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The study of certain differential operators between Sobolev spaces of sections of vector bundles on compact manifolds equipped
with rough metric is closely related to the study of locally Sobolev functions on domains in the Euclidean space. In this paper, we
present a coherent rigorous study of some of the properties of locally Sobolev-Slobodeckij functions that are especially useful in
the study of differential operators between sections of vector bundles on compact manifolds with rough metric. The results of this
type in published literature generally can be found only for integer order Sobolev spaces W™ or Bessel potential spaces H*. Here,
we have presented the relevant results and their detailed proofs for Sobolev-Slobodeckij spaces W* where s does not need to be an
integer. We also develop a number of results needed in the study of differential operators on manifolds that do not appear to be in

the literature.

1. Introduction

It is well-known that Sobolev spaces play a key role in the
study of elliptic partial differential equations (PDEs) on
domains in R". There are many resources for properties of
integer order Sobolev spaces of functions and their applica-
tions in PDEs (see, e.g., [1-3]). Also, there are variety of
resources for properties of real order Sobolev spaces of func-
tions and their applications (see, e.g., classical references such
as [4-8] or more recent works such as [9-13]). Likewise, the
study of elliptic PDEs on manifolds naturally leads to the study
of Sobolev spaces of functions and more generally Sobolev
spaces of sections of vector bundles on manifolds. As it turns
out, the study of certain differential operators between Sobolev
spaces of sections of vector bundles on manifolds equipped
with rough metric and the study of low regularity geometry
on Riemannian and semi-Riemannian manifolds are closely
related to the study of spaces of locally Sobolev functions on
domains in the Euclidean space (see, e.g., [14-16]).

In this paper, we focus on certain properties of spaces of
locally Sobolev functions that are particularly useful in the
study of differential operators on manifolds. Our work can

be viewed as a continuation of the excellent work of Antonic
and Burazin [17]; their work is mainly concerned with the
properties of spaces of locally Sobolev functions with integer
smoothness degree. In particular, they study the following
fundamental questions for locally Sobolev spaces with inte-
ger smoothness degree:

(i) Topology and metrizability
(ii) Density of smooth functions
(iii) Reflexivity and the nature of the dual

(iv) Continuity of differentiation between certain spaces
of locally Sobolev functions

Our main goal here is to provide a self-contained manu-
script in which the known results are collected and stated in
the general setting of Sobolev-Slobodeckij spaces and then
develop certain other results that are useful in the study of
differential operators on manifolds. In particular, we will
discuss the following topics:

(i) General embedding results
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(ii) Pointwise multiplication
(iii) Invariance under composition

The results of this type and other related results have been
used in the literature—particularly in the study of Einstein con-
straint equations on manifolds equipped with rough metric—-
without complete proof. This paper should be viewed as a
part of our efforts to fill some of the gaps. Interested readers
can find other results in this direction in [13, 15, 16, 18]. Our
hope is that the detailed presentation of this manuscript, along
with these other four manuscripts, will help in better under-
standing the structure of the proofs and the properties of
Sobolev-Slobodeckij spaces and locally Sobolev functions.

2. Notation and Conventions

Throughout this paper, R denotes the set of real numbers, N
denotes the set of positive integers, and IN, denotes the set of
nonnegative integers. For any nonnegative real number s,
the integer part of s is denoted by |s|. The letter n is a pos-
itive integer and stands for the dimension of the space. For
all ke N, GL(k, R) is the set of all k x k invertible matrices
with real entries.

Q is a nonempty open set in R". The collection of all com-
pact subsets of Q2 will be denoted by F#(Q). If F(Q2) is any
function space on Q and K € #(Q), then F(Q) denotes the
collection of elements in F(2) whose support is inside K. Also,

Feomp(2)= U

Fr(Q). 1
comp Ke(Q) K( ) ()

IfQ ' cOand f:Q — R, we denote the extension by
zero of f to the entire Q by extg), of 1 Q— R thatis,

f(x), ifxeQ’,

0, otherwise.

extg,’Qf(x) = { (2)

Lipschitz domain in R" refers to a nonempty bounded open
set in R" with Lipschitz continuous boundary. We say that a
nonempty open set Q C R” has the interior Lipschitz property
provided that for each compact set K € # () there exists a
bounded open set Q' € Q with Lipschitz continuous boundary
such that K < Q.

Each element of INjj is called a multi-index. For a multi-
index a = (a;,-,t,,) € Ny, we let || = ; + -+ + a,,. Also, for
sufficiently smooth functions u : 2 — R (or for any distribu-
tion u), we define the ath order partial derivative of u as follows:

9lYly

MU= ——
o (4
0xy' -+ 0xy"

3)

We use the notation A<B to mean A < ¢B, where c is a pos-
itive constant that does not depend on the nonfixed parameters
appearing in A and B. We write A = B if A<B and B<A.

If X and Y are two topological spaces, we use the nota-
tion X—Y to mean XCY, and the inclusion map is
continuous.
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3. Background Material

In this section, we collect some useful tools and facts we will
need from topology and analysis. Statements without proof
in this section are mainly taken from Rudin’s functional
analysis [19], Grubb’s distributions and operators [20],
excellent presentation of Reus [21], Treves’ topological vec-
tor spaces [22] and the reference [16], or are direct conse-
quences of statements in the aforementioned references.

3.1. Topological Vector Spaces

Definition 1. A topological vector space is a vector space X
together with a topology 7 with the following properties:

(i) For all x € X, the singleton {x} is a closed set

(ii) The maps

(from X x X into X),
(from R x X into X),

(xy) o x+y

(A x) = Ax )

are continuous where X x X and R x X are equipped
with the product topology

Definition 2. Suppose (X, 7) is a topological vector space and
YcX.

(i) Y is said to be convex if for all y,,y, €Y and t € (0
,1) it is true that ty, + (1-t)y, € Y

(ii) We say Y is bounded if for any neighborhood U of
the origin (i.e., any open set containing the origin),
there exits ¢ > 0 such that Y € tU

Definition 3. Let (X, T) be a topological vector space. X is
said to be metrizable if there exists a metric d : X x X —
[0,00) whose induced topology is 7. In this case, we say that
the metric d is compatible with the topology 7.

Theorem 4 ([19, 20]). Let (X, T) be a topological vector space.
The following are equivalent:

(i) X is metrizable

(ii) There exists a translation invariant metric d on X
whose collection of open sets is the same as T. Trans-
lation invariant means

Vx,y,a€X d(x+a,y+a)=d(xy) (5)

(iii) X has a countable local base at the origin

(Recall that a subcollection B of T is said to be a local
base at the origin if for any open set U containing the origin
there is B € B such that 0e BC U.)
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Remark 5. It can be shown that if d; and d, are two transla-
tion invariant metrics that induce the same topology on X,
then the Cauchy sequences of (X, d;) will be exactly the
same as the Cauchy sequences of (X, d,).

Definition 6. Let (X, T) be a topological vector space. We say
(X, 1) is locally convex if it has a convex local base at the
origin.

Definition 7. Let (X, T) be a metrizable locally convex topo-
logical vector space. Let d be any translation invariant metric
on X that is compatible with 7. We say that X is complete if
and only if the metric space (X, d) is a complete metric
space. A complete metrizable locally convex topological vec-
tor space is called a Frechet space.

Definition 8. A seminorm on a vector space X is a real-valued
function p : X — R such that

Vx,yeX p(x+y)<p(x)+p(),

(6)
Vxe€X VaeR p(ax)=|alp(x).

If P is a family of seminorms on X, then we say 2 is sep-
arating provided that for all x # 0, there exists at least one
p € P such that p(x) #0 (that is, if p(x) =0 for all pe P,
then x=0). It easily follows from the definition that any
seminorm is a nonnegative function.

Theorem 9. Suppose that (X, ||.||y) is a normed space. Let
p: X — R be a seminorm on X. If p is continuous, then
there exists a constant C > 0 such that

VreX p(x)<Clxy. (7)

Proof. p is continuous at 0 so there exists 6 >0 such that if
||lx||x <6, then |p(x)| < 1. If x # 0, then &(x/||x||x) has norm
equal to &, and so for all x # 0, p(8(x/||x||)) < 1. Hence, for
all x # 0, we have

p(x) < 5 el ®)

Since p(0) = 0, clearly the above inequality also holds for
x=0. |

Definition 10. Suppose & is a separating family of semi-
norms on a vector space X. The natural topology induced
by & is the smallest topology on X that is translation invari-
ant and with respect to which every p € & is a continuous
function from X to R. (Recall that translation invariant
means if U € X is open, then U + x is open for every x € X.)

Remark 11. Suppose that 2 and 2’ are two separating fam-

ily of seminorms on a vector space X. Let 7 and 7’ be the
corresponding natural topologies on X. It follows immedi-

ately from the definition that if (1) p : (X,7') — R is con-
tinuous for each pe? and (2) p' :(X,7)—R is
continuous for each p' € ', then r=1".

The following theorem can be viewed as an extension of
Theorem 9.

Theorem 12 ([21], page 157). Let X be a vector space and
suppose P is a separating family of seminorms on X. Equip
X with the corresponding natural topology. Then, a seminorm
q : X — R is continuous if and only if there exist C > 0 and
Py P,y € P such that for all x € X

q(x) < C(p; (x) 4+ 4Py (%)) ©)

Theorem 13 ([19, 20]). Suppose P is a separating family of
seminorms on a vector space X and T is the corresponding
natural topology on X. Then, (X, 1) is a locally convex topo-
logical vector space. Moreover, if P ={p,}, . is countable,
then the locally convex topological vector space (X,T) is
metrizable, and the following translation invariant metric
on X is compatible with T:

- Ooi Pr(x—y)
N 2 TG 1o

Corollary 14. Suppose P is a countable separating family of
seminorms on a vector space X and T is the corresponding
natural topology on X. Then, (X,T) is a Frechet space if
and only if it is complete.

Theorem 15 ([23], Sections 6.4 and 6.5). Let (X,7) be a
locally convex topological vector space. Then, there exists a
separating family of seminorms on X whose corresponding
natural topology is .

Theorem 16 ([19], page 28). Suppose P is a separating fam-
ily of seminorms on a vector space X and T is the correspond-
ing natural topology on X. Then, a set EC X is bounded if
and only if p(E) is a bounded set in R for all p € P.

Corollary 17. Suppose P is a separating family of seminorms
on a vector space X and T is the corresponding natural topol-
ogy on X. It follows from Theorem 12 and Theorem 16 that if
E € X is bounded, then for any continuous seminorm q : (X,

1) — R, q(E) is a bounded set in R.

Theorem 18 ([20], page 436, [23], Section 6.6). Let (X, T) be
a topological vector space. Suppose @ is a separating family of
seminorms on a vector space Y and t' is the corresponding
natural topology on Y. Then, a linear map T : (X,17) —
(Y,7'") is continuous if and only if for each qe @, qo T is
continuous on X.

Theorem 19 ([20]). Let X be a Frechet space and let Y be a
topological vector space. When T is a linear map of X into
Y, the following two properties are equivalent:

(1) T is continuous

2)x,—0inX=Tx,—0inY



Theorem 20 ([19, 20]). Let X and Y be two vector spaces and
suppose P and Q are two separating families of seminorms
on X and Y, respectively. Equip X and Y with the correspond-
ing natural topologies. Then,

(1) A sequence x, converges to x in X if and only if for all
peP plx,—x)—0

(2) A linear operator T : X — Y is continuous if and
only if Vge @3c>0,ke N,p,, -, p, € P suchthat

VxeX|qoT(x)|<c mai(pi(x)
I<i<

(3) A linear operator T : X — R is continuous if and
only if 3c>0,keN,p,,---,pp € P suchthat Vx
eX |T(x)| < maxp,(x)

I<i<

Definition 21. Let (X, ) be a locally convex topological vec-
tor space.

(i) The weak topology on X is the natural topology
induced by the separating family of seminorms

{Pr} pex- where
VFeX" pp:X—R, pp(x)=|F(x)]. (11)

It can be shown that this topology is the smallest
(weakest) topology with respect to which all the
linear maps in [(X, 7)|" are continuous. A sequence
{x,,} converges to x in X with respect to the weak
topology if and only if F(x, ) — F(x) in R for all
FeX*. In this case, we may write x,, —x. We
denote the weak topology on X by o(X, X*). It can
be shown that [(X,7)]" is the same set as
(X, 0%, X))

(ii) The weak * topology on X* is the natural topology
induced by the separating family of seminorms

{P,} 1ex Where
VreX piX'—R p(f)=lf®]. (12)

It can be shown that this topology is the weakest
topology with respect to which all the linear maps
{f~f(%)},x (from X* to R) are continuous. A
sequence {f, } converges to f in X* with respect
to the weak* topology if and only if f, (x) — f(x)
in R for all x € X. We denote the weak” topology on
X* by o(X*, X)

(iii) The strong topology on X* is the natural topology
induced by the separating family of seminorms
{P5} Bexboundea Where for any bounded subset B of
X)

pp: X" — R py(f)=sup {[f(x)]: x € B}.
(13)
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(It can be shown that for any bounded subset B of X
and feX*, f(B) is a bounded subset of R; see
Theorem 16 and Theorem 28)

Remark 22.

(1) If X is a normed space, then the topology induced by
the norm

Y EXT Ifllop = sup [f(0)] (14)

llxlly =

on X* is the same as the strong topology on X* ([22],
page 198)

(2) In this manuscript, unless otherwise stated, we con-
sider the topological dual of a locally convex topo-
logical vector space with the strong topology. Of
course, it is worth mentioning that for many of the
spaces that we will consider (including X = &(Q)
or X =D(Q) where Q is an open subset of R"), a
sequence in X* converges with respect to the weak*
topology if and only if it converges with respect to
the strong topology (for more details on this, see
the definition and properties of Montel spaces in
Section 34.4, page 356 of [22])

Theorem 23. Let (X, 7) be a locally convex topological vector
space. Then, the evaluation map

J: (X,1) — X" = [(X", strong topology)]”*,  J(x)(F) = F(x),

is a well-defined injective linear map. (X** is called the bidual

of X).

Definition 24. Let (X, 7) be a locally convex topological vec-

tor space. Let 7' denote the strong topology on X** as the
dual of (X*, strong topology).

(i) If the evaluation map J: (X,7) — (X**,7') is
bijective, then we say that (X, 1) is a semireflexive
space

(i) If the evaluation map J: (X,7) — (X**,7') is a
linear topological isomorphism, then we say that
(X, 1) is a reflexive space

Theorem 25 ([24], pages 16 and 17).

(i) Strong dual of a reflexive topological vector space is
reflexive

(ii) Every semireflexive space whose topology is defined
by the inductive limit of a sequence of Banach spaces
is reflexive

(iii) Every semireflexive Frechet space is reflexive
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Theorem 26. Let (X, ty) and (Z,7,) be two locally convex
topological vector spaces. For all x € X, let I, : X* — R be
the linear map defined by 1.(f) = f(x). Then,

(1) a linear map T : (Z,7,) — (X, 0(X, X*)) is contin-
uous if and only if for all F € [(X,ty)]", the linear
map FoT : (Z,1t,) — R is continuous

(2) a linear map T:(Z,1,) — (X*,0(X*, X)) is
continuous if and only if for all x € X, the linear
map I, o T : (Z,7,) — R is continuous

Theorem 27 ([21], page 163, [20], page 46). Let X and Y be
locally convex topological vector spaces and suppose T : X
— Y is a continuous linear map. Either equip both X*
and Y* with the strong topology or equip both with the
weak® topology. Then,

(1) the map

T Y — X" (T'%X) o = 0 TX)yery  (16)

is well-defined, linear, and continuous. (T* is called
the adjoint of T)

(2) If T(X) isdense in Y, then T* : Y* — X* is injective

Theorem 28 ([19], page 70). Let (X, 1) be a locally convex
topological vector space. Then, a set E C X is bounded with
respect to T if and only if it is bounded with respect to
o(X,X*).

Corollary 29. If (X, 7) is a locally convex topological vector
space and x, — x (i.e., x,, converges to x with respect to (X
,X*)), then {x,} is bounded with respect to both T and o(X
, X").

Theorem 30. Let (X, 7y) and (Y, 7y) be two locally convex
topological vector spaces. If T : (X,1yx) — (Y*,0(Y*,Y))
is continuous, then T : (X,0(X, X)) — (Y*,0(Y*,Y)) is
continuous. In particular, if u, —u (i.e., u, converges to u
with respect to o(X,X")), then T(u,) — T(u) in (Y*,0(
Y, Y)).

Proof. Forally € Y,letl, : Y* — R be the map [ (F) = F(y).
By Theorem 26, T : (X, 0(X,X*)) — (Y*,0(Y*,Y)) is con-
tinuous if /, o T : (X, 0(X, X*)) — R is continuous for all y
€Y. Letye?.

(1) By definition of the weak® topology on Y*, we know
that the linear map [, : Y* — R is continuous

(2) By assumption T : (X,7y) — (Y*,0(Y*,Y)) is a
continuous linear map

Therefore, I, o T belongs to [(X, 7x)]". Since o(X, X*) is
the weakest topology on X that makes all elements of

[(X, 7x)]" continuous, we can conclude that [, o T": (X, o(X,
X*)) — R is continuous. O

Theorem 31 ([25], page 13). Let (X, T) be a Frechet space.
Then, X is reflexive if and only if every bounded set E in X
is relatively weakly compact (i.e., the closure of E with respect
to o(X, X™) is compact with respect to (X, X*)).

Theorem 32 ([26], page 167). Let (X,7) be a separable
Frechet space. If ECX is relatively weakly compact, then
every infinite sequence in E has a subsequence that converges
in (X,0(X,X")).

The next theorem is an immediate consequence of the
previous theorems.

Theorem 33. Suppose that (X, 7) is a separable reflexive Fre-
chet space. Then, every bounded sequence in (X,7) has a
weakly convergent subsequence, that is, a subsequence that
converges with respect to o(X, X*).

Theorem 34 ([27], page 61). Let X and Y be two Banach
spaces. Let T : X — Y be a linear map. Then, T is contin-
uous if and only if it is weak-weak continuous; that is, T
(X k) — (Y Illy) is continuous if and only if T : (
X,0(X,X*)) — (Y,0(Y,Y*)) is continuous.

Theorem 35. Let X be a Banach space and Y be a closed sub-
space of X with the induced norm. Suppose that y,, is a
sequence in Y and ye Y. If y, — y in (X,0(X, X)), then
Y~y in (Y,0(Y,Y")).

Proof. This is a direct consequence of the fact that the fol-
lowing two topologies on the space Y are the same (see
[27], page 70):

(1) The topology induced by o(X, X*)

(2) The topology o(Y, Y*)

O

Definition 36. Let X be a vector space and let {X,} ., be a
family of vector subspaces of X with the property that

(i) for each we I, X, is equipped with a topology that
makes it a locally convex topological vector space,
and

(if) Uy X, =X

The inductive limit topology on X with respect to the
family {X,},, is defined to be the largest topology with
respect to which

(1) X is a locally convex topological vector space, and

(2) all the inclusions X, € X are continuous



Theorem 37 ([21]). Let X be a vector space equipped with the
inductive limit topology with respect to {X,} as described
above. If Y is a locally convex vector space, then a linear
map T : X — Y is continuous if and only if T|y : X, —
Y is continuous for all a € I.

Definition 38. Let X be a vector space and let {Xj}de be an

increasing chain of subspaces of X:
XoeX € X, 6. (17)
Suppose that

(i) each X is equipped with a locally convex topology 7;

(ii) for each j, the inclusion (X, 7;) (X, 7;,) is a lin-
ear topological embedding with closed image

Then, the inductive limit topology on X with respect to
the family {X j}jE]NO is called a strict inductive limit topology.

Theorem 39 ([21]). Suppose that X is equipped with the strict
inductive limit topology with respect to the chain {Xj}je]No.

Then, a subset E of X is bounded if and only if there exists
m € N, such that B is bounded in X,,,.

3.2. Function Spaces and Distributions

Definition 40. Let O be a nonempty open set in R” and m
€N,.

C(Q)={f: Q— R fiscontinuous},
C"(Q)={f: Q—R:V[a|<m 3*f € C(Q)} (C"(Q) = C(Q)),
BC(Q)={f : Q— R : f is continuous and bounded on 2},
BC™(Q)={f € C"(Q): ¥|a| < m 9"f isbounded on Q},
Co(@)= N C"(Q), BC(Q)= n BC"(2),

CX(Q) ={f € C*(Q): supportof f is an element of F(Q2)}.
(18)

Let 0<A<1. A function F: QcR" — RF is called A
-Holder continuous if there exists a constant L such that

|F(x) - F(y)| < L|x - y* Vx, y € Q. (19)

Clearly, a A-Holder continuous function on Q is uni-
formly continuous on . 1-Holder continuous functions
are also called Lipschitz continuous functions or simply
Lipschitz functions. We define

BC™M(Q)={f: Q— R : V|a| <md*fis )
— Holder continuous and bounded }
={feBC"(Q): V]ja| <md“fisA

— Holder continuous},
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BC®Y(Q):= n BC™'(Q). (20)

meN,

Theorem 41 [20]. Let Q be a nonempty open set in R" and
let K € Z(Q). There is a function y € C°(Q) taking values
in [0, 1] such that y = 1 on a neighborhood containing K.

Theorem 42 (exhaustion by compact sets) [20]. Let Q be a
nonempty open subset of R". There exists a sequence of com-
pact subsets (Kj)je]N such that UjENKj =0 and

Klgkngzg...ngngg..._ (21)

Moreover, as a direct consequence, if K is any compact
subset of the open set Q, then there exists an open set V such
that KSV V.

Theorem 43 [20]. Let Q be a nonempty open subset of R".
Let {Kj}jE]N be an exhaustion of Q by compact sets. Define

Vo=K,VjeN V=K ,\K; (22)
Then,

(1) each V is an open bounded set and O = u;V;

(2) the cover {Vj}jE]NO is locally finite in O; that is, each

compact subset of O has nonempty intersection with
only a finite number of the Vs

(3) there is a family of functions y; € CZ°(Q) taking
values in [0, 1] such that supp y,C V; and

Z yi(x) =1 forallx e Q (23)

jEN,

Let Q be a nonempty open set in R”. For all ¢ € C®(Q), j
€N, and K € #(Q), we define

1l = sup {|0"@(x)|: |af < j, x € K} (24)

For all jeN and K € #(Q), ||.|[;x is a seminorm on
C®(Q). We define &(Q) to be C*(Q) equipped with the
natural topology induced by the separating family of semi-
norms {||.]| ].K}jeﬂ\u(e ) It can be shown that &(Q) is a

Frechet space.

For all Ke #(Q), we define & (Q) to be CY(Q)
equipped with the subspace topology. Since CP(Q) is a
closed subset of the Frechet space &(Q), &x(Q) is also a
Frechet space.

We define D(Q) = Ugcy(n)&x(2) equipped with the
inductive limit topology with respect to the family of vector
subspaces { & ()} e (- It can be shown that if {K j}jeNO

is an exhaustion by compacts sets of 2, then the inductive
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limit topology on D(£2) with respect to the family {%Kj} o~
J&Ng
is exactly the same as the inductive limit topology with

respect to { & (Q)} ke (a)-

Remark 44. Suppose Y is a topological space and the map-
ping T : Y — D(Q) is such that T(Y) € & (Q) for some
K e #(Q). Since & (Q)>D(Q),if T : Y — & (Q) is con-
tinuous, then T : Y—>D(Q) will be continuous.

Theorem 45 (convergence and continuity for &((2)). Let QO
be a nonempty open set in R". Let Y be a topological vector
space whose topology is induced by a separating family of
seminorms Q.

(1) A sequence {¢,,} converges to ¢ in &(Q) if and only
if ||, _(PHj,K —> 0 forall je N and K € (Q)

(2) Suppose T : E(Q) —> Y is a linear map. Then, the
following are equivalent:

(i) T is continuous

(ii) For every q € @, there exist j € N and K € #(Q),
and C > 0 such that

Ve &(Q) q(T(p)) <Cliglx (25)

(iii) If ¢, — 0 in &(Q), then T(p,) —0inY

(3) In particular, a linear map T : &(Q) — R is contin-
uous if and only if there exist j€ N and K € F(Q),
and C > 0 such that

Ve &(Q) [T(p)]=<Cliollx (26)

(4) A linear map T : Y — &(Q) is continuous if and
only if

Vie NVK e Z(Q)3C>0,keN,q,, -,
i € @ suchthatVy [Tl (27)
< C maxgq,(y)

I<i<k

Theorem 46 (convergence and continuity for &, (Q)). Let Q
be a nonempty open set in R" and K € Z(Q). Let Y be a
topological vector space whose topology is induced by a sepa-
rating family of seminorms Q.

(1) A sequence {@, } converges to ¢ in &y (Q) if and only
i lp,, ~ 9ll,c— 0 for all j€ N

(2) Suppose T : & (Q) —> Y is a linear map. Then, the
following are equivalent:

(i) T is continuous

(ii) For every q € Q, there exists j € N and C > 0 such
that

Ve &r(Q) q(T(9) <Clollx  (28)
(iii) If ¢, — 0 in & (Q), then T(¢,,) — 0inY

Theorem 47 (convergence and continuity for D(Q)). Let O
be a nonempty open set in R". Let Y be a topological vector
space whose topology is induced by a separating family of
seminorms Q.

(1) A sequence {¢,,} converges to ¢ in D(Q) if and only
if there is a K € Z(Q) such that supp ¢, €K and
P~ @ in E(0)

(2) Suppose T : D(Q) — Y is a linear map. Then, the
following are equivalent:

(i) T is continuous

(ii) For all KeX(Q),
continuous

T:8x(Q)—Y s

(iii) For every q € @ and K € K (Q), there exists j € N
and C > 0 such that

Voe&(Q) q(T(p)<Cllel;x (29

(iv) If ¢, — 0 in D(Q), then T(¢p,,) — 0in Y

(3) In particular, a linear map T : D(Q2) — R is contin-
uous if and only if for every K € H(Q), there exists
j€N and C > 0 such that

Vo e &) [T(e)=Cllelx (30)

Remark 48. Let Q2 be a nonempty open set in R”. Here are
two immediate consequences of the previous theorems and
remark:

(1) The identity map
ipg : D(Q) — &(Q) (31)

is continuous (that is, D(Q)—>&(Q))

(2) If T:&(Q) — &(Q) is a continuous linear map
such that supp (T¢) < supp ¢ for all ¢ € E(Q) (ie.,
T is a local continuous linear map), then T restricts
to a continuous linear map from D(Q) to D(Q).
Indeed, the assumption supp (T¢) C supp ¢ implies
that T(D(2)) € D(Q). Moreover T : D(Q) — D(
Q) is continuous if and only if for Ke Z(Q) T
: & (Q) — D(Q) is continuous. Since T(&y(Q))



C &x(Q), this map is continuous if and only if T
1 & (Q) — & (Q) is continuous (see Remark 44).
However, since the topology of & (Q) is the induced
topology from &((2), the continuity of the preceding
map follows from the continuity of T : &(Q) — &
(®)

Theorem 49. Let Q be a nonempty open set in R". Then D
(Q) is separable.

Definition 50. Let Q2 be a nonempty open set in R”. The
topological dual of D(Q), denoted D'(Q) (D'(Q)=
[D(Q)]"), is called the space of distributions on . Each
element of D'(Q) is called a distribution on . The action
of a distribution ueD'(Q) on a function ¢ € D(Q) is
sometimes denoted by (1, ¢) ' ()p(o) OF simply (u, ¢).

Remark 51. Every function f € L () defines a distribution
us € D'(Q) as follows

VpeD(@) uylg)= | fode (32)

In particular, every function ¢ € &(Q) defines a distribu-
tion u,. It can be shown that the map i : &(Q) — D'(Q)
which sends ¢ to u,, is an injective linear continuous map
([21], page 11). Therefore, we can identify &(Q) with a sub-
space of D'(Q); we sometimes refer to the map i as the
“identity map.”

Theorem 52 ([20], page 47). Let Q be a nonempty open set in
R". Equip D'(Q) with the weak* topology. Then, under the
above identification, C®(Q) is dense in D' (Q).

Theorem 53 ([22], page 302). Let Q2 be a nonempty open set
in R". Equip D' (Q) with the strong topology. Then, under the
identification described in Remark 51, C°(Q) is sequentially
dense in D'(Q2).

Remark 54.

(i) Clearly sequential density is a stronger notion than
density. So C®(Q) is dense in (D'(Q), strong
topology)

(ii) Recall that, according to Remark 22, a sequence con-
verges in (D' (Q), weak®) if and only if it converges
in (D'(Q), strong topology). This together with the
fact that weak® topology is weaker than the strong
topology implies that convergent sequences in both
topologies converge to the same limit. Therefore, it
follows from Theorem 53 that C2°(Q) is sequentially
dense in (D' (), weak™). Hence, Theorem 52 can be
viewed as a corollary of Theorem 53
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Theorem 55 ([21], page 9). D(Q) is reflexive. So

[(D' (), strong topology)]” can be identified with the topo-
logical vector space D((2).

Definition 56 (restriction of a distribution). Let (2 be an open
subset of R” and V' be an open subset of . We define the

restriction map resq, y : D' (Q2) — D'(V) as follows:

(resq,y (P>D’(V)x1)(v> = (1 eXt(‘)”Q(P>D'(Q)><D(Q)' (33)

This is well-defined; indeed, resg, , : D' (Q2) — D'(V) is
a continuous linear map as it is the adjoint of the continuous
map ext),, : D(V) — D(Q). Given u € D'(Q), we some-
times write u|, instead of resg , u.

Definition 57 (support of a distribution). Let Q be a non-
empty open set in R”. Let u € D' (Q).

(i) We say u is equal to zero on some open subset V of
Qiful,=0

(ii) Let {V;},.; be the collection of all open subsets of Q2
such that u is equal to zero on V. Let V=U,,V,.
The support of u is defined as follows:

supp u=0Q\V (34)

Note that supp u is closed in Q but it is not necessarily
closed in R”.

Theorem 58 ([21]). Let Q be a nonempty open set in R" and
let ue D'(Q). If p € D(Q) vanishes on a neighborhood con-
taining supp u, then u(¢p) = 0.

Theorem 59 ([21]). Let {u;} be a sequence in D' (Q), ue D
(Q), and K € H(Q) such that u;—> u in D' (Q) and supp
u; €K for all i. Then, also supp u < K.

Theorem 60 ([28], page 38). Let Q2 be a nonempty open set in
R". Suppose that {T,} is a sequence in D' (Q) with the prop-
erty that for all ¢ € D(Q), lim;__.o(Tj» ) p' (o)up(q) €Xists.

Then, there exists T € D' (Q) such that

Vo eD(Q) (T, 9)p apia) = imo<Ti’ P)p' (@)xp()"
(35)

Definition 61 (Sobolev-Slobodeckij spaces). Let Q be a non-
empty open set in R”. Let s € R and p € (1,00).
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(i) If s=k e N,

WH () = {uEL"(Q)Z el yrocyy = Y. ”avu|LP(.Q)<OO}

[v|<k

(36)
(i) If s=6€(0,1)

u(x) —u(y)|f e
wo(Q) = {u e P(Q): [l oo ) = ([ [ dedy) <oo}

axa |x—y™o

(37)
(iii) If s=k+6, ke Ny,0¢€(0,1),

W (Q) = {u € WH(Q): [l e ) = 18l ) + D ‘avu|wg,,,(m<oo}
vk

(38)
(iv) WP(Q) is defined as the closure of C®(Q) in

WP (Q)
(v) If s<0,

W (Q) = (W(;S’P'(Q))* (% + 1% = 1) (39)

(vi) For all compact sets K C 2, we define

WE(Q)={ueW*(Q): supp ucK}  (40)

with {|ullyye o) = [[ul

W (Q) can be viewed as a subspace of D'(Q)
(see Theorem 68), and the support of u € W (Q)
is interpreted as the support of a distribution.

wsr(q)- Note that for s<0,

(Vi) Weomp(Q) = Ugearog Wi (Q).  Welp(Q) s
equipped with the inductive limit topology with
respect to the family of vector subspaces

w¥(Q . It can be shown that if
K Ke# (Q)

{K j}j€N0 is an exhaustion by compacts sets of O,

then the inductive limit topology on Wb, ()

with respect to the family {W;gj )} NS exactly
J€INg

the same as the inductive limit topology with
respect to { W (Q)} 4. ()

Theorem 62. Let 2 be a nonempty open set in R", s > 1, and
1< p<oo. Then, ue W*(Q) if and only if u e L?(Q), and
forall 1<i<n, du/ox' € W 1P(Q).

Proof. We consider two cases:

Case 1: s=keNN.
ue WH(Q) e uel?(Q)andd*u e I7(Q) V1<|a|<k

@ueLP(Q)andaﬁ[%} elP(Q) VO<|Bl<k-1,1<i<n

0
—ucl’(Q) anda—u. € Wk_l’P(Q) Vi<i<n
xl
(41)
Case 2:s=k+0,keN,and 0<O< 1.

0"u(x) - 0%u(y)
‘x_y‘n/p+9
ou

—ucl/(Q)and o - € WELP(Q) V1 <i
xl

0%u(x) - 0"u(y)
‘x _yln/p+6
ou

—ueclf(Q)and 3 € Wk’l’P(Q) and
x’

9 (9u/ox’) (x) — 0 (qu/dx') (y)
|x _ yln/p+9

=k-1Vli<i<n

ue W*(Q) e ue W (Q) and P (QxQ)V|v| =k

<n and eP(QxQ)V|v|=k

e P(Qx Q)V|f|

2
e uelf(Q)and al eWS(Q) Vii<n
X

(42)
|

Remark 63. Let 2 be a nonempty open set in R”, s € R, and
1 < p < 0. Clearly for s >0, C®°(Q) € W*(Q). For s <0, it is

easy to see that for all ¢ € C°(Q2), the map [, : W(—)sp,(Q)
— R which sends ue W,* /(Q) to [ updx belongs to

[(W,*F ,(.Q)]* = W*(Q). The map ¢ I, is one-to-one and
we can use it to identify C°(Q) with a subspace of W™ (Q);
we sometimes refer to the map that sends ¢ to [, as the “iden-
tity map.” So we can talk about the identity map from C°(Q)
to W(Q) for all s € R.

Theorem 64 ([16]). Let Q be a nonempty open set in R",
$>0, and 1<p<oo. Then, W (Q) is a reflexive Banach
space.

Corollary 65. Let 2 be a nonempty open set in R", s > 0, and
1< p<oo. A closed subspace of a reflexive space is reflexive,
so Wi (Q) is reflexive. Dual of a reflexive Banach space is a
reflexive Banach space, so W™F (Q) is a reflexive Banach
space.

Remark 66. Let 2 be a nonempty open set in R”, s >0, and
1<p<oo. Since Wi (Q) is reflexive, it can be identified
with [W(2)]"" and we may write [W=?' (Q)] = W ()
and talk about the duality pairing (u, f)wgp(g)xw,s,j,r<o). To
be more precise, we notice that the identification of
(WP ()]"" and Wi (Q) is done by the evaluation map
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T W) — (W@ J@)f]=f).  (43)

Therefore, for all u € Wf)’p (Q) and fe WP , (),

<1/l,f> W;’P(Q)XW'S-P’(Q) = <](l/l),f> [WB’P(Q)]MXW_S’P/(Q)

(44)
=f(u) = <f’ u> W' (Q)xW(Q)"

Theorem 67. Let ) be a nonempty open set in R", s > 0, and

I1<p<oo. Then, C®(Q) is dense in wsp' (Q). We may

write this as W, (Q) = WP ’ Q).

Proof. Our proof will be based on a similar argument given
in page 65 of [1]. Let ¢ — I, be the mapping introduced in
Remark 63. Our goal is to show that the set

Vi={l,:9eC(Q)} (45)

is dense in W' (Q). To this end, it is enough to show that
if Fe [ (Q)] is such that F(l,) =0 for all g € C(Q2),
then F=0. Indeed, let F be such an element. By reflexivity
of W¥(Q), there exists f € W7 (Q) such that

Yve WP (Q)  F(v)=v(f). (46)

Thus, for all ¢ € C°(2), we have
0=F(,) =h()=| f@pwdx @)

So, by the fundamental lemma of the calculus of varia-
tions (see [27], page 110), we have f =0 (as an element of
W (Q) c L} (€)) and therefore F = 0. O

Theorem 68. Let (2 be a nonempty open set in R", s € R, and
1< p < oo. Equip D' (Q) with weak* topology or strong topol-
ogy. Then

D(Q)->W(Q)=D'(Q). (48)

Proof. Recall that the convergent sequences in D'(Q)
equipped with strong topology are exactly the same as the
convergent sequences of D'(Q) equipped with the weak*
topology (see Remark 22). This together with Theorem 19
implies that in the study of the continuity of the inclusion
map from W (Q) to D'(Q), it does not matter whether
we equip D' () with the strong topology or weak* topology.
In the proof, as usual, we assume D' ((2) is equipped with the
strong topology. We consider two cases:

Case 1: s > 0. The continuity of the embedding D(Q)—
W*P(Q) has been studied in [16]. Also clearly W (Q)—
17(Q)=D'(Q). The former continuous embedding holds
by the definition of W (Q) and the latter embedding is
continuous because if u,, — 0 in L?(Q), then for all ¢
e D(Q),
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(D cpnen =0 = || s] < il —0.

(49)

So, u, — 0 in D'(Q). This implies the continuity of
the inclusion map from L?(Q) to D'(€) by Theorem 19
Case 2: s<0. Since W, (Q)<—>W’S’P,(Q), it follows
from previous case that W, (Q)—D'(Q). Also since D

(Q)cw,”* , (Q) is dense in D'(Q) (see Theorem 52, The-
orem 53, and Remark 54), it follows that the inclusion

map from W, ,(Q) to D'(Q) is continuous with dense
image. Thus, by Theorem 27, D(Q)—>W*’(Q). Here, we
used the facts that (1) the strong dual of the normed space
W, (Q) is W*(Q) and that (2) the dual of (D'(Q),
strong topology) is D(Q) (see Theorem 55). It remains to
show that W*(Q)=D'(Q). It follows from Case 1 that
D(Q)—=W,”* (Q) and by definition D(Q) is dense in
W, (Q). So, by Theorem 27, W (Q)—D'(Q) O

Remark 69. Note that for s <0, Wf(Q) is the same as W*?
(Q). For s >0, W' (Q) is a subspace of W*(Q) which con-
tains C°(Q). So it follows from the previous theorem that

D(Q)=> W (Q)=D'(Q). (50)

To be more precise, we should note that for s <0, we
identify ¢ € D(Q) with the corresponding distribution in D’
(Q). Under this identification, for all s€ R the “identity
map” i : D(Q) — W (Q) is continuous with dense image,
and so its adjoint i* : [Wi()]" — D' () will be an injec-
tive continuous map (Theorem 27), and we have

(i"u, P)p' (@xp(Q) = (u, i‘/’>[wgf’(9)rxwgf’(9) (51)

= (@) wira)) wi )

We usually identify [W;f(Q)]" with its image under i*
and view [W?(Q)]" as a subspace of D'(Q). So, under this
identification, we can rewrite the above equality as follows:

Vue [Wf(Q)]" VYoeD(Q) (u, P)p' (D)
= () (Wil ()] xwif (@)
(52)

Finally, noting that for all seR and 1<p<oo,

(WP (Q)]" = W™ (Q) (see Definition 61, Theorem 67,
and Corollary 65), we can write
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Vue W,™ (Q) VYoeD(Q) (u, P)p' (@xp(0)

= (8 Py’ et
(53)

Theorem 70. Let Q2 be a nonempty open set in R", s > 0, and
1< p<oo. Then,

(1) the mapping F'—>F!C§om> is an isometric isomor-
phism between W= (Q) and [C®(Q), ||.[[,,]°

A gpr) — R s

(2) suppose ue D' (Q). If u : (C®(Q)
continuous, then ue W'(Q) (more precisely, there
is a unique element in Wy (Q) whose corresponding

distribution is u). Moreover,

(u, ‘P>D’(Q)xD(Q)

||u||1/\f;’1’(9) = sup (54)

0=peC>(Q) ||(PHW*5)17’(Q)

Proof. The first item has been studied in [16]. Here, we will
prove the second item. Since u : (CZ°(Q), |[.[|_;,1) — R is
continuous, it can be extended to a continuous linear
map i : W‘S’P,(Q) —R. So i€ [W‘S’P’(Q)]*. However,
WP (Q) is reflexive, therefore there exists a unique v € W’
(Q) such that @t =J(v) where J(v): W= (Q) — R is the
evaluation map defined by J(v)(F)=(F,v) ., (QxWE(Q)
To finish the proof, it is enough to show that v=u as ele-
ments of D' (Q). For all ¢ € C®(Q), we have

Remark 63

(" @)p' @pe) = JQV‘P dx (#v) w2 (Q)x W ()

=J()(9) = u(p) = u(g) = (u ‘P>D’(Q)xD(Q)'

(55)
Also,
H”ngp(o) = HVHWgP(Q)
=[JW)Il [Wfs,p'(g)] :
= [|u]] [W—s,p’((n] : 6
= sup —<a’ 9)p'(0)D(0) (56)
0=peC®(Q) ||‘P||W*W’<Q)
U, @)
. (. 9)p (Q)xD(Q)
0=peC®(Q) ||9”||W—s,p’<g>
|

Corollary 71. Let O be a nonempty open set in R", s > 0, and

1< p<oco. Suppose that u e D'(Q). As a direct consequence
of Theorem 70, we have the following:

11
(i) If SuPo;,pech(Q)«% (P>D’(Q)xD<Q)/ o WS'P(_Q)) < 00,
then ue WP (Q) and
[el]ooa = sup (u, (p>D'(Q)><D(Q) (57)
o —_—
W@ o=pec>(@) 9] W (Q)

(ii) If SuPo;<pec5°(Q)(<”’ ‘P)D'(Q)xD(Q)/H‘PHW—s,p’(g)) < 00,
then ue W' (Q) and

(9) b (xp(0
[l oy = sup - PE(58)
0=peC>(Q)

‘(PH w-se' (@)

That is, for any e€ R and 1< q< oo, in order to show
that u € D' (Q) belongs to W (Q), it is enough to prove that

u, /
sup (1 9)p (Q)xD(Q)
0=9peCX(Q)

< 00, (59)
ol @)
and in fact HuHWW(Q) = SuPOE(pECSO(Q)(<u’ §0>D’(Q)xD(Q)/

”(PH wea' (_Q))'

Theorem 72. Let Q) be a nonempty open set in R", s € R, and
1< p < o0o. Suppose that K € F(Q). Then, Wi¥ (Q) is a closed
subspace of W*(Q).

Proof. 1t is enough to show that if {#,} is a sequence of ele-
ments in W¥(Q) such that u; — u in W (Q), then u €
W¥(Q), ie., supp u < K. By Theorem 68, we have u; —
u in D'(Q). Now it follows from Theorem 59 that supp u
C K. Note that for any s>0, we have W*(Q) CL?(Q) <
L} (Q); in this proof, we implicitly used the fact that for
functions in L}, ((2), the usual definition of support agrees
with the distributional definition of support.

Next, we list several embedding theorems for Sobolev-
Slobodeckij spaces.

Theorem 73 ([29], Section 2.8.1). Suppose 1 < p < q < 0o and
—00<t<s<oo satisfy s—nlp=t—nl/q. Then, WP (R")—
WH(R"). In particular, W (R")—>W"(R").

Theorem 74 ([30, 18]). Let Q2 be a nonempty bounded open
subset of R" with Lipschitz continuous boundary. Suppose 1
<p,q<oo (p does NOT need to be less than or equal to q)
and 0<t<s satisfy s—n/p=t—n/q. If s€N,, additionally
assume that s # t. Then, W™ (Q)>W*"4(Q). Furthermore, if
s> t, then the embedding W (Q)—>W"(Q) is compact.

Theorem 75 ([16]). Let Q CR" be an arbitrary nonempty
open set.

(1) Suppose 1<p<qg<oco and 0<t<s satisfy s—nlp>
t —n/q. Then, Wi (Q)=>W(Q) for all K € #(Q)
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(2) For all k;, k, € N, with k; <k, and 1< p < co, WkP
(Q)-Whr(Q)

(3)If0<t<s<I and 1<p<oo, then W (Q)>W"(
Q)

(4) If 0< t <s< oo are such that |s] = |t] and 1 < p < 00,
then W (Q)> W (Q)

(5) §f0£fp£(s)<oo, t €Ny, and 1<p < oo, then W (Q
—>WH"(Q

Theorem 76 ([6]). Let Q) be a nonempty bounded open subset
of R" with Lipschitz continuous boundary or Q=R". If sp
>n, then W(Q)>L®(Q)NC(Q) and W?(Q) is a
Banach algebra.

In the next several theorems, we will list certain multipli-
cation properties of Sobolev spaces. Suppose ¢ € C*°(Q2) and
ue W(Q). If s > 0, then the product ¢u has a clear mean-
ing. What if s < 07 In this case, u|pq is a distribution and by

the product pu we mean the distribution (¢)(u[p(q)); then
gu s in WP(0) If (9)(ulpio): (GO 1] ) — R is
continuous. Because then it possesses a unique extension
to a continuous linear map from W,* (Q) to R and so it

can be viewed as an element of [W,* (Q)] = W*(Q). See
Theorem 70 and Corollary 71. Also see Remark 89.

Theorem 77 (multiplication by smooth functions I, [31],
page 203). Let s€e R, 1<p<oo, and ¢ € BC®(R"). Then,
the linear map

m, : WH(R") — WP (R"), uw gu (60)

is well-defined and bounded.

Theorem 78 (multiplication by smooth functions II, [16]).
Let Q be a nonempty bounded open set in R" with Lipschitz
continuous boundary.

(1) Let ke N, and 1< p<oo. If ¢ € BC(Q), then the
linear map WP (Q) — W*P(Q) defined by uvs ¢
u is well-defined and bounded

(2) Let se Rand 1< p < co. If p € BC®(Q), then the lin-
ear map W (Q) — W*(Q) defined by u @u is
well-defined and bounded

Theorem 79 (multiplication by smooth functions III, [16]).
Let Q be any nonempty open set in R". Let p € (1,00).

(1) If0<s< 1 and ¢ € BC®(Q) (that is, ¢ € L°(Q) and
@ is Lipschitz), then
m, : WH(Q) — WP(Q), u-gu (61)

is a well-defined bounded linear map
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(2) If ke N, and ¢ € BCK(Q), then
m, : W (Q) — WP (Q),  u gu (62)

is a well-defined bounded linear map
(3) If —-1<s<0 and ¢ € BC®'(Q) or s€eZ and ¢ ¢
BC®(Q), then

m,: WP (Q) — WP(Q), u-gu (63)

is a well-defined bounded linear map

Theorem 80 (multiplication by smooth functions IV, [16]).
Let Q be a nonempty open set in R", K € #(Q), p € (1,00),
and —1<s<0 or seZ” or s€[0,00). If p € C®(Q), then
the linear map

WE(Q) — WE(Q), urqu (64)

is well-defined and bounded.

Theorem 81 (multiplication by smooth functions V, [16]).
Let Q be a nonempty bounded open set in R" with Lipschitz
continuous boundary. Let K € Z(Q). Suppose s€ R and p
€ (1,00). If p € C®(Q), then the linear map W'(Q) —
W (Q) defined by u— gu is well-defined and bounded.

In the next definition, we introduce the notion of smooth
multiplication triple which will play a key role in several the-
orems that will follow.

Definition 82 (smooth multiplication triple). Let 2 be a non-
empty open set in R”, se R and 1 < p < 0o.

(i) We say that the triple (s, p, Q) is a smooth multipli-
cation triple if for all ¢ € C°(0Q), the map

m,: WH(Q)— WP(Q) u-ou (65)

is well-defined and bounded

(i) We say that the triple (s, p, Q) is an interior smooth
multiplication triple if for all ¢ € C°(Q) and K € &
(Q), the map

m, : WE(Q)— WZ(Q) u—ou (66)

is well-defined and bounded

Remark 83.

(1) Every smooth multiplication triple is also an interior
smooth multiplication triple

(2) Itis a direct consequence of Theorems 77, 78, and 79
that
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(i) if @ =IR" or Q is bounded with Lipschitz contin-
uous boundary, then for all s € R and 1 < p < 00,
(s, p, Q) is a smooth multiplication triple

(i) if Qisany opensetin R", 1< p <oco,andse Ris
not a noninteger with magnitude greater than 1,
then (s, p, Q) is a smooth multiplication triple

(3) It is a direct consequence of Theorem 80 and
Theorem 81 that

(i) if @ =R" or Q is bounded with Lipschitz contin-
uous boundary, then for all s € R and 1 < p < 00,
(s,p, Q) is an interior smooth multiplication
triple

(i) if Qis any open setin R", 1 < p <00, and s € R is
not a noninteger less than —1, then (s, p, Q) is an
interior smooth multiplication triple

(4) If (s,p, Q) is a smooth multiplication triple and K
€ #(Q), then W (Q) < W (Q) (see the proof of
Theorem 7.31 in [16]). Of course, if s < 0, then W*?
(Q) = WP (Q) and so W’ (Q) < WP (Q) holds for
all s<0, 1< p<ooand open sets Q CR”"

Theorem 84. Let Q2 be a nonempty open set in R", s > 0, and
I<p<oo. If (s,p, Q) is a smooth multiplication triple so is

(=s,p', Q).

Proof. Let 9 € C°(Q). Forall u € W' Q)= Was’p, (Q) and
v € D(Q), we have

‘ (91 V)b ()p(a) ’

Remark 69

= ¥ | )

= ‘W’ PY) D (2)xD()
< 4] IV

W"P(Q)<”u”w*&1"(g)||w| W (Q)"

The last inequality holds because (s, p, Q) is a smooth
multiplication triple. It follows from Corollary 71 that ¢u
W' (Q) and [lgullyy <l ,

: W’S‘P’(Q) — W’S’P’(Q) is well-defined and continuous.
U

that is, m

Theorem 85. Let 2 be a nonempty open set in R", s € R and
I1<p<oo. If s<0, further assume that (—s,p',Q) is a
smooth multiplication triple. Suppose that Q' € Q and K €
H(Q"). Then,

(1) for all u € W (Q), [[ullyay = Il ey iy

() for all ue W(Q"), ||ext?),)0u||WS’P(Q) = [lull ey
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Proof. The claim follows from the argument presented in the
proofs of Corollary 7.39 and Theorem 7.46 in [16]. O

Theorem 86 (([30], pages 598-605), ([6], Section 1.4)). Let
s€RR, 1 <p<oo, and a € Nj. Suppose  is a nonempty open
set in R". Then,

(1) the linear operator 0% : W™ (R") — W*lob?(R") is
well-defined and bounded

(2) for s<0, the linear operator 0% : W™ (Q) —
WP (Q) is well-defined and bounded

(3) for s> 0 and |a| <s, the linear operator 0“ : W (Q)
— Wb (Q) is well-defined and bounded

(4) if Q is bounded with Lipschitz continuous boundary,
and if s> 0, s — 1/p # integer (i.e., the fractional part
of s is not equal to 1/p), then the linear operator 0“
CWH(Q) — WP (Q) for |a| >s is well-defined
and bounded

Theorem 87. Assumptions:

(i) Q=R" or Q is a bounded domain with Lipschitz
continuous boundary

(ii) s, s€R, s;25>0 fori=1,2
(iii) 1<p,<p<oofori=1,2

(iv) s;—s>n(1/p; - 1/p)

(v) s;+s,—s>n(1lp, + 1/p, - 1/p)

Claim: If ue WP1(Q) and ve W2P2(Q), then uve
W*P(Q) and moreover the pointwise multiplication of func-
tions is a continuous bilinear map

WP () x WP (Q) — W (Q). (68)

Remark 88. A number of other results concerning the suffi-
cient conditions on the exponents s;, p,, s, p that guarantee
the multiplication W*rP1(Q) x W%P2(Q)>W*P(Q) is well-
defined and continuous are discussed in detail in [18].

Remark 89. Suppose that (s, p, Q) is a smooth multiplication
triple with s>0. ws' (Q) =W, (Q) is the dual of
W:))P(Q) and <u)f>W6Xp’(Q)XWf;p(Q)
tional u on the function f. As it was discussed before, if
is a function in C°(Q), (y)(ulp)) is defined as a prod-
uct of a smooth function and a distribution. Since (s, p, Q)

is a smooth multiplication triple, (=s,p’, Q) will also be a
smooth multiplication triple, and that means (y)(u|pq))

1 (CP(Q), [[-]l;p) — R is continuous (see the note right
after Theorem 76). We interpret wu as an element of
WP ,(Q) = [W ()] to be the unique continuous linear
extension of y(u|pqg)) to the entire W (Q). It is easy to

is the action of the func-
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see that, this unique linear extension is given by
(Wi f) s @) = vf) W (QxWi ()’ (69)

that is, the above map is linear continuous and its restriction to
D(Q) is the same as y(u|p ). (Note that since (s, p, 2) is a
smooth multiplication triple, yf is indeed an element of
W' (Q))

Theorem 90 ([32]). Let s € [1,00) and 1< p < 0o, and let

. (s, if sisaninteger, (0)
ls] +1, otherwise.

If Fe C"(R) is such that F(0)=0 and F, F',---, F'") ¢
L®(R) (in particular, note that every F € C2°(R) with F(0)
=0 satisfies these conditions), then the map uw— F(u) is
well-defined and continuous from W (R") n WH?(R") into
WP (RR™).

Corollary 91. Let s, p, and F be as in the previous theorem.
Moreover, suppose sp > n. Then, the map u— F(u) is well-
defined and continuous from W*(R") into W*P(R"). The
reason is that when sp > n, we have W (R")— W5 (R").

In the remaining of this section, we will state certain use-
ful properties of the topological vector space Wehyp. The
properties we will discuss here echo the ones stated in [24]

S
for spaces H( ...

Theorem 92. Let Q be a nonempty open set in R”, seR,
and 1<p<oo. Then, D(Q) is continuously embedded in

Weomp(€Q).
Proof. For all K € #(Q), we have
€ (Q)oD(Q)> W (Q). (71)

This together with the fact that the image of & (Q)
under the identity map is inside W’ (Q) implies that

Ex(Q)->WE(Q). (72)

Also, by the definition of the inductive limit topology on
Wbnp (Q), we have

WE(Q)oWh, (). (73)

It follows from (72) and (73) that for all K € #(Q),

Ex( Q=W (Q), (74)

comp
which, by Theorem 37, implies that D(Q)— W, (Q). O

Theorem 93. Let (s, p, Q) be a smooth multiplication triple.
Then, C®°(Q) is dense in Wb,,(Q).
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Proof. We will follow the proof given in [24] for spaces
H oy Let u € Wﬁ’f,’mp (Q). It is enough to show that there
exists a sequence in C°(Q2) that converges to u in Wehnp(
Q) (this proves sequential density which implies density).
By Meyers-Serrin theorem, there exists a sequence ¢,, €
C®(Q) N W*(Q) such that ¢, — u in W*(Q). Let y €
CX(Q) be such that y =1 on a neighborhood containing
supp u (see Theorem 41). Let K =supp x. Since (s, p, Q) is
a smooth multiplication triple, multiplication by y is a linear
continuous map on W*?(Q) and so y¢,, — xu in W*(Q).
Now, we note that yu = u and for all m, y¢,, are in C°(Q)
with support inside K. Consequently, ¢, — u in W (Q).
Now, since W (Q)— Whnp (Q), we may conclude that g,

is a sequence in C®°((2) that converges to u in Wby (Q). O

Remark 94. As a consequence, if (s, p, ) is a smooth multi-
plication triple, then [We£y, ()] (equipped with the strong
topology) is continuously embedded in D'((2). More pre-
cisely, the identity map i : D(Q2) — Wehnp () is continu-
ous with dense image, and therefore, by Theorem 27, the
adjoint i* : [Web,,(Q)]" — D'(Q) is a continuous injec-
tive map. We have

(i1, )y (QxD(Q) ~ (uig) (Wit (@)] X Wil (@) 75)

= {6 @) Wity ()] s Wlp )

We usually identify [Wehy, ()] with its image under i*
and view [W3,,(Q)] " as a subspace of D' (). So, under this
identification, we can rewrite the above equality as follows:

5

vue (Wi, (@)

(1 9)p' ()xp() = (B ‘/’>[W§'§mp(ﬂ)]*xWmep(Q)’
(76)

Next, we will prove that if (s, p, Q) is a smooth multipli-
cation triple, then Wby, (Q) is separable. To this end, we
need the following lemma.

Lemma 95. Let (X,7) and (Y, ') be two topological spaces.
Suppose that

(1) A is dense in (X, 1)

() T: (X,7)— (Y,7') is continuous
(3) T(X) is dense in (Y,7")

Then, T(A) is dense in (Y, 1').

Proof. It is enough to show that T(A) intersects every non-
empty open set in (Y,7'). So let O € 7’ be nonempty. Since
T(X) is dense in (Y,7'), we have ONT(X)+# @ and so
T7'(0) is nonempty. Also, since T is continuous, T~*(O)
€7. Ais dense in (X, 7), so ANT(0) + @. Therefore,
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T(A)NO2T(ANT(0)) + 2. (77)

O

Theorem 96. Let (s, p, Q) be a smooth multiplication triple.
Then, Wi’fmp(Q) is separable.

Proof. According to Theorems 92 and 93, D(Q) is continu-
ously embedded in Wi’gmp (Q) and it is dense in Wi’é’mp Q).
Since D(Q) is separable, it follows from Lemma 95 that
W bmp (Q) is separable. O

Theorem 97. Let (s, p, Q) be an interior smooth multiplica-
tion triple. Let {v/j}je]N be the partition of unity introduced
0

in Theorem 43. Let S be the collection of all sequences whose
terms are nonnegative integers. For all sequences a = (a,, a;,
) €S define g, , : Wi (Q) — R by

= Yl 78
=0

W (0)

Then, {%»S»P}ues is a separating family of seminorms on
Wb (Q) and the natural topology induced by this family
on Wih,,(Q) is the same as the inductive limit topology on
Weomp (02)

Proof. Note that support of every u € Wehy, is compact, so
for each u, only finitely many of y;u’s are nonzero. Thus,
the sum in the definition of g, is a finite sum. Now it is
not hard to show that each g, , is a seminorm and
{usp} . is separating. Here, we will show that the topolo-
gies are the same. Let us denote the inductive limit topology
on Wf;’gmp(Q) by 7 and the natural topology induced by the
given family of seminorms 7’

In what follows, we implicitly use the fact that both
topologies are locally convex and translation invariant.

Step 1 (t' < 7). We will prove that for each K € # (),
W (Q)=(Whnp(Q), 7"). This together with the definition
of 7 (the biggest topology with this property) implies that
7' ¢ 1. Let K € #(Q). By Theorem 18, it is enough to show
that for all a€S, g,,°1d: W (Q) — R is continuous.
Since K is compact, there are only finitely may y’s such that
Knsupp y; # @; let us call them y; , -, ;. So, for all u €

W (Q),

+"'+aszwfz”H . (79

qa,s,p(u) = aj] ijluH WS’P(Q)

W (Q)

By assumption, (s, p, Q) is an interior smooth multipli-
cation triple, so for each je€ {j, --,j,}, the mapping u > |

Y iullysr () from W¥(Q) — R is continuous. Hence,
oId : W (Q) — R must be continuous.

Qusp
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Step 2 (€ 7'). Since (Wehup(€2), 7) is a locally convex
topological vector space, there exists a separating family of
seminorms & whose corresponding natural topology is T
(see Theorem 15). We will prove that for all pe P, p: (

Wi’gmp (Q),7') — R is continuous. This together with the
fact that 7 is the smallest topology with this property shows

that T <7’ Let p € &. By Theorem 12, it is enough to prove
that there exists a € S such that

Vu € WZ’(I))mp(Q> f)(u> < Qa,s,p(u)‘ (80)

For all u € W, (Q), we have p(u) =p(X;y;u). Since u
has compact support, only finitely many terms in the sum
are nonzero, and so by the finite subadditivity of a semi-
norm, we get

B(u) =ﬁ<Zw,- ) <Yb(v;u). (81)
J J

Now, note that yu belongs to the normed space
Wk y,(Q). Since p: (Wehup(2),7) — R is continuous
and Wb, v, (Q)=>(Wup(Q), T), we can conclude that p
: Wik y,(2) — R is continuous. Thus, by Theorem 9,
there exists a positive integer a; such that

Vue W, (Q) 13(1//]'”) < aij/juHWS’P(Q). (82)
It follows that for all u € Wby, (Q),

p(w) s;ﬁ(% ) SE%H‘%‘“H

= u, 83
gy e (89)

where a = (ay, a;,+-) O

4. Spaces of Locally Sobolev Functions

Let se R, 1 <p < o0o. Let Q be a nonempty open set in R".
We define

wP

loc

(Q) = {u €D'(Q): Ve C®(Q) que WS’P(Q)}.
(84)

We equip W’ (Q) with the natural topology induced by

the separating family of seminorms {|.| ‘/”S’P}(pEC‘X’ @ (see Def-

inition 10) where

Yue W (Q),peC(Q) (85)

|u|(p,s,p = ||§01/l| W (Q)"

When s and p are clear from the context, we may just
write |u|,, or p,,(u) instead of [ul It is easy to show that

for all p € C°(Q2)

Psp*

» |-l 18 @ seminorm on W2 (Q). The fact
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that the family of seminorms {|.| is separating

‘PaS’P}thCf_”(Q)
will be proved in Theorem 103.

Remark 98. Note that, by item (1) of Theorem 20, u; — u in
W32 (Q) if and only if gu; —> gu in W*(Q) for all ¢ €

Q).

Remark 99. Clearly if (s,p,2) is a smooth multiplication
triple, then W*(Q) < W2 (Q).

An equivalent description of locally Sobolev functions is
described in the following theorem.

Theorem 100. Suppose that (s, p, Q) is a smooth multiplica-
tion triple. Then, u€ D'(Q) is in W,2(Q) if and only if for
every precompact open set V with V C Q there is w € W™(
Q) such that w|y, = ul,,.

Proof. =: suppose u € W;? () and let V be a precompact
open set such that V € Q. Let ¢ € C®°(2) be such that ¢ =
1 on a neighborhood containing V. Let w = gu. u is a locally
Sobolev function, so w € W (Q); also clearly w|y = ul,,.

&: suppose u € D'(Q) has the property that for every
precompact open set V with V € Q there is we W™ (Q)
such that w|, = ul,,. Let ¢ € C°(Q). We need to show that
ou € W*(Q). Note that supp ¢ is compact, so there exists
a bounded open set V' such that

supp pSVCVcQ. (86)

By assumption, there exists we W*?(Q) such that w
|y = uly. It follows from the hypothesis of the theorem that
ow € W(Q). Clearly gw = gu on Q. Therefore, pu € W**
(Q). O

5. Overview of the Basic Properties

Material of this section is mainly an adaptation of the mate-
rial presented in the excellent work of Antonic and Burazin
[17], which is restricted to integer order Sobolev spaces, and
Peterson [24], which is restricted to Hilbert spaces H*. We
have added certain details to the statements of the theorems
and their proofs to ensure all the arguments are valid for
both integer and noninteger order Sobolev-Slobodeckij
spaces.

Definition 101. If A is a subset of C°(Q) with the property
that,

Vx € Q3¢ € A such that ¢ >0 and ¢(x) #0, (87)

then we say A is an admissible family of functions.

Remark 102. Note that if A is an admissible family of func-
tions, then for all m € N, the set {¢™ : p€ A} is also an
admissible family of functions.
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Theorem 103. Let (s, p, Q) be an interior smooth multiplica-
tion triple. If A is an admissible family of functions then

(1) WA (Q)={ueD' (Q): YpeA que W (Q)}

loc
(2) The collection {|.|,, : ¢ € A} is a separating family of

. s,p
seminorms on W (Q)

(3) The natural topology induced by the separating fam-
ily of seminorms {|.|,: p € A} is the same as the

topology of W2 ()

Proof.

(1) Let ue D' () be such that gu e W*(Q) for all ¢
€ A. We need to show that if ¢ € C2°(Q), then v
ue W(Q). By the definition of A, for all x¢
supp v, there exists ¢ €A such that ¢ (x)>0.
Define

Uy={yeQ:9.(y)>0}. (88)

Clearly, x € U,, and since ¢, is continuous, U

an open set. {U, } euppy
compact set supp y. So there exist points xi,:-,
x such that suppy cU=U, U---UU,.IfyeU,
then there exists 1<i<k such that y€ U, and so

L 18
is an open cover of the

¢, (¥) > 0. So the smooth function Zf:lq)xx is nonzero
on U. Thus, on U we have

k
yu= _v (Z @, u) . (89)

Yig, \ S
Indeed, if we define

ﬂ, ifze U,
Ez)= | Yo, (2) (90)

0, otherwise,

then & is smooth with compact support in U and

k
yu=§) ¢.u (91)

on the entire Q. Now, note that for each i, ¢ _u is in
W*P(Q) (because by assumption @u e W*P (Q) for
all p € A). So Zf;lgoxiu € W*(Q). Since & € CX(Q)
and Y~ ¢_u have compact support and (s, p, Q) is
an interior smooth multiplication triple, it follows
that EZ;‘:Iq)xiu € W?(Q)

(2) Now, we prove that {[.|,: ¢ €A} is a separating

family of seminorms. We need to show that if u €
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3)

WP (Q) has the property that for all g € A |ul o=
| ullyyse () = 0, then u=0. By definition of locally

Sobolev functions, u is an element of D'(Q2). So, in
order to show that u =0, it is enough to prove that
for all n € CZ°(2), (1) ' ()p() =0- We consider

two cases:

Case 1. A=CX(Q).Letp e Abe such that¢p=1ona
neighborhood containing supp #. By assumption ¢
u=0 in W*(Q) and so it is zero in D'(Q). Now
we have

(1) b ()xp) = (P (@)xp0) = (P D ()p(0) =
(92)

which is exactly what we wanted to prove

Case 2. A ¢ C°(Q2). We claim that if [|gu( () =0
for all ¢ € A, then for any y € C°(Q), [[yullys (o)

=0, and so this case reduces to the previous case.
Indeed, if v is an arbitrary element of C°((2), then
by what was proved in item (1),

k
l//u = Ezq)xiu’ (93)
i=1

where by assumption, for each i, ¢ _u is zero as an
element of W*#(Q). Hence, yu =0 in W*(Q)

Finally, we show that the natural topology 7
induced by & ={|.|, : ¢ € A} is the same as the nat-
ural topology 7, induced by @ = {[.|, : 9 € CZ°(2)}.
Obviously & is a subset of @, so it follows from the
definition of natural topology induced by a family
of seminorms (see Definition 10) that 7, C 74. In
order to show that 7, € 7, it is enough to prove that
for all y € C°(02), the map |.[, : (W (Q),1p) —
R is continuous. By what was shown in item (1),
we can write

Vi € Wioi () [ul, = [y u

k
W (Q) = HE Z P U
i=1

W (Q)

<

-

I
—_

k
u = Z u
s, st-m) i:1| gy,

(94)

where the implicit constant does not depend on u.
In the last inequality, we used the assumption that
(s, p, Q) is an interior smooth multiplication triple.
Now, it follows from Theorem 20 that |.|, : (WP

loc
(Q),7p) — R is continuous

O
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Lemma 104. There exists an admissible family A € C®(Q)
that has only countably many elements.

Proof. Let {K ]-}],ElN be an exhaustion by compact sets for Q.
For each j€N, let ¢; € C°(€2) be a nonnegative function
such that ¢; =1 on K and ¢; =0 outside f<j+2. Clearly, A =

{¢ f}jeN is a countable admissible family of functions.

Corollary 105. Let (s, p, Q) be an interior smooth multiplica-
tion triple. Considering Theorem 13, it follows from the previ-
ous lemma and Theorem 103 that W)?(Q) is metrizable.
Indeed, if A= {(pj};):] is a countable admissible family, then

o |u-vl,

du,v)= ) ————
;2]1+|”_"|¢j

(95)

is a compatible translation invariant metric on W, (Q).

Theorem 106. Let (s, p, Q) be an interior smooth multiplica-
tion triple. Then, Wy (Q) is a Frechet space.

loc

Proof. By Corollary 14, it is enough to show that W}’ (Q)
equipped with the metric in (95) is complete. Note that all
admissible families result in equivalent topologies in W}’
(£2). So we can choose the functions ¢;’s in the definition

of d to be the partition of unity introduced in Theorem 43.
Now, suppose {u,,} is a Cauchy sequence with respect to d.
In what follows, we will prove that {u,,} converges to a dis-
tribution u in D'(Q). For now, let us assume this is true.
We need to show that u is an element of W,? (Q); that is,
we need to show that for all j, p; u € W*(Q).

It follows from the definition of d that for each je N,
{gojum}me]N is a Cauchy sequence in W*?(Q). Since W*/(Q)

is a Banach space, there exists f; in W*#(€2) such that ¢,u,,
— f; in W*(Q). Note that W (Q)-D'(Q), so Pithy,
— f;in D'(Q), and thus, for all y € D(Q) we have

(fv),, o) Jim (g1, 1//>D'(Q)><D(Q)
A (0 0) v
= (% 9Y) o
(92 %) y one

Hence, p;u=f; in D'(Q). Since J; € W*(Q) we can
conclude that ¢,u € W*F(Q).

(96)

It remains to show that {u,,} converges in D'(Q). To
this end, it is enough to show that for all v € D(Q), the
sequence {(u,,, ¥)} converges in R (see Theorem 60). Let
v € D(Q). Since supp v is compact, there are only finitely
many of ¢/s that are nonzero on the support of y (see
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Theorem 43) which we denote by ¢; , -+, ;. So for each x
€supp ¥, ¢; (x) + - +¢; (x) = 1. We have

(U W) = <”m: (‘Pj1+"'+(Pj,)1/’> = <<‘Pj1+"'+(l’j,>”m’ V/>

= <(P]1 um’ l//>+ ' '+<¢jlum’ l//>

(97)
im, (@) o W), o5 lim,, (@ u,, y)  all exist
(since ¢; u,, is Cauchy in W*/(Q), it is convergent in W*?
(Q), and so it is convergent in D'(Q)). Therefore,
lim,, . (u,, V) exists. O
Theorem 107. Let (s, p, Q) be a smooth multiplication triple
(so we know that W**(Q) € WP (Q) and W, (Q) is metriz-
able). Then, W (Q)—>W? (Q).
Proof. Since both spaces are metrizable, it suffices to show
that if u; — u in W*(Q), then u; — u in W, (Q). To this
end, let ¢ be an arbitrary element of C°(Q). We need to
show that if u; — u in W*?(Q), then @u; — @u in W*F(
Q). But this is a consequence of the fact that (s, p, Q) is a
smooth multiplication triple. O

Theorem 108. Let Q be a nonempty open set in R", se R,
and 1<p<oo. Then, &(Q) is continuously embedded in
WP (Q); ie., the “identity map” from &(Q) to WP (Q) is
continuous.

Proof. By Theorem 45, it is enough to show that if ¢,, — 0
in &(Q), then ¢, — 0 in W;?(Q); that is, for all y €
C®(Q), Yy, — 0 in W(0).

Let y € C°(2) and let m,, denote multiplication by y.
Multiplication by smooth functions is a continuous linear
operator on &(Q) ([21]). So m,, : (Q) — &(Q) is contin-
uous. The range of this map is in the subspace &, ,,(©2).
So my, : E(Q) — &y, () is continuous. However,
Esupp y(2)>D(Q). Hence, m,, : &(Q) — D(Q) is contin-
uous. As a consequence, since ¢, — 0 in &(Q), yo,
— 0 in D(Q). Finally, since D(Q)— W*F(Q2), we can con-
clude that yo,, — 0 in W*(Q). O

Corollary 109. Since D(Q)—&(Q), it follows that under the
hypotheses of Theorem 108, D(Q) is continuously embedded

in WX (Q).

loc

Theorem 110. Let (s, p, Q) be a smooth multiplication triple.
Then, C®(Q) is dense in W,F(Q).

loc

Proof. Let u € W, (Q). It is enough to show that there exists
a sequence {y} in CZ°(€2) such that y;, — u in wil(Q),

ie.,

V§eCP(Q) &y;—&u in WP(Q). (98)
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First, note that, since (s, p, ) is a smooth multiplication
triple, for all § € C°(€2), there exists a constant C;, , such

that

WEW(Q) |8Vl < CgspollVlliry (99)

Let {(Pj}jeN be the admissible family introduced in the

proof of Lemma 104. For each & € C°(Q), there exists a
number J; such that for all j> J;, ¢; =1 on supp &. So,

VizJe &=t (100)

Clearly, by definition of W;”

oc(€2), for each j, g.u e W*P
(€2), also @;u has compact support, so ¢u € WF(Q) (see
Remark 83). Hence, for each j, there exists y; € C2°(2) such
that [|y; — ¢ul| < 1/j. We claim that §y; — &u in W*/(Q).
Indeed, given £ >0 and & € C°(Q), let J> ] ¢ be such that
1/] < S/Cs,s,p,a- Then, for j> ], we have

H&/Ij - Eu’ W) ngj - E(pju‘ W (Q)
- Hf(‘//j_‘/’ju)‘ Woe(0) (101)
< Cespo H% R MH W (Q)
< CE)S)P,Qj <e.
Ul

Remark 111. As a consequence, if (s, p, Q) is a smooth mul-
tiplication triple, then [W;2(Q)]" (equipped with the strong
topology) is continuously embedded in D'((2). More pre-
cisely, the identity map i : D(Q) — W)’ (Q) is continuous
with dense image, and therefore, by Theorem 27, the adjoint
i wit@)
We have

— D'(Q) is a continuous injective map.

(i"u, §0>D’(Q>xD(Q) =(uig) [w? @

loc

. s
(Q)] xw?

(102)
= (. 9) (Wi (@] xwt ()"

loc loc

We usually identify [W;2(Q)]" with its image under i*

and view [W;2(0)]" as a subspace of D' (Q). So, under this
identification, we can rewrite the above equality as follows:

Vu e [W;fc(Q)] (u, ‘P>D’(Q)xD(Q) = (u, ) (Wil (@] < Wik ()

(103)

Theorem 112. Let (s, p, Q) be a smooth multiplication triple.
Then, W,2(Q) is separable.

loc
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Proof. D(Q2) is continuously embedded in W} (Q) and it is
dense in W, (Q). Since D(Q) is separable, it follows from

Lemma 95 that W7 (Q) is separable. O

As a direct consequence of the definitions, locally Sobo-
lev functions and Sobolev functions with compact support
are both subsets of the space of distributions. The next two
theorems establish a duality connection between the two
spaces. But first, we need to state a simple lemma.

Lemma 113. Let X and Y be two topological spaces. Suppose
that Y is Hausdorff. Let f : X — Y and g : X — Y be two
continuous functions that agree on a dense subset A of X.
Then, f = g everywhere. (So, in particular, in order to show
that two continuous mappings from X to Y are equal, we just
need to show that they agree on some dense subset.)

Proof. Suppose that there exists x;, € X such that f(x,) # g(
Xo). Since Y is Hausdorff, there exist open neighborhoods
U and V of f(x,) and g(x,), respectively, such that UnV
=@. f{(U)ng (V) is a nonempty (x, is in it) open set
in X so its intersection with A is nonempty. Let z be a point
in the intersection of f(U) N g~'(V) and A. Clearly, f(2)
€ U and g(z) € V; but since z € A, we have f(z) = g(z). This
contradicts the assumption that UnV = &. O

Theorem 114. Suppose that (s,p,Q) and (=s,p',Q) are

smooth multiplication triples. Define the mapping T : W,.F
(Q) — [Welp(Q)] by

vue W @)V € Wih(Q) [T = (Wyf) Ly s

(104)

where y; is any function in C°(Q) that is equal to 1 on a
neighborhood containing the support of f. Then,

(1) [T(u)](f) does not depend on the choice of v,

(2) For all ue Wl_:c’p,(Q), T(u) is indeed an element of
[Wetnp( )]
(3) T: W Q) — [Wi’fmp(())]* is bijective

loc

(4) Suppose [Wehy(Q)]
topology. Then, the bijective linear map T : W
Q) — [Wi’fmp(())]* is a topological isomorphism;
ie, it is continuous with continuous inverse. So
[Wi’fmp(Q)}* can be identified with W;fc’p’(Q) as
topological vector spaces

is equipped with the strong
_5>P,

loc

Proof.

(1) For the first item, it is enough to show that if y €
CX(Q) is equal to zero on a neighborhood U con-

(2)

3)
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taining supp f, then (yu, f) W () = 0. Note
that f is not necessarily in C®°(Q), so we cannot
directly apply the duality pairing identity stated in
Remark 69. Let {f,,} be sequence in C®°(Q) such
that f, — f in W'(Q). Let &€ C®(Q) be such
that £ =1 on supp f and & = 0 outside U. By assump-
tion, (s, p, Q) is a smooth multiplication triple and so
&, —&f =f in WP (Q). Since elements of dual
are continuous, we have

WL et

_ Remark 69

m s &) Wy (@xwi() (v, &)o' eepio)
= mhjlm<”’ V& )b (ppi0) = mlim u(0)=0.

—00

(105)

Note that £f,, is zero outside U and v =0 in U, so
w&f, =0 everywhere

In order to show that T(u) is an element of
[(Wehmp ()], we need to prove that T(u): W ek (
0) — R is linear and continuous. Linearity is obvi-
ous. In order to prove continuity, we need to show
that for all K e #(Q), T(H)|WP<Q) is continuous

(see Theorem 37). Let K € #(Q) and fix a function
y € C(Q) which is equal to 1 on a neighborhood

containing K. For all f € Wi’ (Q) we have

@I =] W)y i

< Hl//uHW"’P,(Q) X Hf“WW’(Q)’

(106)

which proves the continuity of the linear map T(u)

In order to prove that T is bijective, we give an
explicit formula for the inverse. Recall that by defini-

tion, W7 ,(Q) is a subspace of D'(Q) and by
Remark 94, (Wb, (2)]” can also be viewed as a
subspace of D' (). More precisely, if we let i : D(2)
— Whnp(Q) be the “identity map” and i*
L [Whap(Q)]” — D' () be the adjoint of 4, then i*
is a continuous injective linear map and

Vue [Wi’gmp(ﬂ)] Vo eD(Q) (i"th ¢)p a0
=(u, ) [Wethop(Q)] X Wik ()"

(107)

Moreover, if K € #(Q), then W (Q)— W (Q),
and therefore, if u € [Wehyy(Q)]", then Ul () €
(W (Q)]" and
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Yge WZ(Q) (u G [Wp Q)] xW (@)
= <u’W}§P(Q)’ !]> [W;P(Q)]*XW;’F(Q).
(108)

Now, we claim that the image of i* is in W7 , (Q) and
in fact i* is the inverse of T. Let us first prove that the
SP(Q). Let u € [Wikny (Q)]. We
need to show that for all ¢ € C®(Q), (¢)(i*u) e

W' (Q). To this end, we make use of Corollary 71.
Let ¢ € C°(2) and let K = supp ¢. For all y € D(Q),
we have

image of i* is in W~

‘ (pi*u, ‘/’)D’(Q)xD(Q) ‘ = ‘ (i"u, ‘P‘/’)D’(Q)xD(Q) ‘
= ‘ (1, py) (W (@] xWenp () ’
- <u‘wip(ﬂ)’¢W>[w;f’(n)}‘xw;ﬂ(a)

Huw H[ |w|\wp

(109)

which, by Corollary 71, proves that @i*u € W™° , (Q).
Now, we prove i* is the inverse of T. Note that for all

ue W (Q) < D' () and ¢ € D(2),

hquanon (107)

(e T)(”)"P)D’(Q)xz)(o)
Deﬁnigonof T < u > Remérk69 < u >
Yoo ?) ' sz Yo o i

= <”» W¢¢>D'(Q)XD(Q) =(u, ‘P>D'(Q>><D(Q)-

T, P) Wy ()] X W (@)

(110)

Therefore, i* o T is identity. Next, we show that for all
Ve [Wehp(Q)]", (T o i*)(v) = v. Note that (T o i*)(v)
and v both are in [Wi’f,’mp (Q)] " and so they are contin-
uous functions from Wehy,(Q) to R. Since D(Q) is
dense in Wi’gmp(()), according to Lemma 113, it is
enough to show that for all f € D(Q) we have [(T o

)W) =v(f)-
(T )W) ) [wet (@) xWekun()
Definition of T <V/f(i*")’f>
)

<l 8 Wff>n (@D©) = (i)

Equatmn (107)

W"‘“" Q=W (Q)

(111)

(" f)[w L ()] X Wik ()

Pp() = lgul,
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(4) Let us denote the topology of W, * , (Q) by 7 and the

strong topology on [chmp( )]” by 7’. Our goal is to
show that T: (W, <»’ (Q),7) — ((Whmp(Q)] ", 7")

loc

and T =i (Wi ()] 7)) — (W (02),7)

loc
are both continuous maps. To this end, we make use

of Theorem 20. Recall that 7 is induced by the family

of seminorms {p,, : Wl (Q)— IR}(p =@ where

ar Also 7' is induced by the family

*

of seminorms {py, : [Wehnp ()] — R} where B var-
ies over all bounded sets in Wby () and pp(u) =

supyepu(f)]

Step 1. Let B be a bounded subset of Wcomp( ).
Since B is bounded, there exists K € #(Q) such that
B is bounded in W (Q) (see Theorem 39; note that
the topology of Wf;’gmp (Q) can be constructed as the
inductive limit of W;g‘j (Q2) where {K;} is an increas-
ing chain of compact subsets of ). So there exists a
constant C such that for all f € B, || f]|yys(q) < C. Let
y be a function in C°(Q) which is equal to 1 ona

neighborhood containing K. For all u € Wloc ( ),
we have

(P T) (@) = supl[T(w)] ()
feB
Definition of T su

prt v f) W;"‘"@)xw:;"(ﬂ)‘

<supl1yll o' o) vy < Cy ()

(112)

It follows from Theorem 20 that T : (W, sp' (Q),1)

OC
— ([Wigmp(g)] ,7') is continuous

Step 2. Let ¢ € C°(Q2). Let K be a compact set whose
interior contains supp ¢. Since (s, p, ) is a smooth
multiplication triple, there exists a constant C, >0

such that for all f € W*?(Q), we have [|¢f [ () <
Coll fllwsr ()

We have

(P17 )=l sl =1l o g

(Pl b x<’>w FQxw (n)‘

= sup
EeCR () Elhyssp oy <1

(i"u, &) (Q)xD(Q) ‘

= sup
§CX () Ellysrp oy <1

= sup
§eCT () Elhyssp o<1

(i"u, ‘PE)D’(Q)XD(Q)|

< sup
N€Cnp o (Qlllyyssp ) <C,
Equation (107)

(" u ) x[)(ﬂ)‘

sup
1€Cp o (s 0)<C,

......

(113)
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So, if we let B be the ball of radius 2C(p centered at 0
in Wi¥(Q) (clearly B is a bounded set in Wi, (22)),

we get
ey = !
(pq) o ) (u) = sup (o S ) [Wet @] 5 W 2)| = PB(H)
(114)
O

Corollary 115. Suppose that (s,p, Q) and (=s,p', Q) are
both smooth multiplication triples. By the previous theorem,
[(Weonp(Q)]  can be identified with WP (Q). Also, by
Remark 94, [W;gs;ﬁl; (Q)] is continuously embedded in D' (Q).
Therefore, W)?.(Q) is continuously embedded in D' (Q). Since
W2 (Q) is a Frechet space, it follows from Theorem 19 and
Remark 22 that the preceding statement remains true even if
we consider D' (Q) equipped with the weak* topology. So,

Wit

loc

Q)= (D' (Q), strong topology) and W¥

loc

()
(115)
- (D' (Q), weak™ topology) .

Theorem 116. Suppose that (s,p,Q) and (-s,p',Q) are

smooth multiplication triples. Define the mapping R : W;f,ﬁp
(Q) — Wi ()] by

Vi€ WSk (Q)VF € Wi(Q) RN = (V) s

(116)

where v, is any function in C°(Q) that is equal to 1 on a
neighborhood containing the support of u. Then,

(1) [R(w)](f) does not depend on the choice of v,

(2) For all ue W;j;ﬁ;(()), R(u) is indeed an element of
(Wi (@)

loc

(3) R: Wishy (@) — (W

loc

(Q)]" is bijective
(4) Suppose [W,L(Q)]" is equipped with the strong topol-
ogy. Then, the linear map R is bijective and continuous.

In particular, [W;”(Q)]

loc
phic vector spaces

*

!
and W;,Sﬁp(ﬂ) are isomor-

Proof.

(1) Note that since (s, p, Q) is a smooth multiplication
triple, v f is in W’ (Q). Also by assumption, (-s,
p',Q) is a smooth multiplication triple. Therefore,
for each Ke#(Q), W' (Q)=W,” (Q), and
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hence, Weomp(Q)> W™ (). So the pairing in the
definition of [R(u)](f) makes sense. The fact that
the output is independent of the choice of v, follows
directly from Theorem 58

(2) Clearly, R(u) is linear. Also R(u) is continuous (so it

is an element of [W;”(Q)]"). The reason is as fol-

lows: for all f € W;?(Q), we have

RN =] 0¥y
<l g 192

(117)

Wi (@)

That is, for all fe W;”(Q), we have |[R(u)](f)|<

[Wuf [y (@) It follows from Theorem 20 that R(u)
s WP

10e(2) — R is continuous

(3) In order to prove that R is bijective we give an

explicit formula for the inverse. Recall that by
Remark 111, [W;? ()] can also be viewed as a sub-
space of D'(Q). More precisely, if we let i : D(Q)
— W?(Q) be the <“identity map” and i*
: (W2 (Q)]" — D'(Q) be the adjoint of i, then i*
is a continuous injective linear map and

Vue [WE(Q)] VoeD(Q) (i*u, P’ ()b(c)
=(u,9) [WiE@)] xwit (@)
(118)

Now, we claim that the image of i* is in W;f}f,;, Q)
and in fact i* is the inverse of R. Let us first prove
that the image of i* is in WZ;}fl;, (Q). &(Q) is contin-
uously and densely embedded in W;” (Q) (continu-
ity is proved in Theorem 108 and density is a
direct consequence of the density of C*(Q) in
W32 (Q)). Therefore, i* ([W;2.(Q)]) is indeed a sub-

loc

space of &'(Q)<cD'(Q) and so elements of i*(
(W (0Q)]") can be identified with distributions in

loc

D'(Q) that have compact support. It remains to
show that if ue [W¥(Q)]", then i*ue W‘S’P,(Q).
To this end, we make use of Corollary 71. For all ¢
€ D(Q), we have

Equation (118)

‘<i*u) (P>D'(Q)><D(Q)‘ - (us §D>[ij£(9)]*><w;£(g)
= <u|WSJ’(Q)’ (P> [W;P(Q)]*XWSP(Q)
<o 1oy

(119)

So, by Corollary 71, we can conclude that ue
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(4)

W' (Q). In the above, we used the fact that W37
Q) W(Q)-> WP (Q), and so for ue [W¥(Q)]",
sy €W

(Wi Q)] — Waehp(Q) is
the inverse of R. For all u € Wb, (Q) and ¢ € D(Q),
we have

Now, we prove that i

(@ ° R) (1), ) ()xp(0)
Equatign (118) .
= Ruowra)wie

Definition of R

<1/l, llju(P> W;S’P’(Q)XWQP(Q) (120)

(v, P)p o
= (Vuls @)p'

Remark 69
- )xD(2)

© = (u, ‘P>D’(Q)xD(Q)'

Therefore, (i* o R)(u) = u for all u € Wohy (Q).

Now, we prove that Roi* is also the identity map.

Considering Lemma 113, since D(Q) is dense in
[Wfﬁ(Q)]*, it is enough to show that for all ve
[Wiee(Q)]" and f € D(Q), [Rei*(v)](f) =v(f). We

have

Definition of R

((Roi )V’f>[wjf{(n)]*ij§(n)

Remark 69

(", V/i*vf> Wg““”(Q)xwg"(Q)
(v ) Q)xD(Q :<Wivi*vf> "(@)xD(0)

- hquauon 118)
=i V’f)D'(_Q) D(Q) (" f>[wp Q) xwik (o)

(121)
which shows Roi*(v)=v

Let us denote the topology of WZ;}n;,( Q) by 7 and the
strong topology on [Wfoc( )]” by 7. Our goal is to
show that R : (WZ;’E;P(Q),T) (W2(@)],7') is
continuous. To this end, we make use of Theorem
20. Recall that 7 is induced by the family of semi-

norms {q, Weohp(Q) — R}

(M) = ZJa]Hl//]u”W—:p'(Q)

where q,
(here, we are using the

notation introduced in Theorem 97). Also 7’ is
induced by the family of seminorms {p;
(W (Q)]" — R} where B varies over all

bounded sets in W;”(Q) and p,(u) =sup;plu(f)|.

Let B be a bounded subset of W,”(Q). Since B is
bounded, for all ¢ € C*(Q2), the set {||¢f (| () © f

€ B} is bounded in R (see Theorem 16). Thus, for
all p € C7°(Q2), there exists a positive integer a, such

that for all f € B, [|¢f |}y (@) < a,- Recall that {y;} in
the definition of ¢, _ denotes a fixed partition of

unity. For each j, let ¢; be a function in C°(Q2)
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which is equal to 1 on a neighborhood containing

the support of ;. For all u € W;;}ﬁ;,(()), we have

(PpeR)( (ZW/ “) = Z(PB < >
=sup| (R (v;1) ) )
Definition of R Z?:g <1l/,-u, %f> W (@)W (@)
<Zsf1:g ‘v/juHW’SvP’(Q)H(ijHW‘W(Q)
) ;a% V/J“H wr'(0) Aoy’ (4):
(122)
where a = (aq, » g > --). Note that the inequality (pj

o R)(X¥;u) < X;(pp o R)(y;u) holds because u has

compact support and so only finitely many terms
in the sum are nonzero, so we can use the subaddi-
tivity of the seminorm and linearity of R.

It follows from Theorem 20 that R : (Wcér‘ﬁ; (Q),1)

— [W)?(Q)]" is continuous

O

Remark 117. According to the previous two theorems, we
have the following:

(i) When ue W, P (Q) is viewed as an element of
[Wégmp(g)]*, we have

V€W (D) u(f)=(yuf)

> @)
(123)

where y, is any function in C°(€2) that is equal to 1
on a neighborhood containing supp f

(ii) When u ¢ WZ;}%;,(Q) is viewed as an element of
(WP (Q)]", we have

loc

vfe WP

loc

(@) ulf)=(wyh), .,

QWi (@)’
(124)

where v is any function in C®°(Q) that is equal to 1
on a neighborhood containing supp u

Corollary 118. Suppose that (s,p, Q) and (-s,p',Q) are
both smooth multiplication triples. As a direct consequence
of the previous theorems, the bidual of Wb,,(Q) is itself.

So Wmmp(Q) is semireflexive. It follows from Theorem 25
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that Wb, (Q) is reflexive and subsequently its dual
WP (Q) is reflexive.

loc

Now, we put everything together to build general
embedding theorems for spaces of locally Sobolev-
Slobodeckij functions.

Theorem 119 (embedding theorem I). Let 2 be a nonempty
open set in R". If s;,s, € R and 1< p,, p, < 0o are such that

WP (Q) > W22 (Q), then W (Q)-> W2 (Q).

Proof. We have

ue WM (Q) e Ve e C¥(Q), gue Wrh(Q),
=V e CX(Q), ue W2 (Q),
—uc Wf;’cpz (Q)

(125)

So, WP (Q) ¢ W2P*(Q). Now, note that for all ¢ e
Q)

(126)

|u|q),sz,p2 = ||§0”||WWZ(Q)<||‘P”| WeLPL(Q) T |u|(p,sl,p1'

So, it follows from Theorem 20 that the inclusion map
from W' (Q) to W2*(Q) is continuous. O

Theorem 120 (embedding theorem II). Let Q be a nonempty
open set in R" that has the interior Lipschitz property. Sup-
pose that s;,s,€R and 1<p,,p,<co are such that Wi
(U)>W?2P2(U) for all bounded open sets U with Lipschitz
continuous boundary. If s, < 0, further assume that (=s, p},
Q) is a smooth multiplication triple. If s, < 0, further assume
that (=s, py Q) is a smooth multiplication triple. Then,
Wil (=W ().

Proof. Suppose u € W7 () and ¢ € C*(€). Let Q' be an
open set in  that contains supp ¢ and has Lipschitz contin-

uous boundary. We have

ue Wil () = gue W (Q)
The(ngS((Pu)’Q, € Wsppl (Q’) = (()DL{)’ ,
(0}

1\ Theorem 85
)

e Wb (Q pu e WP (Q).

(127)

Since ¢ can be any element of C°((2), we can conclude
that if u € WP (Q), then u € W2P*(Q). In order to prove

loc
the continuity of the inclusion map, we can proceed as fol-

lows: let ¢ € C*(Q) and choose Q' as before.
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Theorem 85

|l gs, p, = 98Iy ) loull s (@)

Theorem 85

<lpu| P2l yoron () = 4], p,

(128)

WSLPL (Q')

So, it follows from Theorem 20 that the inclusion map
from W;'(Q) to W2*(Q) is continuous. O

loc

A version of compact embedding for spaces Hj,_ with
integer smoothness degree has been studied in [17]. In what
follows, we will state the corresponding theorem and its

proof for spaces of locally Sobolev-Slobodeckij functions.

Lemma 121. Suppose that (s,p,Q) and (-s,p',Q) are
smooth multiplication triples. If u,, converges weakly to u in
W2 (Q), then

loc

Vo e C2(Q) ou, —oou in WF(Q). (129)
Proof. The proof is based on the following well-known fact:

Fact 1. Let X be a topological space and suppose that x is
a point in X. Let {x,,} be a sequence in X. If every subse-
quence of {x,,} contains a subsequence that converges to x
, then x,, — x.

Let ¢ € C®°(Q). By Fact 1, it is enough to show that every
subsequence of ¢@u,, has a subsequence that converges
weakly to gu in W*(Q). Let gu,+ be a subsequence of ¢

u,,. We have
Corollary 29
@ =

Corollary 17
. s,p
inW,.(Q) =

in W*(Q).

in w3’

U, —u e {u,, } isbounded

{ou,, } isbounded (130)

Since W*P(Q) is reflexive, there exists a subsequence ¢
u,» that converges weakly to some F € W*(Q). To finish
the proof, it is enough to show that F = pu. We have

u,n —u in Wf’oi(ﬂ) =u,nn—u in (D’(Q), weak*)

=¢u,» — @u in (D’(Q),weak’“).
(131)

In the first line, we used Theorem 30 and the fact that
W2 (Q)=(D'(Q), weak™) (see Corollary 115). In the sec-
ond line, we used the fact that multiplication by smooth
functions is a continuous operator on (D' (), weak ™).

Similarly, since W (Q)<(D'(Q), weak®), it follows
from Theorem 30 that

g, = Fin W (Q) = gu, — Fin (D'(22), weak" ).
(132)
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Consequently, gu = F as elements of D'(€) and subse-
quently as elements of W7 (Q). O

Theorem 122 (compact embedding). Let Q be a nonempty
open set in R" that has the interior Lipschitz property. Sup-
pose that (s;,p,, Q) and (s, p}, Q) are smooth multiplica-
tion triples. If s,< 0, further assume that (=s,, p,, Q) is a
smooth multiplication triple. Moreover, suppose that s;,s,,
P, and p, are such that W*rP1(U) is compactly embedded
in WP2(U) for all bounded open sets U with Lipschitz
continuous boundary. Then, every bounded sequence in
WPH(Q) has a convergent subsequence in W2 (Q).
Proof. The proof makes use of the following well-known fact:

Fact 2. Let X and Y be Banach spaces. Suppose that T
: X —> Y is a linear compact operator. If the sequence x,,
converges weakly (i.e., with respect to the weak topology)
to x in X, then T(x,) converges to T(x) (with respect to
the normof Y) in Y.

Let u,, be a bounded sequence in W'”' (Q2). By Theorem
33, since W;'"'(Q) is a separable reflexive Frechet space,
there exists u € W, (Q) and a subsequence {u,'} such

that u,» —u in W) (Q). We claim that {u_,} converges

loc

to u in W2P2(Q), that is, for all ¢ € C®(Q), pu,  — gu
in W22 (Q). Suppose that ¢ € C*(Q) and let K := supp ¢.
By Lemma 121, we have

Qu, — @uin Wr1(Q). (133)
So, by Theorem 35,
pu, — puin W (Q). (134)

Let Q' be an open bounded set in Q with Lipschitz con-
tinuous boundary such that K <Q'. By Theorem 85, the
restriction map from W' (Q) to WP (Q') is well-
defined and continuous. It follows from Theorem 34 that
this restriction map is weak-weak continuous. So ¢u, — ¢
u in WP (Q) implies that gu,+ — eu in WP (Q'). By
assumption the identity map from W1 (Q') to W22 (Q")
is compact, so it follows from Fact 2 that ¢u, — ¢u in
W=2(Q") which subsequently implies ¢u,— @u in
W*P2(Q) by Theorem 85. O

6. Other Properties

The main results of this section do not appear to be in the
literature in the generality appearing here, and they play a
fundamental role in the study of the properties of differential
operators between Sobolev spaces of sections of vector bundles
on manifolds equipped with nonsmooth metric (see [15, 16]).

Theorem 123. Let 2 be a nonempty open set in R", s> 1,
and 1< p<oco. Then, ue W5 (Q) if and only if u€ Lf, (Q)
and for all 1 <i<n, duldx' € W), IP(Q)
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Proof.
ue Wr(Q)e=veeC®(Q) o¢ueWrQ)
Thegrem 2 Vo e CX(Q) ¢uelf(Q)andforalll
. d(qu) -1
<ig<n, =L e WP (Q).
<i<n % € (0Q)

(135)

Note that 9(gu)/0x' = (0¢/0x")u + @(0u/dx’). Since (d¢
10x ) u € W (Q)—>W*1P(Q), we have

I(pu)

o WTQ )<=><Paa e W (Q). (136)
Therefore,
uveﬁ(Q)@‘v’(peCm( )pu € LF(Q) and forall 1

<i<n go% e WP (Q)

p
U e Lloc

0 o
(Q)andforalll <i<mn, a—; eWw LP(Q).

loc

(137)

O

Theorem 124. Let Q be a nonempty open set in R, ke N,
and 1<p<oo. Then, ue Wﬁf;(Q) if and only if 0*ueLf
(Q) for all |a| <k.

Proof. We prove the claim by induction on k. For k=1, we
have

Lp Theorem 123 , ou P
ueWwW, (Q) < ueLloc( $Wl<i<n EELZOC(Q)
=Va|<1 uell (Q).

(138)

Now, suppose the claim holds for k=m. For k=m+ 1,
we have

Theorem 123
=3

ue Wittt ()

loc

ou
uell (Q)Vl<i<n B_EWI"E Q)

induction hypothesis

p
= uel,

ou
(Q)V1<z<n V0<|a|<maa|:a :| ELII)OC(Q)

(Q)NVo< |Bl<m+10Pucell

—uell loc

loc (Q)
=V|pl<m+1dPuc L (Q).

(139)
O
Theorem 125. Let s€ R, 1 <p < 0o, and « € Njj. Suppose Q2

is a nonempty bounded open set in R" with Lipschitz contin-
uous boundary. Then,
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(1) the linear operator 3% : W)F (R") — Wf;c‘“l’p(IR”) is
well-defined and continuous

(2) for s<0, the linear operator 0%: W)’ (Q)—

W;;c‘“"p (Q) is well-defined and continuous

(3) for s> 0 and |a| <s, the linear operator 0* : W, (Q)
— W, ‘“‘p(Q) is well-defined and continuous

(4) if s=0, s— 1/p # integer (i.e., the fractional part of s is
not equal to 1/p), then the linear operator 3% : W’

loc

(Q) — WP (Q) for |a|>s is well-defined and

loc
continuous

Proof. This is the counterpart of Theorem 86 for locally

Sobolev functions. Here, we will prove the first item. The

remaining items can be proved using a similar technique.
Step 1. First we prove by induction on |«| that if u €

WP (R"), then 0%u € Wlocla‘p(]R”) Let ¢ € C°(R"); we need
to show that 0%y € WP (R"). If | = 0, there is nothing
to prove. If |a| = 1, there exists 1 < i < n such that 0% = 9/0x".

We have

« au_a(gou) a(p
pO"u = (p@_ Ox! Bxl

(140)

By assumption, ¢u € W*?(R"), and so it follows from
Theorem 86 that the first term on the right hand side is in
WP (R"). Also, since u € W;? (R"), the second term on
the right hand side is in W*? (IR”)HWH‘P (R"). Hence, ¢
0“u € W (R"). Now, suppose the claim holds for all |«
< k. Suppose «a is a multi-index such that || = k + 1. Clearly,
there exists 1 <i<n such that 3% = (3/(0x'))d” where f is a
multi-index with |8| = k. By the induction hypothesis, 9P u
€ W;;C‘ﬁ b (R") and so by the argument that was presented
for the base case, we have (9/(0x'))0Pu e WZC"B‘*LP(]R”) =
Wit (R?)

Step 2. In this step, we prove the continuity. Again, we

use induction on |a|. Let || = 1. Choose i as in the previous
step. For every ¢ € C2°(R"), we have

0 o(pu) ¢
H(Pﬁ s—l,p_ H ox'! ﬁu s— lp a‘xl s=1p
d¢ o¢
52| <toul, |55
s=1Lp sp
(141)

On the right hand side, we have sum of two of the semi-
norms that define the topology of W% (R"). It follows from

loc
item (2) of Theorem 20 that 8% : W;*(R") — Wjoclp(]R”)

loc
is continuous. Now, suppose the claim holds for all |a| < k.

Suppose « is a multi-index such that |a|=k+ 1. Clearly,
there exists 1 <i<n such that 3% = (3/(dx'))d* where B is

25
a multi-index with |S| = k. We have
0 argument of the base case
0% u (aﬁ u) < oFu
o= o5 ()] o
0 0
+ |52 0 u <||po’u L
0x s—|af+1,p Silﬁlp o s=|Blp
induction hypothesis;Theorem 20
< max ([lg,ull -9l
induction hypothesis; Theorem
S(P ofu o t< “ max
¥ leipe

- (llgyll il ) + max (Jhysll oo lyinl,, )
<max gyt o [0l 1wl )

(142)

for some @, ---, ¢, and v, .-+, y; in CP°(R"). It follows
from item (2) of Theorem 20 that 9*: W)’ (R") —
W% (R") is continuous O

Next, we want to establish a counterpart of Theorem 76
for locally Sobolev-Slobodeckij spaces. To this end, first we
state and prove a simple lemma.

Lemma 126. Let O be a nonempty open subset of R". Sup-
pose u:Q— R and 11 : Q— R are such that u=ua.e.
If u is continuous, then supp o C supp u.

Proof by Contradiction. Suppose x € supp u \ supp u. Since x
belongs to the complement of supp u, which is an open set,
there exists € > 0 such that B,(x) €Q and B,(x) Nsupp u=
@. Since x € supp #, there exists y € B,,(x) such that #(y)
#0. u is continuous, therefore there exists 0 < d < &/4 such
that #(z) #0 for all z € Bg(y) € B,(x). But =0 a.e. on B,(x
). This contradicts the fact that u=1iia.e. O

Theorem 127. Let O be a nonempty bounded open set in R”
with Lipschitz continuous boundary or Q=R". Suppose u
ew(Q

oc(Q2) where sp > n. Then, u has a continuous version.

Proof. Let {Vj}jE]NO and {U/j}jE]N be as in Theorem 43.
Note that u =} y,u. For all j, y;u € W(Q) so by Theo-
rem 76, there exists i; € C((2) such that yu=1u; on Q\ 4;
where A; is a set of measure zero. Also by Lemma 126
supp u; S supp ;. Therefore for any x €, only finitely
many of u;(x)’s are nonzero. So we may define u#:0Q
— R by u=}i;. Clearly, #=u on Q\ A where A=U
A; (so A is a set of measure zero). Consequently u=ua.
e. It remains to show that # : Q — R is indeed continu-
ous. To this end, suppose a,, — a in Q. We need to
prove that i(a,,) — @(a). Let >0 be such that B_(a) C
Q. So B,(a) intersects only finitely many of supp u;’s; let

us denote them by u, ,---,u,. Also since a,, — a, there
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exists M such that for all m> M, a,, € B,(a). Hence,

i(a) = Y iy (a) = &, (a) 47, (a)
j (143)
Vm=M i(a,) =i, (a,)+ o+, (a,).

Recall that #, +---+1u, is a finite sum of continuous
functions and so it is continuous. Thus,

lim #(a,)= lim (&, +-+i,)(a,)= b, (a)++i, (a) = i(a).

m—00 m—0o0

Remark 128. In the above proof, the only place we used the
assumption of  being Lipschitz was in applying Theorem
76. We can replace this assumption by the weaker assump-
tion that Q has the interior Lipschitz property. Then, since
supp (y;u) is compact, there exists Q' with Lipschitz

boundary that contains supp (y;u). Then, by Theorem 85,
yue W (Q') and so it has a continuous version i€ C(
! . -~ ! _
0"). Since y;u=1; almost everywhere on Q" and y;u=0
outside of the compact set supp ¥, we can conclude that

0 —~ . . . .
ext., H; is in C(Q) and it is almost everywhere equal to

j
yu. We set u; = ext The rest of the proof will be

0 ~
ool
exactly the same as before.

Theorem 129. Let Q =R” or Q be a bounded open set in R"
with Lipschitz continuous boundary. Suppose s;, s,, s € R and
1< pys Py p <00 are such that

WSP1(Q) x W22 (Q) > W (Q). (145)

Then,

(1) Wil () x WP ()= W)

lo

(2) for all K € H(Q), WP (Q) x WP (Q)— W (Q).

0

In particular, if f € W,''(Q), then the mapping u
— fu is a well-defined continuous linear map from

W (Q) to W ()

Remark 130. In the above theorem, since the locally
Sobolev spaces on 2 are metrizable, the continuity of the

mapping

WP (Q) x Wil (@) — Wik (@),

loc loc (Ll, V) = uv

(146)
can be interpreted as follows: if u; — u in W;(‘)’Cpl (Q) and
v;— v in W2(Q), then uy, — uv in WP (Q). Also
since Wi2*(Q) is considered as a normed subspace of

W*2P2(Q), we have a similar interpretation of the continu-
ity of the mapping in item (2).
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Proof.

(1) Suppose u€ W)''(Q) and ve Wi2P*(Q). First, we
show that uv is in W;? (). Clearly, the set A = {¢?
19 eCX(Q)} is an admissible family of test func-
tions. So in order to show that uv e W;7(Q), it is
enough to show that for all ¢ € C°(Q), ¢*uv = (pu
)(gv) is in W*P(Q). This is clearly true because gu

€ WP (Q), v e W2P2(Q), and by assumption
WP (Q) x WP (Q)> W (Q) (147)
In order to prove the continuity of the map (u,v)
> uv, suppose u; — u in W;P'(Q) and v, — v

in W22(Q). We need to show that u;v; — uv in

WP (Q). That is, we need to prove that for all g €
Q)

P uy; — @*uv  in W¥(Q). (148)
We have

u; — uin WM (Q) = gu; — gu in W (Q),

loc
v; — vin W2 (Q) = gv; — v in WP (Q).
(149)

By assumption, W1 (Q) x W*P2(Q)—>W*(Q), so

(pu;)(pv;) — (pu)(pv) in W(Q).  (150)

(2) Suppose u€ W, (Q) and ve W2 (Q). First, we
show that uv is in W*(Q). To this end, let ¢ € C°

(Q) be such that ¢ =1 on a neighborhood contain-
ing K. We have

uv=u(pv)= (pu) b€ W*(Q)  (151)

W91 (Q) eW22(Q)

Now, we prove the continuity. Suppose u; — u in
Wf},’cp] (Q) and v;— v in W;@’pz (Q). Let ¢ be as
before. We have

w—u in WP Q)= gu— gu in WH(Q),
v,— v in W22 (Q).

(152)

This together with the assumption that W*P1(Q)

x W2P2(Q)>WP(Q)  implies  ¢@u;v; — @uv  in

W*P(Q). Since gv = v and ¢v; = v,, we conclude that
uv, — uv in W (Q).

O
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Remark 131. In the above theorem, the assumption that Q is
Lipschitz or R" was used only to ensure that we can apply
Theorem 103 and to make sure that the locally Sobolev
spaces involved are metrizable. For item (1), we can use
the weaker assumption that (s;, p;, Q), (5, p,> Q), and (s, p,
Q) are interior smooth multiplication triples. For item (2),
we just need to assume that (s;, p,, ) is an interior smooth
multiplication triple.

Corollary 132. Let Q) be the same as the previous theorem. If
sp>n, then W,2(Q) is closed under multiplication. More-
over, if

f 1) — F1in Win(Q), -, (f)),,, — frin Wik (), (153)
then

D F)g = Fr oo frin Wi (). (154)

The next theorem plays a key role in the study of differ-
ential operators on manifolds equipped with nonsmooth
metrics (see [15]).

Theorem 133. Let Q =R" or let Q be a nonempty bounded
open set in R" with Lipschitz continuous boundary. Let s €
R and p € (1,00) be such that sp>n. Let B: Q — GL(k,

R). Suppose for all x€Q and 1<i,j<k By(x) € Wik (Q).
Then,

(1) det Be WP ()

(2) moreover if for each m e N B, : O — GL(k, R) and
for all 1<i,j<k (B,,); — By in W2 (Q), then det
B,, — det B in W)L (Q)

loc

Proof.

(1) By the Leibniz formula, we have

det B(x) = Z sgn(0) By -

o€S,

By (k) k-

By assumption, for all 1 <i<k, B,;); is in wr(Q).

loc

Since sp > n, it follows from Corollary 132 that det
Be W) (Q)

loc

(2) Since (B,,);; — B;; in WP (Q), it again follows from

loc

Corollary 132 that for all o € §,,,

Byx  in Win(Q).
(156)

Baoqiyt ™ Ba)oyr = Boquya -

Thus, det B,, — det B in W;¥(Q)

loc

27

Theorem 134. Let Q=1R" or let Q be a nonempty bounded
open set in R" with the Lipschitz continuous boundary. Let
s>1 and p € (1,00) be such that sp > n.

(1) Suppose that u€ W,"(Q) and that u(x) €1 for all x
€ Q where I is some interval in R.If F: I — R is

a smooth function, then F(u) € W;2(Q)

loc

(2) Suppose that u,,— u in W,2(Q) and that for all
m=>1andx € Q, u,,(x), u(x) € I where I is some open
interval in R. If F: R — R is a smooth function,
then F(u,,) —> F(u) in W;2(Q)

loc

(3) If F : — R is a smooth function, then the map taking
u to F(u) is continuous from Wik (Q) to Wi (Q)

loc loc

Proof. The proof of part (1) generalizes the argument given
n [33]. Let k = [s]. First, we show that F(u) € Wk’p(Q). To

loc

this end, we fix a multi-index |a| = m < k and we show that
0%(F(u)) € L} (Q) (see Theorem 124).

It follows from the chain rule (and induction) that

0%(F(u)) is a sum of the terms of the form

FOw)oPry .- 9Py, (157)

where 1€ N and ) ,|B;|=m. It is a consequence of

Theorem 129 that if s;,5,>5,>0 and s; +s,—5; > n/p,

then W)'F(Q) x W2 (Q)>WpF(Q). As a consequence,

s=|p1 P =[B,]p =B |-1Balp
WA (@) x WP @) wi TP ),
ch‘ﬁ""ﬁz“’(g) x Wju‘c\ﬁs\xl’(o)(_)wjg‘lﬁl\‘ng\‘\ﬁ;“’(g))

s=[By|==B,i | =B, |, =|Bil==IB,|.p s—m,
wi APl ) sowy PP (@) w PR () = wi ().
(158)

Considering this and the fact that P e W;;C‘ﬁ i (Q),
we have

oPry... Pruew?

loc(‘Q) (159)
for all 0<t<s—m. In particular, 0Pu - 0Pru e W?(;‘IZ(Q)
=L! (Q). Also, since F is smooth and u is continuous,

FO(u) € LY (Q). Therefore,

F(l)(u)aﬁlu obuer?

loc(Q)' (160)

So, F(u) € Wfa’f (Q) where k=s]. Now, for noninteger
s, we use a bootstrapping argument to show that F(u) in
fact belongs to W7 ().

F' is smooth; therefore, F'(u) € W (Q). Also ou/ox'

loc

€ WS 7(Q) (note that s — 1> 0). By Theorem 129, we have

loc

Wil (Q) x Wi P (@)W, P ()

loc loc loc

(161)
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provided that

th—IZO,s—IZt—IZO,k+(s—1)—(t—1)>g.

(162)

Therefore, 3/0x'(F(u)) = F'(u)du/ox' € W, *(Q) for
all 1<t<s such that t<k+ (s—n/p). Consequently, F(u)
€ W;{’fi(ﬂ) for all 1<t<s such that t<k+ (s—n/p) (see
Theorem 123). Now, we can repeat this argument by starting
with “F' is smooth, therefore F'(u) € W}’ (Q) for all 1<t
<s such that t <k+ (s—n/p).” This results in F(u) € W,2(
Q) for all 1<t<s such that ¢t <k+2(s—n/p). Repeating
this, a finite number of times shows that F(u) € W’ (Q).

Our next goal is to prove items (2) and (3). First, we note
that if 0 € I then without loss of generality (WLOG) we may
assume that F(0) = 0. Indeed, the constant function F(0) is
an element of W% (Q). So,

F(u,,) — F(u)in W;?

loc

(Q) & F(u,,) — F(u) in W;3(0),

(163)

where F(t) = F(t) — F(0). Thus WLOG we may assume that
F(0) =0.

Let {Kj}je]NO’ {Vj}jE]NO, and {wj}jE]NO be as in Theorem
43. Clearly, {y} is an admissible family of functions. There-
fore, in order to show that F(u,,) — F(u) in W;2(Q), it is
enough to prove that

VreN, wv,(F(u,)—-F(u)—0 in W (Q)asm —> co.
(164)
Lety, .-y, be those admissible test functions whose

support intersects the support of y,. So,
Vx € supp v, Z VU=, Uty U (165)

JeN,
Consequently,
Y, (F(1ty) = () =9, F (v, st 4y, 1, )

(166)

- wrF(y/,lu+---+t//,ku).
Since u,, — u in W) (Q), for all 1 <i<k, we have

v, u, —y,u in WP(Q), (167)

and so,

(168)

s
Y, Uyttt — Y, Uty o in W(Q).
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Since W*(Q)—>L>®(Q), we have

Y, Ut Y, Uy — W, utety, u inL(Q). (169)

Consequently, for the continuous representatives of v,

Up + o+, Uy and ¥, u+ - +y, u, we have uniform con-

vergence. From this point, we work with these continuous
versions. The continuous function v, u+ - +y, u attains
its max and min on the compact set supp y, which we
denote by A, .. and A, respectively. Note that

min?

Vx € supp v, (‘Vrl u+-~-+1//rku) (x)=u(x)el. (170)

So, A, and A,
€> 0 be such that [A
exists M such that

are in I (that is, [A> Apax) € 1). Let

—2€ A +2¢] € 1. By (169) there

min

Vm > M,Vx € supp v, (1//,1 um+-~-+t//,kum) (x)
€A, —&A

(171)

min max +£] cl.

Let £ € C®(R) be such that E=1on [A ; —& A .. +¢
and & =0 outside of [A,;, —2¢, A, +2¢] CI. Define F: R

R by min
F(t) = (E(t)F(t), iftel, 172)
0, if tel.

Clearly, F : R — R is a smooth function and F(0) = 0.
Moreover, F=F on [A_, —& A, +¢|. Also, for all x€Q
and m > M, we have

min

¥, (F(uy,) = F(u))
_ %F(‘/’rl um+"‘+‘/’rk”m) - ‘/’rF(‘Vr1”+"'+1/’rk”)

— V/rﬁ(wn ”m"’"'“/’rkum) — V/rF(V’r] LH'""H/’rk”) .
(173)

Indeed, if x€ supp y,, then both sides are equal to zero.
If x € supp y,, then

(v/rl Uu+-- .+v/7’k 1/[) (X) € [Amin’ AmaX] >
(174)
(l//rl U, +-- '+1//rk um) (X) € [Amin —&Apax t 8]’

and so,

F((‘//rl”+"'+‘//rk“) (x)) = P((V’rl u+---+1//rku) (x)),

F((l//r1 um+~--+t//,kum> (x)) = F((t//,l um+---+1//rkum) (x)).
(175)

F is a smooth function and its value at 0 is 0. Also, by
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assumption, sp > n. Therefore, the mapping v — y F(v)
from W*(Q) to W*?(Q) is continuous. Hence,

1//j3<q/rl Uyt ~+y/rkum> — wf(wrl Ut '+er”> in W(Q).
(176)

That is,

v, (F(u,,) — F(u)) — 0 in W?(Q). (177)

So, we proved item (2). Finally, we note that W7 (Q) is
metrizable. So continuity of the mapping u — F(u) is
equivalent to sequential continuity which was proved in
item (2). O

7. Conclusion

Sobolev-Slobodeckij spaces play a key role in the study of
elliptic differential operators in nonsmooth setting. The
study of certain differential operators between Sobolev
spaces of sections of vector bundles on compact manifolds
equipped with rough metric is closely related to the study
of locally Sobolev functions on domains in the Euclidean
space. In the present paper, we provided a self-contained rig-
orous study of certain fundamental properties of locally
Sobolev-Slobodeckij spaces. In particular, by introducing
notions such as “smooth multiplication triple” and “interior
smooth multiplication triple,” we rigorously studied com-
pleteness, separability, nature of the dual space, general
embedding results, continuity of differentiation, and invari-
ance under composition by smooth functions for locally
Sobolev-Slobodeckij spaces.
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