðΩÞ↪D′ðΩÞ. Also since D

ðΩÞ ⊆W−s,p′
0 ðΩÞ is dense in D′ðΩÞ (see Theorem 52, The-

orem 53, and Remark 54), it follows that the inclusion

map from W−s,p′
0 ðΩÞ to D′ðΩÞ is continuous with dense

image. Thus, by Theorem 27, DðΩÞ↪Ws,pðΩÞ. Here, we
used the facts that (1) the strong dual of the normed space

W−s,p′
0 ðΩÞ is Ws,pðΩÞ and that (2) the dual of ðD′ðΩÞ,

strong topologyÞ is DðΩÞ (see Theorem 55). It remains to
show that Ws,pðΩÞ↪D′ðΩÞ. It follows from Case 1 that

DðΩÞ↪W−s,p′
0 ðΩÞ and by definition DðΩÞ is dense in

W−s,p′
0 ðΩÞ. So, by Theorem 27, Ws,pðΩÞ↪D′ðΩÞ

Remark 69. Note that for s ≤ 0, Ws,p
0 ðΩÞ is the same as Ws,p

ðΩÞ. For s > 0, Ws,p
0 ðΩÞ is a subspace of Ws,pðΩÞ which con-

tains C∞
c ðΩÞ. So it follows from the previous theorem that

D Ωð Þ↪Ws,p
0 Ωð Þ↪D′ Ωð Þ: ð50Þ

To be more precise, we should note that for s < 0, we
identify φ ∈DðΩÞ with the corresponding distribution in D′
ðΩÞ. Under this identification, for all s ∈ℝ the “identity
map” i : DðΩÞ⟶Ws,p

0 ðΩÞ is continuous with dense image,
and so its adjoint i∗ : ½Ws,p

0 ðΩÞ�∗ ⟶D′ðΩÞ will be an injec-
tive continuous map (Theorem 27), and we have

i∗u, φh iD′ Ωð Þ×D Ωð Þ = u, iφh i Ws,p
0 Ωð Þ½ �∗×Ws,p

0 Ωð Þ

= u, φh i Ws,p
0 Ωð Þ½ �∗×Ws,p

0 Ωð Þ:
ð51Þ

We usually identify ½Ws,p
0 ðΩÞ�∗ with its image under i∗

and view ½Ws,p
0 ðΩÞ�∗ as a subspace of D′ðΩÞ. So, under this

identification, we can rewrite the above equality as follows:

∀u ∈ Ws,p
0 Ωð Þ� 
∗

 ∀φ ∈D Ωð Þ  u, φh iD′ Ωð Þ×D Ωð Þ
= u, φh i Ws,p

0 Ωð Þ½ �∗×Ws,p
0 Ωð Þ:

ð52Þ

Finally, noting that for all s ∈ℝ and 1 < p <∞,

½Ws,p
0 ðΩÞ�∗ =W−s,p′

0 ðΩÞ (see Definition 61, Theorem 67,
and Corollary 65), we can write
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∀u ∈W−s,p′
0 Ωð Þ ∀φ ∈D Ωð Þ  u, φh iD′ Ωð Þ×D Ωð Þ

= u, φh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ:

ð53Þ

Theorem 70. Let Ω be a nonempty open set in ℝn, s ≥ 0, and
1 < p <∞. Then,

(1) the mapping F ↦ FjC∞
c ðΩÞ is an isometric isomor-

phism between W−s,p′ðΩÞ and ½C∞
c ðΩÞ, k:ks,p�∗

(2) suppose u ∈D′ðΩÞ. If u : ðC∞
c ðΩÞ, k:k−s,p′Þ⟶ℝ is

continuous, then u ∈Ws,p
0 ðΩÞ (more precisely, there

is a unique element in Ws,p
0 ðΩÞ whose corresponding

distribution is u). Moreover,

uk kWs,p
0 Ωð Þ = sup

0≡φ∈C∞
c Ωð Þ

u, φh iD′ Ωð Þ×D Ωð Þ
φk kW−s,p ′ Ωð Þ

ð54Þ

Proof. The first item has been studied in [16]. Here, we will
prove the second item. Since u : ðC∞

c ðΩÞ, k:k−s,p′Þ⟶ℝ is
continuous, it can be extended to a continuous linear

map ~u : W−s,p′ðΩÞ⟶ℝ. So ~u ∈ ½W−s,p′ðΩÞ�∗. However,
Ws,p

0 ðΩÞ is reflexive, therefore there exists a unique v ∈Ws,p
0

ðΩÞ such that ~u = JðvÞ where JðvÞ: W−s,p′ðΩÞ⟶ℝ is the
evaluation map defined by JðvÞðFÞ = hF, vi

W−s,p ′ ðΩÞ×Ws,p
0 ðΩÞ.

To finish the proof, it is enough to show that v = u as ele-
ments of D′ðΩÞ. For all φ ∈ C∞

c ðΩÞ, we have

v, φh iD′ Ωð Þ×D Ωð Þ =
ð
Ω

vφ dx =Remark 63
φ, vh iW−s,p ′ Ωð Þ×Ws,p

0 Ωð Þ

= J vð Þ φð Þ = ~u φð Þ = u φð Þ = u, φh iD′ Ωð Þ×D Ωð Þ:

ð55Þ

Also,

uk kWs,p
0 Ωð Þ = vk kWs,p

0 Ωð Þ
= J vð Þk k

W−s,p ′ Ωð Þ
� 
∗

= ~uk k
W−s,p ′ Ωð Þ
� 
∗

= sup
0≡φ∈C∞

c Ωð Þ

~u, φh iD′ Ωð Þ×D Ωð Þ
φk kW−s,p ′ Ωð Þ

= sup
0≡φ∈C∞

c Ωð Þ

u, φh iD′ Ωð Þ×D Ωð Þ
φk kW−s,p ′ Ωð Þ

:

ð56Þ

Corollary 71. Let Ω be a nonempty open set in ℝn, s ≥ 0, and
1 < p <∞. Suppose that u ∈D′ðΩÞ. As a direct consequence
of Theorem 70, we have the following:

(i) If sup0≡φ∈C∞
c ðΩÞðhu, φiD′ðΩÞ×DðΩÞ/kφkWs,pðΩÞÞ <∞,

then u ∈W−s,p′ðΩÞ and

uk kW−s,p ′ Ωð Þ = sup
0≡φ∈C∞

c Ωð Þ

u, φh iD′ Ωð Þ×D Ωð Þ
φk kWs,p Ωð Þ

ð57Þ

(ii) If sup0≡φ∈C∞
c ðΩÞðhu, φiD′ðΩÞ×DðΩÞ/kφkW−s,p ′ ðΩÞÞ <∞,

then u ∈Ws,p
0 ðΩÞ and

uk kWs,p Ωð Þ = sup
0≡φ∈C∞

c Ωð Þ

u, φh iD′ Ωð Þ×D Ωð Þ
φk kW−s,p ′ Ωð Þ

ð58Þ

That is, for any e ∈ℝ and 1 < q <∞, in order to show
that u ∈D′ðΩÞ belongs to We,q

0 ðΩÞ, it is enough to prove that

sup
0≡φ∈C∞

c Ωð Þ

u, φh iD′ Ωð Þ×D Ωð Þ
φk kW−e,q ′ Ωð Þ

<∞, ð59Þ

and in fact kukWe,qðΩÞ = sup0≡φ∈C∞
c ðΩÞðhu, φiD′ðΩÞ×DðΩÞ/

kφk
W−e,q ′ ðΩÞÞ.

Theorem 72. Let Ω be a nonempty open set in ℝn, s ∈ℝ, and
1 < p <∞. Suppose that K ∈KðΩÞ. Then,Ws,p

K ðΩÞ is a closed
subspace of Ws,pðΩÞ.

Proof. It is enough to show that if fuig is a sequence of ele-
ments in Ws,p

K ðΩÞ such that ui ⟶ u in Ws,pðΩÞ, then u ∈
Ws,p

K ðΩÞ, i.e., supp u ⊆ K . By Theorem 68, we have ui ⟶
u in D′ðΩÞ. Now it follows from Theorem 59 that supp u
⊆ K . Note that for any s ≥ 0, we have Ws,pðΩÞ ⊆ LpðΩÞ ⊆
L1locðΩÞ; in this proof, we implicitly used the fact that for
functions in L1locðΩÞ, the usual definition of support agrees
with the distributional definition of support.

Next, we list several embedding theorems for Sobolev-
Slobodeckij spaces.

Theorem 73 ([29], Section 2.8.1). Suppose 1 < p ≤ q <∞ and
−∞ < t ≤ s <∞ satisfy s − n/p ≥ t − n/q. Then, Ws,pðℝnÞ↪
Wt,qðℝnÞ. In particular, Ws,pðℝnÞ↪Wt,pðℝnÞ.

Theorem 74 ([30, 18]). Let Ω be a nonempty bounded open
subset of ℝn with Lipschitz continuous boundary. Suppose 1
≤ p, q <∞ (p does NOT need to be less than or equal to q)
and 0 ≤ t ≤ s satisfy s − n/p ≥ t − n/q. If s∈ℕ0, additionally
assume that s ≠ t. Then, Ws,pðΩÞ↪Wt,qðΩÞ. Furthermore, if
s > t, then the embedding Ws,pðΩÞ↪Wt,pðΩÞ is compact.

Theorem 75 ([16]). Let Ω ⊆ℝn be an arbitrary nonempty
open set.

(1) Suppose 1 ≤ p ≤ q <∞ and 0 ≤ t ≤ s satisfy s − n/p ≥
t − n/q. Then, Ws,p

K ðΩÞ↪Wt,q
K ðΩÞ for all K ∈KðΩÞ
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(2) For all k1, k2 ∈ℕ0 with k1 ≤ k2 and 1 < p <∞, Wk2 ,p

ðΩÞ↪Wk1 ,pðΩÞ
(3) If 0 ≤ t ≤ s < 1 and 1 < p <∞, then Ws,pðΩÞ↪Wt,pð

ΩÞ
(4) If 0 ≤ t ≤ s <∞ are such that bsc = btc and 1 < p <∞,

then Ws,pðΩÞ↪Wt,pðΩÞ
(5) If 0 ≤ t ≤ s <∞, t ∈ℕ0, and 1 < p <∞, then Ws,pðΩ

Þ↪Wt,pðΩÞ

Theorem 76 ([6]). LetΩ be a nonempty bounded open subset
of ℝn with Lipschitz continuous boundary or Ω =ℝn. If sp
> n, then Ws,pðΩÞ↪L∞ðΩÞ ∩ C0ðΩÞ and Ws,pðΩÞ is a
Banach algebra.

In the next several theorems, we will list certain multipli-
cation properties of Sobolev spaces. Suppose φ ∈ C∞ðΩÞ and
u ∈Ws,pðΩÞ. If s ≥ 0, then the product φu has a clear mean-
ing. What if s < 0? In this case, ujDðΩÞ is a distribution and by
the product φu we mean the distribution ðφÞðujDðΩÞÞ; then
φu is in Ws,pðΩÞ if ðφÞðujDðΩÞÞ: ðC∞

c ðΩÞ, k:k−s,p′Þ⟶ℝ is
continuous. Because then it possesses a unique extension

to a continuous linear map from W−s,p′
0 ðΩÞ to ℝ and so it

can be viewed as an element of ½W−s,p′
0 ðΩÞ�

∗
=Ws,pðΩÞ. See

Theorem 70 and Corollary 71. Also see Remark 89.

Theorem 77 (multiplication by smooth functions I, [31],
page 203). Let s ∈ℝ, 1 < p <∞, and φ ∈ BC∞ðℝnÞ. Then,
the linear map

mφ : Ws,p ℝnð Þ⟶Ws,p ℝnð Þ, u↦ φu ð60Þ

is well-defined and bounded.

Theorem 78 (multiplication by smooth functions II, [16]).
Let Ω be a nonempty bounded open set in ℝn with Lipschitz
continuous boundary.

(1) Let k ∈ℕ0 and 1 < p <∞. If φ ∈ BCkðΩÞ, then the
linear map Wk,pðΩÞ⟶Wk,pðΩÞ defined by u↦ φ
u is well-defined and bounded

(2) Let s ∈ℝ and 1 < p <∞. If φ ∈ BC∞ðΩÞ, then the lin-
ear map Ws,pðΩÞ⟶Ws,pðΩÞ defined by u↦ φu is
well-defined and bounded

Theorem 79 (multiplication by smooth functions III, [16]).
Let Ω be any nonempty open set in ℝn. Let p ∈ ð1,∞Þ.

(1) If 0 ≤ s < 1 and φ ∈ BC0,1ðΩÞ (that is, φ ∈ L∞ðΩÞ and
φ is Lipschitz), then

mφ : Ws,p Ωð Þ⟶Ws,p Ωð Þ, u↦ φu ð61Þ

is a well-defined bounded linear map

(2) If k ∈ℕ0 and φ ∈ BCkðΩÞ, then

mφ : Wk,p Ωð Þ⟶Wk,p Ωð Þ, u↦ φu ð62Þ

is a well-defined bounded linear map

(3) If −1 < s < 0 and φ ∈ BC∞,1ðΩÞ or s ∈ℤ− and φ ∈
BC∞ðΩÞ, then

mφ : Ws,p Ωð Þ⟶Ws,p Ωð Þ, u↦ φu ð63Þ

is a well-defined bounded linear map

Theorem 80 (multiplication by smooth functions IV, [16]).
Let Ω be a nonempty open set in ℝn, K ∈KðΩÞ, p ∈ ð1,∞Þ,
and −1 < s < 0 or s ∈ℤ− or s ∈ ½0,∞Þ. If φ ∈ C∞ðΩÞ, then
the linear map

Ws,p
K Ωð Þ⟶Ws,p

K Ωð Þ, u↦ φu ð64Þ

is well-defined and bounded.

Theorem 81 (multiplication by smooth functions V, [16]).
Let Ω be a nonempty bounded open set in ℝn with Lipschitz
continuous boundary. Let K ∈KðΩÞ. Suppose s ∈ℝ and p
∈ ð1,∞Þ. If φ ∈ C∞ðΩÞ, then the linear map Ws,p

K ðΩÞ⟶
Ws,p

K ðΩÞ defined by u↦ φu is well-defined and bounded.

In the next definition, we introduce the notion of smooth
multiplication triple which will play a key role in several the-
orems that will follow.

Definition 82 (smooth multiplication triple). Let Ω be a non-
empty open set in ℝn, s ∈ℝ and 1 < p <∞.

(i) We say that the triple ðs, p,ΩÞ is a smooth multipli-
cation triple if for all φ ∈ C∞

c ðΩÞ, the map

mφ : Ws,p Ωð Þ⟶Ws,p Ωð Þ  u↦ φ u ð65Þ

is well-defined and bounded

(ii) We say that the triple ðs, p,ΩÞ is an interior smooth
multiplication triple if for all φ ∈ C∞

c ðΩÞ and K ∈K
ðΩÞ, the map

mφ : Ws,p
K Ωð Þ⟶Ws,p

K Ωð Þ u↦ φ u ð66Þ

is well-defined and bounded

Remark 83.

(1) Every smooth multiplication triple is also an interior
smooth multiplication triple

(2) It is a direct consequence of Theorems 77, 78, and 79
that
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(i) if Ω =ℝn or Ω is bounded with Lipschitz contin-
uous boundary, then for all s ∈ℝ and 1 < p <∞,
ðs, p,ΩÞ is a smooth multiplication triple

(ii) ifΩ is any open set in ℝn, 1 < p <∞, and s ∈ℝ is
not a noninteger with magnitude greater than 1,
then ðs, p,ΩÞ is a smooth multiplication triple

(3) It is a direct consequence of Theorem 80 and
Theorem 81 that

(i) if Ω =ℝn or Ω is bounded with Lipschitz contin-
uous boundary, then for all s ∈ℝ and 1 < p <∞,
ðs, p,ΩÞ is an interior smooth multiplication
triple

(ii) ifΩ is any open set in ℝn, 1 < p <∞, and s ∈ℝ is
not a noninteger less than −1, then ðs, p,ΩÞ is an
interior smooth multiplication triple

(4) If ðs, p,ΩÞ is a smooth multiplication triple and K
∈KðΩÞ, then Ws,p

K ðΩÞ ⊆Ws,p
0 ðΩÞ (see the proof of

Theorem 7.31 in [16]). Of course, if s < 0, then Ws,p

ðΩÞ =Ws,p
0 ðΩÞ and so Ws,p

K ðΩÞ ⊆Ws,p
0 ðΩÞ holds for

all s < 0, 1 < p <∞ and open sets Ω ⊆ℝn

Theorem 84. Let Ω be a nonempty open set in ℝn, s ≥ 0, and
1 < p <∞. If ðs, p,ΩÞ is a smooth multiplication triple so is
ð−s, p′,ΩÞ.

Proof. Let φ ∈ C∞
c ðΩÞ. For all u ∈W−s,p′ðΩÞ =W−s,p′

0 ðΩÞ and
ψ ∈DðΩÞ, we have

φu, ψh iD′ Ωð Þ×D Ωð Þ
��� ���
= u, φψh iD′ Ωð Þ×D Ωð Þ
��� ��� =Remark 69 u, φψh iW−s,p ′ Ωð Þ×Ws,p

0 Ωð Þ

��� ���
≤ uk kW−s,p ′ Ωð Þ φψk kWs,p Ωð Þ≼ uk kW−s,p ′ Ωð Þ ψk kWs,p Ωð Þ:

ð67Þ

The last inequality holds because ðs, p,ΩÞ is a smooth

multiplication triple. It follows from Corollary 71 that φu

∈W−s,p′
0 ðΩÞ and kφuk

W−s,p ′ ðΩÞ≼kukW−s,p ′ ðΩÞ; that is, mφ

: W−s,p′ðΩÞ⟶W−s,p′ðΩÞ is well-defined and continuous.

Theorem 85. Let Ω be a nonempty open set in ℝn, s ∈ℝ and
1 < p <∞. If s < 0, further assume that ð−s, p′,ΩÞ is a
smooth multiplication triple. Suppose that Ω′ ⊆Ω and K ∈
KðΩ′Þ. Then,

(1) for all u ∈Ws,p
K ðΩÞ, kukWs,pðΩÞ ≃ kujΩ′kWs,pðΩ′Þ

(2) for all u ∈Ws,p
K ðΩ′Þ, kext0

Ω′ ,ΩukWs,pðΩÞ ≃ kukWs,pðΩ′Þ

Proof. The claim follows from the argument presented in the
proofs of Corollary 7.39 and Theorem 7.46 in [16].

Theorem 86 (([30], pages 598-605), ([6], Section 1.4)). Let
s ∈ℝ, 1 < p <∞, and α ∈ℕn

0 . Suppose Ω is a nonempty open
set in ℝn. Then,

(1) the linear operator ∂α : Ws,pðℝnÞ⟶Ws−jαj,pðℝnÞ is
well-defined and bounded

(2) for s < 0, the linear operator ∂α : Ws,pðΩÞ⟶
Ws−jαj,pðΩÞ is well-defined and bounded

(3) for s ≥ 0 and jαj ≤ s, the linear operator ∂α : Ws,pðΩÞ
⟶Ws−jαj,pðΩÞ is well-defined and bounded

(4) if Ω is bounded with Lipschitz continuous boundary,
and if s ≥ 0, s − 1/p ≠ integer (i.e., the fractional part
of s is not equal to 1/p), then the linear operator ∂α

: Ws,pðΩÞ⟶Ws−jαj,pðΩÞ for jαj > s is well-defined
and bounded

Theorem 87. Assumptions:

(i) Ω =ℝn or Ω is a bounded domain with Lipschitz
continuous boundary

(ii) si, s ∈ℝ, si ≥ s ≥ 0 for i = 1, 2

(iii) 1 < pi ≤ p <∞ for i = 1, 2

(iv) si − s ≥ nð1/pi − 1/pÞ
(v) s1 + s2 − s > nð1/p1 + 1/p2 − 1/pÞ
Claim: If u ∈Ws1 ,p1ðΩÞ and v ∈Ws2 ,p2ðΩÞ, then uv ∈

Ws,pðΩÞ and moreover the pointwise multiplication of func-
tions is a continuous bilinear map

Ws1 ,p1 Ωð Þ ×Ws2 ,p2 Ωð Þ⟶Ws,p Ωð Þ: ð68Þ

Remark 88. A number of other results concerning the suffi-
cient conditions on the exponents si, pi, s, p that guarantee
the multiplication Ws1,p1ðΩÞ ×Ws2,p2ðΩÞ↪Ws,pðΩÞ is well-
defined and continuous are discussed in detail in [18].

Remark 89. Suppose that ðs, p,ΩÞ is a smooth multiplication

triple with s ≥ 0. W−s,p′ðΩÞ =W−s,p′
0 ðΩÞ is the dual of

Ws,p
0 ðΩÞ and hu, f i

W−s,p ′
0 ðΩÞ×Ws,p

0 ðΩÞ is the action of the func-

tional u on the function f . As it was discussed before, if ψ
is a function in C∞

c ðΩÞ, ðψÞðujDðΩÞÞ is defined as a prod-
uct of a smooth function and a distribution. Since ðs, p,ΩÞ
is a smooth multiplication triple, ð−s, p′,ΩÞ will also be a
smooth multiplication triple, and that means ðψÞðujDðΩÞÞ
: ðC∞

c ðΩÞ, k:ks,pÞ⟶ℝ is continuous (see the note right
after Theorem 76). We interpret ψu as an element of

W−s,p′ðΩÞ = ½Ws,p
0 ðΩÞ�∗ to be the unique continuous linear

extension of ψðujDðΩÞÞ to the entire Ws,p
0 ðΩÞ. It is easy to
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see that, this unique linear extension is given by

ψu, fh iW−s,p ′ Ωð Þ×Ws,p
0 Ωð Þ ≔ u, ψfh iW−s,p ′ Ωð Þ×Ws,p

0 Ωð Þ, ð69Þ

that is, the abovemap is linear continuous and its restriction to
DðΩÞ is the same as ψðujDðΩÞÞ. (Note that since ðs, p,ΩÞ is a
smooth multiplication triple, ψf is indeed an element of
Ws,p

0 ðΩÞ.)

Theorem 90 ([32]). Let s ∈ ½1,∞Þ and 1 < p <∞, and let

m =
s, if s is an integer,

⌊s⌋ + 1,  otherwise:

 
ð70Þ

If F ∈ CmðℝÞ is such that Fð0Þ = 0 and F, F ′,⋯, FðmÞ ∈
L∞ðℝÞ (in particular, note that every F ∈ C∞

c ðℝÞ with Fð0Þ
= 0 satisfies these conditions), then the map u↦ FðuÞ is
well-defined and continuous from Ws,pðℝnÞ ∩W1,spðℝnÞ into
Ws,pðℝnÞ.

Corollary 91. Let s, p, and F be as in the previous theorem.
Moreover, suppose sp > n. Then, the map u↦ FðuÞ is well-
defined and continuous from Ws,pðℝnÞ into Ws,pðℝnÞ. The
reason is that when sp > n, we have Ws,pðℝnÞ↪W1,spðℝnÞ.

In the remaining of this section, we will state certain use-
ful properties of the topological vector space Ws,p

comp. The
properties we will discuss here echo the ones stated in [24]
for spaces Hs

comp.

Theorem 92. Let Ω be a nonempty open set in ℝn, s ∈ℝ,
and 1 < p <∞. Then, DðΩÞ is continuously embedded in
Ws,p

compðΩÞ.

Proof. For all K ∈KðΩÞ, we have

EK Ωð Þ↪D Ωð Þ↪Ws,p Ωð Þ: ð71Þ

This together with the fact that the image of EKðΩÞ
under the identity map is inside Ws,p

K ðΩÞ implies that

EK Ωð Þ↪Ws,p
K Ωð Þ: ð72Þ

Also, by the definition of the inductive limit topology on
Ws,p

compðΩÞ, we have

Ws,p
K Ωð Þ↪Ws,p

comp Ωð Þ: ð73Þ

It follows from (72) and (73) that for all K ∈KðΩÞ,

EK Ωð Þ↪Ws,p
comp Ωð Þ, ð74Þ

which, by Theorem 37, implies that DðΩÞ↪Ws,p
compðΩÞ.

Theorem 93. Let ðs, p,ΩÞ be a smooth multiplication triple.
Then, C∞

c ðΩÞ is dense in Ws,p
compðΩÞ.

Proof. We will follow the proof given in [24] for spaces
Hs

comp. Let u ∈W
s,p
compðΩÞ. It is enough to show that there

exists a sequence in C∞
c ðΩÞ that converges to u in Ws,p

compð
ΩÞ (this proves sequential density which implies density).
By Meyers-Serrin theorem, there exists a sequence φm ∈
C∞ðΩÞ ∩Ws,pðΩÞ such that φm ⟶ u in Ws,pðΩÞ. Let χ ∈
C∞
c ðΩÞ be such that χ = 1 on a neighborhood containing

supp u (see Theorem 41). Let K = supp χ. Since ðs, p,ΩÞ is
a smooth multiplication triple, multiplication by χ is a linear
continuous map onWs,pðΩÞ and so χφm ⟶ χu inWs,pðΩÞ.
Now, we note that χu = u and for all m, χφm are in C∞

c ðΩÞ
with support inside K . Consequently, χφm ⟶ u inWs,p

K ðΩÞ.
Now, sinceWs,p

K ðΩÞ↪Ws,p
compðΩÞ, we may conclude that χφm

is a sequence in C∞
c ðΩÞ that converges to u inWs,p

compðΩÞ.

Remark 94. As a consequence, if ðs, p,ΩÞ is a smooth multi-
plication triple, then ½Ws,p

compðΩÞ�∗ (equipped with the strong
topology) is continuously embedded in D′ðΩÞ. More pre-
cisely, the identity map i : DðΩÞ⟶Ws,p

compðΩÞ is continu-
ous with dense image, and therefore, by Theorem 27, the
adjoint i∗ : ½Ws,p

compðΩÞ�∗ ⟶D′ðΩÞ is a continuous injec-
tive map. We have

i∗u, φh iD′ Ωð Þ×D Ωð Þ = u, iφh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ

= u, φh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ:
ð75Þ

We usually identify ½Ws,p
compðΩÞ�∗ with its image under i∗

and view ½Ws,p
compðΩÞ�∗ as a subspace of D′ðΩÞ. So, under this

identification, we can rewrite the above equality as follows:

∀u ∈ Ws,p
comp Ωð Þ

h i∗
  u, φh iD′ Ωð Þ×D Ωð Þ = u, φh i Ws,p

comp Ωð Þ½ �∗×Ws,p
comp Ωð Þ:

ð76Þ

Next, we will prove that if ðs, p,ΩÞ is a smooth multipli-
cation triple, then Ws,p

compðΩÞ is separable. To this end, we
need the following lemma.

Lemma 95. Let ðX, τÞ and ðY , τ′Þ be two topological spaces.
Suppose that

(1) A is dense in ðX, τÞ
(2) T : ðX, τÞ⟶ ðY , τ′Þ is continuous
(3) TðXÞ is dense in ðY , τ′Þ
Then, TðAÞ is dense in ðY , τ′Þ.

Proof. It is enough to show that TðAÞ intersects every non-
empty open set in ðY , τ′Þ. So let O ∈ τ′ be nonempty. Since
TðXÞ is dense in ðY , τ′Þ, we have O ∩ TðXÞ ≠∅ and so
T−1ðOÞ is nonempty. Also, since T is continuous, T−1ðOÞ
∈ τ. A is dense in ðX, τÞ, so A ∩ T−1ðOÞ ≠∅. Therefore,
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T Að Þ ∩O ⊇ T A ∩ T−1 Oð Þ� �
≠∅: ð77Þ

Theorem 96. Let ðs, p,ΩÞ be a smooth multiplication triple.
Then, Ws,p

compðΩÞ is separable.

Proof. According to Theorems 92 and 93, DðΩÞ is continu-
ously embedded in Ws,p

compðΩÞ and it is dense in Ws,p
compðΩÞ.

Since DðΩÞ is separable, it follows from Lemma 95 that
Ws,p

compðΩÞ is separable.

Theorem 97. Let ðs, p,ΩÞ be an interior smooth multiplica-
tion triple. Let fψjg j∈ℕ0

be the partition of unity introduced

in Theorem 43. Let S be the collection of all sequences whose
terms are nonnegative integers. For all sequences a = ða0, a1,
⋯Þ ∈ S define qa,s,p : W

s,p
compðΩÞ⟶ℝ by

qa,s,p uð Þ = 〠
∞

j=0
aj ψju
��� ���

Ws,p Ωð Þ
: ð78Þ

Then, fqa,s,pga∈S is a separating family of seminorms on

Ws,p
compðΩÞ and the natural topology induced by this family

on Ws,p
compðΩÞ is the same as the inductive limit topology on

Ws,p
compðΩÞ.

Proof. Note that support of every u ∈Ws,p
comp is compact, so

for each u, only finitely many of ψju’s are nonzero. Thus,
the sum in the definition of qa,s,p is a finite sum. Now it is
not hard to show that each qa,s,p is a seminorm and
fqa,s,pga∈S is separating. Here, we will show that the topolo-

gies are the same. Let us denote the inductive limit topology
on Ws,p

compðΩÞ by τ and the natural topology induced by the
given family of seminorms τ′.

In what follows, we implicitly use the fact that both
topologies are locally convex and translation invariant.

Step 1 (τ′ ⊆ τ). We will prove that for each K ∈KðΩÞ,
Ws,p

K ðΩÞ↪ðWs,p
compðΩÞ, τ′Þ. This together with the definition

of τ (the biggest topology with this property) implies that
τ′ ⊆ τ. Let K ∈KðΩÞ. By Theorem 18, it is enough to show
that for all a ∈ S, qa,s,p ∘ Id : Ws,p

K ðΩÞ⟶ℝ is continuous.
Since K is compact, there are only finitely may ψj’s such that

K ∩ supp ψj ≠∅; let us call them ψj1
,⋯, ψjl

. So, for all u ∈
Ws,p

K ðΩÞ,

qa,s,p uð Þ = aj1 ψj1
u

��� ���
Ws,p Ωð Þ

+⋯+ajl ψjl
u

��� ���
Ws,p Ωð Þ

: ð79Þ

By assumption, ðs, p,ΩÞ is an interior smooth multipli-
cation triple, so for each j ∈ fj1,⋯,jlg, the mapping u↦ ∥
ψju∥Ws,pðΩÞ from Ws,p

K ðΩÞ⟶ℝ is continuous. Hence, qa,s,p
∘ Id : Ws,p

K ðΩÞ⟶ℝ must be continuous.

Step 2 (τ ⊆ τ′). Since ðWs,p
compðΩÞ, τÞ is a locally convex

topological vector space, there exists a separating family of
seminorms P whose corresponding natural topology is τ
(see Theorem 15). We will prove that for all ~p ∈P , ~p : ð
Ws,p

compðΩÞ, τ′Þ⟶ℝ is continuous. This together with the
fact that τ is the smallest topology with this property shows
that τ ⊆ τ′. Let ~p ∈P . By Theorem 12, it is enough to prove
that there exists a ∈ S such that

∀u ∈Ws,p
comp Ωð Þ ~p uð Þ ≤ qa,s,p uð Þ: ð80Þ

For all u ∈Ws,p
compðΩÞ, we have ~pðuÞ = ~pð∑jψj uÞ. Since u

has compact support, only finitely many terms in the sum
are nonzero, and so by the finite subadditivity of a semi-
norm, we get

~p uð Þ = ~p 〠
j

ψj u

 !
≤〠

j

~p ψj u
� �

: ð81Þ

Now, note that ψju belongs to the normed space

Ws,p
supp ψ j

ðΩÞ. Since ~p : ðWs,p
compðΩÞ, τÞ⟶ℝ is continuous

and Ws,p
supp ψ j

ðΩÞ↪ðWs,p
compðΩÞ, τÞ, we can conclude that ~p

: Ws,p
supp ψ j

ðΩÞ⟶ℝ is continuous. Thus, by Theorem 9,

there exists a positive integer aj such that

∀u ∈Ws,p
comp Ωð Þ ~p ψju

� �
≤ aj ψju
��� ���

Ws,p Ωð Þ
: ð82Þ

It follows that for all u ∈Ws,p
compðΩÞ,

~p uð Þ ≤〠
j

~p ψj u
� �

≤〠
j

aj ψju
��� ���

Ws,p Ωð Þ
= qa,s,p uð Þ, ð83Þ

where a = ða0, a1,⋯Þ

4. Spaces of Locally Sobolev Functions

Let s ∈ℝ, 1 < p <∞. Let Ω be a nonempty open set in ℝn.
We define

Ws,p
loc Ωð Þ≔ u ∈D′ Ωð Þ: ∀φ ∈ C∞

c Ωð Þ φu ∈Ws,p Ωð Þ
n o

:

ð84Þ

We equip Ws,p
locðΩÞ with the natural topology induced by

the separating family of seminorms fj:jφ,s,pgφ∈C∞
c ðΩÞ (see Def-

inition 10) where

∀u ∈Ws,p
loc Ωð Þ, φ ∈ C∞

c Ωð Þ  uj jφ,s,p ≔ φuk kWs,p Ωð Þ: ð85Þ

When s and p are clear from the context, we may just
write jujφ or pφðuÞ instead of jujφ,s,p. It is easy to show that

for all φ ∈ C∞
c ðΩÞ, j:jφ,s,p is a seminorm onWs,p

locðΩÞ. The fact
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that the family of seminorms fj:jφ,s,pgφ∈C∞
c ðΩÞ is separating

will be proved in Theorem 103.

Remark 98. Note that, by item (1) of Theorem 20, ui ⟶ u in
Ws,p

locðΩÞ if and only if φui ⟶ φu in Ws,pðΩÞ for all φ ∈
C∞
c ðΩÞ.

Remark 99. Clearly if ðs, p,ΩÞ is a smooth multiplication
triple, then Ws,pðΩÞ ⊆Ws,p

locðΩÞ.

An equivalent description of locally Sobolev functions is
described in the following theorem.

Theorem 100. Suppose that ðs, p,ΩÞ is a smooth multiplica-
tion triple. Then, u ∈D′ðΩÞ is in Ws,p

locðΩÞ if and only if for
every precompact open set V with �V ⊆Ω there is w ∈Ws,pð
ΩÞ such that wjV = ujV .

Proof. ⇒: suppose u ∈Ws,p
locðΩÞ and let V be a precompact

open set such that �V ⊆Ω. Let φ ∈ C∞
c ðΩÞ be such that φ =

1 on a neighborhood containing �V . Let w = φu. u is a locally
Sobolev function, so w ∈Ws,pðΩÞ; also clearly wjV = ujV .

⇐: suppose u ∈D′ðΩÞ has the property that for every
precompact open set V with �V ⊆Ω there is w ∈Ws,pðΩÞ
such that wjV = ujV . Let φ ∈ C∞

c ðΩÞ. We need to show that
φu ∈Ws,pðΩÞ. Note that supp φ is compact, so there exists
a bounded open set V such that

supp φ ⊆V ⊆ �V ⊆Ω: ð86Þ

By assumption, there exists w ∈Ws,pðΩÞ such that w
jV = ujV . It follows from the hypothesis of the theorem that
φw ∈Ws,pðΩÞ. Clearly φw = φu on Ω. Therefore, φu ∈Ws,p

ðΩÞ.

5. Overview of the Basic Properties

Material of this section is mainly an adaptation of the mate-
rial presented in the excellent work of Antonic and Burazin
[17], which is restricted to integer order Sobolev spaces, and
Peterson [24], which is restricted to Hilbert spaces Hs. We
have added certain details to the statements of the theorems
and their proofs to ensure all the arguments are valid for
both integer and noninteger order Sobolev-Slobodeckij
spaces.

Definition 101. If A is a subset of C∞
c ðΩÞ with the property

that,

∀x ∈Ω∃φ ∈ A such that φ ≥ 0 and φ xð Þ ≠ 0, ð87Þ

then we say A is an admissible family of functions.

Remark 102. Note that if A is an admissible family of func-
tions, then for all m ∈ℕ, the set fφm : φ ∈ Ag is also an
admissible family of functions.

Theorem 103. Let ðs, p,ΩÞ be an interior smooth multiplica-
tion triple. If A is an admissible family of functions then

(1) Ws,p
locðΩÞ = fu ∈D′ðΩÞ: ∀φ ∈ A φu ∈Ws,pðΩÞg

(2) The collection fj:jφ : φ ∈ Ag is a separating family of

seminorms on Ws,p
locðΩÞ

(3) The natural topology induced by the separating fam-
ily of seminorms fj:jφ : φ ∈ Ag is the same as the

topology of Ws,p
locðΩÞ

Proof.

(1) Let u ∈D′ðΩÞ be such that φu ∈Ws,pðΩÞ for all φ
∈ A. We need to show that if ψ ∈ C∞

c ðΩÞ, then ψ
u ∈Ws,pðΩÞ. By the definition of A, for all x ∈
supp ψ, there exists φx ∈ A such that φxðxÞ > 0.
Define

Ux ≔ y ∈Ω : φx yð Þ > 0f g: ð88Þ

Clearly, x ∈Ux, and since φx is continuous, Ux is
an open set. fUxgx∈suppψ is an open cover of the
compact set supp ψ. So there exist points x1,⋯,
xk such that supp ψ ⊆U ≔Ux1

∪⋯∪Uxk
. If y ∈U ,

then there exists 1 ≤ i ≤ k such that y ∈Uxi
and so

φxi
ðyÞ > 0. So the smooth function ∑k

i=1φxi
is nonzero

on U . Thus, on U we have

ψu =
ψ

∑k
i=1φxi

〠
k

i=1
φxi

u

 !
: ð89Þ

Indeed, if we define

ξ zð Þ =
ψ zð Þ

∑k
i=1φxi

zð Þ
, if z ∈U ,

0, otherwise,

0
B@ ð90Þ

then ξ is smooth with compact support in U and

ψu = ξ〠
k

i=1
φxi

u ð91Þ

on the entire Ω. Now, note that for each i, φxi
u is in

Ws,pðΩÞ (because by assumption φu ∈Ws,pðΩÞ for
all φ ∈ A). So ∑k

i=1φxi
u ∈Ws,pðΩÞ. Since ξ ∈ C∞

c ðΩÞ
and ∑k

i=1φxi
u have compact support and ðs, p,ΩÞ is

an interior smooth multiplication triple, it follows
that ξ∑k

i=1φxi
u ∈Ws,pðΩÞ

(2) Now, we prove that fj:jφ : φ ∈ Ag is a separating

family of seminorms. We need to show that if u ∈
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Ws,p
locðΩÞ has the property that for all φ ∈ A jujφ =

kφ ukWs,pðΩÞ = 0, then u = 0. By definition of locally

Sobolev functions, u is an element of D′ðΩÞ. So, in
order to show that u = 0, it is enough to prove that
for all η ∈ C∞

c ðΩÞ, hu, ηiD′ðΩÞ×DðΩÞ = 0. We consider
two cases:

Case 1. A = C∞
c ðΩÞ. Let φ ∈ A be such that φ = 1 on a

neighborhood containing supp η. By assumption φ
u = 0 in Ws,pðΩÞ and so it is zero in D′ðΩÞ. Now
we have

u, ηh iD′ Ωð Þ×D Ωð Þ = u, φηh iD′ Ωð Þ×D Ωð Þ = φu, ηh iD′ Ωð Þ×D Ωð Þ = 0

ð92Þ

which is exactly what we wanted to prove

Case 2. A ⊂ C∞
c ðΩÞ. We claim that if kφukWs,pðΩÞ = 0

for all φ ∈ A, then for any ψ ∈ C∞
c ðΩÞ, kψukWs,pðΩÞ

= 0, and so this case reduces to the previous case.
Indeed, if ψ is an arbitrary element of C∞

c ðΩÞ, then
by what was proved in item (1),

ψu = ξ〠
k

i=1
φxi

u, ð93Þ

where by assumption, for each i, φxi
u is zero as an

element of Ws,pðΩÞ. Hence, ψu = 0 in Ws,pðΩÞ
(3) Finally, we show that the natural topology τP

induced by P = fj:jφ : φ ∈ Ag is the same as the nat-
ural topology τQ induced by Q = fj:jφ : φ ∈ C∞

c ðΩÞg.
Obviously P is a subset of Q, so it follows from the
definition of natural topology induced by a family
of seminorms (see Definition 10) that τP ⊆ τQ. In
order to show that τQ ⊆ τP , it is enough to prove that
for all ψ ∈ C∞

c ðΩÞ, the map j:jψ : ðWs,p
locðΩÞ, τPÞ⟶

ℝ is continuous. By what was shown in item (1),
we can write

∀u ∈Ws,p
loc Ωð Þ uj jψ = ψ uk kWs,p Ωð Þ = ξ〠

k

i=1
φxi

u

�����
�����
Ws,p Ωð Þ

≼〠
k

i=1
φxi

u
��� ���

Ws,p Ωð Þ
= 〠

k

i=1
uj jφxi

,

ð94Þ

where the implicit constant does not depend on u.
In the last inequality, we used the assumption that
ðs, p,ΩÞ is an interior smooth multiplication triple.
Now, it follows from Theorem 20 that j:jψ : ðWs,p

loc

ðΩÞ, τPÞ⟶ℝ is continuous

Lemma 104. There exists an admissible family A ⊆ C∞
c ðΩÞ

that has only countably many elements.

Proof. Let fKjg j∈ℕ be an exhaustion by compact sets for Ω.

For each j ∈ℕ, let φj ∈ C
∞
c ðΩÞ be a nonnegative function

such that φj = 1 on Kj and φj = 0 outside K̊j+2. Clearly, A =
fφjgj∈N is a countable admissible family of functions.

Corollary 105. Let ðs, p,ΩÞ be an interior smooth multiplica-
tion triple. Considering Theorem 13, it follows from the previ-
ous lemma and Theorem 103 that Ws,p

locðΩÞ is metrizable.
Indeed, if A = fφjg∞j=1 is a countable admissible family, then

d u, vð Þ = 〠
∞

j=1

1

2j
u − vj jφ j

1 + u − vj jφ j

ð95Þ

is a compatible translation invariant metric on Ws,p
locðΩÞ.

Theorem 106. Let ðs, p,ΩÞ be an interior smooth multiplica-
tion triple. Then, Ws,p

locðΩÞ is a Frechet space.

Proof. By Corollary 14, it is enough to show that Ws,p
locðΩÞ

equipped with the metric in (95) is complete. Note that all
admissible families result in equivalent topologies in Ws,p

loc
ðΩÞ. So we can choose the functions φj’s in the definition
of d to be the partition of unity introduced in Theorem 43.
Now, suppose fumg is a Cauchy sequence with respect to d.
In what follows, we will prove that fumg converges to a dis-
tribution u in D′ðΩÞ. For now, let us assume this is true.
We need to show that u is an element of Ws,p

locðΩÞ; that is,
we need to show that for all j, φj u ∈W

s,pðΩÞ.
It follows from the definition of d that for each j ∈ℕ,

fφjumgm∈ℕ
is a Cauchy sequence in Ws,pðΩÞ. Since Ws,pðΩÞ

is a Banach space, there exists f j in Ws,pðΩÞ such that φjum
⟶ f j in Ws,pðΩÞ. Note that Ws,pðΩÞ↪D′ðΩÞ, so φjum
⟶ f j in D′ðΩÞ, and thus, for all ψ ∈DðΩÞ we have

f j, ψ
D E

D′ Ωð Þ×D Ωð Þ
= lim

m⟶∞
φj um, ψ
D E

D′ Ωð Þ×D Ωð Þ

= lim
m⟶∞

um, φjψ
D E

D′ Ωð Þ×D Ωð Þ

= u, φjψ
D E

D′ Ωð Þ×D Ωð Þ

= φju, ψ
D E

D′ Ωð Þ×D Ωð Þ
:

ð96Þ

Hence, φju = f j in D′ðΩÞ. Since f j ∈W
s,pðΩÞ we can

conclude that φju ∈W
s,pðΩÞ.

It remains to show that fumg converges in D′ðΩÞ. To
this end, it is enough to show that for all ψ ∈DðΩÞ, the
sequence fhum, ψig converges in ℝ (see Theorem 60). Let
ψ ∈DðΩÞ. Since supp ψ is compact, there are only finitely
many of φj’s that are nonzero on the support of ψ (see
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Theorem 43) which we denote by φj1
,⋯, φjl

. So for each x
∈ supp ψ, φj1

ðxÞ +⋯ + φjl
ðxÞ = 1. We have

um, ψh i = um, φj1
+⋯+φjl

� �
ψ

D E
= φj1

+⋯+φjl

� �
um, ψ

D E
= φj1

um, ψ
D E

+⋯+ φjl
um, ψ

D E
:

ð97Þ

limm⟶∞hφj1
um, ψi,⋯, limm⟶∞hφjl

um, ψi all exist

(since φjr
um is Cauchy in Ws,pðΩÞ, it is convergent in Ws,p

ðΩÞ, and so it is convergent in D′ðΩÞ). Therefore,
limm⟶∞hum, ψi exists.

Theorem 107. Let ðs, p,ΩÞ be a smooth multiplication triple
(so we know that Ws,pðΩÞ ⊆Ws,p

locðΩÞ and Ws,p
locðΩÞ is metriz-

able). Then, Ws,pðΩÞ↪Ws,p
locðΩÞ.

Proof. Since both spaces are metrizable, it suffices to show
that if ui ⟶ u inWs,pðΩÞ, then ui ⟶ u inWs,p

locðΩÞ. To this
end, let φ be an arbitrary element of C∞

c ðΩÞ. We need to
show that if ui ⟶ u in Ws,pðΩÞ, then φui ⟶ φu in Ws,pð
ΩÞ. But this is a consequence of the fact that ðs, p,ΩÞ is a
smooth multiplication triple.

Theorem 108. Let Ω be a nonempty open set in ℝn, s ∈ℝ,
and 1 < p <∞. Then, EðΩÞ is continuously embedded in
Ws,p

locðΩÞ; i.e., the “identity map” from EðΩÞ to Ws,p
locðΩÞ is

continuous.

Proof. By Theorem 45, it is enough to show that if φm ⟶ 0
in EðΩÞ, then φm ⟶ 0 in Ws,p

locðΩÞ; that is, for all ψ ∈
C∞
c ðΩÞ, ψφm ⟶ 0 in Ws,pðΩÞ.
Let ψ ∈ C∞

c ðΩÞ and let mψ denote multiplication by ψ.
Multiplication by smooth functions is a continuous linear
operator on EðΩÞ ([21]). Somψ : EðΩÞ⟶EðΩÞ is contin-
uous. The range of this map is in the subspace Esupp ψðΩÞ.
So mψ : EðΩÞ⟶Esupp ψðΩÞ is continuous. However,
Esupp ψðΩÞ↪DðΩÞ. Hence, mψ : EðΩÞ⟶DðΩÞ is contin-
uous. As a consequence, since φm ⟶ 0 in EðΩÞ, ψφm
⟶ 0 in DðΩÞ. Finally, since DðΩÞ↪Ws,pðΩÞ, we can con-
clude that ψφm ⟶ 0 in Ws,pðΩÞ.

Corollary 109. Since DðΩÞ↪EðΩÞ, it follows that under the
hypotheses of Theorem 108, DðΩÞ is continuously embedded
in Ws,p

locðΩÞ.

Theorem 110. Let ðs, p,ΩÞ be a smooth multiplication triple.
Then, C∞

c ðΩÞ is dense in Ws,p
locðΩÞ.

Proof. Let u ∈Ws,p
locðΩÞ. It is enough to show that there exists

a sequence fψjg in C∞
c ðΩÞ such that ψj ⟶ u in Ws,p

locðΩÞ,
i.e.,

∀ξ ∈ C∞
c Ωð Þ ξψj ⟶ ξu in Ws,p Ωð Þ: ð98Þ

First, note that, since ðs, p,ΩÞ is a smooth multiplication
triple, for all ξ ∈ C∞

c ðΩÞ, there exists a constant Cξ,s,p,Ω such
that

∀v ∈Ws,p Ωð Þ  ξ vk kWs,p Ωð Þ ≤ Cξ,s,p,Ω vk kWs,p Ωð Þ: ð99Þ

Let fφjgj∈N be the admissible family introduced in the

proof of Lemma 104. For each ξ ∈ C∞
c ðΩÞ, there exists a

number Jξ such that for all j ≥ Jξ, φj = 1 on supp ξ. So,

∀j ≥ Jξ φj ξ = ξ: ð100Þ

Clearly, by definition of Ws,p
locðΩÞ, for each j, φju ∈W

s,p

ðΩÞ, also φju has compact support, so φju ∈W
s,p
0 ðΩÞ (see

Remark 83). Hence, for each j, there exists ψj ∈ C
∞
c ðΩÞ such

that kψj − φjuk < 1/j. We claim that ξψj ⟶ ξu in Ws,pðΩÞ.
Indeed, given ε > 0 and ξ ∈ C∞

c ðΩÞ, let J > Jξ be such that
1/J < ε/Cξ,s,p,Ω. Then, for j ≥ J , we have

ξψj − ξu
��� ���

Ws,p Ωð Þ
= ξψj − ξφju
��� ���

Ws,p Ωð Þ

= ξ ψj − φju
� ���� ���

Ws,p Ωð Þ

≤ Cξ,s,p,Ω ψj − φju
��� ���

Ws,p Ωð Þ

< Cξ,s,p,Ω
1
J
< ε:

ð101Þ

Remark 111. As a consequence, if ðs, p,ΩÞ is a smooth mul-
tiplication triple, then ½Ws,p

locðΩÞ�∗ (equipped with the strong
topology) is continuously embedded in D′ðΩÞ. More pre-
cisely, the identity map i : DðΩÞ⟶Ws,p

locðΩÞ is continuous
with dense image, and therefore, by Theorem 27, the adjoint
i∗ : ½Ws,p

locðΩÞ�∗ ⟶D′ðΩÞ is a continuous injective map.
We have

i∗u, φh iD′ Ωð Þ×D Ωð Þ = u, iφh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ

= u, φh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ:
ð102Þ

We usually identify ½Ws,p
locðΩÞ�∗ with its image under i∗

and view ½Ws,p
locðΩÞ�∗ as a subspace of D′ðΩÞ. So, under this

identification, we can rewrite the above equality as follows:

∀u ∈ Ws,p
loc Ωð Þ� 
∗

  u, φh iD′ Ωð Þ×D Ωð Þ = u, φh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ:

ð103Þ

Theorem 112. Let ðs, p,ΩÞ be a smooth multiplication triple.
Then, Ws,p

locðΩÞ is separable.
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Proof. DðΩÞ is continuously embedded in Ws,p
locðΩÞ and it is

dense in Ws,p
locðΩÞ. Since DðΩÞ is separable, it follows from

Lemma 95 that Ws,p
locðΩÞ is separable.

As a direct consequence of the definitions, locally Sobo-
lev functions and Sobolev functions with compact support
are both subsets of the space of distributions. The next two
theorems establish a duality connection between the two
spaces. But first, we need to state a simple lemma.

Lemma 113. Let X and Y be two topological spaces. Suppose
that Y is Hausdorff. Let f : X ⟶ Y and g : X ⟶ Y be two
continuous functions that agree on a dense subset A of X.
Then, f = g everywhere. (So, in particular, in order to show
that two continuous mappings from X to Y are equal, we just
need to show that they agree on some dense subset.)

Proof. Suppose that there exists x0 ∈ X such that f ðx0Þ ≠ gð
x0Þ. Since Y is Hausdorff, there exist open neighborhoods
U and V of f ðx0Þ and gðx0Þ, respectively, such that U ∩ V
=∅. f −1ðUÞ ∩ g−1ðVÞ is a nonempty (x0 is in it) open set
in X so its intersection with A is nonempty. Let z be a point
in the intersection of f −1ðUÞ ∩ g−1ðVÞ and A. Clearly, f ðzÞ
∈U and gðzÞ ∈ V ; but since z ∈ A, we have f ðzÞ = gðzÞ. This
contradicts the assumption that U ∩V =∅.

Theorem 114. Suppose that ðs, p,ΩÞ and ð−s, p′,ΩÞ are

smooth multiplication triples. Define the mapping T : W−s,p′
loc

ðΩÞ⟶ ½Ws,p
compðΩÞ�∗ by

∀u ∈W−s,p′
loc Ωð Þ∀f ∈Ws,p

comp Ωð Þ  T uð Þ½ � fð Þ≔ ψf u, f
D E

W−s,p ′
0 Ωð Þ×Ws,p

0 Ωð Þ
,

ð104Þ

where ψf is any function in C∞
c ðΩÞ that is equal to 1 on a

neighborhood containing the support of f . Then,

(1) ½TðuÞ�ð f Þ does not depend on the choice of ψf

(2) For all u ∈W−s,p′
loc ðΩÞ, TðuÞ is indeed an element of

½Ws,p
compðΩÞ�∗

(3) T : W−s,p′
loc ðΩÞ⟶ ½Ws,p

compðΩÞ�∗ is bijective

(4) Suppose ½Ws,p
compðΩÞ�∗ is equipped with the strong

topology. Then, the bijective linear map T : W−s,p′
loc

ðΩÞ⟶ ½Ws,p
compðΩÞ�∗ is a topological isomorphism;

i.e., it is continuous with continuous inverse. So

½Ws,p
compðΩÞ�∗ can be identified with W−s,p′

loc ðΩÞ as
topological vector spaces

Proof.

(1) For the first item, it is enough to show that if ψ ∈
C∞
c ðΩÞ is equal to zero on a neighborhood U con-

taining supp f , then hψu, f i
W−s,p ′

0 ðΩÞ×Ws,p
0 ðΩÞ = 0. Note

that f is not necessarily in C∞
c ðΩÞ, so we cannot

directly apply the duality pairing identity stated in
Remark 69. Let f f mg be sequence in C∞

c ðΩÞ such
that f m ⟶ f in Ws,p

0 ðΩÞ. Let ξ ∈ C∞
c ðΩÞ be such

that ξ = 1 on supp f and ξ = 0 outside U . By assump-
tion, ðs, p,ΩÞ is a smooth multiplication triple and so
ξf m ⟶ ξf = f in Ws,p

0 ðΩÞ. Since elements of dual
are continuous, we have

ψu, fh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

= lim
m⟶∞

ψu, ξf mh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ =Remark 69 lim

m⟶∞
ψu, ξf mh iD′ Ωð Þ×D Ωð Þ

= lim
m⟶∞

u, ψξf mh iD′ Ωð Þ×D Ωð Þ = lim
m⟶∞

u 0ð Þ = 0:

ð105Þ

Note that ξf m is zero outside U and ψ = 0 in U , so
ψξf m = 0 everywhere

(2) In order to show that TðuÞ is an element of
½Ws,p

compðΩÞ�∗, we need to prove that TðuÞ: Ws,p
compð

ΩÞ⟶ℝ is linear and continuous. Linearity is obvi-
ous. In order to prove continuity, we need to show
that for all K ∈KðΩÞ, TðuÞjWs,p

K ðΩÞ is continuous

(see Theorem 37). Let K ∈KðΩÞ and fix a function
ψ ∈ C∞

c ðΩÞ which is equal to 1 on a neighborhood
containing K . For all f ∈Ws,p

K ðΩÞ we have

T uð Þ½ � fð Þj j = ψu, fh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

��� ���
≤ ψuk kW−s,p ′ Ωð Þ × fk kWs,p Ωð Þ,

ð106Þ

which proves the continuity of the linear map TðuÞ
(3) In order to prove that T is bijective, we give an

explicit formula for the inverse. Recall that by defini-

tion, W−s,p′
loc ðΩÞ is a subspace of D′ðΩÞ and by

Remark 94, ½Ws,p
compðΩÞ�∗ can also be viewed as a

subspace of D′ðΩÞ. More precisely, if we let i : DðΩÞ
⟶Ws,p

compðΩÞ be the “identity map” and i∗

: ½Ws,p
compðΩÞ�∗ ⟶D′ðΩÞ be the adjoint of i, then i∗

is a continuous injective linear map and

∀u ∈ Ws,p
comp Ωð Þ

h i∗
∀φ ∈D Ωð Þ  i∗u, φh iD′ Ωð Þ×D Ωð Þ

= u, φh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ:

ð107Þ

Moreover, if K ∈KðΩÞ, then Ws,p
K ðΩÞ↪Ws,p

compðΩÞ,
and therefore, if u ∈ ½Ws,p

compðΩÞ�∗, then ujWs,p
K ðΩÞ ∈

½Ws,p
K ðΩÞ�∗ and

19Journal of Function Spaces



∀g ∈Ws,p
K Ωð Þ  u, gh i Ws,p

comp Ωð Þ½ �∗×Ws,p
comp Ωð Þ

= u Ws,p
K Ωð Þ

��� , g
D E

Ws,p
K Ωð Þ½ �∗×Ws,p

K Ωð Þ
:

ð108Þ

Now, we claim that the image of i∗ is inW−s,p′
loc ðΩÞ and

in fact i∗ is the inverse of T. Let us first prove that the

image of i∗ is in W−s,p′
loc ðΩÞ. Let u ∈ ½Ws,p

compðΩÞ�∗. We

need to show that for all φ ∈ C∞
c ðΩÞ, ðφÞði∗uÞ ∈

W−s,p′ðΩÞ. To this end, we make use of Corollary 71.
Let φ ∈ C∞

c ðΩÞ and let K = supp φ. For all ψ ∈DðΩÞ,
we have

φi∗u, ψh iD′ Ωð Þ×D Ωð Þ
��� ��� = i∗u, φψh iD′ Ωð Þ×D Ωð Þ

��� ���
= u, φψh i Ws,p

comp Ωð Þ½ �∗×Ws,p
comp Ωð Þ

��� ���
= u Ws,p

K Ωð Þ
��� , φψ

D E
Ws,p

K Ωð Þ½ �∗×Ws,p
K Ωð Þ

����
����

≤ ujWs,p
K Ωð Þ

��� ���
Ws,p

K Ωð Þ½ �∗ φψk kWs,p
K Ωð Þ

= ujWs,p
K Ωð Þ

��� ���
Ws,p

K Ωð Þ½ �∗ φψk kWs,p Ωð Þ

≼ ujWs,p
K Ωð Þ

��� ���
Ws,p

K Ωð Þ½ �∗ ψk kWs,p Ωð Þ,

ð109Þ

which, by Corollary 71, proves that φi∗u ∈W−s,p′ðΩÞ.
Now, we prove i∗ is the inverse of T. Note that for all

u ∈W−s,p′
loc ðΩÞ ⊆D′ðΩÞ and φ ∈DðΩÞ,

i∗ ∘ Tð Þ uð Þ, φh iD′ Ωð Þ×D Ωð Þ =
Equation 107ð Þ

T uð Þ, φh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ

=Definition of T
ψφu, φ
D E

W−s,p ′
0 Ωð Þ×Ws,p

0 Ωð Þ
=Remark 69

ψφu, φ
D E

D′ Ωð Þ×D Ωð Þ

= u, ψφφ
D E

D′ Ωð Þ×D Ωð Þ
= u, φh iD′ Ωð Þ×D Ωð Þ:

ð110Þ

Therefore, i∗ ∘ T is identity. Next, we show that for all
v ∈ ½Ws,p

compðΩÞ�∗, ðT ∘ i∗ÞðvÞ = v. Note that ðT ∘ i∗ÞðvÞ
and v both are in ½Ws,p

compðΩÞ�∗ and so they are contin-
uous functions from Ws,p

compðΩÞ to ℝ. Since DðΩÞ is
dense in Ws,p

compðΩÞ, according to Lemma 113, it is
enough to show that for all f ∈DðΩÞ, we have ½ðT ∘
i∗ÞðvÞ�ð f Þ = vð f Þ.

T ∘ i∗ð Þ vð Þ, fh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ

=Definition of T
ψ f i∗vð Þ, f
D E

W−s,p ′
0 Ωð Þ×Ws,p

0 Ωð Þ

=Remark 69
ψf i∗vð Þ, f
D E

D′ Ωð Þ×D Ωð Þ

= i∗v, ψf f
D E

D′ Ωð Þ×D Ωð Þ
= i∗v, fh iD′ Ωð Þ×D Ωð Þ

=
Equation 107ð Þ

v, fh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ

ð111Þ

(4) Let us denote the topology of W−s,p′
loc ðΩÞ by τ and the

strong topology on ½Ws,p
compðΩÞ�∗ by τ′. Our goal is to

show that T : ðW−s,p′
loc ðΩÞ, τÞ⟶ ð½Ws,p

compðΩÞ�∗, τ′Þ
and T−1 = i∗ : ð½Ws,p

compðΩÞ�∗, τ′Þ⟶ ðW−s,p′
loc ðΩÞ, τÞ

are both continuous maps. To this end, we make use
of Theorem 20. Recall that τ is induced by the family

of seminorms fpφ : W−s,p′
loc ðΩÞ⟶ℝg

φ∈C∞
c ðΩÞ where

pφðuÞ = ∥φu∥
W−s,p ′ ðΩÞ. Also τ′ is induced by the family

of seminorms fpB′ : ½Ws,p
compðΩÞ�∗ ⟶ℝgwhere B var-

ies over all bounded sets in Ws,p
compðΩÞ and pB′ ðuÞ =

supf ∈Bjuð f Þj
Step 1. Let B be a bounded subset of Ws,p

compðΩÞ.
Since B is bounded, there exists K ∈KðΩÞ such that
B is bounded in Ws,p

K ðΩÞ (see Theorem 39; note that
the topology of Ws,p

compðΩÞ can be constructed as the
inductive limit of Ws,p

K j
ðΩÞ where fKjg is an increas-

ing chain of compact subsets of Ω). So there exists a
constant C such that for all f ∈ B, k f kWs,pðΩÞ ≤ C. Let
ψ be a function in C∞

c ðΩÞ which is equal to 1 on a

neighborhood containing K . For all u ∈W−s,p′
loc ðΩÞ,

we have

pB′ ∘ T
� �

uð Þ = sup
f ∈B

T uð Þ½ � fð Þj j

=Definition of T sup
f ∈B

ψu, fh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

��� ���
≤ sup

f ∈B
ψuk kW−s,p ′ Ωð Þ fk kWs,p Ωð Þ ≤ Cpψ uð Þ:

ð112Þ

It follows from Theorem 20 that T : ðW−s,p′
loc ðΩÞ, τÞ

⟶ ð½Ws,p
compðΩÞ�∗, τ′Þ is continuous

Step 2. Let φ ∈ C∞
c ðΩÞ. Let K be a compact set whose

interior contains supp φ. Since ðs, p,ΩÞ is a smooth
multiplication triple, there exists a constant Cφ > 0
such that for all f ∈Ws,pðΩÞ, we have kφf kWs,pðΩÞ ≤
Cφk f kWs,pðΩÞ.

We have

pφ ∘ i
∗

� �
uð Þ = φi∗uk kWs,p

0 Ωð Þ = φi∗uk k
W−s,p ′

0 Ωð Þ
� 
∗

= sup
ξ∈C∞

c Ωð Þ,∥ξ∥Ws,p Ωð Þ≤1
φi∗u, ξh i

Ws,p
0 Ωð Þ×W−s,p ′

0 Ωð Þ

��� ���
= sup

ξ∈C∞
c Ωð Þ,∥ξ∥Ws,p Ωð Þ≤1

φi∗u, ξh iD′ Ωð Þ×D Ωð Þ
��� ���

= sup
ξ∈C∞

c Ωð Þ,∥ξ∥Ws,p Ωð Þ≤1
i∗u, φξh iD′ Ωð Þ×D Ωð Þ
��� ���

≤ sup
η∈C∞

supp φ Ωð Þ,∥η∥Ws,p Ωð Þ≤Cφ

i∗u, ηh iD′ Ωð Þ×D Ωð Þ
��� ���

=
Equation 107ð Þ sup

η∈C∞
supp φ Ωð Þ,∥η∥Ws,p Ωð Þ≤Cφ

u, ηh i Ws,p
comp Ωð Þ½ �∗×Ws,p

comp Ωð Þ
��� ���:

ð113Þ
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So, if we let B be the ball of radius 2Cφ centered at 0
inWs,p

K ðΩÞ (clearly B is a bounded set inWs,p
compðΩÞ),

we get

pφ ∘ i
∗

� �
uð Þ ≤ sup

f ∈B
u, fh i Ws,p

comp Ωð Þ½ �∗×Ws,p
comp Ωð Þ

��� ��� = pB′ uð Þ

ð114Þ

Corollary 115. Suppose that ðs, p,ΩÞ and ð−s, p′,ΩÞ are
both smooth multiplication triples. By the previous theorem,

½W−s,p′
compðΩÞ�

∗
can be identified with Ws,p

locðΩÞ. Also, by

Remark 94, ½W−s,p′
compðΩÞ�

∗
is continuously embedded in D′ðΩÞ.

Therefore, Ws,p
locðΩÞ is continuously embedded in D′ðΩÞ. Since

Ws,p
locðΩÞ is a Frechet space, it follows from Theorem 19 and

Remark 22 that the preceding statement remains true even if
we consider D′ðΩÞ equipped with the weak∗ topology. So,

Ws,p
loc Ωð Þ↪ D′ Ωð Þ, strong topology

� �
andWs,p

loc Ωð Þ
↪ D′ Ωð Þ,weak∗topology
� �

:
ð115Þ

Theorem 116. Suppose that ðs, p,ΩÞ and ð−s, p′,ΩÞ are

smooth multiplication triples. Define the mapping R : W−s,p′
comp

ðΩÞ⟶ ½Ws,p
locðΩÞ�∗ by

∀u ∈W−s,p′
comp Ωð Þ∀f ∈Ws,p

loc Ωð Þ  R uð Þ½ � fð Þ≔ u, ψu fh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ,

ð116Þ

where ψu is any function in C∞
c ðΩÞ that is equal to 1 on a

neighborhood containing the support of u. Then,

(1) ½RðuÞ�ð f Þ does not depend on the choice of ψu

(2) For all u ∈W−s,p′
compðΩÞ, RðuÞ is indeed an element of

½Ws,p
locðΩÞ�∗

(3) R : W−s,p′
compðΩÞ⟶ ½Ws,p

locðΩÞ�∗ is bijective

(4) Suppose ½Ws,p
locðΩÞ�∗ is equipped with the strong topol-

ogy. Then, the linear map R is bijective and continuous.

In particular, ½Ws,p
locðΩÞ�∗ and W−s,p′

compðΩÞ are isomor-
phic vector spaces

Proof.

(1) Note that since ðs, p,ΩÞ is a smooth multiplication
triple, ψu f is in Ws,p

0 ðΩÞ. Also by assumption, ð−s,
p′,ΩÞ is a smooth multiplication triple. Therefore,

for each K ∈KðΩÞ, W−s,p′
K ðΩÞ↪W−s,p′

0 ðΩÞ, and

hence, W−s,p′
compðΩÞ↪W−s,p′

0 ðΩÞ. So the pairing in the
definition of ½RðuÞ�ð f Þ makes sense. The fact that
the output is independent of the choice of ψu follows
directly from Theorem 58

(2) Clearly, RðuÞ is linear. Also RðuÞ is continuous (so it
is an element of ½Ws,p

locðΩÞ�∗). The reason is as fol-
lows: for all f ∈Ws,p

locðΩÞ, we have

R uð Þ½ � fð Þj j = u, ψu fh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

��� ���
≤ uk k

W−s,p ′
0 Ωð Þ ψu fk kWs,p

0 Ωð Þ:
ð117Þ

That is, for all f ∈Ws,p
locðΩÞ, we have j½RðuÞ�ð f Þj≼

kψu f kWs,pðΩÞ. It follows from Theorem 20 that RðuÞ
: Ws,p

locðΩÞ⟶ℝ is continuous

(3) In order to prove that R is bijective we give an
explicit formula for the inverse. Recall that by
Remark 111, ½Ws,p

locðΩÞ�∗ can also be viewed as a sub-
space of D′ðΩÞ. More precisely, if we let i : DðΩÞ
⟶Ws,p

locðΩÞ be the “identity map” and i∗

: ½Ws,p
locðΩÞ�∗ ⟶D′ðΩÞ be the adjoint of i, then i∗

is a continuous injective linear map and

∀u ∈ Ws,p
loc Ωð Þ� 
∗∀φ ∈D Ωð Þ  i∗u, φh iD′ Ωð Þ×D Ωð Þ

= u, φh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ:

ð118Þ

Now, we claim that the image of i∗ is in W−s,p′
compðΩÞ

and in fact i∗ is the inverse of R. Let us first prove

that the image of i∗ is in W−s,p′
compðΩÞ. EðΩÞ is contin-

uously and densely embedded in Ws,p
locðΩÞ (continu-

ity is proved in Theorem 108 and density is a
direct consequence of the density of C∞

c ðΩÞ in
Ws,p

locðΩÞ). Therefore, i∗ð½Ws,p
locðΩÞ�∗Þ is indeed a sub-

space of E ′ðΩÞ ⊆D′ðΩÞ and so elements of i∗ð
½Ws,p

locðΩÞ�∗Þ can be identified with distributions in
D′ðΩÞ that have compact support. It remains to

show that if u ∈ ½Ws,p
locðΩÞ�∗, then i∗u ∈W−s,p′ðΩÞ.

To this end, we make use of Corollary 71. For all φ
∈DðΩÞ, we have

i∗u, φh iD′ Ωð Þ×D Ωð Þ
��� ��� =

Equation 118ð Þ
u, φh i Ws,p

loc Ωð Þ½ �∗×Ws,p
loc Ωð Þ

��� ���
= ujWs,p Ωð Þ, φ
D E

Ws,p
0 Ωð Þ½ �∗×Ws,p

0 Ωð Þ

����
����

≤ ujWs,p
0 Ωð Þ

��� ���
Ws,p

0 Ωð Þ½ �∗ φk kWs,p Ωð Þ:

ð119Þ

So, by Corollary 71, we can conclude that u ∈
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W−s,p′ðΩÞ. In the above, we used the fact that Ws,p
0 ð

ΩÞ↪Ws,pðΩÞ↪Ws,p
locðΩÞ, and so for u ∈ ½Ws,p

locðΩÞ�∗,
we have ujWs,p

0 ðΩÞ ∈ ½Ws,p
0 ðΩÞ�∗.

Now, we prove that i∗ : ½Ws,p
locðΩÞ�∗ ⟶W−s,p′

compðΩÞ is
the inverse of R. For all u ∈W−s,p′

compðΩÞ and φ ∈DðΩÞ,
we have

i∗ ∘ Rð Þ uð Þ, φh iD′ Ωð Þ×D Ωð Þ

=
Equation 118ð Þ

Ru, φh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ

=Definition of R u, ψuφh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

=Remark 69 u, ψuφh iD′ Ωð Þ×D Ωð Þ
= ψuu, φh iD′ Ωð Þ×D Ωð Þ = u, φh iD′ Ωð Þ×D Ωð Þ:

ð120Þ

Therefore, ði∗ ∘ RÞðuÞ = u for all u ∈W−s,p′
compðΩÞ.

Now, we prove that R ∘ i∗ is also the identity map.
Considering Lemma 113, since DðΩÞ is dense in
½Ws,p

locðΩÞ�∗, it is enough to show that for all v ∈
½Ws,p

locðΩÞ�∗ and f ∈DðΩÞ, ½R ∘ i∗ðvÞ�ð f Þ = vð f Þ. We
have

R ∘ i∗ð Þv, fh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ =Definition of R i∗v, ψi∗v fh i
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

=Remark 69 i∗v, ψi∗v fh iD′ Ωð Þ×D Ωð Þ = ψi∗vi
∗v, fh iD′ Ωð Þ×D Ωð Þ

= i∗v, fh iD′ Ωð Þ×D Ωð Þ =
Equation 118ð Þ

v, fh i Ws,p
loc Ωð Þ½ �∗×Ws,p

loc Ωð Þ,

ð121Þ

which shows R ∘ i∗ðvÞ = v

(4) Let us denote the topology ofW−s,p′
compðΩÞ by τ and the

strong topology on ½Ws,p
locðΩÞ�∗ by τ′. Our goal is to

show that R : ðW−s,p′
compðΩÞ, τÞ⟶ ð½Ws,p

locðΩÞ�∗, τ′Þ is
continuous. To this end, we make use of Theorem
20. Recall that τ is induced by the family of semi-

norms fqa,−s,p′ : W−s,p′
compðΩÞ⟶ℝg

a∈S
where qa,−s,p′

ðuÞ =∑jajkψjukW−s,p ′ ðΩÞ (here, we are using the

notation introduced in Theorem 97). Also τ′ is
induced by the family of seminorms fpB
: ½Ws,p

locðΩÞ�∗ ⟶ℝg where B varies over all
bounded sets in Ws,p

locðΩÞ and pBðuÞ = supf ∈Bjuð f Þj.
Let B be a bounded subset of Ws,p

locðΩÞ. Since B is
bounded, for all φ ∈ C∞

c ðΩÞ, the set fkφf kWs,pðΩÞ : f
∈ Bg is bounded in ℝ (see Theorem 16). Thus, for
all φ ∈ C∞

c ðΩÞ, there exists a positive integer aφ such
that for all f ∈ B, kφf kWs,pðΩÞ < aφ. Recall that fψjg in
the definition of qa,−s,p′ denotes a fixed partition of
unity. For each j, let φj be a function in C∞

c ðΩÞ

which is equal to 1 on a neighborhood containing

the support of ψj. For all u ∈W
−s,p′
compðΩÞ, we have

pB ∘ Rð Þ uð Þ = pB ∘ Rð Þ 〠
j

ψj u

 !
≤〠

j

pB ∘ Rð Þ ψju
� �

= sup
f ∈B

R ψju
� �� �

fð Þ
��� ���
=Definition of R〠

j

sup
f ∈B

ψju, φj f
D E

W−s,p ′
0 Ωð Þ×Ws,p

0 Ωð Þ

����
����

≤〠
j

sup
f ∈B

ψju
��� ���

W−s,p ′ Ωð Þ
φj f
��� ���

Ws,p Ωð Þ

≤〠
j

aφ j
ψju
��� ���

W−s,p ′ Ωð Þ
= qa,−s,p′ uð Þ,

ð122Þ

where a = ðaφ1
, aφ2

,⋯Þ. Note that the inequality ðpB
∘ RÞð∑ jψj uÞ ≤∑jðpB ∘ RÞðψjuÞ holds because u has
compact support and so only finitely many terms
in the sum are nonzero, so we can use the subaddi-
tivity of the seminorm and linearity of R.

It follows from Theorem 20 that R : ðW−s,p′
compðΩÞ, τÞ

⟶ ½Ws,p
locðΩÞ�∗ is continuous

Remark 117. According to the previous two theorems, we
have the following:

(i) When u ∈W−s,p′
loc ðΩÞ is viewed as an element of

½Ws,p
compðΩÞ�∗, we have

∀f ∈Ws,p
comp Ωð Þ u fð Þ = ψf u, f

D E
W−s,p ′

0 Ωð Þ×Ws,p
0 Ωð Þ

,

ð123Þ

where ψf is any function in C∞
c ðΩÞ that is equal to 1

on a neighborhood containing supp f

(ii) When u ∈W−s,p′
compðΩÞ is viewed as an element of

½Ws,p
locðΩÞ�∗, we have

∀f ∈Ws,p
loc Ωð Þ u fð Þ = u, ψfh i

W−s,p ′
0 Ωð Þ×Ws,p

0 Ωð Þ,

ð124Þ

where ψ is any function in C∞
c ðΩÞ that is equal to 1

on a neighborhood containing supp u

Corollary 118. Suppose that ðs, p,ΩÞ and ð−s, p′,ΩÞ are
both smooth multiplication triples. As a direct consequence
of the previous theorems, the bidual of Ws,p

compðΩÞ is itself.
So Ws,p

compðΩÞ is semireflexive. It follows from Theorem 25
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that Ws,p
compðΩÞ is reflexive and subsequently its dual

W−s,p′
loc ðΩÞ is reflexive.

Now, we put everything together to build general
embedding theorems for spaces of locally Sobolev-
Slobodeckij functions.

Theorem 119 (embedding theorem I). Let Ω be a nonempty
open set in ℝn. If s1, s2 ∈ℝ and 1 < p1, p2 <∞ are such that
Ws1 ,p1ðΩÞ↪Ws2 ,p2ðΩÞ, then Ws1 ,p1

loc ðΩÞ↪Ws2 ,p2
loc ðΩÞ.

Proof. We have

u ∈Ws1,p1
loc Ωð Þ⟺ ∀φ ∈ C∞

c Ωð Þ, φu ∈Ws1,p1 Ωð Þ,
⇒∀φ ∈ C∞

c Ωð Þ, φu ∈Ws2,p2 Ωð Þ,
⟺u ∈Ws2,p2

loc Ωð Þ:
ð125Þ

So, Ws1,p1
loc ðΩÞ ⊆Ws2,p2

loc ðΩÞ. Now, note that for all φ ∈
C∞
c ðΩÞ,

uj jφ,s2,p2 = φuk kWs2,p2 Ωð Þ≼ φuk kWs1,p1 Ωð Þ = uj jφ,s1,p1 : ð126Þ

So, it follows from Theorem 20 that the inclusion map
from Ws1,p1

loc ðΩÞ to Ws2,p2
loc ðΩÞ is continuous.

Theorem 120 (embedding theorem II). Let Ω be a nonempty
open set in ℝn that has the interior Lipschitz property. Sup-
pose that s1, s2 ∈ℝ and 1 < p1, p2 <∞ are such that Ws1 ,p1

ðUÞ↪Ws2 ,p2ðUÞ for all bounded open sets U with Lipschitz
continuous boundary. If s1 < 0, further assume that ð−s1, p1′ ,
ΩÞ is a smooth multiplication triple. If s2 < 0, further assume
that ð−s2, p2′ ,ΩÞ is a smooth multiplication triple. Then,
Ws1 ,p1

loc ðΩÞ↪Ws2 ,p2
loc ðΩÞ.

Proof. Suppose u ∈Ws1,p1
loc ðΩÞ and φ ∈ C∞

c ðΩÞ. Let Ω′ be an
open set in Ω that contains supp φ and has Lipschitz contin-
uous boundary. We have

u ∈Ws1,p1
loc Ωð Þ⇒ φu ∈Ws1,p1 Ωð Þ

⇒Theorem 85
φuð Þ Ω′ ∈Ws1,p1 Ω′

� �
⇒ φuð Þ

��� ���
Ω′

� ∈Ws2,p2 Ω′
� �

⇒Theorem 85
φu ∈Ws2,p2 Ωð Þ:

ð127Þ

Since φ can be any element of C∞
c ðΩÞ, we can conclude

that if u ∈Ws1,p1
loc ðΩÞ, then u ∈Ws2,p2

loc ðΩÞ. In order to prove
the continuity of the inclusion map, we can proceed as fol-
lows: let φ ∈ C∞

c ðΩÞ and choose Ω′ as before.

uj jφ,s2,p2 = φuk kWs2,p2 Ωð Þ ≃Theorem 85
φuk kWs2,p2 Ω′ð Þ

≼ φuk kWs1,p1 Ω′ð Þ ≃Theorem 85
φuk kWs1,p1 Ωð Þ = uj jφ,s1,p1 :

ð128Þ

So, it follows from Theorem 20 that the inclusion map
from Ws1,p1

loc ðΩÞ to Ws2,p2
loc ðΩÞ is continuous.

A version of compact embedding for spaces Hm
loc with

integer smoothness degree has been studied in [17]. In what
follows, we will state the corresponding theorem and its
proof for spaces of locally Sobolev-Slobodeckij functions.

Lemma 121. Suppose that ðs, p,ΩÞ and ð−s, p′,ΩÞ are
smooth multiplication triples. If um converges weakly to u in
Ws,p

locðΩÞ, then

∀φ ∈ C∞
c Ωð Þ φum ⇀ φu inWs,p Ωð Þ: ð129Þ

Proof. The proof is based on the following well-known fact:
Fact 1. Let X be a topological space and suppose that x is

a point in X. Let fxmg be a sequence in X. If every subse-
quence of fxmg contains a subsequence that converges to x
, then xm ⟶ x.

Let φ ∈ C∞
c ðΩÞ. By Fact 1, it is enough to show that every

subsequence of φum has a subsequence that converges
weakly to φu in Ws,pðΩÞ. Let φum′ be a subsequence of φ
um. We have

um′ ⇀ u inWs,p
loc Ωð Þ ⇒

Corollary 29
um′f g is bounded

inWs,p
loc Ωð Þ ⇒

Corollary 17
φum′f g is bounded

inWs,p Ωð Þ:
ð130Þ

Since Ws,pðΩÞ is reflexive, there exists a subsequence φ
um″ that converges weakly to some F ∈Ws,pðΩÞ. To finish
the proof, it is enough to show that F = φu. We have

um″ ⇀ u inWs,p
loc Ωð Þ⇒ um″ ⟶ u in D′ Ωð Þ, weak∗

� �
⇒φum″ ⟶ φu in D′ Ωð Þ, weak∗

� �
:

ð131Þ

In the first line, we used Theorem 30 and the fact that
Ws,p

locðΩÞ↪ðD′ðΩÞ, weak∗Þ (see Corollary 115). In the sec-
ond line, we used the fact that multiplication by smooth
functions is a continuous operator on ðD′ðΩÞ, weak∗Þ.

Similarly, since Ws,pðΩÞ↪ðD′ðΩÞ, weak∗Þ, it follows
from Theorem 30 that

φum″ ⇀ F inWs,p Ωð Þ⇒ φum″ ⟶ F in D′ Ωð Þ, weak∗
� �

:

ð132Þ
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Consequently, φu = F as elements of D′ðΩÞ and subse-
quently as elements of Ws,p

0 ðΩÞ.

Theorem 122 (compact embedding). Let Ω be a nonempty
open set in ℝn that has the interior Lipschitz property. Sup-
pose that ðs1, p1,ΩÞ and ð−s1, p1′ ,ΩÞ are smooth multiplica-
tion triples. If s2 < 0, further assume that ð−s2, p2′ ,ΩÞ is a
smooth multiplication triple. Moreover, suppose that s1, s2,
p1, and p2 are such that Ws1 ,p1ðUÞ is compactly embedded
in Ws2 ,p2ðUÞ for all bounded open sets U with Lipschitz
continuous boundary. Then, every bounded sequence in
Ws1 ,p1

loc ðΩÞ has a convergent subsequence in Ws2 ,p2
loc ðΩÞ.

Proof. The proof makes use of the following well-known fact:
Fact 2. Let X and Y be Banach spaces. Suppose that T

: X⟶ Y is a linear compact operator. If the sequence xm
converges weakly (i.e., with respect to the weak topology)
to x in X, then TðxnÞ converges to TðxÞ (with respect to
the norm of Y) in Y .

Let um be a bounded sequence inWs1,p1
loc ðΩÞ. By Theorem

33, since Ws1,p1
loc ðΩÞ is a separable reflexive Frechet space,

there exists u ∈Ws1,p1
loc ðΩÞ and a subsequence fum′g such

that um′ ⇀ u in Ws1,p1
loc ðΩÞ. We claim that fum′g converges

to u in Ws2,p2
loc ðΩÞ, that is, for all φ ∈ C∞

c ðΩÞ, φum′ ⟶ φu
in Ws2,p2

loc ðΩÞ. Suppose that φ ∈ C∞
c ðΩÞ and let K ≔ supp φ.

By Lemma 121, we have

φum′ ⇀ φu inWs1,p1 Ωð Þ: ð133Þ

So, by Theorem 35,

φum′ ⇀ φu inWs1,p1
K Ωð Þ: ð134Þ

Let Ω′ be an open bounded set in Ω with Lipschitz con-
tinuous boundary such that K ⊆Ω′. By Theorem 85, the
restriction map from Ws1,p1

K ðΩÞ to Ws1,p1ðΩ′Þ is well-
defined and continuous. It follows from Theorem 34 that
this restriction map is weak-weak continuous. So φum′ ⇀ φ

u in Ws1,p1
K ðΩÞ implies that φum′ ⇀ φu in Ws1,p1ðΩ′Þ. By

assumption the identity map from Ws1,p1ðΩ′Þ to Ws2,p2ðΩ′Þ
is compact, so it follows from Fact 2 that φum′ ⟶ φu in
Ws2,p2ðΩ′Þ which subsequently implies φum′ ⟶ φu in
Ws2,p2ðΩÞ by Theorem 85.

6. Other Properties

The main results of this section do not appear to be in the
literature in the generality appearing here, and they play a
fundamental role in the study of the properties of differential
operators between Sobolev spaces of sections of vector bundles
on manifolds equipped with nonsmooth metric (see [15, 16]).

Theorem 123. Let Ω be a nonempty open set in ℝn, s ≥ 1,
and 1 < p <∞. Then, u ∈Ws,p

locðΩÞ if and only if u ∈ LplocðΩÞ
and for all 1 ≤ i ≤ n, ∂u/∂xi ∈Ws−1,p

loc ðΩÞ.

Proof.

u ∈Ws,p
loc Ωð Þ⟺ ∀φ ∈ C∞

c Ωð Þ φu ∈Ws,p Ωð Þ

⟺
Theorem 62

∀φ ∈ C∞
c Ωð Þ φu ∈ Lp Ωð Þ and for all 1

≤ i ≤ n,
∂ φuð Þ
∂xi

∈Ws−1,p Ωð Þ:
ð135Þ

Note that ∂ðφuÞ/∂xi = ð∂φ/∂xiÞu + φð∂u/∂xiÞ. Since ð∂φ
/∂xiÞu ∈Ws,pðΩÞ↪Ws−1,pðΩÞ, we have

∂ φuð Þ
∂xi

∈Ws−1,p Ωð Þ⟺ φ
∂u
∂xi

∈Ws−1,p Ωð Þ: ð136Þ

Therefore,

u ∈Ws,p
loc Ωð Þ⟺ ∀φ ∈ C∞

c Ωð Þφu ∈ Lp Ωð Þ and for all 1
≤ i ≤ n, φ

∂u
∂xi

∈Ws−1,p Ωð Þ

⟺u ∈ Lploc Ωð Þ and for all 1 ≤ i ≤ n,
∂u
∂xi

∈Ws−1,p
loc Ωð Þ: ð137Þ

Theorem 124. Let Ω be a nonempty open set in ℝn, k ∈ℕ,

and 1 < p <∞. Then, u ∈Wk,p
locðΩÞ if and only if ∂αu ∈ Lploc

ðΩÞ for all jαj ≤ k.

Proof. We prove the claim by induction on k. For k = 1, we
have

u ∈W1,p
loc Ωð Þ ⟺

Theorem 123
u ∈ Lploc Ωð Þ,∀1 ≤ i ≤ n 

∂u
∂xi

∈ Lploc Ωð Þ

⟺∀ αj j ≤ 1 ∂αu ∈ Lploc Ωð Þ:
ð138Þ

Now, suppose the claim holds for k =m. For k =m + 1,
we have

u ∈Wm+1,p
loc Ωð Þ ⟺

Theorem 123
u ∈ Lploc Ωð Þ,∀1 ≤ i ≤ n

∂u
∂xi

∈Wm,p
loc Ωð Þ

⟺
induction hypothesis

u ∈ Lploc Ωð Þ,∀1 ≤ i ≤ n ∀0 ≤ αj j ≤m ∂α
∂u
∂xi


 �
∈ Lploc Ωð Þ

⟺u ∈ Lploc Ωð Þ,∀0 < βj j ≤m + 1 ∂βu ∈ Lploc Ωð Þ
⟺∀ βj j ≤m + 1 ∂βu ∈ Lploc Ωð Þ:

ð139Þ

Theorem 125. Let s ∈ℝ, 1 < p <∞, and α ∈ℕn
0 . Suppose Ω

is a nonempty bounded open set in ℝn with Lipschitz contin-
uous boundary. Then,
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(1) the linear operator ∂α : Ws,p
locðℝnÞ⟶Ws−jαj,p

loc ðℝnÞ is
well-defined and continuous

(2) for s < 0, the linear operator ∂α : Ws,p
locðΩÞ⟶

Ws−jαj,p
loc ðΩÞ is well-defined and continuous

(3) for s ≥ 0 and jαj ≤ s, the linear operator ∂α : Ws,p
locðΩÞ

⟶Ws−jαj,p
loc ðΩÞ is well-defined and continuous

(4) if s ≥ 0, s − 1/p ≠ integer (i.e., the fractional part of s is

not equal to 1/p), then the linear operator ∂α : Ws,p
loc

ðΩÞ⟶Ws−jαj,p
loc ðΩÞ for jαj > s is well-defined and

continuous

Proof. This is the counterpart of Theorem 86 for locally
Sobolev functions. Here, we will prove the first item. The
remaining items can be proved using a similar technique.

Step 1. First we prove by induction on jαj that if u ∈
Ws,p

locðℝnÞ, then ∂αu ∈Ws−jαj,p
loc ðℝnÞ. Let φ ∈ C∞

c ðℝnÞ; we need
to show that φ∂αu ∈Ws−jαj,pðℝnÞ. If jαj = 0, there is nothing
to prove. If jαj = 1, there exists 1 ≤ i ≤ n such that ∂α = ∂/∂xi.
We have

φ∂αu = φ
∂u
∂xi

=
∂ φuð Þ
∂xi

−
∂φ
∂xi

u: ð140Þ

By assumption, φu ∈Ws,pðℝnÞ, and so it follows from
Theorem 86 that the first term on the right hand side is in
Ws−1,pðℝnÞ. Also, since u ∈Ws,p

locðℝnÞ, the second term on
the right hand side is in Ws,pðℝnÞ↪Ws−1,pðℝnÞ. Hence, φ
∂αu ∈Ws−1,pðℝnÞ. Now, suppose the claim holds for all jαj
≤ k. Suppose α is a multi-index such that jαj = k + 1. Clearly,
there exists 1 ≤ i ≤ n such that ∂α = ð∂/ð∂xiÞÞ∂β where β is a

multi-index with jβj = k. By the induction hypothesis, ∂βu
∈Ws−jβj,p

loc ðℝnÞ and so by the argument that was presented

for the base case, we have ð∂/ð∂xiÞÞ∂βu ∈Ws−jβj−1,p
loc ðℝnÞ =

Ws−jαj,p
loc ðℝnÞ
Step 2. In this step, we prove the continuity. Again, we

use induction on jαj. Let jαj = 1. Choose i as in the previous
step. For every φ ∈ C∞

c ðℝnÞ, we have

φ
∂
∂xi

u
����

����
s−1,p

=
∂ φuð Þ
∂xi

−
∂φ
∂xi

u
����

����
s−1,p

≤
∂ φuð Þ
∂xi

����
����
s−1,p

+
∂φ
∂xi

u
����

����
s−1,p

≼ φuk ks,p +
∂φ
∂xi

u
����

����
s,p
:

ð141Þ

On the right hand side, we have sum of two of the semi-
norms that define the topology of Ws,p

locðℝnÞ. It follows from
item (2) of Theorem 20 that ∂α : Ws,p

locðℝnÞ⟶Ws−1,p
loc ðℝnÞ

is continuous. Now, suppose the claim holds for all jαj ≤ k.
Suppose α is a multi-index such that jαj = k + 1. Clearly,
there exists 1 ≤ i ≤ n such that ∂α = ð∂/ð∂xiÞÞ∂β where β is

a multi-index with jβj = k. We have

φ∂αuk ks− αj j,p = φ
∂
∂xi

∂βu
� �����

����
s− αj j,p

≼
argument of the base case

φ∂βu
��� ���

s− αj j+1,p

+
∂φ
∂xi

∂βu
����

����
s− αj j+1,p

≼ φ∂βu
��� ���

s− βj j,p
+

∂φ
∂xi

∂βu
����

����
s− βj j,p

≼
induction hypothesis;Theorem 20

max φ1uk ks,p,⋯, φkuk ks,p
� �

+
∂φ
∂xi

∂βu
����

����
s− βj j,p

≼
induction hypothesis;Theorem 20

max

� φ1uk ks,p,⋯, φkuk ks,p
� �

+max ψ1uk ks,p,⋯, ψluk ks,p
� �

≼max φ1uk ks,p,⋯, φkuk ks,p, ψ1uk ks,p,⋯, ψluk ks,p
� �

ð142Þ

for some φ1,⋯, φk and ψ1,⋯, ψl in C∞
c ðℝnÞ. It follows

from item (2) of Theorem 20 that ∂α : Ws,p
locðℝnÞ⟶

Ws−jαj,p
loc ðℝnÞ is continuous

Next, we want to establish a counterpart of Theorem 76
for locally Sobolev-Slobodeckij spaces. To this end, first we
state and prove a simple lemma.

Lemma 126. Let Ω be a nonempty open subset of ℝn. Sup-
pose u : Ω⟶ℝ and ~u : Ω⟶ℝ are such that u = ~u a:e:
If ~u is continuous, then supp ~u ⊆ supp u.

Proof by Contradiction. Suppose x ∈ supp ~u \ supp u. Since x
belongs to the complement of supp u, which is an open set,
there exists ε > 0 such that BεðxÞ ⊆Ω and BεðxÞ ∩ supp u =
∅. Since x ∈ supp ~u, there exists y ∈ Bε/4ðxÞ such that ~uðyÞ
≠ 0. ~u is continuous, therefore there exists 0 < δ < ε/4 such
that ~uðzÞ ≠ 0 for all z ∈ BδðyÞ ⊆ BεðxÞ. But u = 0 a.e. on Bεðx
Þ. This contradicts the fact that u = ~u a:e.

Theorem 127. Let Ω be a nonempty bounded open set in ℝn

with Lipschitz continuous boundary or Ω =ℝn. Suppose u
∈Ws,p

locðΩÞ where sp > n. Then, u has a continuous version.

Proof. Let fV jgj∈ℕ0
and fψjg j∈ℕ0

be as in Theorem 43.

Note that u =∑jψju. For all j, ψju ∈W
s,pðΩÞ so by Theo-

rem 76, there exists ~uj ∈ CðΩÞ such that ψju = ~uj on Ω \ Aj

where Aj is a set of measure zero. Also by Lemma 126
supp ~uj ⊆ supp ψj. Therefore for any x ∈Ω, only finitely
many of ~ujðxÞ’s are nonzero. So we may define ~u : Ω
⟶ℝ by ~u =∑j~uj. Clearly, ~u = u on Ω \ A where A = ∪
Aj (so A is a set of measure zero). Consequently ~u = u a:
e. It remains to show that ~u : Ω⟶ℝ is indeed continu-
ous. To this end, suppose am ⟶ a in Ω. We need to
prove that ~uðamÞ⟶ ~uðaÞ. Let ε > 0 be such that BεðaÞ ⊆
Ω. So BεðaÞ intersects only finitely many of supp ~uj’s; let
us denote them by ~ur1 ,⋯, ~url . Also since am ⟶ a, there
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exists M such that for all m ≥M, am ∈ BεðaÞ. Hence,

~u að Þ =〠
j

~uj að Þ = ~ur1 að Þ+⋯+~url að Þ,

∀m ≥M ~u amð Þ = ~ur1 amð Þ+⋯+~url amð Þ:
ð143Þ

Recall that ~ur1 +⋯ + ~url is a finite sum of continuous
functions and so it is continuous. Thus,

lim
m⟶∞

~u amð Þ = lim
m⟶∞

~ur1+⋯+~url
� �

amð Þ = ~ur1 að Þ+⋯+~url að Þ = ~u að Þ:
ð144Þ

Remark 128. In the above proof, the only place we used the
assumption of Ω being Lipschitz was in applying Theorem
76. We can replace this assumption by the weaker assump-
tion that Ω has the interior Lipschitz property. Then, since
supp ðψjuÞ is compact, there exists Ω′ with Lipschitz
boundary that contains supp ðψjuÞ. Then, by Theorem 85,

ψju ∈W
s,pðΩ′Þ and so it has a continuous version ûj ∈ Cð

Ω′Þ. Since ψju = ûj almost everywhere on Ω′ and ψju = 0
outside of the compact set supp ψj, we can conclude that

ext0
Ω′ ,Ωûj is in CðΩÞ and it is almost everywhere equal to

ψju. We set ~uj = ext0
Ω′ ,Ωûj. The rest of the proof will be

exactly the same as before.

Theorem 129. Let Ω =ℝn or Ω be a bounded open set in ℝn

with Lipschitz continuous boundary. Suppose s1, s2, s ∈ℝ and
1 < p1, p2, p <∞ are such that

Ws1 ,p1 Ωð Þ ×Ws2 ,p2 Ωð Þ↪Ws,p Ωð Þ: ð145Þ

Then,

(1) Ws1 ,p1
loc ðΩÞ ×Ws2 ,p2

loc ðΩÞ↪Ws,p
locðΩÞ

(2) for all K ∈KðΩÞ, Ws1 ,p1
loc ðΩÞ ×Ws2 ,p2

K ðΩÞ↪Ws,pðΩÞ.
In particular, if f ∈Ws1 ,p1

loc ðΩÞ, then the mapping u
↦ f u is a well-defined continuous linear map from
Ws2 ,p2

K ðΩÞ to Ws,pðΩÞ

Remark 130. In the above theorem, since the locally
Sobolev spaces on Ω are metrizable, the continuity of the
mapping

Ws1,p1
loc Ωð Þ ×Ws2,p2

loc Ωð Þ⟶Ws,p
loc Ωð Þ,  u, vð Þ↦ uv ð146Þ

can be interpreted as follows: if ui ⟶ u in Ws1,p1
loc ðΩÞ and

vi ⟶ v in Ws2,p2
loc ðΩÞ, then uivi ⟶ uv in Ws,p

locðΩÞ. Also
since Ws2,p2

K ðΩÞ is considered as a normed subspace of
Ws2,p2ðΩÞ, we have a similar interpretation of the continu-
ity of the mapping in item (2).

Proof.

(1) Suppose u ∈Ws1,p1
loc ðΩÞ and v ∈Ws2,p2

loc ðΩÞ. First, we
show that uv is in Ws,p

locðΩÞ. Clearly, the set A = fφ2

: φ ∈ C∞
c ðΩÞg is an admissible family of test func-

tions. So in order to show that uv ∈Ws,p
locðΩÞ, it is

enough to show that for all φ ∈ C∞
c ðΩÞ, φ2uv = ðφu

ÞðφvÞ is in Ws,pðΩÞ. This is clearly true because φu
∈Ws1,p1ðΩÞ, φv ∈Ws2,p2ðΩÞ, and by assumption

Ws1,p1 Ωð Þ ×Ws2,p2 Ωð Þ↪Ws,p Ωð Þ ð147Þ

In order to prove the continuity of the map ðu, vÞ
↦ uv, suppose ui ⟶ u in Ws1,p1

loc ðΩÞ and vi ⟶ v
in Ws2,p2

loc ðΩÞ. We need to show that uivi ⟶ uv in
Ws,p

locðΩÞ. That is, we need to prove that for all φ ∈
C∞
c ðΩÞ,

φ2uivi ⟶ φ2uv inWs,p Ωð Þ: ð148Þ

We have

ui ⟶ u inWs1,p1
loc Ωð Þ⇒ φui ⟶ φu in Ws1,p1 Ωð Þ,

vi ⟶ v inWs2,p2
loc Ωð Þ⇒ φvi ⟶ φv in Ws2,p2 Ωð Þ:

ð149Þ

By assumption, Ws1,p1ðΩÞ ×Ws2,p2ðΩÞ↪Ws,pðΩÞ, so

φuið Þ φvið Þ⟶ φuð Þ φvð Þ inWs,p Ωð Þ: ð150Þ

(2) Suppose u ∈Ws1,p1
loc ðΩÞ and v ∈Ws2,p2

K ðΩÞ. First, we
show that uv is in Ws,pðΩÞ. To this end, let φ ∈ C∞

c
ðΩÞ be such that φ = 1 on a neighborhood contain-
ing K . We have

uv = u φvð Þ = φuð Þ|ffl{zffl}
∈Ws1,p1 Ωð Þ

v|{z}
∈Ws2,p2 Ωð Þ

∈Ws,p Ωð Þ ð151Þ

Now, we prove the continuity. Suppose ui ⟶ u in
Ws1,p1

loc ðΩÞ and vi ⟶ v in Ws2,p2
K ðΩÞ. Let φ be as

before. We have

ui ⟶ u inWs1,p1
loc Ωð Þ⇒ φui ⟶ φu inWs1,p1 Ωð Þ,
vi ⟶ v inWs2,p2 Ωð Þ:

ð152Þ

This together with the assumption that Ws1,p1ðΩÞ
×Ws2,p2ðΩÞ↪Ws,pðΩÞ implies φuivi ⟶ φuv in
Ws,pðΩÞ. Since φv = v and φvi = vi, we conclude that
uivi ⟶ uv in Ws,pðΩÞ:
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Remark 131. In the above theorem, the assumption that Ω is
Lipschitz or ℝn was used only to ensure that we can apply
Theorem 103 and to make sure that the locally Sobolev
spaces involved are metrizable. For item (1), we can use
the weaker assumption that ðs1, p1,ΩÞ, ðs2, p2,ΩÞ, and ðs, p,
ΩÞ are interior smooth multiplication triples. For item (2),
we just need to assume that ðs1, p1,ΩÞ is an interior smooth
multiplication triple.

Corollary 132. Let Ω be the same as the previous theorem. If
sp > n, then Ws,p

locðΩÞ is closed under multiplication. More-
over, if

f1ð Þm ⟶ f1 inW
s,p
loc Ωð Þ,⋯, f lð Þm ⟶ f l inW

s,p
loc Ωð Þ, ð153Þ

then

f1ð Þm ⋯ f lð Þm ⟶ f1 ⋯ f l inW
s,p
loc Ωð Þ: ð154Þ

The next theorem plays a key role in the study of differ-
ential operators on manifolds equipped with nonsmooth
metrics (see [15]).

Theorem 133. Let Ω =ℝn or let Ω be a nonempty bounded
open set in ℝn with Lipschitz continuous boundary. Let s ∈
ℝ and p ∈ ð1,∞Þ be such that sp > n. Let B : Ω⟶GLðk,
ℝÞ. Suppose for all x ∈Ω and 1 ≤ i, j ≤ k, BijðxÞ ∈Ws,p

locðΩÞ.
Then,

(1) det B ∈Ws,p
locðΩÞ

(2) moreover if for each m ∈ℕ Bm : Ω⟶GLðk,ℝÞ and
for all 1 ≤ i, j ≤ k ðBmÞij ⟶ Bij in Ws,p

locðΩÞ, then det
Bm ⟶ det B in Ws,p

locðΩÞ

Proof.

(1) By the Leibniz formula, we have

det B xð Þ = 〠
σ∈Sn

sgn σð ÞBσ 1ð Þ,1 ⋯ Bσ kð Þ,k: ð155Þ

By assumption, for all 1 ≤ i ≤ k, BσðiÞ,i is in Ws,p
locðΩÞ.

Since sp > n, it follows from Corollary 132 that det
B ∈Ws,p

locðΩÞ
(2) Since ðBmÞij ⟶ Bij inWs,p

locðΩÞ, it again follows from
Corollary 132 that for all σ ∈ Sn,

Bmð Þσ 1ð Þ,1 ⋯ Bmð Þσ kð Þ,k ⟶ Bσ 1ð Þ,1 ⋯ Bσ kð Þ,k inWs,p
loc Ωð Þ:
ð156Þ

Thus, det Bm ⟶ det B in Ws,p
locðΩÞ

Theorem 134. Let Ω =ℝn or let Ω be a nonempty bounded
open set in ℝn with the Lipschitz continuous boundary. Let
s ≥ 1 and p ∈ ð1,∞Þ be such that sp > n.

(1) Suppose that u ∈Ws,p
locðΩÞ and that uðxÞ ∈ I for all x

∈Ω where I is some interval in ℝ. If F : I ⟶ℝ is
a smooth function, then FðuÞ ∈Ws,p

locðΩÞ
(2) Suppose that um ⟶ u in Ws,p

locðΩÞ and that for all
m ≥ 1 and x ∈Ω, umðxÞ, uðxÞ ∈ I where I is some open
interval in ℝ. If F : ℝ⟶ℝ is a smooth function,
then FðumÞ⟶ FðuÞ in Ws,p

locðΩÞ
(3) If F : ⟶ℝ is a smooth function, then the map taking

u to FðuÞ is continuous from Ws,p
locðΩÞ to Ws,p

locðΩÞ

Proof. The proof of part (1) generalizes the argument given

in [33]. Let k = ⌊s⌋. First, we show that FðuÞ ∈Wk,p
locðΩÞ. To

this end, we fix a multi-index jαj =m ≤ k and we show that
∂αðFðuÞÞ ∈ LplocðΩÞ (see Theorem 124).

It follows from the chain rule (and induction) that
∂αðFðuÞÞ is a sum of the terms of the form

F lð Þ uð Þ∂β1u⋯ ∂βr u, ð157Þ

where l ∈ℕ and ∑r
i=1jβij =m. It is a consequence of

Theorem 129 that if s1, s2 ≥ s3 ≥ 0 and s1 + s2 − s3 > n/p,
then Ws1,p

loc ðΩÞ ×Ws2,p
loc ðΩÞ↪Ws3,p

loc ðΩÞ. As a consequence,

Ws− β1j j,p
loc Ωð Þ ×Ws− β2j j,p

loc Ωð Þ↪Ws− β1j j− β2j j,p
loc Ωð Þ,

Ws− β1j j− β2j j,p
loc Ωð Þ ×Ws− β3j j,p

loc Ωð Þ↪Ws− β1j j− β2j j− β3j j,p
loc Ωð Þ,

⋮

Ws− β1j j−⋯− βr−1j j,p
loc Ωð Þ ×Ws− βrj j,p

loc Ωð Þ↪Ws− β1j j−⋯− βrj j,p
loc Ωð Þ =Ws−m,p

loc Ωð Þ:
ð158Þ

Considering this and the fact that ∂βiu ∈Ws−jβij,p
loc ðΩÞ,

we have

∂β1u⋯ ∂βr u ∈Wt,p
loc Ωð Þ ð159Þ

for all 0 ≤ t ≤ s −m. In particular, ∂β1u⋯ ∂βr u ∈W0,p
locðΩÞ

= LplocðΩÞ. Also, since F is smooth and u is continuous,
FðlÞðuÞ ∈ L∞locðΩÞ. Therefore,

F lð Þ uð Þ∂β1u⋯ ∂βr u ∈ Lploc Ωð Þ: ð160Þ

So, FðuÞ ∈Wk,p
locðΩÞ where k = ⌊s⌋. Now, for noninteger

s, we use a bootstrapping argument to show that FðuÞ in
fact belongs to Ws,p

locðΩÞ.
F ′ is smooth; therefore, F ′ðuÞ ∈Wk,p

locðΩÞ. Also ∂u/∂xi

∈Ws−1,p
loc ðΩÞ (note that s − 1 ≥ 0). By Theorem 129, we have

Wk,p
loc Ωð Þ ×Ws−1,p

loc Ωð Þ↪Wt−1,p
loc Ωð Þ ð161Þ
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provided that

k ≥ t − 1 ≥ 0, s − 1 ≥ t − 1 ≥ 0, k + s − 1ð Þ − t − 1ð Þ > n
p
:

ð162Þ

Therefore, ∂/∂xiðFðuÞÞ = F ′ðuÞ∂u/∂xi ∈Wt−1,p
loc ðΩÞ for

all 1 ≤ t ≤ s such that t < k + ðs − n/pÞ. Consequently, FðuÞ
∈Wt,p

locðΩÞ for all 1 ≤ t ≤ s such that t < k + ðs − n/pÞ (see
Theorem 123). Now, we can repeat this argument by starting
with “F ′ is smooth, therefore F ′ðuÞ ∈Wt,p

locðΩÞ for all 1 ≤ t
≤ s such that t < k + ðs − n/pÞ.” This results in FðuÞ ∈Wt,p

locð
ΩÞ for all 1 ≤ t ≤ s such that t < k + 2ðs − n/pÞ. Repeating
this, a finite number of times shows that FðuÞ ∈Ws,p

locðΩÞ.
Our next goal is to prove items (2) and (3). First, we note

that if 0 ∈ I then without loss of generality (WLOG) we may
assume that Fð0Þ = 0. Indeed, the constant function Fð0Þ is
an element of Ws,p

locðΩÞ. So,

F umð Þ⟶ F uð Þ inWs,p
loc Ωð Þ⟺ ~F umð Þ⟶ ~F uð Þ inWs,p

loc Ωð Þ,
ð163Þ

where ~FðtÞ = FðtÞ − Fð0Þ. Thus WLOG we may assume that
Fð0Þ = 0.

Let fKjg j∈ℕ0
, fV jgj∈ℕ0

, and fψjgj∈ℕ0
be as in Theorem

43. Clearly, fψjg is an admissible family of functions. There-

fore, in order to show that FðumÞ⟶ FðuÞ in Ws,p
locðΩÞ, it is

enough to prove that

∀r ∈ℕ0 ψr F umð Þ − F uð Þð Þ⟶ 0 inWs,p Ωð Þasm⟶∞:

ð164Þ

Let ψr1
,⋯, ψrk

be those admissible test functions whose
support intersects the support of ψr . So,

∀x ∈ supp ψr 〠
j∈ℕ0

ψju = ψr1
u+⋯+ψrk

u: ð165Þ

Consequently,

ψr F umð Þ − F uð Þð Þ = ψr F ψr1
um+⋯+ψrk

um
� �

− ψr F ψr1
u+⋯+ψrk

u
� �

:
ð166Þ

Since um ⟶ u in Ws,p
locðΩÞ, for all 1 ≤ i ≤ k, we have

ψri
um ⟶ ψri

u inWs,p Ωð Þ, ð167Þ

and so,

ψr1
um+⋯+ψrk

um ⟶ ψr1
u+⋯+ψrk

u inWs,p Ωð Þ: ð168Þ

Since Ws,pðΩÞ↪L∞ðΩÞ, we have

ψr1
um+⋯+ψrk

um ⟶ ψr1
u+⋯+ψrk

u in L∞ Ωð Þ: ð169Þ

Consequently, for the continuous representatives of ψr1
um +⋯ + ψrk

um and ψr1
u +⋯ + ψrk

u, we have uniform con-
vergence. From this point, we work with these continuous
versions. The continuous function ψr1

u +⋯ + ψrk
u attains

its max and min on the compact set supp ψr which we
denote by Amax and Amin, respectively. Note that

∀x ∈ supp ψr  ψr1
u+⋯+ψrk

u
� �

xð Þ = u xð Þ ∈ I: ð170Þ

So, Amax and Amin are in I (that is, ½Amin, Amax� ⊆ I). Let
ε > 0 be such that ½Amin − 2ε, Amax + 2ε� ⊆ I. By (169) there
exists M such that

∀m ≥M,∀x ∈ supp ψr  ψr1
um+⋯+ψrk

um
� �

xð Þ
∈ Amin − ε, Amax + ε½ � ⊆ I:

ð171Þ

Let ξ ∈ C∞
c ðℝÞ be such that ξ = 1 on ½Amin − ε, Amax + ε�

and ξ = 0 outside of ½Amin − 2ε, Amax + 2ε� ⊆ I. Define F̂ : ℝ
⟶ℝ by

F̂ tð Þ =
ξ tð ÞF tð Þ, if t ∈ I,

0, if t∈I:

 
ð172Þ

Clearly, F̂ : ℝ⟶ℝ is a smooth function and F̂ð0Þ = 0.
Moreover, F̂ = F on ½Amin − ε, Amax + ε�. Also, for all x ∈Ω
and m ≥M, we have

ψr F umð Þ − F uð Þð Þ
= ψr F ψr1

um+⋯+ψrk
um

� �
− ψr F ψr1

u+⋯+ψrk
u

� �
= ψr F̂ ψr1

um+⋯+ψrk
um

� �
− ψr F̂ ψr1

u+⋯+ψrk
u

� �
:

ð173Þ

Indeed, if x∈ supp ψr , then both sides are equal to zero.
If x ∈ supp ψr , then

ψr1
u+⋯+ψrk

u
� �

xð Þ ∈ Amin, Amax½ �,

ψr1
um+⋯+ψrk

um
� �

xð Þ ∈ Amin − ε, Amax + ε½ �,
ð174Þ

and so,

F ψr1
u+⋯+ψrk

u
� �

xð Þ
� �

= F̂ ψr1
u+⋯+ψrk

u
� �

xð Þ
� �

,

F ψr1
um+⋯+ψrk

um
� �

xð Þ
� �

= F̂ ψr1
um+⋯+ψrk

um
� �

xð Þ
� �

:

ð175Þ

F̂ is a smooth function and its value at 0 is 0. Also, by
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assumption, sp > n. Therefore, the mapping v⟶ ψr F̂ðvÞ
from Ws,pðΩÞ to Ws,pðΩÞ is continuous. Hence,

ψr F̂ ψr1
um+⋯+ψrk

um
� �

⟶ ψr F̂ ψr1
u+⋯+ψrk

u
� �

 inWs,p Ωð Þ:
ð176Þ

That is,

ψr F umð Þ − F uð Þð Þ⟶ 0 inWs,p Ωð Þ: ð177Þ

So, we proved item (2). Finally, we note that Ws,p
locðΩÞ is

metrizable. So continuity of the mapping u⟶ FðuÞ is
equivalent to sequential continuity which was proved in
item (2).

7. Conclusion

Sobolev-Slobodeckij spaces play a key role in the study of
elliptic differential operators in nonsmooth setting. The
study of certain differential operators between Sobolev
spaces of sections of vector bundles on compact manifolds
equipped with rough metric is closely related to the study
of locally Sobolev functions on domains in the Euclidean
space. In the present paper, we provided a self-contained rig-
orous study of certain fundamental properties of locally
Sobolev-Slobodeckij spaces. In particular, by introducing
notions such as “smooth multiplication triple” and “interior
smooth multiplication triple,” we rigorously studied com-
pleteness, separability, nature of the dual space, general
embedding results, continuity of differentiation, and invari-
ance under composition by smooth functions for locally
Sobolev-Slobodeckij spaces.
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