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Abstract

Complex-concentrated-alloys (CCAs) are of interest for a range of applications due to a host
of desirable properties, including, high-temperature strength and tolerance to radiation damage.
Their multi-principal component nature results in a vast number of possible atomic environments
with the associated variability in chemistry and structure. This atomic-level variability is central to
the unique properties of these alloys but makes their modeling challenging. We combine atomistic
simulations using many body potentials with machine learning to develop predictive models of vari-
ous atomic properties of CrFeCoNiCu-based CCAs: relaxed vacancy formation energy, atomic-level
cohesive energy, pressure, and volume. A fingerprint of the local atomic environments is obtained
combining invariants associated with the local atomic geometry and periodic-table information of
the atoms involved. Importantly, all descriptors are based on the unrelaxed atomic structure, thus,
they are computationally inexpensive to compute. This enables the incorporation of these models
into macroscopic simulations. The models show good accuracy and we explore their ability to

extrapolate to compositions and elements not used during training.



10 I. INTRODUCTION

u  Complex concentrated alloys (CCAs) and multiple principal component alloys are crys-
12 talline materials consisting of four or more elements combined in similar fractions. They
13 have attracted significant attention since their introduction in 2004 [1, 2] due to a range
1 of desirable properties including high strength, even at high temperatures, thermal stabil-
15 ity, and resistance to fatigue[3]. In addition, the vast space of potential alloy compositions
16 makes them tailorable to specific applications [2-4]. The inherent variability in the local
17 atomic configurations is the driving factor behind many of their unique properties, but also
18 poses significant challenges to modeling and experimental characterization [5]. For example,
19 the distribution of vacancy formation energies determines vacancy concentration which, in
» turn, dominates creep. Another key example is single crystal strength, which is dominated
2 by local changes in the core energy along dislocation lines [6-8]. The local atomic envi-
2 ronments govern the energy landscape under which dislocations move and their variability
23 hinders their mobility, resulting in strengthening. For other examples of the relationship
21 between local variability and properties see Refs. [9-12]. These local properties can be as-
25 sessed computationally via intensive atomistic simulations, but given the enormous number
2 of local atomic configurations individual atoms can encounter in CCAs, computationally
27 efficient models for local properties are highly desirable. For example, Chen et al. studied
28 vacancy formation energy (VFE) in CrFeCoNi alloys using density functional theory (DFT)
2 on special quasirandom structures (SQS) [13]. The authors found a wide distribution in
s VFE ranging from 1.5 to 2 eV with averages between 1.58 and 1.89 eV depending on the
a1 element. This work explored 24 of the most likely configurations given a 20 atom cell, a
22 small subset of all the possibilities. For example, the number of local first nearest neighbor-
1 ing configurations in a five-element alloy is 57, Z the coordination number, divided by the
s multiplicity due to symmetry operations; clearly brute force ab initio calculations and even

s lower-fidelity interatomic force field calculations are out of the question.

s BEfforts to efficiently explore and characterize this enormous space have turned to machine
s learning methods for phase prediction, material screening, and through that best practices
3 have begun to emerge [14-16]. The foundations for these screening processes built on early
» work for formation energy determination using cluster expansion (CE) methods [17]. Exten-

s sions of this model beyond binary components have shown great success in ternary semicon-



a ductors for predicting possible phase formations and separation [18], and multi-component
» CCA [19]. However, the method relies on unpacking 1%, 2% and higher order pairwise
s interactions in a symmetric, unrelaxed system. For systems that have been relaxed, and
s symmetry disrupted, the CE models begin to break down [20]. To overcome this limitation,
s rather than describing atomic interactions through the CE formalism, Shapeev used ten-
s sor descriptions to represent the energetics of multicomponent systems and showed better
o convergence rate with respect to training set size than CE for total energies [21, 22]. Each
s of these respective methods consider pair-wise interactions within a system, and sum their
10 total contributions to determine total system energy. However, many of these methods fo-
so cus on the macroscale properties and not on the local variability. To inform single crystal
s1 strength models, approximations to the local stresses have been developed from atomic radii
s2 and elastic constants [6, 8]. These model are easy to evaluate but involve several approxi-
s3 mations and the associated uncertainties have not been quantified. In this paper we develop
s« predictive models for various atomic-level properties of CCAs from molecular mechanics
ss simulation data using invariant descriptors of local atomic environments and chemistry and
ss neural networks. Recent work on high entropy diborides used atomistic simulations to de-
s7 velop models for VFE depending on the local environment. The authors showed the ability
ss of pair approximation models with linear models and local structure up several neighboring

so shells to provide accurate descriptions [23].

s  Insummary, the development of validated and computationally expedient models capable
e1 of predicting a variety of atomic-level properties of CCAs remains an active area of research
2 and we are unaware of models capable of predicting a range of atomic-level properties needed
s3 to inform constitutive laws required for macroscopic predictions. To address this gap, we
s« combine molecular static calculations using a many-body interatomic potential with machine
65 learning to create predictive models for local atomic properties of face centered cubic CCAs
e containing Co, Cr, Fe, and Ni. We model several properties (relaxed vacancy formation
o7 energies, atomic pressures and volumes, and cohesive energies) and assess the ability of
s¢ the models to generalize and predict properties for new compositions and new chemistries.
so Importantly, the descriptors of local chemistry and geometry used as inputs to the models
70 are generated from unrelaxed atomic configurations; thus, evaluating the models does not

7 require computationally intensive structural relaxations.

72 Our work builds on the significant recent progress in the use of machine learning for



73 atomistic simulations and a long history of modeling multicomponent systems [17]. Neural
7 networks[24], gaussian processes [25], and even linear regression [26] have been shown to
s be powerful models to relate local atomic environment and atomic energies, resulting in a
76 new class of interatomic potentials. In these models, local atomic structures are described
7 with descriptors that capture the symmetries of the underlying physics (e.g. translational
¢ and rotational invariance). Moment tensor potentials have also shown great promise to
79 describe multicomponent systems [21, 27] Approaches to descrisbe local atomic environments
s include smooth-atomic-overlaps (SOAP) [28], two- and three-body symmetry functions [24],
a1 tensor formalisms [21], and bispectrum coefficients [26]. In this paper, we use bispectrum
g2 coefficients to relate the local, first nearest neighbor, environment of the unrelaxed structure
83 to various relazed local properties. Thus, our models need to learn not just the mapping
s between structure and property but also the relaxation of the local structure. In addition to
es the geometry, we use standard description of chemical properties of each environment. We
ss explore the ability of the models to predict environments not seen during training including
e7 those originating from unseen compositions as well as the inclusion of new elements.

s The remainder of the paper is organized as follows. Section II describes the data, descrip-
so tors, and models used. Section III focuses on results of training the models and using them
o to predict properties for new compositions and chemistries and Section V provides access to

a1 the code used to produce these results. Finally, conclusions are drawn in Section IV.

o II. METHODS
03 A. LAMMPS Simulations

o« The atomic properties of interest (relaxed vacancy formation energy, cohesive energy,
o5 stress, and volume) were obtained using the LAMMPS simulation package [29] with an em-
% bedded atom model interatomic potential developed by Farkas et al. [30]. Initial structures
o7 of the CCA alloys of interest, equiatomic Cr, Fe, Co, Ni, Cu, were obtained using an FCC
o lattice with lattice parameter ao=3.56 A with atoms assigned following the SQS method.
o [31] All descriptors used as inputs for the neural network models are calculated from these

100 initial structures, as described in sub-section II B.

w  After the descriptors are extracted, we relax the structure using molecular statics. We
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minimize the total energy with respect to both lattice parameters and atomic coordinates
under ambient pressure with thresholds of 1072 and 1072 eV /A for scaled energy and force,
respectively.

After relaxation, we compute the atomic energy (defined as the potential energy con-
tribution of each atom), local atomic stress from the virial theorem [32], and local volume
from a Voronoi tessellation [33]. Finally, the vacancy formation energy of each atomic site
is computed by sequentially removing each atom and re-relaxing the structure (maintaining
the simulation cell parameters constant). We define the relaxed vacancy formation energy
(E?) for site i from the energy difference between the perfect crystal Ey and the system after

the removal of corresponding atom Ej;.
E, = (E; + ) — Eo, (1)

where p; is the chemical potential of atoms of element corresponding to atom ¢. This
chemical potential is obtained as the cohesive energy of a pure element system.

The distributions of the resulting properties for each atom type obtained from a 5,000-
atom SQS structure are shown in Fig. 1. These distributions compare well with prior ab
initio calculations [13]. Our average relaxed vacancy formation energies for Cr, Fe, Co, and
Ni are 1.52, 1.58, 1.44 and 1.63 €V, respectively. These points compare well with ab initio
results reporting average values of 1.61, 1.58, 1.70, and 1.89 eV for Cr, Fe, Co, and Ni
obtained in 4-element CCAs.

We note that we use an interatomic potential since our goal is to establish the validity and
accuracy of our proposed model of relaxed atomic-level properties. For more accurate models
the interatomic potential would be replaced by DF'T calculations that provide a good balance
between accuracy and computational cost and can capture properties associated with the

electronic structure of the systems, such as magnetism.

B. Model Features

We use a combination of chemical and geometrical descriptors to describe individual
atoms. As described above, all descriptors are obtained from the initial, unrelaxed, struc-
tures. To describe the local geometrical environment we use bispectrum coefficients [26]

that start from the local atomic density around an atom and create a list of translationally
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FIG. 1: Distribution of values for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and
Volume (d).

130 and rotationally invariant descriptors. To distinguish between atom types in the bispectrum
1 calculation, we use atomic numbers as prefactors in the local density during the coefficient
132 calculations. Bispectrum coefficients are obtained using a radial cutoff 10% beyond the
133 nearest neighbor distance (1.1 ag v/2/2) and a band limit of eight for the resulting in a
134 total of 55 coefficients. We note that the bispectrum coefficients capture up to four-body
135 correlations and do not provide a complete description of atomic environments [34] and mul-
136 tiple local environments can lead to identical coefficients. This issue is less of a concern for
17 multi-component systems and, from a practical point of view, near-DFT accuracy has been
138 obtained for simple metals [35]. Thus, we believe the bispectrum coefficients provide an
130 appropriate description for the problem at hand. In addition to the geometric descriptors,
110 we use the atomic number of the central atom and the following chemical descriptors for the
11 central atom queried from Pymatgen:[36] atomic radius, atomic mass, Poisson’s ratio, elec-
12 trical resistivity, thermal conductivity, and Brinell hardness. These properties were chosen
13 to describe the size, bonding, and electronic structure of the central atom. We also studied
14 the effects of using descriptors capturing the central atom and the 12 nearest neighboring
1s atoms using a rule of mixtures, but found that these did not improve model performance;

us these results are discussed in the Supplemental Information in the section ”Train Neural



17 Network on Equiatomic CrFeCoNi”. These descriptors were added as additional physics
us informed descriptors, and have good overlap with previously investigated descriptors used

1o in material classifications[37].

150 C. Neural network architecture

151 Machine learning models were implemented in the Jupyter notebook environment [38] on
152 nanoHUB [39] using Tensorflow [40] and Keras [41] libraries. The models use shallow neural
153 networks with a first hidden layer containing 512 neurons connected to the 63 input features.
15« This hidden layer used exponential linear unit (elu) activation functions and was followed
155 by a dropout layer with dropout ratio of 0.2. During training, the loss function was mean
15 squared error and the Adagrad optimizer was used[42]. Also, the learning rate was 0.002
157 and the models were trained for 5000 epochs. This model architecture and hyperparameters

153 were chosen after testing several models, as detailed in the supplemental material.

150 To train the model, the data was split into testing and training sets, with 80% of data
10 used for training and 20% used for testing. The inputs and outputs were normalized using
161 the standard approach of subtracting the mean and dividing by the standard deviation of
162 the training data. During training, 10% of the training data was used for validation. The
13 validation data differs from the testing data in that it is used during the training of the
16« Model to assess convergence, while the testing data is hidden during training and only used
165 after training to evaluate the model. Initially, an early stopping criterion based on validation
166 data was used to determine number of epochs for training. However, models had similar
17 errors when trained with early stopping and with 5000 epochs, so 5000 epochs were used
168 to train all models. Independent models were developed for each property of interest to
160 describe all elements in the system. The initial model architecture was developed using
1o equiatomic CrFeCoNi structures with a data set containing 5000 atoms. However, we found
1 that training with 2000 atoms was sufficient. Thus, models were then trained and tested on
12 equiatomic four-element alloys CrFeNiCu, FeCoNiCu, CrCoNiCu, and CrFeCoCu with data
173 sets containing 2000 entries (atoms) each. The predictive ability of these models was tested

172 on the five element alloy CrFeCoNiCu and on non-equiatomic alloys.

7



s III.  MODELS FOR ATOMISTIC PROPERTIES OF CCAS

e As described above, we trained neural network models to predict relaxed vacancy forma-
177 tion energy, atomic cohesive energy, atomic pressure, and local Voronoi volume. Figure 2
178 shows parity plots of the four properties for CrFeCoNi alloy. Only testing data points are
179 shown, these have not been used in training. The results highlight the large atomic vari-
180 ability of all the properties studied, the range for each element is larger than the difference
1e1 in mean values between elements. The dash lines bound errors corresponding to 10% of
12 the range of each property. In absolute terms, the the mean absolute errors are 0.042 eV
183 for cohesive energy, 0.059 eV for VFE, 0.809 GPa for pressure, and 0.020 A? for atomic
18« volume. Figure 3 compares the accuracy of the models for the five four-element alloys used
18s for training. We show the mean absolute error of all predictions normalized by the range
186 over the testing data points. Our models have comparable performance across the different
17 chemistries. Importantly, models can predict properties with an accuracy of approximately
188 10% of the range for each of the properties studied. This level of accuracy is comparable to

150 that achieved in high-entropy borides using first nearest descriptors [23].

1w A. Predicting properties for new compositions

11~ The model trained on equiatomic CrFeCoNi was used to predict properties of alloys
12 with different compositions with the same four elements. Neural network predictions are
13 compared to molecular statics predictions in Figures 4 and 5. Figure 4 assesses the model
104 accuracy for CrogFeygCoo0Nigg. We find the model to be able to make accurate predictions
105 across all properties. The normalized MAE values are slightly larger than those for the
196 composition used for training, with models predicting with an accuracy of roughly 20% of
107 the range of each property. The slight underestimation of the Voronoi volumes is due to
108 the larger overall volume of this Fe-rich alloy. Figure 5 assesses the ability of the model
199 trained on equiatomic CoCrFeNi to predict on CrisFessCoi5Nijs. For this composition,
200 with environments more rich in Fe that deviate further from the training data, the model
201 accuracy degrades further. The model is still able to capture overall trends in properties but
202 the trend observed above of underestimating atomic volumes accentuates with increasing Fe.

203 Going from the equiatomic systems to the CrisFes5Co15Ni;5, the average volume computed
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FIG. 2: Machine learning model predictions compared to molecular statics results for
relaxed VFE (a), cohesive energy (b), atomic pressure (c), and atomic volume (d) for
equiatomic CoCrFeNi configurations belonging to the testing set. The grey, dashed lines

indicate errors of
+
10% of the range for each property, in absolute terms these represent
+
0.115 eV for relaxed VFE,
+
0.065 eV for cohesive energy,
+
1.213 GPa for atomic pressure, and
+

0.026 A3 for qitomic volume.
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204 using molecular mechanics increases from 11.070 A3 to 11.146 A3. In contrast, the model
205 average volume predictions are essentially unchanged. This indicates that the model cannot
206 capture the overall expansion observed with increasing Fe content, this is not surprising as

207 this information was not provided to the model during training.

28 The model trained on equiatomic CrFeCoNi was also used to make predictions on sev-
200 eral other alloys with different compositions. The error in these predictions, for the four
210 properties of interest, is shown in Figure 6. The first composition in each panel of Figure
o 6 represents the one used for training. These results indicate that the model has some pre-
212 dictive power on unseen compositions, giving better predictions on compositions closer to
213 training set. For compositions with 40% of a particular atom and 20% of each of the other
214 atoms, the model accuracy is roughly 20% of the property range. For compositions with
215 55% of a specific atom and 15% of each of the other atoms, the model accuracy is roughly
216 30% of the property range for relaxed vacancy formation energy and cohesive energy and

217 50% of the range for atomic volume.

10
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28 B. Predicting properties for new chemistries: CrFeCoNiCu

2

=

o Finally, we tested the model’s ability to predict properties of systems with unseen ele-

2!

N

o ments. We used five models trained on single four-element alloys (CrFeCoNi, CrFeNiCu,

1 FeCoNiCu, CrCoNiCu, and CrFeCoCu) to make predictions on CrFeCoNiCu. Results for

2

N

2

N

» vacancy formation energies are shown in Figure 7, with the other properties included in the

2!

N

s supplemental information. Figure 7 indicates that the relaxed vacancy formation predic-
224 tions of all elements on the CoCrCuFeNi are accurately described by the models trained on
25 CrFeCoCu (missing Ni), CrFeNiCu (missing Co), and CrCoNiCu (missing Fe) but rather
26 poorly by the models trained on FeCoNiCu (missing Cr) and CrFeCoNi (missing Cu); note

27 that Cr and Cu are the end elements within our group in terms of atomic number.
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2 To understand the underlying reason for these differences, we compared the inputs be-
29 tween the various alloys, specifically the unrelaxed bispectrum coefficients for CrFeCoNiCu
23 with those for the four-element alloys. Figure 8 shows the distributions of the first coeffi-
an cient. We find that the systems trained without Fe, Co, and Ni have relatively similar local
23 descriptors (bispectrum coefficients) to the CrFeCoNiCu system. However, the descriptors
233 for the alloys lacking Cu or Cr show significantly different distributions of descriptors as
2 compared to the 5-element CCA. For FeCoNiCu (without Cr), the differences in the local
235 environments are more pronounced than for CrFeCoNi (without Cu), explaining why the
23 model shows very poor performance. We observe the same trends for the other bispectrum
237 coefficients. This is due to the use of atomic number as prefactors in the construction of

238 bispectrum coefficients. Ni, Fe, and Co lie between the elements trained on while Cr has

12
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230 the lowest atomic number of the group and Cu has the highest atomic number.

2

I

o IV. DISCUSSION AND CONCLUSIONS

21 We combined molecular statics, atomic level featurization, and data science to develop

2

&

> models for atomic properties in high entropy alloys from local atomic environment and ele-

2

=

s mental information. Our approach relates descriptors that are easy to obtain from unrelaxed

2

=

. atomic structures to properties that require atomic relaxations and, thus, are computation-

25 ally more intensive to obtain. Evaluation of the models requires simply generating an atomic

2

=
=)

structure, performing a local structure calculation, computing atomic-based descriptors, and

2

=
3

evaluating a neural network. For testing data, the model predictions were within 10% of the
s range for each of the properties studied. This level of accuracy is comparable with that of
210 the pair approximation models of Daigle et al. when only the first neighboring cell is used.
250 [23] The authors demonstrate improvements in accuracy as additional shells are included.
51 We assessed the ability of our models to predict concentrations and chemistries not used
22 during training, and we find that the model has can predict properties for several unseen

3 concentrations and chemistries.

s The local atomic properties modeled are important in determining several macroscopic

13
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255 properties of CCAs. As mentioned above, models for local volumes and stresses can inform

26 single crystal strength models [8]. In addition, the distribution of VFEs affect vacancy con-
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257 centrations. To exemplify the importance of capturing distributions, Figure 9 compares the
258 equilibrium vacancy concentrations vs. inverse temperature for each element in a CrFeCoNi
20 alloy considering the distribution of VFEs (solid circles) with the values assuming a constant
20 value (set to the mean VFE for each element). The vacancy fraction calculated from neural
261 network predictions of VFE compares well with the vacancy fraction calculated from molec-
262 ular mechanics predictions of VFE. As also observed in shown borides, [23] a distribution
3 of VFEs results in non-Arrhenius behavior as the relative contribution of different values is

s temperature dependent. All calculation details are includes as supplementary material in

15



265 online Jupyter notebooks [43].

(a) 0.01 (b) 0.01
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FIG. 9: Vacancy Fraction of HEA elements in an alloy given the mean VFE (solid lines),
and calculating a population of vacancies based on the full distribution (circles) using

neural network predictions (a) and molecular mechanics predictions (b)

%6 In summary, atomic-level fluctuations in CCAs and other multi-principal component
7 materials result in unique and often desirable properties. Our results indicate that atomic
s level simulations, appropriate descriptors, and machine learning tools can be used to capture
29 such variability. In this paper we used properties computed from a many body force field
o0 for computational expediency, but the overall approach can be used with more accurate ab

211 4nitio results.

o2 V. DATA AND MODEL AVAILABILITY

oz The code developed and data used in this paper are available on the nanoHUB platform
2ra for online simulations [43]. The tool makes use of interactive Jupyter notebooks and includes
s the complete workflows in this work. They include: i) the generation of atomic structures,
26 1) determination of descriptors (bispectrum coefficients and chemistry based), iii) training
27 of machine learning models, and iv) their application to predict various composition’s prop-
a8 erties within the CoCrCuFeNi alloy family. We also include code to plot the distributions
279 of vacancy occupancy based on relaxed vacancy formation energy. While specific to this
280 potential, the workflows and code provided are general enough to extend to other material

281 Systems.
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