Modeling environment-dependent atomic-level properties in complex-concentrated alloys

- Mackinzie S. Farnell
- School of Materials Science & Engineering,
- University of California Berkeley, Berkeley, California, USA
- Zachary D. McClure, Shivam Tripathi, and Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center,
- Purdue University, West Lafayette, Indiana 47907, USA
- (Dated: January 7, 2022)

2

Abstract

Complex-concentrated-alloys (CCAs) are of interest for a range of applications due to a host of desirable properties, including, high-temperature strength and tolerance to radiation damage. Their multi-principal component nature results in a vast number of possible atomic environments with the associated variability in chemistry and structure. This atomic-level variability is central to the unique properties of these alloys but makes their modeling challenging. We combine atomistic simulations using many body potentials with machine learning to develop predictive models of various atomic properties of CrFeCoNiCu-based CCAs: relaxed vacancy formation energy, atomic-level cohesive energy, pressure, and volume. A fingerprint of the local atomic environments is obtained combining invariants associated with the local atomic geometry and periodic-table information of the atoms involved. Importantly, all descriptors are based on the unrelaxed atomic structure, thus, they are computationally inexpensive to compute. This enables the incorporation of these models into macroscopic simulations. The models show good accuracy and we explore their ability to extrapolate to compositions and elements not used during training.

10 I. INTRODUCTION

Complex concentrated alloys (CCAs) and multiple principal component alloys are crys-11 12 talline materials consisting of four or more elements combined in similar fractions. They 13 have attracted significant attention since their introduction in 2004 [1, 2] due to a range 14 of desirable properties including high strength, even at high temperatures, thermal stabil-15 ity, and resistance to fatigue[3]. In addition, the vast space of potential alloy compositions ₁₆ makes them tailorable to specific applications [2-4]. The inherent variability in the local 17 atomic configurations is the driving factor behind many of their unique properties, but also 18 poses significant challenges to modeling and experimental characterization [5]. For example, 19 the distribution of vacancy formation energies determines vacancy concentration which, in 20 turn, dominates creep. Another key example is single crystal strength, which is dominated 21 by local changes in the core energy along dislocation lines [6–8]. The local atomic envi-22 ronments govern the energy landscape under which dislocations move and their variability 23 hinders their mobility, resulting in strengthening. For other examples of the relationship 24 between local variability and properties see Refs. [9–12]. These local properties can be as-25 sessed computationally via intensive atomistic simulations, but given the enormous number 26 of local atomic configurations individual atoms can encounter in CCAs, computationally 27 efficient models for local properties are highly desirable. For example, Chen et al. studied vacancy formation energy (VFE) in CrFeCoNi alloys using density functional theory (DFT) on special quasirandom structures (SQS) [13]. The authors found a wide distribution in VFE ranging from 1.5 to 2 eV with averages between 1.58 and 1.89 eV depending on the 31 element. This work explored 24 of the most likely configurations given a 20 atom cell, a 32 small subset of all the possibilities. For example, the number of local first nearest neighbor- $_{33}$ ing configurations in a five-element alloy is 5^{Z} , Z the coordination number, divided by the 34 multiplicity due to symmetry operations; clearly brute force ab initio calculations and even 35 lower-fidelity interatomic force field calculations are out of the question.

Efforts to efficiently explore and characterize this enormous space have turned to machine learning methods for phase prediction, material screening, and through that best practices have begun to emerge [14–16]. The foundations for these screening processes built on early work for formation energy determination using cluster expansion (CE) methods [17]. Extensions of this model beyond binary components have shown great success in ternary semicon-

41 ductors for predicting possible phase formations and separation [18], and multi-component ⁴² CCA [19]. However, the method relies on unpacking 1st, 2nd, and higher order pairwise 43 interactions in a symmetric, unrelaxed system. For systems that have been relaxed, and 44 symmetry disrupted, the CE models begin to break down [20]. To overcome this limitation, 45 rather than describing atomic interactions through the CE formalism, Shapeev used ten-46 sor descriptions to represent the energetics of multicomponent systems and showed better 47 convergence rate with respect to training set size than CE for total energies [21, 22]. Each 48 of these respective methods consider pair-wise interactions within a system, and sum their 49 total contributions to determine total system energy. However, many of these methods fo-50 cus on the macroscale properties and not on the local variability. To inform single crystal 51 strength models, approximations to the local stresses have been developed from atomic radii ₅₂ and elastic constants [6, 8]. These model are easy to evaluate but involve several approxi-53 mations and the associated uncertainties have not been quantified. In this paper we develop 54 predictive models for various atomic-level properties of CCAs from molecular mechanics 55 simulation data using invariant descriptors of local atomic environments and chemistry and 56 neural networks. Recent work on high entropy diborides used atomistic simulations to de-57 velop models for VFE depending on the local environment. The authors showed the ability 58 of pair approximation models with linear models and local structure up several neighboring 59 shells to provide accurate descriptions [23].

In summary, the development of validated and computationally expedient models capable of predicting a variety of atomic-level properties of CCAs remains an active area of research and we are unaware of models capable of predicting a range of atomic-level properties needed to inform constitutive laws required for macroscopic predictions. To address this gap, we combine molecular static calculations using a many-body interatomic potential with machine learning to create predictive models for local atomic properties of face centered cubic CCAs containing Co, Cr, Fe, and Ni. We model several properties (relaxed vacancy formation energies, atomic pressures and volumes, and cohesive energies) and assess the ability of the models to generalize and predict properties for new compositions and new chemistries. Importantly, the descriptors of local chemistry and geometry used as inputs to the models are generated from unrelaxed atomic configurations; thus, evaluating the models does not require computationally intensive structural relaxations.

Our work builds on the significant recent progress in the use of machine learning for

atomistic simulations and a long history of modeling multicomponent systems [17]. Neural networks[24], gaussian processes [25], and even linear regression [26] have been shown to be powerful models to relate local atomic environment and atomic energies, resulting in a new class of interatomic potentials. In these models, local atomic structures are described with descriptors that capture the symmetries of the underlying physics (e.g. translational and rotational invariance). Moment tensor potentials have also shown great promise to describe multicomponent systems [21, 27] Approaches to describe local atomic environments include smooth-atomic-overlaps (SOAP) [28], two- and three-body symmetry functions [24], tensor formalisms [21], and bispectrum coefficients [26]. In this paper, we use bispectrum coefficients to relate the local, first nearest neighbor, environment of the unrelaxed structure to various relaxed local properties. Thus, our models need to learn not just the mapping between structure and property but also the relaxation of the local structure. In addition to the geometry, we use standard description of chemical properties of each environment. We explore the ability of the models to predict environments not seen during training including those originating from unseen compositions as well as the inclusion of new elements.

The remainder of the paper is organized as follows. Section II describes the data, descriptors, and models used. Section III focuses on results of training the models and using them to predict properties for new compositions and chemistries and Section V provides access to the code used to produce these results. Finally, conclusions are drawn in Section IV.

92 II. METHODS

93 A. LAMMPS Simulations

The atomic properties of interest (relaxed vacancy formation energy, cohesive energy, stress, and volume) were obtained using the LAMMPS simulation package [29] with an embedded atom model interatomic potential developed by Farkas et al. [30]. Initial structures of the CCA alloys of interest, equiatomic Cr, Fe, Co, Ni, Cu, were obtained using an FCC lattice with lattice parameter a_0 =3.56 Å with atoms assigned following the SQS method. If [31] All descriptors used as inputs for the neural network models are calculated from these initial structures, as described in sub-section IIB.

After the descriptors are extracted, we relax the structure using molecular statics. We

minimize the total energy with respect to both lattice parameters and atomic coordinates under ambient pressure with thresholds of 10^{-12} and 10^{-12} eV/Å for scaled energy and force, respectively.

After relaxation, we compute the atomic energy (defined as the potential energy contribution of each atom), local atomic stress from the virial theorem [32], and local volume
from a Voronoi tessellation [33]. Finally, the vacancy formation energy of each atomic site
site computed by sequentially removing each atom and re-relaxing the structure (maintaining
the simulation cell parameters constant). We define the relaxed vacancy formation energy (E_v^i) for site i from the energy difference between the perfect crystal E_0 and the system after
the removal of corresponding atom E_i .

$$E_v^i = (E_i + \mu_i) - E_0, (1)$$

where μ_i is the chemical potential of atoms of element corresponding to atom i. This chemical potential is obtained as the cohesive energy of a pure element system.

The distributions of the resulting properties for each atom type obtained from a 5,000115 atom SQS structure are shown in Fig. 1. These distributions compare well with prior ab
116 initio calculations [13]. Our average relaxed vacancy formation energies for Cr, Fe, Co, and
117 Ni are 1.52, 1.58, 1.44 and 1.63 eV, respectively. These points compare well with *ab initio*118 results reporting average values of 1.61, 1.58, 1.70, and 1.89 eV for Cr, Fe, Co, and Ni
119 obtained in 4-element CCAs.

We note that we use an interatomic potential since our goal is to establish the validity and accuracy of our proposed model of relaxed atomic-level properties. For more accurate models the interatomic potential would be replaced by DFT calculations that provide a good balance between accuracy and computational cost and can capture properties associated with the electronic structure of the systems, such as magnetism.

B. Model Features

125

We use a combination of chemical and geometrical descriptors to describe individual atoms. As described above, all descriptors are obtained from the initial, unrelaxed, structures. To describe the local geometrical environment we use bispectrum coefficients [26] that start from the local atomic density around an atom and create a list of translationally

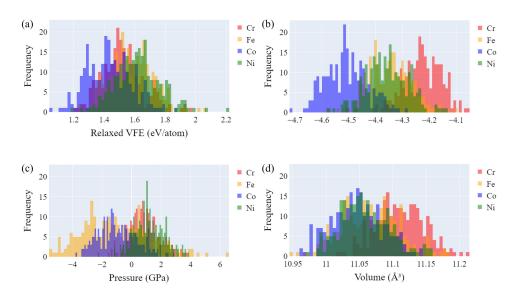


FIG. 1: Distribution of values for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and Volume (d).

130 and rotationally invariant descriptors. To distinguish between atom types in the bispectrum 131 calculation, we use atomic numbers as prefactors in the local density during the coefficient calculations. Bispectrum coefficients are obtained using a radial cutoff 10% beyond the nearest neighbor distance (1.1 $a_0 \sqrt{2}/2$) and a band limit of eight for the resulting in a total of 55 coefficients. We note that the bispectrum coefficients capture up to four-body correlations and do not provide a complete description of atomic environments [34] and multiple local environments can lead to identical coefficients. This issue is less of a concern for multi-component systems and, from a practical point of view, near-DFT accuracy has been obtained for simple metals [35]. Thus, we believe the bispectrum coefficients provide an appropriate description for the problem at hand. In addition to the geometric descriptors, we use the atomic number of the central atom and the following chemical descriptors for the central atom queried from Pymatgen: [36] atomic radius, atomic mass, Poisson's ratio, electrical resistivity, thermal conductivity, and Brinell hardness. These properties were chosen to describe the size, bonding, and electronic structure of the central atom. We also studied 144 the effects of using descriptors capturing the central atom and the 12 nearest neighboring 145 atoms using a rule of mixtures, but found that these did not improve model performance; 146 these results are discussed in the Supplemental Information in the section "Train Neural Network on Equiatomic CrFeCoNi". These descriptors were added as additional physics informed descriptors, and have good overlap with previously investigated descriptors used in material classifications[37].

C. Neural network architecture

150

Machine learning models were implemented in the Jupyter notebook environment [38] on nanoHUB [39] using Tensorflow [40] and Keras [41] libraries. The models use shallow neural networks with a first hidden layer containing 512 neurons connected to the 63 input features. This hidden layer used exponential linear unit (elu) activation functions and was followed by a dropout layer with dropout ratio of 0.2. During training, the loss function was mean squared error and the *Adagrad* optimizer was used[42]. Also, the learning rate was 0.002 and the models were trained for 5000 epochs. This model architecture and hyperparameters were chosen after testing several models, as detailed in the supplemental material.

To train the model, the data was split into testing and training sets, with 80% of data used for training and 20% used for testing. The inputs and outputs were normalized using the standard approach of subtracting the mean and dividing by the standard deviation of the training data. During training, 10% of the training data was used for validation. The validation data differs from the testing data in that it is used during the training of the model to assess convergence, while the testing data is hidden during training and only used after training to evaluate the model. Initially, an early stopping criterion based on validation data was used to determine number of epochs for training. However, models had similar errors when trained with early stopping and with 5000 epochs, so 5000 epochs were used to train all models. Independent models were developed for each property of interest to describe all elements in the system. The initial model architecture was developed using equiatomic CrFeCoNi structures with a data set containing 5000 atoms. However, we found that training with 2000 atoms was sufficient. Thus, models were then trained and tested on 172 equiatomic four-element alloys CrFeNiCu, FeCoNiCu, CrCoNiCu, and CrFeCoCu with data 173 sets containing 2000 entries (atoms) each. The predictive ability of these models was tested 174 on the five element alloy CrFeCoNiCu and on non-equiatomic alloys.

175 III. MODELS FOR ATOMISTIC PROPERTIES OF CCAS

As described above, we trained neural network models to predict relaxed vacancy forma177 tion energy, atomic cohesive energy, atomic pressure, and local Voronoi volume. Figure 2
178 shows parity plots of the four properties for CrFeCoNi alloy. Only testing data points are
179 shown, these have not been used in training. The results highlight the large atomic vari180 ability of all the properties studied, the range for each element is larger than the difference
181 in mean values between elements. The dash lines bound errors corresponding to 10% of
182 the range of each property. In absolute terms, the the mean absolute errors are 0.042 eV
183 for cohesive energy, 0.059 eV for VFE, 0.809 GPa for pressure, and 0.020 Å³ for atomic
184 volume. Figure 3 compares the accuracy of the models for the five four-element alloys used
185 for training. We show the mean absolute error of all predictions normalized by the range
186 over the testing data points. Our models have comparable performance across the different
187 chemistries. Importantly, models can predict properties with an accuracy of approximately
188 10% of the range for each of the properties studied. This level of accuracy is comparable to
189 that achieved in high-entropy borides using first nearest descriptors [23].

190 A. Predicting properties for new compositions

The model trained on equiatomic CrFeCoNi was used to predict properties of alloys with different compositions with the same four elements. Neural network predictions are compared to molecular statics predictions in Figures 4 and 5. Figure 4 assesses the model accuracy for Cr₂₀Fe₄₀Co₂₀Ni₂₀. We find the model to be able to make accurate predictions across all properties. The normalized MAE values are slightly larger than those for the composition used for training, with models predicting with an accuracy of roughly 20% of the range of each property. The slight underestimation of the Voronoi volumes is due to the larger overall volume of this Fe-rich alloy. Figure 5 assesses the ability of the model trained on equiatomic CoCrFeNi to predict on Cr₁₅Fe₅₅Co₁₅Ni₁₅. For this composition, with environments more rich in Fe that deviate further from the training data, the model accuracy degrades further. The model is still able to capture overall trends in properties but the trend observed above of underestimating atomic volumes accentuates with increasing Fe. Going from the equiatomic systems to the Cr₁₅Fe₅₅Co₁₅Ni₁₅, the average volume computed

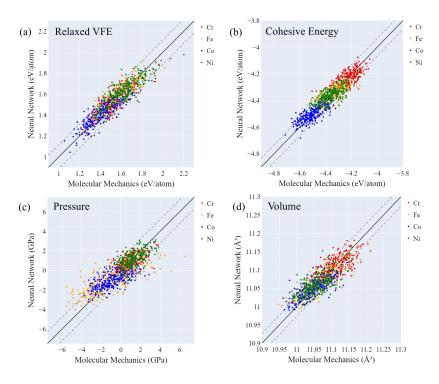


FIG. 2: Machine learning model predictions compared to molecular statics results for relaxed VFE (a), cohesive energy (b), atomic pressure (c), and atomic volume (d) for equiatomic CoCrFeNi configurations belonging to the testing set. The grey, dashed lines indicate errors of

10% of the range for each property, in absolute terms these represent

+

0.115 eV for relaxed VFE,

 \pm

0.065 eV for cohesive energy,

 \pm

1.213 GPa for atomic pressure, and

 \pm

 0.026 Å^3 for 9 atomic volume.

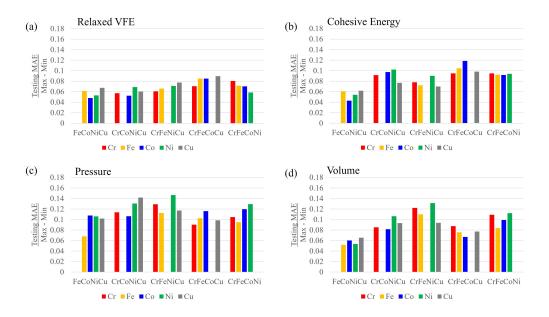


FIG. 3: MAE normalized by range for the testing data for each of the four-atom systems for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and Volume (d).

using molecular mechanics increases from 11.070 Å³ to 11.146 Å³. In contrast, the model average volume predictions are essentially unchanged. This indicates that the model cannot capture the overall expansion observed with increasing Fe content, this is not surprising as this information was not provided to the model during training.

The model trained on equiatomic CrFeCoNi was also used to make predictions on sev209 eral other alloys with different compositions. The error in these predictions, for the four
210 properties of interest, is shown in Figure 6. The first composition in each panel of Figure
211 6 represents the one used for training. These results indicate that the model has some pre212 dictive power on unseen compositions, giving better predictions on compositions closer to
213 training set. For compositions with 40% of a particular atom and 20% of each of the other
214 atoms, the model accuracy is roughly 20% of the property range. For compositions with
215 55% of a specific atom and 15% of each of the other atoms, the model accuracy is roughly
216 30% of the property range for relaxed vacancy formation energy and cohesive energy and
217 50% of the range for atomic volume.

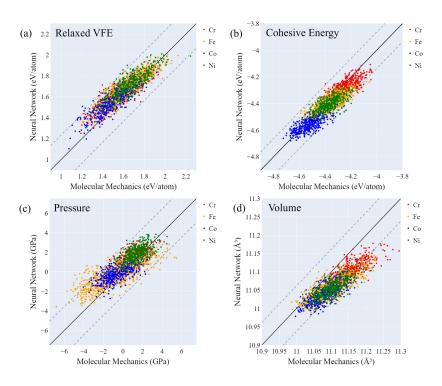


FIG. 4: Parity plots for Cr₂₀Fe₄₀Co₂₀Ni₂₀ for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and Volume (d). Predictions were made using model trained on equiatomic CrFeCoNi. The grey, dashed lines bound

20% of the range for each property.

B. Predicting properties for new chemistries: CrFeCoNiCu

218

Finally, we tested the model's ability to predict properties of systems with unseen elements. We used five models trained on single four-element alloys (CrFeCoNi, CrFeNiCu,
FeCoNiCu, CrCoNiCu, and CrFeCoCu) to make predictions on CrFeCoNiCu. Results for
vacancy formation energies are shown in Figure 7, with the other properties included in the
supplemental information. Figure 7 indicates that the relaxed vacancy formation predictions of all elements on the CoCrCuFeNi are accurately described by the models trained on
CrFeCoCu (missing Ni), CrFeNiCu (missing Co), and CrCoNiCu (missing Fe) but rather
poorly by the models trained on FeCoNiCu (missing Cr) and CrFeCoNi (missing Cu); note

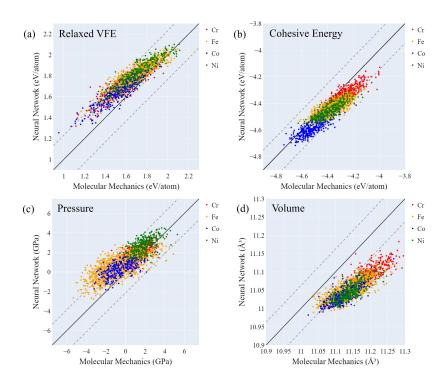


FIG. 5: Parity plots for Cr₁₅Fe₅₅Co₁₅Ni₁₅ for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and Volume (d). Predictions were made using model trained on equiatomic CrFeCoNi. The grey, dashed lines bound

20% of the range for each property.

To understand the underlying reason for these differences, we compared the inputs between the various alloys, specifically the unrelaxed bispectrum coefficients for CrFeCoNiCu
with those for the four-element alloys. Figure 8 shows the distributions of the first coefficient. We find that the systems trained without Fe, Co, and Ni have relatively similar local
descriptors (bispectrum coefficients) to the CrFeCoNiCu system. However, the descriptors
for the alloys lacking Cu or Cr show significantly different distributions of descriptors as
compared to the 5-element CCA. For FeCoNiCu (without Cr), the differences in the local
environments are more pronounced than for CrFeCoNi (without Cu), explaining why the
model shows very poor performance. We observe the same trends for the other bispectrum
coefficients. This is due to the use of atomic number as prefactors in the construction of
bispectrum coefficients. Ni, Fe, and Co lie between the elements trained on while Cr has

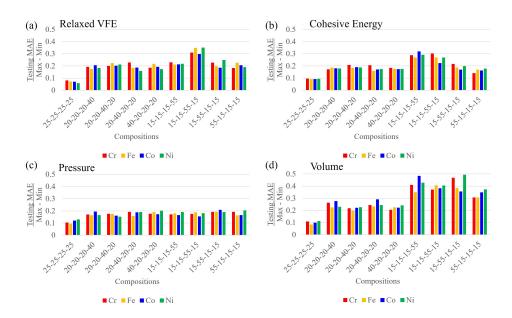


FIG. 6: MAE for predictions on untrained compositions for: (a) Relaxed vfe, (b) Cohesive Energy, (c) Pressure, and (d) Volume. The model was trained on equiatomic CrFeCoNi.

239 the lowest atomic number of the group and Cu has the highest atomic number.

240 IV. DISCUSSION AND CONCLUSIONS

254

We combined molecular statics, atomic level featurization, and data science to develop models for atomic properties in high entropy alloys from local atomic environment and elemental information. Our approach relates descriptors that are easy to obtain from unrelaxed atomic structures to properties that require atomic relaxations and, thus, are computationally more intensive to obtain. Evaluation of the models requires simply generating an atomic structure, performing a local structure calculation, computing atomic-based descriptors, and evaluating a neural network. For testing data, the model predictions were within 10% of the range for each of the properties studied. This level of accuracy is comparable with that of the pair approximation models of Daigle et al. when only the first neighboring cell is used. It has a propertied to accuracy as additional shells are included. We assessed the ability of our models to predict concentrations and chemistries not used during training, and we find that the model has can predict properties for several unseen concentrations and chemistries.

The local atomic properties modeled are important in determining several macroscopic

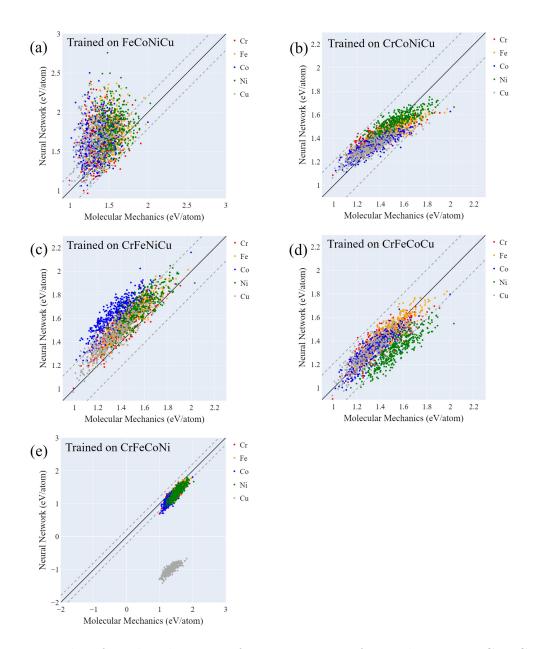


FIG. 7: Parity plots for relaxed vacancy formation energy for predictions on CrFeCoNiCu. Model was trained on FeCoNiCu (a), CrCoNiCu (b), CrFeNiCu (c), CrFeCoCu (d), and CrFeCoNi (e). The grey, dashed lines bound

20% of the range for each property.

²⁵⁵ properties of CCAs. As mentioned above, models for local volumes and stresses can inform ²⁵⁶ single crystal strength models [8]. In addition, the distribution of VFEs affect vacancy con-

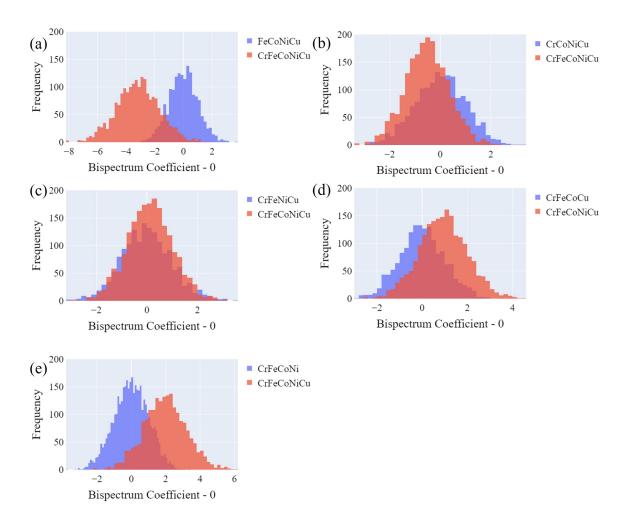


FIG. 8: Distribution for zeroth bispectrum coefficient for FeCoNiCu (a), CrCoNiCu (b), CrFeNiCu (c), CrFeCoCu (d), and CrFeCoNi (e) compared with CrFeCoNiCu. Bispectrum coefficient was normalized using the mean and standard deviation for FeCoNiCu (a), CrCoNiCu (b), CrFeNiCu (c), CrFeCoCu (d), and CrFeCoNi (e).

centrations. To exemplify the importance of capturing distributions, Figure 9 compares the equilibrium vacancy concentrations vs. inverse temperature for each element in a CrFeCoNi alloy considering the distribution of VFEs (solid circles) with the values assuming a constant value (set to the mean VFE for each element). The vacancy fraction calculated from neural network predictions of VFE compares well with the vacancy fraction calculated from molecular mechanics predictions of VFE. As also observed in shown borides, [23] a distribution of VFEs results in non-Arrhenius behavior as the relative contribution of different values is temperature dependent. All calculation details are includes as supplementary material in

265 online Jupyter notebooks [43].



FIG. 9: Vacancy Fraction of HEA elements in an alloy given the mean VFE (solid lines), and calculating a population of vacancies based on the full distribution (circles) using neural network predictions (a) and molecular mechanics predictions (b)

In summary, atomic-level fluctuations in CCAs and other multi-principal component materials result in unique and often desirable properties. Our results indicate that atomic level simulations, appropriate descriptors, and machine learning tools can be used to capture such variability. In this paper we used properties computed from a many body force field for computational expediency, but the overall approach can be used with more accurate ab initio results.

272 V. DATA AND MODEL AVAILABILITY

The code developed and data used in this paper are available on the nanoHUB platform for online simulations [43]. The tool makes use of interactive Jupyter notebooks and includes the complete workflows in this work. They include: i) the generation of atomic structures, ii) determination of descriptors (bispectrum coefficients and chemistry based), iii) training for machine learning models, and iv) their application to predict various composition's properties within the CoCrCuFeNi alloy family. We also include code to plot the distributions of vacancy occupancy based on relaxed vacancy formation energy. While specific to this potential, the workflows and code provided are general enough to extend to other material systems.

282 VI. ACKNOWLEDGEMENTS

This effort was supported by the US National Science Foundation, DMREF program under contract number 1922316-DMR. The authors also acknowledge computational resources from nanoHUB and Purdue University.

- Il Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Jon-Yiew Gan, Tsung-Shune Chin, Tao-Tsung
 Shun, Chun-Huei Tsau, and Shou-Yi Chang. Nanostructured high-entropy alloys with multiple
 principal elements: novel alloy design concepts and outcomes. Advancd Engineering Materials,
 6(5):299-303, 2004.
- [2] Brain Cantor, ITH Chang, P Knight, and AJB Vincent. Microstructural development in
 equiatomic multicomponent alloys. Materials Science and Engineering: A, 375:213–218, 2004.
- DB Miracle and ON Senkov. A critical review of high entropy alloys and related concepts.
 Acta Materialia, 122:448-511, 2017.
- [4] Oleg N Senkov, Daniel B Miracle, Kevin J Chaput, and Jean-Philippe Couzinie. Development
 and exploration of refractory high entropy alloys—a review. *Journal of Materials Research*,
 33(19):3092–3128, 2018.
- [5] WG Nohring and WA Curtin. Correlation of microdistortions with misfit volumes in high
 entropy alloys. Scripta Materialia, 168:119–123, 2019.
- ²⁹⁹ [6] Francesco Maresca and William A Curtin. Mechanistic origin of high strength in refractory bcc high entropy alloys up to 1900k. *Acta Materialia*, 182:235–249, 2020.
- ³⁰¹ [7] Francesco Maresca and William A Curtin. Theory of screw dislocation strengthening in random bcc alloys from dilute to "high-entropy" alloys. *Acta Materialia*, 182:144–162, 2020.
- ³⁰³ [8] Celine Varvenne, Aitor Luque, and William A Curtin. Theory of strengthening in fcc high entropy alloys. *Acta Materialia*, 118:164–176, 2016.
- [9] George Kim, Haoyan Diao, Chanho Lee, AAT Samaei, Tu Phan, Maarten de Jong, Ke An,
 Dong Ma, Peter K Liaw, and Wei Chen. First-principles and machine learning predictions of
 elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta
 Materialia, 181:124–138, 2019.

- Yanjing Su. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. *Acta Materialia*, 185:528–539, 2020.
- ³¹² [11] Wenjiang Huang, Pedro Martin, and L Zhuang Zhuang, Houlong. Machine-learning phase prediction of high-entropy alloys. *Acta Materialia*, 169:225–236, 2019.
- 314 [12] Xianglin Liu, Jiaxin Zhang, Markus Eisenbach, and Yang Wang. Machine learning modeling
 315 of high entropy alloy: the role of short-range order, 2019.
- Weiliang Chen, Xueyong Ding, Yuchao Feng, Xiongjun Liu, Kui Liu, ZP Lu, Dianzhong
 Li, Yiyi Li, CT Liu, and Xing-Qiu Chen. Vacancy formation enthalpies of high-entropy
 fecocrni alloy via first-principles calculations and possible implications to its superior radiation
 tolerance. Journal of Materials Science & Technology, 34:355–364, 2018.
- Ronald Machaka. Machine learning-based prediction of phases in high-entropy alloys. Computational Materials Science, 188:110244, 2021. ISSN 0927-0256. doi: https://doi.org/10.1016/j.commatsci.2020.110244. URL https://www.sciencedirect.com/science/article/pii/S0927025620307357.
- science/article/pii/S1359645420305814. Searching for high entropy alloys: A maschine learning approach. Acta Materialia, 198:178-222, 2020. ISSN 1359-6454. doi: https://doi.org/10.1016/j.actamat.2020.07.065. URL https://www.sciencedirect.com/science/article/pii/S1359645420305814.
- J. M Rickman, G Balasubramanian, C. J Marvel, H. M Chan, and M.-T Burton. Machine
 learning strategies for high-entropy alloys. *Journal of applied physics*, 128(22), 2020. ISSN 0021-8979.
- Juan M Sanchez, Francois Ducastelle, and Denis Gratias. Generalized cluster description of
 multicomponent systems. *Physica A: Statistical Mechanics and its Applications*, 128(1-2):
 334–350, 1984.
- Shiqiang Hao, Li-Dong Zhao, Chang-Qiang Chen, Vinayak P Dravid, Mercouri G Kanatzidis,
 and Christopher M Wolverton. Theoretical prediction and experimental confirmation of un usual ternary ordered semiconductor compounds in sr-pb-s system. *Journal of the American Chemical Society*, 136(4):1628–1635, 2014.
- 338 [19] I Toda-Caraballo, JS Wróbel, SL Dudarev, D Nguyen-Manh, and PEJ Rivera-Díaz-del 339 Castillo. Interatomic spacing distribution in multicomponent alloys. *Acta Materialia*, 97:

- 156–169, 2015.
- JM Sanchez. Foundations and practical implementations of the cluster expansion. Journal of
 Phase Equilibria and Diffusion, 38(3):238–251, 2017.
- ³⁴³ [21] Alexander V Shapeev. Moment tensor potentials: A class of systematically improvable inter-³⁴⁴ atomic potentials. *Multiscale Modeling & Simulation*, 14(3):1153–1173, 2016.
- Alexander Shapeev. Accurate representation of formation energies of crystalline alloys with many components. *Computational Materials Science*, 139:26–30, 2017.
- 347 [23] SE Daigle and DW Brenner. Statistical approach to obtaining vacancy formation energies in 348 high-entropy crystals from first principles calculations: Application to a high-entropy diboride. 349 Physical Review Materials, 4(12):123602, 2020.
- Jörg Behler. Perspective: Machine learning potentials for atomistic simulations. *Journal of Chemical Physics*, 4:053208, 2016.
- Albert P Bartok, Mike C Payne, Risi Kondor, and Gabor Csanyi. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. *Physical review letters*, 104(13):136403, 2010.
- AP Thompson, LP Swiler, CR Trott, SM Foiles, and GJ Tucker. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. *Journal of Computational Physics*, 285:316–330, 2015.
- Konstantin Gubaev, Evgeny V Podryabinkin, Gus LW Hart, and Alexander V Shapeev. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials.

 Computational Materials Science, 156:148–156, 2019.
- ³⁶¹ [28] Albert P Bartok, Risi Kondor, and Gabor Csanyi. On representing chemical environments.
 ³⁶² Physical Review B, 2013.
- ³⁶³ [29] S Plimpton. Fast parallel algorithms for short-range molecular dynamics, 1995. URL http: ³⁶⁴ //lammps.sandia.gov.
- ³⁶⁵ [30] Diana Farkas and Alfredo Caro. Model interatomic potentials and lattice strain in a high entropy alloy. Journal of Materials Research, 33(19):3218–3225, 2018.
- 367 [31] Alex Zunger, S-H Wei, LG Ferreira, and James E Bernard. Special quasirandom structures.

 Physical Review Letters, 65(3):353, 1990.
- 369 [32] DH Tsai. The virial theorem and stress calculation in molecular dynamics. The Journal of
 Chemical Physics, 70(3):1375–1382, 1979.

- [33] Chris Rycroft. Voro++: A three-dimensional voronoi cell library in c++. Technical report, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), 2009. 372
- [34] Sergey N Pozdnyakov, Michael J Willatt, Albert P Bartók, Christoph Ortner, Gábor Csányi, 373 and Michele Ceriotti. Incompleteness of atomic structure representations. Physical Review 374 Letters, 125(16):166001, 2020. 375
- [35] Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Jörg Behler, Gábor Csányi, 376 Alexander V Shapeev, Aidan P Thompson, Mitchell A Wood, et al. Performance and cost 377 assessment of machine learning interatomic potentials. The Journal of Physical Chemistry A, 378 124(4):731-745, 2020.
- [36] Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael 380 Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A Persson, and Gerbrand 381 Ceder. Python materials genomics (pymatgen): A robust, open-source python library for 382 materials analysis, 2013. 383
- [37] Ankit Roy and Ganesh Balasubramanian. Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys. Computational materials science, 193, 2021. 385 ISSN 0927-0256. 386
- [38] nanoHUB. Jupyter notebook, Sep 2016. URL https://nanohub.org/resources/jupyter. 387
- [39] Alejandro Strachan, Gerhard Klimeck, and Mark Lundstrom. Cyber-enabled simulations in 388 nanoscale science and engineering. Computing in Science & Engineering, 12(2):12–17, 2010. 389
- [40] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-391 fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz 392 Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
- 393
- Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, 394 Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
- Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 396
- TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https: 397
- //www.tensorflow.org/. Software available from tensorflow.org. 398

395

- [41] Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras. 399
- John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning 400 and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011. 401

402 [43] Mackinzie Farnell, Zachary McClure, and Alejandro Strachan. Machine learning for high 403 entropy atomic properties, 2021. URL https://nanohub.org/tools/mlatomprop.