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Abstract

Identifying areas of high evolutionary potential is a judicious strategy for developing
conservation priorities in the face of environmental change. For wide-ranging species
occupying heterogeneous environments, the evolutionary forces that shape distinct
populations can vary spatially. Here, we investigate patterns of genomic variation
and genotype-environment associations in the hermit thrush (Catharus guttatus), a
North American songbird, at broad (across the breeding range) and narrow spatial
scales (at a hybrid zone). We begin by building a genoscape or map of genetic variation
across the breeding range and find five distinct genetic clusters within the species,
with the greatest variation occurring in the western portion of the range. Genotype-
environment association analyses indicate higher allelic turnover in the west than in
the east, with measures of temperature surfacing as key predictors of putative adap-
tive genomic variation rangewide. Since broad patterns detected across a species'
range represent the aggregate of many locally adapted populations, we investigate
whether our broadscale analysis is consistent with a finer scale analysis. We find that
top rangewide temperature-associated loci vary in their clinal patterns (e.g., steep
clines vs. fixed allele frequencies) across a hybrid zone in British Columbia, suggesting
that the environmental predictors and the associated candidate loci identified in the
rangewide analysis are of variable importance in this particular region. However, two
candidate loci exhibit strong concordance with the temperature gradient in British
Columbia, suggesting a potential role for temperature-related barriers to gene flow
and/or temperature-driven ecological selection in maintaining putative local adapta-
tion. This study demonstrates how patterns identified at the broad (macrogeographic)
scale can be validated by investigating genotype-environment correlations at the
local (microgeographic) scale. Furthermore, our results highlight the importance of
considering the spatial distribution of putative adaptive variation when assessing

population-level sensitivity to climate change and other stressors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
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1 | INTRODUCTION

Conservation strategies aimed toward preserving a species' evolu-
tionary potential and its ability to adapt to changing environments
requires an understanding of the ecological and evolutionary pro-
cesses that shape intraspecific genetic variation (Morgan et al., 2020;
Smith et al., 2021; Thomassen et al., 2011; Zhen et al., 2017). The
field of landscape genomics is rapidly advancing as methods for gen-
erating genome-wide datasets and detecting loci associated with
adaptive divergence are applied to nonmodel organisms (Balkenhol
et al., 2017; Hohenlohe et al., 2021; Waldvogel et al., 2020). In par-
ticular, understanding the spatial distribution of such adaptive ge-
netic variation, and the underlying processes responsible for it, is
critical for anticipating how species might respond to future environ-
mental change and for developing management priorities that help
mitigate negative outcomes (Allendorf, 2017; Williams et al., 2008).

One approach for understanding patterns of adaptation across
a landscape is through tests of genotype-environment associations
(Hoban et al., 2016), which have been studied in an array of taxa
(Bennett et al., 2021; Frachon et al., 2018; Hofmeister et al., 2021;
Jaffé et al., 2019; Waterhouse et al., 2018). Recent continent-wide
studies of migratory birds have identified populations most vulner-
able to future climate change based on spatial variation in climate-
associated loci (Bay et al., 2018; Ruegg et al., 2018). Environmental
factors, such as temperature in willow flycatchers (Empidonax traillii)
and precipitation in yellow warblers (Setophaga petechia), are im-
portant predictors of putative adaptive variation. In these species,
candidate loci associated with temperature and precipitation are lo-
cated near functional genes that may play a role in thermal tolerance
and heat stress (Ruegg et al., 2018) and migration and dispersal (Bay
et al., 2018), respectively.

Although genotype-environment association analyses are a
powerful tool, they inherently represent a broad brush picture
across many populations (Hoban et al., 2016). Most landscape ge-
nomic studies use these broadscale patterns to infer what might
be driving local adaptation (Rellstab et al., 2015), but they do not
investigate whether patterns identified by broadscale analysis can
be validated at the local scale. Often landscape genomic studies
may be prone to false positives (De Mita et al., 2013; Frichot &
Francois, 2015) and/or identify environmental predictors and can-
didate loci that are associated with some parts of the range but not
others (Poncet et al., 2010). The overarching generalized patterns
identified at the broad scale, however, can be further evaluated by
close examination locally (Vines et al., 2016). For example, by study-
ing a hybrid zone in one area, it is possible to identify which, if any,
of the important rangewide predictors are driving local adaptation in
that particular region (Hewitt, 1988, 2004). Since hybrid zone anal-
yses can elucidate mechanisms underlying local adaptation (Rundle

& Nosil, 2005), they can provide a framework at the local scale for
substantiating the broadscale patterns identified by genotype-
environment associations.

Here, we compare patterns of genetic variation across two dif-
ferent spatial scales: rangewide (macrogeographic) and local (mi-
crogeographic). We focus on hermit thrushes, Catharus guttatus
(Pallas, 1811), a migratory songbird well-suited to landscape genomic
approaches because they occupy heterogeneous environments
throughout their continent-wide breeding range in North America.
At the macrogeographic scale (i.e., across the breeding range), this
species exhibits high subspecific variation in fitness-related pheno-
typic traits such as morphological variation in body size, wing and
bill shape, plumage coloration, and song (Aldrich, 1968; Nelson
et al., 2021; Roach & Phillmore, 2017). There are three generally ac-
cepted groups of subspecies (Figure S1), and distributed among them
are 12 individual subspecies (Aldrich, 1968; Dellinger et al., 2020).
Two of the three groups occur in western North America, repre-
senting the majority of subspecies (10 of 12) and highest phenotypic
diversity. In contrast, the third group, which contains only two of
12 subspecies, occupies the expansive area from central British
Columbia (CAN) to the East coast (Dellinger et al., 2020).

At the macrogeographic scale, our objective is to investigate how
genetic differentiation changes with the environment. The pattern
of intraspecific diversity in hermit thrushes mirrors that of beta spe-
cies diversity in birds of North America, where it is highest along the
Pacific region and lowest throughout the environmentally uniform
boreal areas that stretch across Canada (McKnight et al., 2007; Melo
et al., 2009). At the landscape scale, habitat selection (based on ele-
vational range) and climate adaptation (based on variation in evapo-
transpiration) have been shown to drive these patterns of avian
beta species diversity within ecoregions of North America (Veech &
Crist, 2007). Based on high phenotypic diversity of hermit thrushes
throughout their western breeding range (Dellinger et al., 2020), we
predict that environmentally associated genetic variation will be
greatest in the west.

At the microgeographic scale, our objective is to determine
whether environmental predictors indicated by the rangewide
macrogeographic scale analysis can be validated at the local scale.
This microgeographic analysis focuses on a hybrid zone in British
Columbia, where divergent ecotypes representing two hermit thrush
subspecies groups come together (Alvarado et al., 2014; Dellinger
et al., 2020). This intraspecific hybrid zone between ecotypes cor-
responds with a migratory divide (where two populations with dis-
parate migratory directions meet), represents a secondary contact
zone between western and eastern lineages that diverged approx-
imately 960,000years before present (ybp) (Alvarado et al., 2014),
and falls along an existing ecological gradient (Alvarado et al., 2014;
Hamann & Wang, 2006).
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One way to determine whether the broadscale environmental
predictors are relevant to specific populations is to investigate con-
cordance across broad and narrow spatial scales (Gugger et al., 2021).
Here, we assess whether the candidate loci associated with import-
ant rangewide environmental predictors are consistent across the
two scales. Concordance of clines between these loci and a local
climate and/or habitat gradient would suggest a potential barrier to
gene flow and/or role for ecological selection at the local scale (Vines
et al., 2016). However, since broadscale genotype-environment as-
sociation analyses reflect the aggregate of many local populations
that may or may not differ from one another (Poncet et al., 2010),
not all important environmental predictors and top candidate loci
are expected to be consistent across both scales. Nevertheless,
identifying which rangewide environmentally associated candidate
loci also exhibit low gene flow across the hybrid zone could provide
insight into ecological and evolutionary processes important to local
adaptation in that region and how that may, in turn, contribute to the
broadscale patterns (Rundle & Nosil, 2005; Vines et al., 2016).

To achieve our objectives, we first sequence the hermit thrush
genome, generate a dataset of single-nucleotide polymorphisms
(SNPs), and conduct genome-wide genetic analyses on samples col-
lected at macro- and microgeographic scales. Specifically, for the
analyses, we (i) assess rangewide genetic structure and map spa-
tial patterns of genetic variation; (ii) identify patterns of potentially
adaptive genetic variation rangewide; (iii) identify candidate loci as-
sociated with top rangewide environmental predictors; (iv) conduct
cline analysis of genetic data, including the top rangewide candidate
loci, at a hybrid zone to evaluate potential drivers of adaptation at
the local scale; and (v) discuss the conservation implications of our
findings in the context of future climate change. To accomplish this,
for the rangewide dataset, we use gradient forest (Ellis et al., 2012)
to identify areas of high putative adaptive genetic variation and im-
portant environmental predictors. Next, we use latent factor mixed
models (Frichot et al., 2013) to identify top environmentally asso-
ciated loci, after accounting for population structure. Then, at the
hybrid zone, we use HZAR (hybrid zone analysis for R) (Derryberry
et al., 2014) to compare clines for overall genomic variation including
the top environmentally associated candidate loci identified in the
rangewide analysis. Together, analyses at the micro- and macrogeo-
graphic scales can improve our understanding of the environmental
drivers of genetic variation, including how the rangewide patterns
can be validated through investigations of putative adaptation at the
local scale.

2 | MATERIALS AND METHODS
2.1 | Sampling and DNA extraction

Blood samples of 310 individuals were obtained from across the
breeding range of the hermit thrush (Figure 1). Samples were col-
lected from birds during the breeding season (May through August).
Individual samples were grouped into sites, defined as individuals

breeding within one degree latitude and longitude with no more than
10% difference in any environmental variable (as indicated by our en-
vironmental predictors). This resulted in 27 sites across the breeding
range (Figure 1). In Table 1, each sited is labeled according to its sub-
species group, for which the range limits tend to be better defined
compared with those of the subspecies (Dellinger et al., 2020). Our
rangewide sampling scheme includes 13, 7, and 7 sites from within
the range of Western Lowland, Western Mountain, and Northern
subspecies groups, respectively (Table 1, Figure S1). This is propor-
tional to the number of subspecies and phenotypic variation within
each group (i.e., sampling was heavily focused across the regions of
higher phenotypic variation where genetic differences were more
likely to be pronounced). For the microgeographic analysis, we focus
on a hybrid zone where the Western Lowland and Northern subspe-
cies groups, reflecting the western and eastern lineages (Alvarado
et al., 2014), meet in British Columbia. This represents the best
known split between the main subspecies groups, and as a result,
there is thorough sampling from this area across a known environ-
mental gradient. From all samples, DNA was extracted using the
Qiagen™ DNeasy Blood and Tissue extraction kit according to the
manufacturer’s protocols and quantified using the Qubit® dsDNA
HS Assay kit (Thermo Fisher Scientific).

2.2 | Genome assembly

Blood from a single hermit thrush individual (band number 2471-
25909) from Sitka, Alaska was collected and sent to the University
of California Davis (UC Davis) Genome Center for high molecular
weight DNA isolation and 10x Genomics Chromium Genome library
preparation. The 10x method uses microfluidics to separately parti-
tion and barcode smaller portions of the genome, information which
can be leveraged for larger-scale assembly and phasing. Sequencing
of the 10x library was performed as PE150 on a half lane (to target
60x coverage as suggested by 10x) of an Illumina Hiseq X Ten run
(Illumina). To assemble the hermit thrush genome, we implemented
the workflow provided with the Supernova assembler v2.1.1 (10x
Genomics, San Francisco, CA, USA) (Weisenfeld et al., 2017). We
first ran the mkfastq script, which demultiplexes the lllumina se-
quencer's base call files (BCL). These paired-end reads were input
to the supernova run module for de novo assembly. We used default
parameter values, with the exception of no -maxreads argument so
that we used all reads for assembly. To remove potential minor con-
tents of sequence cross-contamination, which occurs when libraries
are multiplexed in a sequencing lane (Costello et al., 2018), we ran a
decontamination workflow using custom scripts to identify and re-
move sequences that are misassigned. First, we filtered the barcodes
and generated raw reads after barcodes were cut off. Next, we cre-
ated a bam file by mapping the FASTQ files produced above to the
original genome assembly using bwa (Li & Durbin, 2009). Finally, we
sorted bam files to calculate and plot the median ratio (i.e., the num-
ber of reads in the genome barcode/ number of reads mapped to
the scaffold) compared with length of scaffold. We defined potential
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FIGURE 1 Genetic structure of populations across the hermit thrush breeding range, demonstrating high genetic structure in western
North America and limited genetic structure throughout the boreal and eastern regions. (a) Results from ADMIXTURE illustrating five
genetically distinct populations, including cluster names, across the breeding range for the full genomic dataset of 90,439 SNPs. Numbers
refer to breeding site locations depicted on the map in panel b and are identified in Table 1. (b) Spatially explicit map of population genetic
structure across the breeding range. The colors correspond to the five genetic clusters (K = 5). The density of each color reflects the
posterior probability of membership for each pixel to the most probable of the five genetic clusters. Transparent color appears on the map in
areas of admixture (i.e., mixed posterior probability and thus uncertain assignment). Due to admixture among the four western clusters, the
relatively continuous distribution (see Figure 2a) of hermit thrushes throughout the west is not apparent on this map.

contaminants as scaffolds less than 1 kb that had a median ratio
less than 10, and we removed 39 such scaffolds from the genome

assembly.

2.3 | SNP discovery and SNP filtering

We performed genome scans on 310 individuals following be-
stRAD library preparation protocol with some modifications (Ali
et al., 2016). In short, DNA was normalized to a final concentration
of 100ngin a 10pl volume and digested with restriction enzyme SBfl
(New England Biolabs, NEB). The fragmented DNA was then ligated
with SBfl specific adapters prepared with biotinylated ends, and
samples were pooled and cleaned using 1x Agencourt® AMPure XP
beads (Beckman Coulter). Pooled and clean libraries were sheared
to an average length of 400bp with 10 cycles on the Bioruptor NGS
sonicator (Diagenode) to ensure appropriate length for sequencing,
and an lllumina NEBNext Ultra DNA Library Prep Kit (NEB) was used
to repair blunt ends and ligate on NEBNext Adaptors to the resulting

DNA fragments. Agencourt® AMPure XP beads (Beckman Coulter)
were then used to select DNA fragments with an average length of
500bp, libraries were enriched with PCR, and cleaned again with
Agencourt® AMPure XP beads. The resulting libraries were se-
quenced on four lanes of an Illumina HiSeq 2500 at the UC Davis
Genome Center using 250 base pair, paired-end sequencing. The
final two lanes included 124 individuals with low coverage from the
first two sequencing lanes; thus, these libraries were resequenced
along with an additional 68 new individuals.

We used the program Stacks v2.60 (Catchen et al., 2013) to
demultiplex, filter and trim adapters from the data with the pro-
cess_radtags function. Duplicate read pairs were removed using the
clone_filter function in Stacks. Only cases in which both reads in a
pair passed quality filters were used in downstream analysis. Reads
were mapped to our genome assembly using bowtie2 (Langmead &
Salzberg, 2012). We then used the Haplotype Caller in the Genome
Analysis Toolkit to detect single-nucleotide polymorphisms (SNPs),
following best practices from the Broad Institute (http://www.broad
institute.org). In an initial round of variant filtration, we discarded
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TABLE 1 Sampling sites across the hermit thrush breeding range
Site Group State Site name N Latitude Longitude
1 WM NM Los Alamos 2 35.84 -106.42
2 WM AZ Pinaleno Mtn S 32.67 -109.88
32k WM AZ Big Lake 5 33.88 -109.43
4 WM AZ Flagstaff 1 35.34 -111.6
5 WM AZ Jacob Lake 2 36.6 -112.18
6P WM uT Routes 14/18 5 37.53 -112.75
72b WM CA Yosemite 6 37.77941 -119.7566033
s WL CA Big Basin site 1 16 37.175385 -122.21825
9ab WL CA Big Basin site 2 5 37.166457 -122.20749
10 WL CA Bolinas 1 37.933518 -122.727446
112P WL BC Golden 8 51.06567125 -116.8025
D2t WL BC Whistler 15 50.12456 -123.2933333
13 WL AK Hwy Pass/Toklat 2 63.49411 -150.09
14 WL AK Mile17 63.73674 -149.372
1520 WL BC Haida Gwaii 10 53.162545 -131.8095
16*P WL AK Sitka 5 57.0738956 -135.3395108
17 WL AK Juneau 1 58.42 -134.55
18bc WL BC Prince Rupert 8 54.27972625 -130.33425
193¢ WL BC Exstew 8 54.44668872 -129.1349303
20*¢ WL BC Kispiox 10 55.397947 -127.8039
21%¢ N BC Maxan 10 54.26883 -126.1004
22%¢ N BC Fort Fraser 12 54.10814445 -124.569797
23*¢ N BC MacKenzie 5 55.10428 -122.9972
243¢ N BC Hudson's Hope 12 56.01897 -122.0631667
252be N BC Swan 10 55.516232 -120.0838
262 N PA Portertown 6 41.27183433 -75.177813
2720 N ME Penobscot 8 44.846 -68.616

Note: Subspecies group: Western Mountain (WM), Western Lowland (WL), or Northern (N).

Sites 1-27 are used in analysis of population structure. Additional symbols denote:

Subset of 19 sites used for F¢; and partial Mantel tests.

PSubset of 13 sites used in the gradient forest and latent factor mixed models.

“Subset of 8 sites used in the cline analysis.

low-quality variants (genotype quality<30; depth<8; minor al-
lele frequency <0.03), as well as indels and nonbiallelic SNPs using
vcftools (Danecek et al., 2011). Using this quality filtered set, we con-
ducted a second round of filtration by visualizing the trade-off be-
tween discarding SNPs with low coverage and discarding individuals
with missing genotypes to determine which SNPs and individuals to

discard in the R software program genoscapeRtools (Anderson, 2019).

2.4 | Population structure and genoscape map

To assess population genetic structure across the hermit thrush
breeding region, we used the software program ADMIXTURE
(Alexander et al., 2009), a maximum likelihood model-based ap-
proach to estimate ancestry of 178 individuals (Table 1). The model

was run with a burn-in period of 50,000, and a total run length of
150,000 generations. We ran five iterations of each assumed num-
ber of genetic clusters (K), where K ranged from 1:7 (Figure S2). We
used the R software program pophelper (Francis, 2017) to visualize
each run, as well as to estimate the cross-validation error to deter-
mine the optimal K.

To create the genoscape, a spatially explicit map of genetic clus-
tering, we visualized the posterior probability of group membership
estimates from ADMIXTURE as transparency levels of different col-
ors overlaid on a base map from Natural Earth (https://www.natur
alearthdata.com/) and clipped this to a map of the hermit thrush
breeding range (NatureServe, 2018). We scaled the transparency of
colors within each distinguishable group, so that the highest poste-
rior probability of membership in the group according to structure
was opaque and the smallest was transparent.
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FIGURE 2 Genotype-environment associations across the hermit thrush breeding range, indicating relatively high turnover of putatively
adaptive alleles in western North America. (a) Gradient forest-based genomic signatures mapped to geography support climate adaptation
across the breeding range and higher turnover of putatively adaptive allelic variation in the western region compared to the boreal and
eastern regions. Background colors on map are based on modeled gene-environment correlations predicted at 100,000 random points
across the breeding range. Circles on map represent sampling locations and are colored according to the corresponding genetic cluster from
Figure 1. (b) Principal component analysis of gradient forest predictions of genomic signature. Background color represents environmental
space, whereas circles are positioned to reflect PC scores associated with each sampling location (colored according to genetic cluster).

The western clusters are separated throughout environmental space, whereas sites associated with the East-Taiga cluster are tightly
grouped together. (c) Plot of relative mean within-group Euclidean distances (Environmental vs Geographic) for each genetic cluster reveals
contrasting patterns. Each western cluster shows high environmental distances across relatively small geographic distances, whereas the
East-Taiga cluster shows low environmental distance across large geographic distances. Numbers in parentheses represent within-cluster

pairwise comparisons.

2.5 | Association between environmental
predictors and genomic data

To determine whether changes in genetic allele frequencies were
associated with particular environmental variables, we extracted a
suite of 25 climate, vegetation, and anthropogenic characteristics
from 19 sampling locations. For climate predictors, we used the 19
bioclimatic layers available as part of the WorldClim 2.1 database
(Hijmans et al., 2005), which captures temperature and precipitation
measurements averaged across the time period 1970-2000. Data

from these layers was extracted at 30-arc second resolution (~1km?).

We included three layers representing vegetation and characteris-
tics: (1) two measures of the normalized difference vegetation index
(NDVI) captured by MODIS instrument (Carroll et al., 2004) that rep-
resented the maximum and standard deviation of NDVI at each loca-
tion for the year 2003 (chosen as a representation of the vegetation
seen at each location), and (2) a layer capturing tree cover in each
habitat (Sexton et al., 2013) at ~1km? resolution. We used a measure
of surface moisture estimated by the NASA Scatterometer Climate
Record Pathfinder (QuickSCAT) representing the mean of surface
moisture available at each site. We included the elevation at each
site as a predictor, as captured by the Shuttle Radar Topography
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Mission (SRTM, also at 30-arc second resolution and downloaded
via the worldclim.org website). Finally, we included an amalgamated
measure of anthropogenic activity, the human influence index (Hll),
that represents nine independently collected anthropogenic activi-
ties, such as population density, construction density and land use,
nighttime lights, and access to locations (road and rail density, coast-
lines) (WCS, 2005). Latitude and longitude were also included in the
analysis as potential predictors and to tease apart any effects of ge-
ography (Section 2.7).

To link the potential environmental predictors to our genomic
data at the macrogeographic scale, we used the package gradientFor-
est (Ellis et al., 2012) in R (R Core Team, 2017). For the initial gradient
forest analysis, we ran the gradient forest using all 19 populations
that had at least five individuals (Table 1). However, for the final gra-
dient forest analysis, we included 13 populations and excluded six
sites from the hybrid zone. Gradient forest modeling examines the
overall spatial distribution of genomic variation across a landscape
(Bay et al., 2018; Fitzpatrick & Keller, 2015). Gradient forests are
rooted in random forest models (Breiman, 2001), and attempt to link
multiple responses (in this case, allelic variation across the genome
between populations) to predictor variables (in this case, the above-
described environmental characteristics of each population) using a
bifurcating, iterative, nonparametric regression algorithm. The re-
sults of these regressions are an estimate of the number of responses
with significant associations with predictor variables, an estimate of
the strength of such associations, and a ranking of the predictor vari-
ables relative to one another across all responses tested. An advan-
tage of these models is that they are iterative in nature, and because
they withhold both records and predictor variables randomly with
each iteration, they are largely immune to biases due to multicol-
linearity and/or spurious correlations. We compared these observed
results with those obtained from gradient forests that were run with
randomized matches between genomic and environmental records
(n = 50), to estimate the difference between our observed associ-
ations between environment and genomic data as compared with
randomized ones.

2.6 | Predicting genomic turnover across the
breeding range

To create a spatially explicit visualization illustrating how genomic
variation changes with environmental conditions across geographic
and environmental space, we generated a map and PC plot as fol-
lows. We used the estimated relationship between genomic data
and environment of the hermit thrush, as revealed by gradient for-
ests, to predict the changes in genomic variation across the entire
range of the species. Due to the fact that this variation is based on
loci linked to environment variables, we refer to these changes as
putatively adaptive allelic turnover. We estimated this putatively
adaptive allelic turnover by randomly selecting 10,000 geographic
points across the range of the hermit thrush and extracting the val-
ues of the three environmental variables most strongly correlated

with genomic variation, as determined by the gradient forest model
run on the 13 sites. We then predicted the genomic variation at
each of these sites based on the relationship between genomics and
these environmental variables obtained from gradient forest model
run on the 13 sites. We then used ordinary kriging to interpolate
between unsampled locations across the breeding range (Oliver &
Webster, 1990).

2.7 | Association between geographic distance,
environmental distance, and genomic data

To assess the relationship between geographic, environmental, and
genetic distances, we also calculated pairwise F¢; across all quality
filtered SNPs using the R package assigner version 0.5.6 (Gosselin
et al., 2019). Here, we used the hierfstat model (Goudet, 2005) to
also provide confidence intervals surrounding the Fg; estimates. For
F¢r and subsequent analyses incorporating environmental and geo-
graphic distance (Table 1), we included all 19 populations that had
at least 5 individuals. Geographic distance was calculated using the
package geosphere (Hijmans, 2019) which calculates the distances
using the Vincenty inverse formula for ellipsoids to account for the
curve of the earth. Environmental distance between sites was calcu-
lated as the Euclidean distances based on the top three environmen-
tal variables identified in gradient forest (mean diurnal temperature
range (BIO2), temperature seasonality (BIO4), and annual tempera-
ture range (BIO7)) using the function dist in R (R Core Team, 2019).
To determine the influence of geographic distance versus en-
vironmental distance on patterns of genomic variation across the
hermit thrush breeding range, we performed several tests. First,
we included the mean latitude and longitude of each population as
predictors in the gradient forest runs (for a total of 27 potential pre-
dictors, Table S1), allowing the influence of geography to compete
directly with environmental predictors at each site. Second, to create
a visual comparison of the relative influence of geography vs environ-
ment on genetic distances, we calculated, within each genetic cluster
(based on population structure analysis described in Section 2.4), the
relative mean within-group Euclidean distance for geography versus
the relative mean within-group Euclidean distance for environment.
Third, we performed partial Mantel tests between F¢, geographic dis-
tance, and environmental distance using R package vegan (Oksanen
et al., 2015) for the 19 populations. In addition, to test whether iso-
lation by environment is more important than isolation by distance in
the western lineage compared with the eastern lineage, we ran the

partial Mantel tests for the two lineages separately.

2.8 | Identifying candidate loci for top
climatic variables

At the macrogeographic scale, to identify candidate variants that
were strongly associated with the rangewide environmental predic-
tors, we ran latent factor mixed models (LFMM) (Frichot et al., 2013)
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for the same 13 sites included in the final gradient forest analysis (i.e.,
this excluded six sites from the hybrid zone) (Table 1). These mod-
els are statistical regression models to test associations between a
multidimensional set of response variables (i.e., genotypes) and a set
of variables of interest (i.e., environmental variables), while correct-
ing the model for confounding effects such as population structure.
Here, we tested for correlations between all quality filtered SNPs
and the top-ranking uncorrelated environmental variables identi-
fied in the gradient forest analyses (mean diurnal temperature range
(B102), temperature seasonality (BIO4), and maximum temperature
of the warmest month (BIO5)) whose Pearson's correlation coeffi-
cient was 0.75 or less. For each of the environmental variables from
the gradient forest analysis, we ran five separate MCMC runs using
the Bayesian LFMM version 1.5 (Frichot et al., 2013) with a latent fac-
tor of K = 5, based on an initial PCA to identify underlying genetic
structure with the prcomp function in the stats v3.6.2 package in
R (R Core Team, 2020). p-Values from all five runs were combined
and adjusted for multiple tests using a false discovery rate (FDR)
correction.

To compare candidate loci associations across geographic scales,
we additionally ran LFMM for mean diurnal temperature range
(B102), temperature seasonality (BIO4), and maximum temperature
of the warmest month (BIO5) (i.e., top uncorrelated environmental
variables from macrogeographic scale) for the populations within
the hybrid zone using the same parameters used for the previous
analysis. This identified the top 10 candidate loci for mean diurnal
temperature range (BIO2), temperature seasonality (BIO4), and max-
imum temperature of the warmest month (BIO5) at the microgeo-
graphic scale and their association within the hybrid zone. Across
the eight hybrid zone sites in British Columbia (Table 1), we mapped
allele frequencies of the top rangewide candidate locus associated
with each of the top three uncorrelated environmental variables,
which was overlaid on a background showing changes in the associ-
ated bioclimatic variable across the hybrid zone.

For candidate loci found to be highly ranked at both macro- and
microgeographic scales, we subsequently investigated the closest
genic region. To do this, we used the Satsuma synteny program
(Grabherr et al., 2010) to align the hermit thrush genome to the
Zebra Finch chromosomal genome assembly, converting the scaf-
fold position to a chromosomal position with an associated anno-
tation. We used NCBI blast by generating DNA sequence segments
that include 200bp surrounding each candidate loci and blasting the
segment against the Zebra Finch genome. We also extended our ex-
ploration to genes within 25kb upstream or downstream of our top
candidate variants, which we assume is within the distances before
which LD should break down (Backstrém et al., 2006).

2.9 | Cline analysis
We used the program HZAR (hybrid zone analysis for R) (Derryberry

etal.,2014),implemented in the R programming environment (R Core
Team, 2019), to fit all clines and perform all clinal analyses across the
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eight hybrid zone sampling locations in British Columbia (Table 1).
First, we fit the best of three models (as determined with AIC com-
parisons) to the ancestry proportions calculated in ADMIXTURE
(K = 2), as well as the population-scaled and transformed environ-
mental PC values and each variable separately. Each model was
used to predict cline parameters (center and width). In addition to
the null model, the models used for the cline fitting were as follows:
model I: no exponential tail is desired; model Il: a model where just
one exponential tail on the right is desired; and model Ill: where two
exponential tails mirrored about the cline center is desired. We ran
each model on three chains, for 1x 10° generations with a 10% burn-
in period. We assessed convergence using trace plots and once the
best model had been selected, it was used to plot the best fit cline
for the observed data, as well as the confidence interval around the
cline. We additionally looked at the cline of allele frequencies of top

candidate loci identified in the rangewide LFMM analyses.

3 | RESULTS

3.1 | Genome assembly, SNP discovery, and SNP
filtering

The final size of the assembled genome was 1.034 Gb, comparable
to the average size of bird genomes, which is remarkably conserved
across avian taxa (Gregory, 2005; Zhang et al., 2014). The scaffold
N50 was 35.7 Mb and the longest scaffold was 105.36 Mb. GC-
content of the genome was 41.86%. The scaffold N90 was 2.23 Mb;
90% of the total length of the assembly lies in 40 scaffolds greater
than this length.

In total, we identified 4,703,497 variants across the genome. We
filtered out variants with greater than 10% missing genotypes and
variants with a minor allele frequency less than 3%. We additionally
discarded low coverage individuals missing more than 25% of SNPs
for a final set of 90,439 SNPs and 178 individuals (Table 1).

3.2 | Population structure

We identified five genetic clusters across the breeding range
(Figure 1 and Table 1). The genomic breaks in the ADMIXTURE plot
at K = 3 (Figure S2) are consistent with the three main subspe-
cies groupings. At K = 5, the Western Lowland subspecies group
is further subdivided based on additional genomic breaks within
this group (Figure 1). The blue genetic cluster, which we refer to
as East-Taiga, spans from the East coast across Canada to central
British Columbia (sites 24-27 have little to no admixture) and corre-
sponds to the Northern subspecies group. The pink genetic cluster,
which we refer to as West-Interior, occupies the Madrean and Rocky
Mountain ranges (sites 1-6 have no admixture) and corresponds to
the Western Mountain subspecies group. The remaining three ge-
netic clusters occur along the West coast, where they segregate
by latitude. In aggregate, they correspond to the Western Lowland
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subspecies group. The West-North cluster (yellow) is found in Alaska
and northwestern British Columbia (sites 13-15 have no admix-
ture). The West-Central cluster (green) is found in southern British
Columbia (site 11 has no admixture). Finally, the West-South cluster
(orange) is found in California (sites 8-10 have no admixture). There
are several locations across the range with admixture (Figure 1 and
Table 1), including site 7 in Yosemite, CA, sites 16-17 in southeast
Alaska, and sites 12 and 18-23 in British Columbia.

3.3 | Association between geography,
environment, and genomic data

When we analyze all the western sites together, the contrasting pat-
terns between the eastern and western lineages emerge. Across all
sites, we find a wide range of Fy values (0.0003-0.1788). As ex-
pected, the highest values of F¢; occur between the eastern and
western lineages (Table S2). When the two lineages are analyzed
separately, we observe relatively low F¢; values within the eastern
lineage and high F; values within the western lineage (including for
pairwise comparisons among sites with similar geographic distances,
for example, site 24 to 27 vs. site 3 to 17) (Figure 1 and Table S2).
Partial Mantel tests consistently reveal contrasting patterns for
eastern and western lineages when analyzed separately (Table S3).
The western lineage shows significant patterns of isolation by en-
vironment (r = 0.414, p = 0.01) and isolation by distance (r = 0.657,
p =0.001). In contrast, the eastern lineage shows no evidence of iso-
lation by environment (r = 0.189, p = 0.176) or isolation by distance
(r=0.181,p =0.114).

3.4 | Association between environmental
predictors and genomic data

We found a strong relationship between environmental variables
and genomic variation in our rangewide analysis of hermit thrushes.
Important predictors in our 13 site model were BIO2 = mean diur-
nal temperature range (mean of monthly [max temp - min temp]),
BIO4 = temperature seasonality (standard deviationx100), and
BIO7 = annual temperature range (max temp of warmest month
- min temp of coldest month) (Table S1). Each of these variables
explained a larger portion of genomic variation than latitude or
longitude (Table S1) and suggest a stronger association between
environment and genomic variation than could be explained by ge-
ography alone. Of the 90,439 loci that were included in the gradient
forest analysis, over 47% (n = 42,561) were able to be explained by
available predictors (e.g., R? greater than 0), and these responses had
an average correlation of R? =0.26 with predictor variables. These
responses were significantly greater in number and correlation value
than those gradient forests where genomic signatures and predictors
were randomized with respect to one another (p <0.01, Figure S3).
Even when considering predictors that are not highly correlated
(Pearson's correlation coefficient<0.75) (Table S4), the top two

predictors (BIO2 = mean diurnal temperature range, BIO4 = tem-
perature seasonality) remain the same, and the third ranked variable
is replaced by another temperature metric (BIO5 = maximum tem-

perature of the warmest month).

3.5 | Predicting genomic turnover across the
breeding range

Gradient forest analysis also allowed for visualization of environmen-
tally associated allelic variation at the broad spatial scale (Figure 2a),
revealing strong differences across the breeding range. Changes in
background color on the map represent turnover in the relationship
between environmental variables and these putatively adaptive al-
leles. The map shows high variation in genotype-environment asso-
ciations (i.e., high turnover) across relatively small geographic areas
throughout the west; this contrasts the low variation in genotype-
environment associations (i.e., low turnover of alleles) across the
large geographic area spanning from central British Columbia to the
East coast (Figure 2a). On the map, circles indicate the sampling sites
and are color coded to represent the genetic cluster associated with
the corresponding site on the genoscape map (Figure 1).

The PC plot (Figure 2b) represents environmental space and in-
cludes vectors for important environmental predictors (mean diur-
nal temperature range (BIO2), temperature seasonality (BIO4), and
annual temperature range (BIO7)). These variables are all related
to temperature. Thus, the pattern is predicted by climate variables
generally, and specifically with respect to temperature. The top
three uncorrelated environmental predictors are all related to tem-
perature as well. BIO2 and BIO4 stay the same, and BIO5 replaces
BIO7 (as BIO4 and BIO7 are correlated) (Table S2). We keep both
BIO4 and BIO7 here as gradient forest models are largely immune
to collinearity; however, we consider only the uncorrelated variables
when we selected variables to explore as part of rangewide LFMM
and analyses for the hybrid zone (Section 3.6).

For visualization purposes, the PC plot is oriented such that the
background color representing environmental space (Figure 2b)
corresponds spatially to the background color representing en-
vironmentally associated allelic variation on the map (Figure 2a).
The PC plot indicates where the 13 sampling sites are distributed
in environmental space relative to one another (i.e., separating
out or grouping together), and each site is colored according to
its genetic cluster in Figure 1. Sites associated with the East-Taiga
genetic cluster (blue circles) are grouped tightly within the PC plot
(Figure 2b). This indicates very little environmental variation be-
tween East-Taiga sites despite large pairwise geographic distances
between some of them (Figure 2a,c), thus substantiating the low
variation in genotype-environment associations across this area.
In contrast, within the western region, sites associated with each
genetic cluster (pink, orange, yellow, and green circles) are dis-
persed throughout the PC plot (Figure 2b). This indicates relatively
high environmental variation (i.e., high environmental heteroge-

neity) between sites despite shorter geographic distances within
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each cluster (Figure 2a,c), thus substantiating the high variation in
genotype-environment associations across the west. The bar chart
(Figure 2c) provides a side-by-side comparison of sites grouped
according to each of the five genetic clusters from the genoscape
(Figure 1). For the East-Taiga cluster, environmental distance is low
relative to large geographic distances. The opposite pattern exists
for most of the western clusters, where environmental distance is

high compared with relatively small geographic distances.

3.6 | Identification of candidate loci for top
climatic variables

To investigate genomic loci potentially involved in climate ad-
aptation of hermit thrush populations, we used LFMM (Frichot
et al., 2013) to identify 2848 genomic loci associated with the top
three uncorrelated climatic variables ranked in the rangewide gra-
dient forest analyses described above, which excluded six of the
hybrid zone populations. We identified 2138 candidate variants
associated with mean diurnal temperature range (B102), 1112 as-
sociated with temperature seasonality (BIO4), and 1375 associ-
ated with maximum temperature of the warmest month (BIO5).
We identified the top 10 variants associated with each of the top
three uncorrelated climatic predictors on the macrogeographic
scale (Figure S4), and we determined that these loci varied in their
importance within the hybrid zone (i.e., ranking of association
across the hybrid zone) (Figure S5). No variants associated with
mean diurnal temperature range (BIO2) or maximum temperature
of the warmest month (BIO5) overlap as a highly ranked candidate
locus at both scales. However, two variants rose to the top at both
scales, and they were both associated with temperature seasonal-
ity (BIO4).

3.7 | Hybrid zone analysis

At the microgeographic scale, when tracking the allele frequency
changes across the hybrid zone, the pattern varies between the
top temperature-associated candidate loci. Figure 3 shows the al-
lele frequency changes overlaid on a background representing the
raw environmental data for mean diurnal temperature range (BIO2),
temperature seasonality (BIO4), and maximum temperature of the
warmest month (BIO5). The top candidate locus associated with
mean diurnal temperature range (BIO2) is fixed and shows no change
in allele frequency (Figure 3a), while the top candidate locus associ-
ated with maximum temperature of the warmest month (BIO5) does
show an allele frequency shift across the cline (Figure 3c). The top
candidate locus associated with temperature seasonality (BIO4) not
only shifts in frequency across the hybrid zone but also tracks the
gradient of the associated bioclimatic variable (Figure 3b). Notably,
it was this locus along with the second top candidate locus (both as-

sociated with temperature seasonality (BIO4)) (Figures S4b and S5b)
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that overlap as important candidates at both the micro- and macro-
geographic scales. These top two variants for temperature season-
ality (BIO4) were both found in the same genomic region, and our
analyses indicate this region to be on chromosome 2, upstream of
the uncharacterized protein LOC105759009 and the prolactin gene,
PRL. Thus, the changes in allele frequency of these two candidate
variants (both falling near the prolactin gene, PRL) are closely aligned
with a gradient in temperature seasonality (BIO4) across British
Columbia.

HZAR clines were calculated for population specific measures
of RADseq ancestry, environmental space defined by scaled top
rangewide uncorrelated climatic variables, and candidate loci as-
sociated with two of the top environmental predictors (as identi-
fied by LFMM in the broadscale analysis) (Figure 4). Mean diurnal
temperature range (BIO2) is not included here as the allele fre-
quencies of the top two candidate loci were fixed (Figure 3a).
The ancestry cline was steep and narrow, centered at 264.9 km
(range = 252.0-273.7 km) with a width of 24.3 km (range = 6.0-
27.1 km). The Environmental PC1 cline was shallower and shifted
left (center = 206.5 km, width = 196.2 km). The clines of the two
candidate loci associated with temperature seasonality (BIO4) fol-
low a pattern similar to the Environmental PC1 cline, whereas the
clines of the two candidate loci associated with maximum tem-
perature of the warmest month (BIO5) are more similar to the ge-

nomic cline (Figure 4).

4 | DISCUSSION

Genotype-environment association analyses at the macrogeo-
graphic scale support the hypothesis of higher turnover of putatively
adaptive alleles in the western breeding range of hermit thrushes
compared with eastern and boreal breeding areas. This is consistent
with known variation in fitness-related phenotypic traits, which is
also highest throughout the western region (Dellinger et al., 2020).
Bioclimatic variables associated with temperature are important
predictors of these broadscale patterns, and we identify loci that are
associated with the top-ranking uncorrelated temperature variables
after accounting for rangewide population structure. As broadscale
analyses inherently reflect a composite of many local populations
and thus represent an overarching generalized pattern (Hoban
et al., 2016; Rellstab et al., 2015), we investigate whether the mac-
rogeographic pattern can be validated at the microgeographic scale.
Although there is variation in the importance of rangewide predic-
tors, our hybrid zone analysis confirms that temperature is likely an
important driver of putative local adaptation in British Columbia,
where we find low gene flow between ecotypes and a potential role
for ecological selection driven by a temperature gradient. Here, we
discuss possible ecological and evolutionary mechanisms underlying
the patterns at both spatial scales, and we then address the con-
servation implications of geographic variation in the distribution of

climate-linked putatively adaptive genetic variation.
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FIGURE 3 Variation in patterns of
allele frequency changes across the hybrid
zone in British Columbia for temperature-
associated top candidate loci identified

in the rangewide analysis. (a) Allele
frequency for the top candidate locus
associated with mean diurnal temperature
range (BIO2) is fixed. (b) Allele frequency
for the top candidate locus associated
with temperature seasonality (BIO4)
shows a large shift close to the coast. (c)
Allele frequency for the top candidate
locus associated with maximum
temperature of the warmest month (BIO5)
shows a large shift farther inland. The
color within each circle represents the
frequency of the highest ranked allele

(as determined by the rangewide LFMM
analyses) across the eight sampling sites,
while the underlying map represents the
gradient across the hybrid zone of the
associated bioclimatic variable.
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FIGURE 4 Geographic cline plots show the relationship
between the genomic cline, temperature gradient, and candidate
loci across the hybrid zone in British Columbia. The clines for
candidate loci associated with temperature seasonality (BIO4)
(gray open squares and circles) and Environmental PC1 (black
diamonds) are shifted to the left of the genomic cline (RADseq;
black triangles), which represents the ancestry estimates

from the full genomic dataset (90,439 SNPs) with a K = 2. The
Environmental PC1 cline (black diamonds) represents scaled top
uncorrelated climatic variables (mean diurnal temperature range
(B102), temperature seasonality (BIO4), and maximum temperature
of the warmest month (BIO5)) identified by the gradient forest
analysis. The clines for the candidate loci associated with maximum
temperature of the warmest month (BIO5) are closely associated
with the genomic cline. Candidate loci associated with mean diurnal
temperature range (BIO2) are fixed and are not included here.

4.1 | Climate-associated genomic diversity
across the breeding range

Our study supportsarole for the environment in shaping intraspecific
genomic diversity at the macrogeographic scale, including an uneven
spatial distribution of putative adaptive genetic variation across the
breeding range. In particular, high population structure (Figure 1)
and high variation in genotype-environment associations through-
out the west (Figure 2a,b) starkly contrasts low population struc-
ture and a lack of variation in genotype-environment associations
throughout the eastern and boreal regions. Gradient forest revealed
strong support for temperature-associated genetic diversity above
what was expected by chance, indicating that this pattern does not
merely reflect neutral population structure (Ellis et al., 2012). LFMM
further revealed candidate loci strongly associated with mean diur-
nal temperature range (BIO2), temperature seasonality (BIO4), and
maximum temperature of the warmest month (BIO5) after account-
ing for population structure (Frichot et al., 2013).

The comparison between east and west in geographic and
environmental distance further supports a strong role for the
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environment in driving patterns of genetic diversity. If geographic
distance was an important factor, we would predict more divergence
in the east compared to the west; however, we found the opposite.
In hermit thrushes, the pattern and environmental predictors of
putative adaptive genetic variation parallel those for beta diver-
sity (i.e., high turnover) of bird species in North America (McKnight
et al., 2007; Melo et al., 2009; Veech & Crist, 2007). Although not
identical, the environmental predictors (e.g., temperature range/
seasonality for hermit thrushes vs. topographic heterogeneity and
variation in transpiration rates for avian beta diversity) are highly
correlated in the mountainous areas of western North America
(Goulden et al., 2012; Roche et al., 2020), thus supporting a potential
role for environmental heterogeneity in shaping patterns of avian
diversity in western North America.

Higher turnover of putatively adaptive alleles in the west is con-
cordant with high morphological diversity in fitness-related traits
(Dellinger et al., 2020). Although this needs to be tested directly, it
supports the idea that environmental variation related to tempera-
ture may be important for divergence in traits related to thermal
tolerance throughout the western range of hermit thrushes. Similar
genotype-temperature correlations have been associated with eco-
logically relevant physiological traits including heat stress in wil-
low flycatchers (Ruegg et al., 2018), providing insight into possible
mechanisms underlying temperature-related climate adaptations.
Additional heritable traits associated with temperature and ther-
moregulation in birds include melanin-based pigmentation (Galvan
et al.,, 2018; Romano et al., 2019), bill size (Romano et al., 2021;
Tattersall etal.,2017),and winglength (Romano etal., 2021). Western
subspecies of hermit thrushes vary extensively in both plumage col-
oration and morphometrics (Aldrich, 1968). Thus, we propose that
future research include a genome-wide association study (GWAS),
which is needed to directly test for correlations between high turn-
over of putatively adaptive alleles and specific fitness-related phe-
notypic traits in western populations of hermit thrushes.

Although in this study we focus on putative adaptive variation,
we do not discount the role of historical processes in structuring
genetic variation across the breeding range. For example, some of
the observed patterns could also be explained by neutral or adaptive
divergence in the past that is currently maintained by contempo-
rary barriers to gene flow (Hewitt, 2004; Shafer et al., 2010; Weir
& Schluter, 2004). Our genoscape map corroborates genomic splits
between the three main groups of subspecies (Figure 1, Figure S1).
A previous study of hermit thrushes dated the major split between
Western Lowland and Northern groups to the Last Glacial Maximum
(Alvarado et al., 2014) and other studies of avian species occupying
the same range suggest the Western Mountain group likely split from
the Western Lowland group during the Pleistocene as well (Dohms
et al., 2017; van Els et al., 2012; Weir & Schluter, 2004). However,
our genoscape analyses uncovered two additional genomic breaks
along the Pacific coast within the range of the Western Lowland sub-
species group, which has the most subspecific variation (Dellinger
et al., 2020). An updated demographic analysis of hermit thrushes
is necessary to tease apart historical vs. contemporary and neutral
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vs. adaptive processes (Gutenkunst et al., 2009; Liu & Fu, 2015).
However, continuously distributed divergent populations that re-
sulted from secondary contact provide an opportunity to investigate
how historical differences can be maintained via contemporary bar-
riers to gene flow and/or recurrent selection (Barton & Gale, 1993;
Garrick et al., 2019; Jones et al., 2013; Rellstab et al., 2015). Our
investigation at the hybrid zone (Section 4.2) between the Western
Lowland and Northern subspecies groups (i.e., representing the sec-
ondary contact zone between the western and eastern lineages) re-
veals how deep historical divisions can continue to be sculpted by
the current environment.

4.2 | Temperature associations across a local
hybrid zone

Since the pattern at the macrogeographic scale represents an ag-
gregate of ecological and evolutionary processes occurring at the
microgeographic scale (Hoban et al., 2016; Rellstab et al., 2015), we
investigate whether the rangewide environmental predictors and
associated candidate loci are corroborated at the local scale. Our
study indicates that the rangewide environmental predictors and the
associated loci vary in their importance within the hybrid zone in
British Columbia. Specifically, rangewide LFMM analyses identified
SNPs that are strongly associated with the top uncorrelated environ-
mental variables, which are all temperature related (i.e., mean diurnal
temperature range (BIO2), temperature seasonality (BIO4), and max-
imum temperature of the warmest month (BIO5)). When mapped
across the hybrid zone, however, the rangewide top candidate loci
associated with diurnal temperature range (BIO2) show no variation
in allele frequency, whereas the loci associated with temperature
seasonality and maximum temperature of the warmest month (BIO4
and BIO5, respectively) exhibit clinal changes in allele frequency at
the microgeographic scale (Figures 3 and 4). Only the top two can-
didate loci associated with temperature seasonality (BIO4) track the
temperature gradient across the cline, suggesting a temperature-
associated barrier to gene flow and/or ecological selection (Kirk &
Freeland, 2011; Rundle & Nosil, 2005; Vines et al., 2016). Notably,
these are the two candidate variants identified as important at both
scales. Although we may find more loci that are top candidates at
both scales if we searched within all 27 environmental variables, we
highlight these loci as it was mean diurnal temperature range (BIO2),
temperature seasonality (BIO4), and maximum temperature of the
warmest month (BIO5) that surfaced as the most important uncor-
related predictors at the rangewide scale.

Within the genome, the candidate loci we narrowed down as
being important at both the macrogeographic scale rangewide and
microgeographic scale of the hybrid zone fall near the prolactin gene
PRL (Wilkanowska et al., 2014). Prolactin is a hormone that, in birds,
has been linked to environmental conditions, stress, and repro-
duction (Angelier et al., 2016). Environmental stressors that affect
avian prolactin levels include heat (Dawson & Sharp, 2010; Gahali
etal.,2001; Rozenboim et al., 2004), drought (Delehanty et al., 1997),

and food availability (Koch et al., 2004; Riechert et al., 2014). We do
not want to overinflate the relevance of prolactin in this study sys-
tem. Importantly, confirmation of allele frequency shifts of the pro-
lactin gene itself as well as functional tests confirming its biological
significance in hermit thrushes would be necessary before making
any inferences. Nevertheless, as the loci situated near the prolactin
gene were the only candidates identified as highly ranked at both
spatial scales, it provides a possible avenue for future molecular re-
search in this system, especially given its association with heat stress
as well as onset of reproduction (Angelier et al., 2016; Dawson &
Sharp, 2010; Gahali et al., 2001; Rozenboim et al., 2004).

The clines for the top two candidate loci associated with tem-
perature seasonality (BIO4) are shifted westward compared to
the extremely steep cline observed for the full genomic dataset
(Figure 4). Similarly, temperature shifts along the hybrid zone tran-
sect in British Columbia are also shifted westward in comparison to
a major habitat shift (Hamann & Wang, 2006), which appears to co-
incide more closely with the major genomic break. This suggests that
temperature-related barriers to gene flow and/or ecological selec-
tion (Barton & Hewitt, 1985; Rice et al., 2011; Rundle & Nosil, 2005)
may be operating separately from other ecological drivers such as
habitat (Vines et al., 2016). To further explore the differences in
cline shape, detailed investigations of exogenous factors (e.g., tem-
perature, habitat, and behavioral differences) as well as potential
endogenous factors (e.g., genetic incompatibility and hybrid steril-
ity) are warranted (Bierne et al., 2011; Carling & Brumfield, 2008;
Fitzpatrick & Shaffer, 2004).

It is also informative that the top rangewide candidate loci as-
sociated with mean diurnal temperature range (BIO2) do not show
any clinal variation across the hybrid zone. This confirms that not
all of the candidate loci associated with the top rangewide envi-
ronmental predictors are expected to show a clinal pattern at a
local scale (Poncet et al., 2010; Rellstab et al., 2015). Instead, pat-
terns of concordance may vary predictably across hybrid zones
in this system, and some of this variation may be detectable at
the broad scale. Rangewide, Figure 2b indicates that mean diurnal
temperature range (BlIO2) differentiates populations across PC2
(and thus likely plays a stronger role across latitude). In contrast,
temperature seasonality (BIO4) differentiates populations across
PC1 (and thus likely plays a stronger role across longitude, as seen
at this west to east-oriented hybrid zone in British Columbia)
(Figure 2b). Although more sampling is required to replicate these
analyses, we propose that future work investigate other microgeo-
graphic sites to identify how patterns compare to British Columbia
(Gugger et al., 2021). Another potential west to east-oriented con-
tact zone between the West-South and West-Interior clusters in
the Sierra Nevada mountain range of California could serve as a
replicate to investigate parallel drivers of divergence (i.e., tem-
perature seasonality, or BIO4) and top-associated candidate loci
(i.e., candidate variants near the PRL gene) across a longitudinal
gradient. Conversely, a potential north to south-oriented contact
zone in the Pacific Northwest between clusters in California and
British Columbia could test the prediction that other temperature
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variables such as mean diurnal temperature range (BIO2) and its
associated candidate loci are important across latitudinal gradi-

ents in the western region.

4.3 | Implications for conservation and
management

Informed conservation efforts on the breeding grounds of wildlife
should account for geographic variation in the adaptive potential of
populations (Funk et al., 2019). High levels of putatively adaptive ge-
netic variation coinciding with large phenotypic and behavioral dif-
ferences among western ecotypes of hermit thrushes may reflect
high potential for rapid evolutionary change (Morgan et al., 2020;
Thomassen et al., 2011), as they likely contain the raw material for
ongoing natural selection to act upon (Lawson & Petren, 2017). Also,
because genotype-environment associations include temperature
regimes as the strongest predictors of genomic variation, this spe-
cies may be especially sensitive to climate change. Under future
climate scenarios that indicate increased average surface tempera-
tures of 1-4°C (IPCC, 2018), the aggregate of western populations
of hermit thrushes as a whole could provide a reservoir of standing
genomic and phenotypic variation to potentially buffer against these
changes. Thus, local extinctions or population reductions through-
out the west may have greater impact on loss of genetic diversity
and adaptive potential of hermit thrushes than formerly realized.
Preserving such reservoirs of adaptive potential is especially rel-
evant because while some species or populations may shift their
ranges (MacLean & Beissinger, 2017; Pacifici et al., 2015), others
may be required to adjust to climate change in situ via plastic or ge-
netic responses (Bay et al., 2018; Fitzpatrick & Keller, 2015; Ruegg
et al., 2018; Williams et al., 2008).

Consideration of genotype-environment associations as well as
degree of threat (Hoekstra et al., 2005; Tulloch et al., 2015) to pop-
ulations could inform management strategies for breeding ground
populations. One group in particular that may be especially vulnera-
ble is the West-South cluster occupying coastal California (Figures 1
and 2). This ecotype, traditionally identified as the Monterey hermit
thrush (C.g. slevini), may potentially be considered an evolutionary
significant unit (Funk et al., 2012, 2019; Moritz, 1994), based on
its unique gene-environment correlations and potential adaptive
differences (Nelson et al., 2016, 2021). Furthermore, this group is
currently experiencing heightened threat levels due to fires (Bock &
Lynch, 1970; Goss et al., 2020; Nelson et al., 2021; Taillie et al., 2018)
and ongoing habitat destruction (Kalinowski & Johnson, 2010;
Pidgeon et al., 2007). Greater sampling coverage in the Pacific
Northwest would inform our understanding of the northern lim-
its of this ecotype's geographic range and the extent of gene flow
with other ecotypes. Addressing sampling gaps within the expan-
sive area occupied by the East-Taiga cluster (Figures 1 and 2) is also
worthwhile, even though it is unlikely that hidden genetic variation
is harbored within central Canada. This group occupies areas of
high latitude which are predicted to be heavily impacted by climate

T \\ | £y

change (Bateman et al., 2020); therefore anticipating its response
to future environmental change will be important (DesGranges &
Morneau, 2010; Stralberg et al., 2019).

5 | CONCLUSION

Our study reveals how investigations at the microgeographic and
macrogeographic scales can complement one another. We find
higher turnover of putatively adaptive alleles in western North
America compared to eastern and boreal regions, and this could be
due to high environmental heterogeneity in the west. The main en-
vironmental predictors of the pattern uncovered at the macrogeo-
graphic scale are all related to temperature; however, these vary in
importance at the microgeographic scale. Only the candidate loci
associated with temperature seasonality (BIO4) stand out as highly
ranked at both scales. At the hybrid zone in British Columbia, we
also find concordance of these particular candidate loci with a
temperature-related gradient, suggesting potential temperature-
driven barriers to gene flow and/or a role for temperature-related
ecological selection in maintaining putative local adaptation. Thus,
we confirm that the hybrid zone analysis can be used to validate
some aspects of the broadscale analysis and can expose possible
ecological and evolutionary mechanisms underlying putative climate
adaptation detected at the broad scale. From a conservation per-
spective, high levels of putatively adaptive genetic variation coincid-
ing with large phenotypic and behavioral differences among distinct
hermit thrush ecotypes throughout the west may reflect high adap-
tive potential, which is becoming increasingly important as species
may be required to adapt in situ to rapid environmental change. As a
sense of urgency for conservation action climbs, there are enhanced
opportunities to learn about the potential impacts of climate change
from species, such as the hermit thrush, for which temperature is an

important predictor of putative local adaptation.

ACKNOWLEDGMENTS

This study was funded by an NSF CAREER award to K.R. (008933-
00002), an NSF Rules of Life grant to R.B and K.R. (007604-00002),
a National Geographic grant (WW-202R-170) to K.R., a California
Energy Commission grant (EPC-15-043) to K.R. and T.S., the
Extreme Science and Engineering Discovery Environment (XSEDE)
which is supported by National Science Foundation grant ACI-
1548562, a Department of Energy Solar Energy Technologies Office
grant (DE-EE009005) to R.H., T.S. and K.R. (the views expressed
herein do not necessarily represent the views of the DOE or the U.S.
Government), and Sitka Sound Science Center Scientist in Residency
Fellowship and a Society for Northwestern Vertebrate Biology grant
to A.R.P.N. We thank Tim Kita, the Institute for Bird Populations,
David Grosshuesch, Sarah Milligan, Laura Philips, Carol Mclntyre,
the Denali Critical Connections Program, and Adrienne Leppold
for providing valuable samples which made this work possible and
the Vincent J. Coates Genomics Sequencing Laboratory at the
University of California, Berkeley for their help with the sequencing.

A *6 “TTOT ‘TLSYTSLI

:sdny woxy papeoy

ASULIIT suowo)) 9ANneal) aqesrjdde ay) £q pauIdA0S ale SadIIE Y fasn Jo sanI J0J KIeIqIT duI[uQ) A3[IA| UO (SUONIPUOD-PUB-SULIA) /W0’ K[ 1M AIeIqI[aul[uo//:sdyy) suonipuo) pue swd ], 3y 23S *[z20¢/01/1¢] uo Kreiqiy auljuQ A3[IA\ ‘SIAR( - BIUIOJI[RD) JO ANSIOATUN Aq $hH€ [ BAS/[[]1°0[/10p/ W00 Ko[im K



ALVARADO ET AL.

1404
—I—WI LEY

OpenAccess

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
Data for this study are available at the Dryad Digital Repository:
https://doi.org/10.5061/dryad.xpnvx0kjh.

ORCID
Allison H. Alvarado
Christen M. Bossu

https://orcid.org/0000-0002-8958-7420
https://orcid.org/0000-0002-0458-9305
Ryan J. Harrigan "= https://orcid.org/0000-0002-4504-7158
Rachael A. Bay "= https://orcid.org/0000-0002-9516-5881
Allison R. P. Nelson "= https://orcid.org/0000-0001-5200-0887
Thomas B. Smith "= https://orcid.org/0000-0002-5978-6912
Kristen C. Ruegg " https://orcid.org/0000-0001-5579-941X

REFERENCES

Aldrich, J. W. (1968). Population characteristics and nomenclature of the
hermit thrush. Proceedings of the United States National Museum,
124(3637), 1-33.

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based
estimation of ancestry in unrelated individuals. Genome Research,
19(9), 1655-1664.

Ali, O. A., O'Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres,
C., & Miller, M. R. (2016). RAD capture (Rapture): Flexible and effi-
cient sequence-based genotyping. Genetics, 202(2), 389-400.

Allendorf, F. W. (2017). Genetics and the conservation of natural
populations: Allozymes to genomes. Molecular Ecology, 26(2),
420-430.

Alvarado, A. H., Fuller, T. L., & Smith, T. B. (2014). Integrative tracking
methods elucidate the evolutionary dynamics of a migratory divide.
Ecology and Evolution, 4(17), 3456-3469.

Anderson, E. (2019). genoscapeRtools: Tools for building migratory bird ge-
noscapes. R package version 0.1. 0. https://rdrr.io/github/eriqande/
genoscapeRtools/

Angelier, F., Wingfield, J. C., Tartu, S., & Chastel, O. (2016). Does prolac-
tin mediate parental and life-history decisions in response to en-
vironmental conditions in birds? A review. Hormones and Behavior,
77,18-29.

Backstrém, N., Qvarnstrom, A., Gustafsson, L., & Ellegren, H. (2006).
Levels of linkage disequilibrium in a wild bird population. Biology
Letters, 2(3), 435-438.

Balkenhol, N., Dudaniec, R. Y., Krutovsky, K. V., Johnson, J. S., Cairns, D.
M., Segelbacher, G., Selkoe, K. A., von der Heyden, S., Wang, |. J., &
Selmoni, O. (2017). Landscape genomics: understanding relation-
ships between environmental heterogeneity and genomic charac-
teristics of populations. In O. P. Rajora (Ed.), Population genomics
(pp. 261-322). Springer.

Barton, N. H., & Gale, K. S. (1993). Genetic analysis of hybrid zones. In R.
G. Harrison (Ed.), Hybrid zones and the evolutionary process (pp. 13-
45). Oxford University Press.

Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual
Review of Ecology and Systematics, 16(1), 113-148.

Bateman, B. L., Wilsey, C., Taylor, L., Wu, J,, LeBaron, G. S., & Langham,
G. (2020). North American birds require mitigation and adaptation
to reduce vulnerability to climate change. Conservation Science and
Practice, 2(8), e242.

Bay, R. A., Harrigan, R. J., Le Underwood, V., Gibbs, H. L., Smith, T. B.,
& Ruegg, K. (2018). Genomic signals of selection predict climate-
driven population declines in a migratory bird. Science, 359(6371),
83-86.

Bennett, K. L., McMillan, W. O., & Loaiza, J. R. (2021). The genomic sig-
nal of local environmental adaptation in Aedes aegypti mosquitoes.
Evolutionary Applications, 14(5), 1301-1313.

Bierne, N., Welch, J., Loire, E., Bonhomme, F., & David, P. (2011). The
coupling hypothesis: Why genome scans may fail to map local ad-
aptation genes. Molecular Ecology, 20(10), 2044-2072.

Bock, C. E., & Lynch, J. F. (1970). Breeding bird populations of burned
and unburned conifer forest in the Sierra Nevada. The Condor, 72(2),
182-189.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Carling, M. D., & Brumfield, R. T. (2008). Haldane's rule in an avian sys-
tem: using cline theory and divergence population genetics to test
for differential introgression of mitochondrial, autosomal, and
sex-linked loci across the Passerina bunting hybrid zone. Evolution,
62(10), 2600-2615.

Carroll, M. L., DiMiceli, C. M., Sohlberg, R. A., & Townshend, J. R.
G. (2004). 250m MODIS normalized difference vegetation index.
University of Maryland.

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W.
A. (2013). Stacks: An analysis tool set for population genomics.
Molecular Ecology, 22(11), 3124-3140.

Costello, M., Fleharty, M., Abreu, J., Farjoun, Y., Ferriera, S., Holmes, L.,
Granger, B., Green, L., Howd, T., Mason, T., Vicente, G., Dasilva,
M., Brodeur, W., DeSmet, T., Dodge, S., Lennon, N. J., & Gabriel,
S. (2018). Characterization and remediation of sample index swaps
by non-redundant dual indexing on massively parallel sequencing
platforms. BMC Genomics, 19(1), 1-10.

Danecek, P, Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M.
A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean,
G., & Durbin, R. (2011). The variant call format and VCFtools.
Bioinformatics, 27(15), 2156-2158.

Dawson, A., & Sharp, P. J. (2010). Seasonal changes in concentrations
of plasma LH and prolactin associated with the advance in the de-
velopment of photorefractoriness and molt by high temperature
in the starling. General and Comparative Endocrinology, 167(1),
122-127.

De Mita, S., Thuillet, A. C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J.,
& Vigouroux, Y. (2013). Detecting selection along environmen-
tal gradients: Analysis of eight methods and their effectiveness
for outbreeding and selfing populations. Molecular Ecology, 22(5),
1383-1399.

Delehanty, D. J., Oring, L. W., Fivizzani, A. J., & El Halawani, M. E. (1997).
Circulating prolactin of incubating male Wilson's phalaropes corre-
sponds to clutch size and environmental stress. The Condor, 99(2),
397-405.

Dellinger, R. P, Wood, B., Jones, P. W., & Donovan, T. M. (2020). Hermit
Thrush (Catharus guttatus), version 1.0. In A. F. Poole (Ed.), Birds of
the World. Cornell Lab of Ornithology.

Derryberry, E. P, Derryberry, G. E., Maley, J. M., & Brumfield, R. T. (2014).
HZAR: Hybrid zone analysis using an R software package. Molecular
Ecology Resources, 14(3), 652-663.

DesGranges, J., & Morneau, F. (2010). Potential sensitivity of Quebec's
breeding birds to climate change. Avian Conservation and Ecology,
5(2), 5.

Dohms, K. M., Graham, B. A., & Burg, T. M. (2017). Multilocus ge-
netic analyses and spatial modeling reveal complex population
structure and history in a widespread resident North American
passerine (Perisoreus canadensis). Ecology and Evolution, 7(23),
9869-9889.

Ellis, N., Smith, S. J., & Pitcher, C. R. (2012). Gradient forests: Calculating
importance gradients on physical predictors. Ecology, 93(1),
156-168.

Fitzpatrick, B. M., & Shaffer, H. B. (2004). Environment-dependent ad-
mixture dynamics in a tiger salamander hybrid zone. Evolution,
58(6), 1282-1293.

A *6 “TTOT ‘TLSYTSLI

:sdny woxy papeoy

ASULIIT suowo)) 9ANneal) aqesrjdde ay) £q pauIdA0S ale SadIIE Y fasn Jo sanI J0J KIeIqIT duI[uQ) A3[IA| UO (SUONIPUOD-PUB-SULIA) /W0’ K[ 1M AIeIqI[aul[uo//:sdyy) suonipuo) pue swd ], 3y 23S *[z20¢/01/1¢] uo Kreiqiy auljuQ A3[IA\ ‘SIAR( - BIUIOJI[RD) JO ANSIOATUN Aq $hH€ [ BAS/[[]1°0[/10p/ W00 Ko[im K


https://doi.org/10.5061/dryad.xpnvx0kjh
https://orcid.org/0000-0002-8958-7420
https://orcid.org/0000-0002-8958-7420
https://orcid.org/0000-0002-0458-9305
https://orcid.org/0000-0002-0458-9305
https://orcid.org/0000-0002-4504-7158
https://orcid.org/0000-0002-4504-7158
https://orcid.org/0000-0002-9516-5881
https://orcid.org/0000-0002-9516-5881
https://orcid.org/0000-0001-5200-0887
https://orcid.org/0000-0001-5200-0887
https://orcid.org/0000-0002-5978-6912
https://orcid.org/0000-0002-5978-6912
https://orcid.org/0000-0001-5579-941X
https://orcid.org/0000-0001-5579-941X
https://rdrr.io/github/eriqande/genoscapeRtools/
https://rdrr.io/github/eriqande/genoscapeRtools/

ALVARADO ET AL.

Fitzpatrick, M. C., & Keller, S. R. (2015). Ecological genomics meets
community-level modelling of biodiversity: Mapping the genomic
landscape of current and future environmental adaptation. Ecology
Letters, 18(1), 1-16.

Frachon, L., Bartoli, C., Carrére, S., Bouchez, O., Chaubet, A., Gautier, M.,
Roby, D., & Roux, F. (2018). A genomic map of climate adaptation
in Arabidopsis thaliana at a micro-geographic scale. Frontiers in Plant
Science, 9, 967.

Francis, R. M. (2017). pophelper: An R package and web app to anal-
yse and visualize population structure. Molecular Ecology Resources,
17(1), 27-32.

Frichot, E., & Francois, O. (2015). LEA: An R Package for landscape and
ecological association studies. Methods in Ecology and Evolution, 6,
925-929.

Frichot, E., Schoville, S. D., Bouchard, G., & Francois, O. (2013). Testing
for associations between loci and environmental gradients using
latent factor mixed models. Molecular Biology and Evolution, 30(7),
1687-1699.

Funk, W., Forester, B. R., Converse, S. J., Darst, C., & Morey, S. (2019).
Improving conservation policy with genomics: A guide to integrat-
ing adaptive potential into US Endangered Species Act decisions for
conservation practitioners and geneticists. Conservation Genetics,
20(1), 115-134.

Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012).
Harnessing genomics for delineating conservation units. Trends in
Ecology & Evolution, 27(9), 489-496.

Gahali, K., El Halawani, M. E., & Rozenboim, |. (2001). Photostimulated
prolactin release in the Turkey hen: Effect of ovariectomy and en-
vironmental temperature. General and Comparative Endocrinology,
124(2), 166-172.

Galvan, I., Rodriguez-Martinez, S., & Carrascal, L. M. (2018). Dark pig-
mentation limits thermal niche position in birds. Functional Ecology,
32(6), 1531-1540.

Garrick, R. C., Banusiewicz, J. D., Burgess, S., Hyseni, C., & Symula, R.
E. (2019). Extending phylogeography to account for lineage fusion.
Journal of Biogeography, 46(2), 268-278.

Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A.,
Williams, A. P., & Diffenbaugh, N. S. (2020). Climate change is in-
creasing the likelihood of extreme autumn wildfire conditions
across California. Environmental Research Letters, 15(9), 94016.

Gosselin, T., Anderson, E. C., & Bradbury, I. (2019). assigner: Assignment
analysis with GBS/RAD data using R. R package, version 0.5.6.
https://rdrr.io/github/eriqande/assigner/

Goudet, J. (2005). hierfstat, a package for R to compute and test hierar-
chical F-statistics. Molecular Ecology Notes, 5, 184-186.

Goulden, M. L., Anderson, R. G., Bales, R. C., Kelly, A. E., Meadows, M.,
& Winston, G. C. (2012). Evapotranspiration along an elevation gra-
dient in California's Sierra Nevada. Journal of Geophysical Research:
Biogeosciences, 117(G3), G03028.

Grabherr, M. G., Russell, P., Meyer, M., Mauceli, E., Alféldi, J., Di Palma,
F., & Lindblad-Toh, K. (2010). Genome-wide synteny through highly
sensitive sequence alignment: Satsuma. Bioinformatics, 26(9),
1145-1151.

Gregory, T. R. (2005). Synergy between sequence and size in large-scale
genomics. Nature Reviews Genetics, 6(9), 699-708.

Gugger, P. F, Fitz-Gibbon, S. T., Albarran-Lara, A., Wright, J. W., & Sork,
V. L. (2021). Landscape genomics of Quercus lobata reveals genes
involved in local climate adaptation at multiple spatial scales.
Molecular Ecology, 30(2), 406-423.

Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C.
D. (2009). Inferring the joint demographic history of multiple pop-
ulations from multidimensional SNP frequency data. PLoS Genetics,
5(10), e1000695.

Hamann, A., & Wang, T. (2006). Potential effects of climate change
on ecosystem and tree species distribution in British Columbia.
Ecology, 87(11), 2773-2786.

T \\ | £y

Hewitt, G. M. (1988). Hybrid zones-natural laboratories for evolutionary
studies. Trends in Ecology & Evolution, 3(7), 158-167.

Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in
the Quaternary. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 359(1442), 183-195.

Hijmans, R. J. (2019). geosphere: Spherical trigonometry. R package version
1.5-10. https://cran.r-project.org/web/packages/geosphere/index.
html

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005).
Very high resolution interpolated climate surfaces for global land
areas. International Journal of Climatology, 25(15), 1965-1978.

Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F.,, Bradburd, G.,
Lowry, D. B., Poss, M. L., Reed, L. K., Storfer, A., & Whitlock, M.
C. (2016). Finding the genomic basis of local adaptation: Pitfalls,
practical solutions, and future directions. The American Naturalist,
188(4), 379-397.

Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2005).
Confronting a biome crisis: Global disparities of habitat loss and
protection. Ecology Letters, 8(1), 23-29.

Hofmeister, N. R., Werner, S. J., & Lovette, I. J. (2021). Environmental
correlates of genetic variation in the invasive European starling in
North America. Molecular Ecology, 30(5), 1251-1263.

Hohenlohe, P. A., Funk, W. C., & Rajora, O. P. (2021). Population genom-
ics for wildlife conservation and management. Molecular Ecology,
30(1), 62-82.

IPCC. (2018). The special report on global warming of 1.5°C (SR15). Oxford
University Press.

Jaffé, R., Veiga, J. C., Pope, N. S, Lanes, E.C.M., Carvalho, C.S., Alves, R.,
Andrade, S. C. S., Arias, M. C,, Bonatti, V., Carvalho, A. T., de Castro,
M. S,, Contrera, F. A. L., Francoy, T. M,, Freitas, B., Giannini, T. C.,
Hrncir, M., Martins, C. F., Oliveira, G., Saraiva, A. M., & Limperatriz-
Fonseca, V. (2019). Landscape genomics to the rescue of a tropical
bee threatened by habitat loss and climate change. Evolutionary
Applications, 12(6), 1164-1177.

Jones, M. R, Forester, B. R, Teufel, A. I, Adams, R. V., Anstett, D. N.,
Goodrich, B. A., Landguth, E. L., Joost, S., & Manel, S. (2013).
Integrating landscape genomics and spatially explicit approaches to
detect loci under selection in clinal populations. Evolution, 67(12),
3455-3468.

Kalinowski, R. S., & Johnson, M. D. (2010). Influence of suburban habitat
on a wintering bird community in coastal northern California. The
Condor, 112(2), 274-282.

Kirk, H., & Freeland, J. R. (2011). Applications and implications of neu-
tral versus non-neutral markers in molecular ecology. International
Journal of Molecular Sciences, 12(6), 3966-3988.

Koch, K. A., Wingfield, J. C., & Buntin, J. D. (2004). Prolactin-induced
parental hyperphagia in ring doves: Are glucocorticoids involved?
Hormones and Behavior, 46(4), 498-505.

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with
Bowtie 2. Nature Methods, 9(4), 357-359.

Lawson, L. P, & Petren, K. (2017). The adaptive genomic landscape of beak
morphology in Darwin's finches. Molecular Ecology, 26(19), 4978-4989.

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760.

Liu, X., & Fu, Y.-X. (2015). Exploring population size changes using SNP
frequency spectra. Nature Genetics, 47(5), 555-559.

MaclLean, S. A., & Beissinger, S. R. (2017). Species' traits as predictors
of range shifts under contemporary climate change: A review and
meta-analysis. Global Change Biology, 23(10), 4094-4105.

McKnight, M. W., White, P. S., McDonald, R. I., Lamoreux, J. F., Sechrest,
W., Ridgely, R. S., & Stuart, S. N. (2007). Putting beta-diversity on
the map: Broad-scale congruence and coincidence in the extremes.
PLoS Biology, 5(10), e272.

Melo, A. S., Rangel, T. F. L., & Diniz-Filho, J. A. F. (2009). Environmental
drivers of beta-diversity patterns in New-World birds and mam-
mals. Ecography, 32(2), 226-236.

A *6 “TTOT ‘TLSYTSLI

:sdny woxy papeoy

ASULIIT suowo)) 9ANneal) aqesrjdde ay) £q pauIdA0S ale SadIIE Y fasn Jo sanI J0J KIeIqIT duI[uQ) A3[IA| UO (SUONIPUOD-PUB-SULIA) /W0’ K[ 1M AIeIqI[aul[uo//:sdyy) suonipuo) pue swd ], 3y 23S *[z20¢/01/1¢] uo Kreiqiy auljuQ A3[IA\ ‘SIAR( - BIUIOJI[RD) JO ANSIOATUN Aq $hH€ [ BAS/[[]1°0[/10p/ W00 Ko[im K


https://rdrr.io/github/eriqande/assigner/
https://cran.r-project.org/web/packages/geosphere/index.html
https://cran.r-project.org/web/packages/geosphere/index.html

ALVARADO ET AL.

1406
—I—Wl LEY

Morgan, K., Mboumba, J.-F., Ntie, S., Mickala, P., Miller, C. A., Zhen, Y.,
Harrigan, R. J., Le Underwood, V., Ruegg, K., Fokam, E. B., Taboue,
G.C.T., Clee, P.R.S., Fuller, T., Smith, T. B., & Anthony, N. M. (2020).
Precipitation and vegetation shape patterns of genomic and cra-
niometric variation in the Central African rodent Praomys misonnei.
Proceedings of the Royal Society B: Biological Sciences, 287(1930),
20200449.

Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conserva-
tion. Trends in Ecology & Evolution, 9(10), 373-375.

NatureServe. (2018). NatureServe Explorer. NatureServe. https://explo
rer.natureserve.org/

Nelson, A. R., Cormier, R. L., Humple, D. L., Scullen, J. C., Sehgal, R., &
Seavy, N. E. (2016). Migration patterns of San Francisco Bay area
hermit thrushes differ across a fine spatial scale. Animal Migration,
3(1), 1-13.

Nelson, A. R. P., Wiskes, W. T., & Seavy, N. E. (2021). Wintering des-
tinations of Monterey Hermit Thrushes (Catharus guttatus slevini).
Journal of Field Ornithology, 92(1), 43-53.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H.,
Szoecs, E., & Stevens, M. H. H. (2015). Vegan community ecology
package: Ordination methods, diversity analysis and other functions for
community and vegetation ecologists. R package, version 2-3.

Oliver, M. A., & Webster, R. (1990). Kriging: A method of interpolation
for geographical information systems. International Journal of
Geographical Information System, 4(3), 313-332.

Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M.,
Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akcakaya,
H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann,
A. A, Midgley, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E.,
... Rondinini, C. (2015). Assessing species vulnerability to climate
change. Nature Climate Change, 5(3), 215-224.

Pallas, P. S. (1811). Zoographia Rosso-asiatica. Officina Caes. Academiae
Scientiarum.

Pidgeon, A. M., Radeloff, V. C., Flather, C. H., Lepczyk, C. A., Clayton, M.
K., Hawbaker, T. J., & Hammer, R. B. (2007). Associations of forest
bird species richness with housing and landscape patterns across
the USA. Ecological Applications, 17(7), 1989-2010.

Poncet, B. N., Herrmann, D., Gugerli, F., Taberlet, P., Holderegger, R.,
Gielly, L., Rioux, D., Thuiller, W., Aubert, S., & Manel, S. (2010).
Tracking genes of ecological relevance using a genome scan in two
independent regional population samples of Arabis alpina. Molecular
Ecology, 19(14), 2896-2907.

R Core Team. (2017). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

R Core Team. (2019). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

R Core Team. (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R.
(2015). A practical guide to environmental association analysis in
landscape genomics. Molecular Ecology, 24(17), 4348-4370.

Rice, A. M., Rudh, A., Ellegren, H., & Qvarnstrém, A. (2011). A guide to
the genomics of ecological speciation in natural animal populations.
Ecology Letters, 14(1), 9-18.

Riechert, J., Becker, P. H., & Chastel, O. (2014). Predicting reproductive suc-
cess from hormone concentrations in the common tern (Sterna hirundo)
while considering food abundance. Oecologia, 176(3), 715-727.

Roach, S.P., & Phillmore, L. S.(2017). Geographic variation in song structure
in the Hermit Thrush (Catharus guttatus). The Auk, 134(3), 612-626.

Roche, J. W., Ma, Q.,, Rungee, J., & Bales, R. C. (2020). Evapotranspiration
mapping for forest management in California's Sierra Nevada.
Frontiers in Forests and Global Change, 3, 69.

Romano, A., Séchaud, R., Hirzel, A. H., & Roulin, A. (2019). Climate-driven
convergent evolution of plumage colour in a cosmopolitan bird.
Global Ecology and Biogeography, 28(4), 496-507.

OpenAccess

Romano, A., Séchaud, R., & Roulin, A. (2020). Geographical variation in
bill size provides evidence for Allen's rule in a cosmopolitan raptor.
Global Ecology and Biogeography, 29(1), 65-75.

Romano, A., Séchaud, R., & Roulin, A. (2021). Generalized evidence for
Bergmann's rule: Body size variation in a cosmopolitan owl genus.
Journal of Biogeography, 48(1), 51-63.

Rozenboim, I., Mobarky, N., Heiblum, R., Chaiseha, Y., Kang, S. W., Biran,
l., Rosenstrauch, A., Sklan, D., & El Halawani, M. E. (2004). The role
of prolactin in reproductive failure associated with heat stress in
the domestic Turkey. Biology of Reproduction, 71(4), 1208-1213.

Ruegg, K., Bay, R. A., Anderson, E. C., Saracco, J. F., Harrigan, R. J,,
Whitfield, M., Paxton, E. H., & Smith, T. B. (2018). Ecological ge-
nomics predicts climate vulnerability in an endangered southwest-
ern songbird. Ecology Letters, 21(7), 1085-1096.

Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters,
8(3), 336-352.

Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C.,
Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., & Townshend,
J.R.(2013). Global, 30-m resolution continuous fields of tree cover:
Landsat-based rescaling of MODIS vegetation continuous fields
with lidar-based estimates of error. International Journal of Digital
Earth, 6(5), 427-448.

Shafer, A. B., Cullingham, C. I, Cote, S. D., & Coltman, D. W. (2010). Of
glaciers and refugia: A decade of study sheds new light on the phy-
logeography of northwestern North America. Molecular Ecology,
19(21), 4589-4621.

Smith, T. B., Fuller, T. L., Zhen, Y., Zaunbrecher, V., Thomassen, H. A.,
Njabo, K., Anthony, N. M., Gonder, M. K., Buermann, W., Larison,
B., Ruegg, K., & Harrigan, R. J. (2021). Genomic vulnerability and
socio-economic threats under climate change in an African rainfor-
est bird. Evolutionary Applications, 14(5), 1239-1247.

Stralberg, D., Berteaux, D., Drever, C. R., Drever, M., Naujokaitis-Lewis,
I., Schmiegelow, F., & Tremblay, J. (2019). Conservation planning for
boreal birds in a changing climate: A framework for action. Avian
Conservation and Ecology, 14(1), 13.

Taillie, P. J., Burnett, R. D., Roberts, L. J., Campos, B. R., Peterson, M. N., &
Moorman, C. E. (2018). Interacting and non-linear avian responses to
mixed-severity wildfire and time since fire. Ecosphere, 9(6), €02291.

Tattersall, G. J., Arnaout, B., & Symonds, M. R. (2017). The evolution of
the avian bill as a thermoregulatory organ. Biological Reviews, 92(3),
1630-1656.

Thomassen, H. A., Fuller, T., Buermann, W., Mila, B., Kieswetter, C. M.,
Jarrin-V, P., Cameron, S. E., Mason, E., Schweizer, R., Schlunegger,
J., Chan, J.,, Wang, O., Peralvo, M., Schneider, C. J., Graham, C.
H., Pollinger, J. P., Saatchi, S., Wayne, R. K., & Smith, T. B. (2011).
Mapping evolutionary process: A multi-taxa approach to conserva-
tion prioritization. Evolutionary Applications, 4(2), 397-413.

Tulloch, V. J. D,, Tulloch, A. I. T,, Visconti, P., Halpern, B. S., Watson, J. E.
M., Evans, M. C., Auerbach, N. A., Barnes, M., Beger, M., Chades,
l., Giakoumi, S., McDonald-Madden, E., Murray, N. J., Ringma,
J., & Possingham, H. P. (2015). Why do we map threats? Linking
threat mapping with actions to make better conservation decisions.
Frontiers in Ecology and the Environment, 13(2), 91-99.

van Els, P., Cicero, C., & Klicka, J. (2012). High latitudes and high genetic
diversity: Phylogeography of a widespread boreal bird, the gray jay
(Perisoreus canadensis). Molecular Phylogenetics and Evolution, 63(2),
456-465.

Veech, J. A., & Crist, T. O. (2007). Habitat and climate heterogeneity
maintain beta-diversity of birds among landscapes within ecore-
gions. Global Ecology and Biogeography, 16(5), 650-656.

Vines, T. H., Dalziel, A. C., Albert, A. Y., Veen, T., Schulte, P. M., & Schluter,
D. (2016). Cline coupling and uncoupling in a stickleback hybrid
zone. Evolution, 70(5), 1023-1038.

Waldvogel, A. M., Feldmeyer, B., Rolshausen, G., Exposito-Alonso, M.,
Rellstab, C., Kofler, R., Mock, T., Schmid, K., Schmitt, I., Bataillon, T.,
Savolainen, O., Bergland, A., Flatt, T., Guillaume, F., & Pfenninger,

A *6 “TTOT ‘TLSYTSLI

:sdny woxy papeoy

ASULIIT suowo)) 9ANneal) aqesrjdde ay) £q pauIdA0S ale SadIIE Y fasn Jo sanI J0J KIeIqIT duI[uQ) A3[IA| UO (SUONIPUOD-PUB-SULIA) /W0’ K[ 1M AIeIqI[aul[uo//:sdyy) suonipuo) pue swd ], 3y 23S *[z20¢/01/1¢] uo Kreiqiy auljuQ A3[IA\ ‘SIAR( - BIUIOJI[RD) JO ANSIOATUN Aq $hH€ [ BAS/[[]1°0[/10p/ W00 Ko[im K


https://explorer.natureserve.org/
https://explorer.natureserve.org/

ALVARADO ET AL.

M. (2020). Evolutionary genomics can improve prediction of spe-
cies' responses to climate change. Evolution Letters, 4(1), 4-18.

Waterhouse, M. D., Erb, L. P, Beever, E. A., & Russello, M. A. (2018).
Adaptive population divergence and directional gene flow across
steep elevational gradients in a climate-sensitive mammal.
Molecular Ecology, 27(11), 2512-2528.

Weir, J. T., & Schluter, D. (2004). Ice sheets promote speciation in boreal
birds. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 271(1551), 1881-1887.

Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M., & Jaffe, D. B. (2017).
Direct determination of diploid genome sequences. Genome
Research, 27(5), 757-767.

Wildlife Conservation Society - WCS, & Center for International Earth
Science Information Network - CIESIN - Columbia University.
(2005). Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human
Influence Index (HIl) Dataset (Geographic). NASA Socioeconomic
Data and Applications Center (SEDAC).

Wilkanowska, A., Mazurowski, A., Mroczkowski, S., & Kokoszynski, D.
(2014). Prolactin (PRL) and prolactin receptor (PRLR) genes and
their role in poultry production traits. Folia Biologica (Krakéw),
62(1), 1-8.

Williams, S. E., Shoo, L. P, Isaac, J. L., Hoffmann, A. A., & Langham,
G. (2008). Towards an integrated framework for assessing the
vulnerability of species to climate change. PLoS Biology, 6(12),
2621-2626.

. \\| £y

Zhang, G., Li, C,, Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A.,
Greenwold, M. J., Meredith, R. W., Odeen, A., Cui, J., Zhou, Q., Xu,
L., Pan, H., Wang, Z., Jin, L., Zhang, P., & Hu, H. (2014). Comparative
genomics reveals insights into avian genome evolution and adapta-
tion. Science, 346(6215), 1311-1320.

Zhen, Y., Harrigan, R. J., Ruegg, K. C., Anderson, E. C., Ng, T. C., Lao, S.,
Lohmueller, K. E., & Smith, T. B. (2017). Genomic divergence across
ecological gradients in the Central African rainforest songbird
(Andropadus virens). Molecular Ecology, 26(19), 4966-4977.

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Alvarado, A. H., Bossu, C. M., Harrigan,
R. J., Bay, R. A., Nelson, A. R. P,, Smith, T. B., & Ruegg, K. C.
(2022). Genotype-environment associations across spatial
scales reveal the importance of putative adaptive genetic
variation in divergence. Evolutionary Applications, 15, 1390-
1407. https://doi.org/10.1111/eva.13444

A *6 “TTOT ‘TLSYTSLI

:sdny woxy papeoy

ASULIIT suowo)) 9ANneal) aqesrjdde ay) £q pauIdA0S ale SadIIE Y fasn Jo sanI J0J KIeIqIT duI[uQ) A3[IA| UO (SUONIPUOD-PUB-SULIA) /W0’ K[ 1M AIeIqI[aul[uo//:sdyy) suonipuo) pue swd ], 3y 23S *[z20¢/01/1¢] uo Kreiqiy auljuQ A3[IA\ ‘SIAR( - BIUIOJI[RD) JO ANSIOATUN Aq $hH€ [ BAS/[[]1°0[/10p/ W00 Ko[im K


https://doi.org/10.1111/eva.13444

	Genotype–­environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Sampling and DNA extraction
	2.2|Genome assembly
	2.3|SNP discovery and SNP filtering
	2.4|Population structure and genoscape map
	2.5|Association between environmental predictors and genomic data
	2.6|Predicting genomic turnover across the breeding range
	2.7|Association between geographic distance, environmental distance, and genomic data
	2.8|Identifying candidate loci for top climatic variables
	2.9|Cline analysis

	3|RESULTS
	3.1|Genome assembly, SNP discovery, and SNP filtering
	3.2|Population structure
	3.3|Association between geography, environment, and genomic data
	3.4|Association between environmental predictors and genomic data
	3.5|Predicting genomic turnover across the breeding range
	3.6|Identification of candidate loci for top climatic variables
	3.7|Hybrid zone analysis

	4|DISCUSSION
	4.1|Climate-­associated genomic diversity across the breeding range
	4.2|Temperature associations across a local hybrid zone
	4.3|Implications for conservation and management

	5|CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


