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Abstract

Complex-concentrated-alloys (CCAs) are of interest for a range of applications due to a host

of desirable properties, including, high-temperature strength and tolerance to radiation damage.

Their multi-principal component nature results in a vast number of possible atomic environments

with the associated variability in chemistry and structure. This atomic-level variability is central to

the unique properties of these alloys but makes their modeling challenging. We combine atomistic

simulations using many body potentials with machine learning to develop predictive models of vari-

ous atomic properties of CrFeCoNiCu-based CCAs: relaxed vacancy formation energy, atomic-level

cohesive energy, pressure, and volume. A fingerprint of the local atomic environments is obtained

combining invariants associated with the local atomic geometry and periodic-table information of

the atoms involved. Importantly, all descriptors are based on the unrelaxed atomic structure, thus,

they are computationally inexpensive to compute. This enables the incorporation of these models

into macroscopic simulations. The models show good accuracy and we explore their ability to

extrapolate to compositions and elements not used during training.
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I. INTRODUCTION10

Complex concentrated alloys (CCAs) and multiple principal component alloys are crys-11

talline materials consisting of four or more elements combined in similar fractions. They12

have attracted significant attention since their introduction in 2004 [1, 2] due to a range13

of desirable properties including high strength, even at high temperatures, thermal stabil-14

ity, and resistance to fatigue[3]. In addition, the vast space of potential alloy compositions15

makes them tailorable to specific applications [2–4]. The inherent variability in the local16

atomic configurations is the driving factor behind many of their unique properties, but also17

poses significant challenges to modeling and experimental characterization [5]. For example,18

the distribution of vacancy formation energies determines vacancy concentration which, in19

turn, dominates creep. Another key example is single crystal strength, which is dominated20

by local changes in the core energy along dislocation lines [6–8]. The local atomic envi-21

ronments govern the energy landscape under which dislocations move and their variability22

hinders their mobility, resulting in strengthening. For other examples of the relationship23

between local variability and properties see Refs. [9–12]. These local properties can be as-24

sessed computationally via intensive atomistic simulations, but given the enormous number25

of local atomic configurations individual atoms can encounter in CCAs, computationally26

efficient models for local properties are highly desirable. For example, Chen et al. studied27

vacancy formation energy (VFE) in CrFeCoNi alloys using density functional theory (DFT)28

on special quasirandom structures (SQS) [13]. The authors found a wide distribution in29

VFE ranging from 1.5 to 2 eV with averages between 1.58 and 1.89 eV depending on the30

element. This work explored 24 of the most likely configurations given a 20 atom cell, a31

small subset of all the possibilities. For example, the number of local first nearest neighbor-32

ing configurations in a five-element alloy is 5Z , Z the coordination number, divided by the33

multiplicity due to symmetry operations; clearly brute force ab initio calculations and even34

lower-fidelity interatomic force field calculations are out of the question.35

Efforts to efficiently explore and characterize this enormous space have turned to machine36

learning methods for phase prediction, material screening, and through that best practices37

have begun to emerge [14–16]. The foundations for these screening processes built on early38

work for formation energy determination using cluster expansion (CE) methods [17]. Exten-39

sions of this model beyond binary components have shown great success in ternary semicon-40
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ductors for predicting possible phase formations and separation [18], and multi-component41

CCA [19]. However, the method relies on unpacking 1st, 2nd, and higher order pairwise42

interactions in a symmetric, unrelaxed system. For systems that have been relaxed, and43

symmetry disrupted, the CE models begin to break down [20]. To overcome this limitation,44

rather than describing atomic interactions through the CE formalism, Shapeev used ten-45

sor descriptions to represent the energetics of multicomponent systems and showed better46

convergence rate with respect to training set size than CE for total energies [21, 22]. Each47

of these respective methods consider pair-wise interactions within a system, and sum their48

total contributions to determine total system energy. However, many of these methods fo-49

cus on the macroscale properties and not on the local variability. To inform single crystal50

strength models, approximations to the local stresses have been developed from atomic radii51

and elastic constants [6, 8]. These model are easy to evaluate but involve several approxi-52

mations and the associated uncertainties have not been quantified. In this paper we develop53

predictive models for various atomic-level properties of CCAs from molecular mechanics54

simulation data using invariant descriptors of local atomic environments and chemistry and55

neural networks. Recent work on high entropy diborides used atomistic simulations to de-56

velop models for VFE depending on the local environment. The authors showed the ability57

of pair approximation models with linear models and local structure up several neighboring58

shells to provide accurate descriptions [23].59

In summary, the development of validated and computationally expedient models capable60

of predicting a variety of atomic-level properties of CCAs remains an active area of research61

and we are unaware of models capable of predicting a range of atomic-level properties needed62

to inform constitutive laws required for macroscopic predictions. To address this gap, we63

combine molecular static calculations using a many-body interatomic potential with machine64

learning to create predictive models for local atomic properties of face centered cubic CCAs65

containing Co, Cr, Fe, and Ni. We model several properties (relaxed vacancy formation66

energies, atomic pressures and volumes, and cohesive energies) and assess the ability of67

the models to generalize and predict properties for new compositions and new chemistries.68

Importantly, the descriptors of local chemistry and geometry used as inputs to the models69

are generated from unrelaxed atomic configurations; thus, evaluating the models does not70

require computationally intensive structural relaxations.71

Our work builds on the significant recent progress in the use of machine learning for72
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atomistic simulations and a long history of modeling multicomponent systems [17]. Neural73

networks[24], gaussian processes [25], and even linear regression [26] have been shown to74

be powerful models to relate local atomic environment and atomic energies, resulting in a75

new class of interatomic potentials. In these models, local atomic structures are described76

with descriptors that capture the symmetries of the underlying physics (e.g. translational77

and rotational invariance). Moment tensor potentials have also shown great promise to78

describe multicomponent systems [21, 27] Approaches to descrisbe local atomic environments79

include smooth-atomic-overlaps (SOAP) [28], two- and three-body symmetry functions [24],80

tensor formalisms [21], and bispectrum coefficients [26]. In this paper, we use bispectrum81

coefficients to relate the local, first nearest neighbor, environment of the unrelaxed structure82

to various relaxed local properties. Thus, our models need to learn not just the mapping83

between structure and property but also the relaxation of the local structure. In addition to84

the geometry, we use standard description of chemical properties of each environment. We85

explore the ability of the models to predict environments not seen during training including86

those originating from unseen compositions as well as the inclusion of new elements.87

The remainder of the paper is organized as follows. Section II describes the data, descrip-88

tors, and models used. Section III focuses on results of training the models and using them89

to predict properties for new compositions and chemistries and Section V provides access to90

the code used to produce these results. Finally, conclusions are drawn in Section IV.91

II. METHODS92

A. LAMMPS Simulations93

The atomic properties of interest (relaxed vacancy formation energy, cohesive energy,94

stress, and volume) were obtained using the LAMMPS simulation package [29] with an em-95

bedded atom model interatomic potential developed by Farkas et al. [30]. Initial structures96

of the CCA alloys of interest, equiatomic Cr, Fe, Co, Ni, Cu, were obtained using an FCC97

lattice with lattice parameter a0=3.56 Å with atoms assigned following the SQS method.98

[31] All descriptors used as inputs for the neural network models are calculated from these99

initial structures, as described in sub-section II B.100

After the descriptors are extracted, we relax the structure using molecular statics. We101
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minimize the total energy with respect to both lattice parameters and atomic coordinates102

under ambient pressure with thresholds of 10−12 and 10−12 eV/Å for scaled energy and force,103

respectively.104

After relaxation, we compute the atomic energy (defined as the potential energy con-105

tribution of each atom), local atomic stress from the virial theorem [32], and local volume106

from a Voronoi tessellation [33]. Finally, the vacancy formation energy of each atomic site107

is computed by sequentially removing each atom and re-relaxing the structure (maintaining108

the simulation cell parameters constant). We define the relaxed vacancy formation energy109

(Ei
v) for site i from the energy difference between the perfect crystal E0 and the system after110

the removal of corresponding atom Ei.111

Ei
v = (Ei + µi)− E0, (1)

where µi is the chemical potential of atoms of element corresponding to atom i. This112

chemical potential is obtained as the cohesive energy of a pure element system.113

The distributions of the resulting properties for each atom type obtained from a 5,000-114

atom SQS structure are shown in Fig. 1. These distributions compare well with prior ab115

initio calculations [13]. Our average relaxed vacancy formation energies for Cr, Fe, Co, and116

Ni are 1.52, 1.58, 1.44 and 1.63 eV, respectively. These points compare well with ab initio117

results reporting average values of 1.61, 1.58, 1.70, and 1.89 eV for Cr, Fe, Co, and Ni118

obtained in 4-element CCAs.119

We note that we use an interatomic potential since our goal is to establish the validity and120

accuracy of our proposed model of relaxed atomic-level properties. For more accurate models121

the interatomic potential would be replaced by DFT calculations that provide a good balance122

between accuracy and computational cost and can capture properties associated with the123

electronic structure of the systems, such as magnetism.124

B. Model Features125

We use a combination of chemical and geometrical descriptors to describe individual126

atoms. As described above, all descriptors are obtained from the initial, unrelaxed, struc-127

tures. To describe the local geometrical environment we use bispectrum coefficients [26]128

that start from the local atomic density around an atom and create a list of translationally129
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FIG. 1: Distribution of values for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and

Volume (d).

and rotationally invariant descriptors. To distinguish between atom types in the bispectrum130

calculation, we use atomic numbers as prefactors in the local density during the coefficient131

calculations. Bispectrum coefficients are obtained using a radial cutoff 10% beyond the132

nearest neighbor distance (1.1 a0

√
2/2) and a band limit of eight for the resulting in a133

total of 55 coefficients. We note that the bispectrum coefficients capture up to four-body134

correlations and do not provide a complete description of atomic environments [34] and mul-135

tiple local environments can lead to identical coefficients. This issue is less of a concern for136

multi-component systems and, from a practical point of view, near-DFT accuracy has been137

obtained for simple metals [35]. Thus, we believe the bispectrum coefficients provide an138

appropriate description for the problem at hand. In addition to the geometric descriptors,139

we use the atomic number of the central atom and the following chemical descriptors for the140

central atom queried from Pymatgen:[36] atomic radius, atomic mass, Poisson’s ratio, elec-141

trical resistivity, thermal conductivity, and Brinell hardness. These properties were chosen142

to describe the size, bonding, and electronic structure of the central atom. We also studied143

the effects of using descriptors capturing the central atom and the 12 nearest neighboring144

atoms using a rule of mixtures, but found that these did not improve model performance;145

these results are discussed in the Supplemental Information in the section ”Train Neural146
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Network on Equiatomic CrFeCoNi”. These descriptors were added as additional physics147

informed descriptors, and have good overlap with previously investigated descriptors used148

in material classifications[37].149

C. Neural network architecture150

Machine learning models were implemented in the Jupyter notebook environment [38] on151

nanoHUB [39] using Tensorflow [40] and Keras [41] libraries. The models use shallow neural152

networks with a first hidden layer containing 512 neurons connected to the 63 input features.153

This hidden layer used exponential linear unit (elu) activation functions and was followed154

by a dropout layer with dropout ratio of 0.2. During training, the loss function was mean155

squared error and the Adagrad optimizer was used[42]. Also, the learning rate was 0.002156

and the models were trained for 5000 epochs. This model architecture and hyperparameters157

were chosen after testing several models, as detailed in the supplemental material.158

To train the model, the data was split into testing and training sets, with 80% of data159

used for training and 20% used for testing. The inputs and outputs were normalized using160

the standard approach of subtracting the mean and dividing by the standard deviation of161

the training data. During training, 10% of the training data was used for validation. The162

validation data differs from the testing data in that it is used during the training of the163

model to assess convergence, while the testing data is hidden during training and only used164

after training to evaluate the model. Initially, an early stopping criterion based on validation165

data was used to determine number of epochs for training. However, models had similar166

errors when trained with early stopping and with 5000 epochs, so 5000 epochs were used167

to train all models. Independent models were developed for each property of interest to168

describe all elements in the system. The initial model architecture was developed using169

equiatomic CrFeCoNi structures with a data set containing 5000 atoms. However, we found170

that training with 2000 atoms was sufficient. Thus, models were then trained and tested on171

equiatomic four-element alloys CrFeNiCu, FeCoNiCu, CrCoNiCu, and CrFeCoCu with data172

sets containing 2000 entries (atoms) each. The predictive ability of these models was tested173

on the five element alloy CrFeCoNiCu and on non-equiatomic alloys.174
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III. MODELS FOR ATOMISTIC PROPERTIES OF CCAS175

As described above, we trained neural network models to predict relaxed vacancy forma-176

tion energy, atomic cohesive energy, atomic pressure, and local Voronoi volume. Figure 2177

shows parity plots of the four properties for CrFeCoNi alloy. Only testing data points are178

shown, these have not been used in training. The results highlight the large atomic vari-179

ability of all the properties studied, the range for each element is larger than the difference180

in mean values between elements. The dash lines bound errors corresponding to 10% of181

the range of each property. In absolute terms, the the mean absolute errors are 0.042 eV182

for cohesive energy, 0.059 eV for VFE, 0.809 GPa for pressure, and 0.020 Å3 for atomic183

volume. Figure 3 compares the accuracy of the models for the five four-element alloys used184

for training. We show the mean absolute error of all predictions normalized by the range185

over the testing data points. Our models have comparable performance across the different186

chemistries. Importantly, models can predict properties with an accuracy of approximately187

10% of the range for each of the properties studied. This level of accuracy is comparable to188

that achieved in high-entropy borides using first nearest descriptors [23].189

A. Predicting properties for new compositions190

The model trained on equiatomic CrFeCoNi was used to predict properties of alloys191

with different compositions with the same four elements. Neural network predictions are192

compared to molecular statics predictions in Figures 4 and 5. Figure 4 assesses the model193

accuracy for Cr20Fe40Co20Ni20. We find the model to be able to make accurate predictions194

across all properties. The normalized MAE values are slightly larger than those for the195

composition used for training, with models predicting with an accuracy of roughly 20% of196

the range of each property. The slight underestimation of the Voronoi volumes is due to197

the larger overall volume of this Fe-rich alloy. Figure 5 assesses the ability of the model198

trained on equiatomic CoCrFeNi to predict on Cr15Fe55Co15Ni15. For this composition,199

with environments more rich in Fe that deviate further from the training data, the model200

accuracy degrades further. The model is still able to capture overall trends in properties but201

the trend observed above of underestimating atomic volumes accentuates with increasing Fe.202

Going from the equiatomic systems to the Cr15Fe55Co15Ni15, the average volume computed203
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FIG. 2: Machine learning model predictions compared to molecular statics results for

relaxed VFE (a), cohesive energy (b), atomic pressure (c), and atomic volume (d) for

equiatomic CoCrFeNi configurations belonging to the testing set. The grey, dashed lines

indicate errors of

±

10% of the range for each property, in absolute terms these represent

±

0.115 eV for relaxed VFE,

±

0.065 eV for cohesive energy,

±

1.213 GPa for atomic pressure, and

±

0.026 Å3 for atomic volume.9



FIG. 3: MAE normalized by range for the testing data for each of the four-atom systems

for Relaxed VFE (a), Cohesive Energy (b), Pressure (c), and Volume (d).

using molecular mechanics increases from 11.070 Å3 to 11.146 Å3. In contrast, the model204

average volume predictions are essentially unchanged. This indicates that the model cannot205

capture the overall expansion observed with increasing Fe content, this is not surprising as206

this information was not provided to the model during training.207

The model trained on equiatomic CrFeCoNi was also used to make predictions on sev-208

eral other alloys with different compositions. The error in these predictions, for the four209

properties of interest, is shown in Figure 6. The first composition in each panel of Figure210

6 represents the one used for training. These results indicate that the model has some pre-211

dictive power on unseen compositions, giving better predictions on compositions closer to212

training set. For compositions with 40% of a particular atom and 20% of each of the other213

atoms, the model accuracy is roughly 20% of the property range. For compositions with214

55% of a specific atom and 15% of each of the other atoms, the model accuracy is roughly215

30% of the property range for relaxed vacancy formation energy and cohesive energy and216

50% of the range for atomic volume.217
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FIG. 4: Parity plots for Cr20Fe40Co20Ni20 for Relaxed VFE (a), Cohesive Energy (b),

Pressure (c), and Volume (d). Predictions were made using model trained on equiatomic

CrFeCoNi. The grey, dashed lines bound

±

20% of the range for each property.

B. Predicting properties for new chemistries: CrFeCoNiCu218

Finally, we tested the model’s ability to predict properties of systems with unseen ele-219

ments. We used five models trained on single four-element alloys (CrFeCoNi, CrFeNiCu,220

FeCoNiCu, CrCoNiCu, and CrFeCoCu) to make predictions on CrFeCoNiCu. Results for221

vacancy formation energies are shown in Figure 7, with the other properties included in the222

supplemental information. Figure 7 indicates that the relaxed vacancy formation predic-223

tions of all elements on the CoCrCuFeNi are accurately described by the models trained on224

CrFeCoCu (missing Ni), CrFeNiCu (missing Co), and CrCoNiCu (missing Fe) but rather225

poorly by the models trained on FeCoNiCu (missing Cr) and CrFeCoNi (missing Cu); note226

that Cr and Cu are the end elements within our group in terms of atomic number.227
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FIG. 5: Parity plots for Cr15Fe55Co15Ni15 for Relaxed VFE (a), Cohesive Energy (b),

Pressure (c), and Volume (d). Predictions were made using model trained on equiatomic

CrFeCoNi. The grey, dashed lines bound

±

20% of the range for each property.

To understand the underlying reason for these differences, we compared the inputs be-228

tween the various alloys, specifically the unrelaxed bispectrum coefficients for CrFeCoNiCu229

with those for the four-element alloys. Figure 8 shows the distributions of the first coeffi-230

cient. We find that the systems trained without Fe, Co, and Ni have relatively similar local231

descriptors (bispectrum coefficients) to the CrFeCoNiCu system. However, the descriptors232

for the alloys lacking Cu or Cr show significantly different distributions of descriptors as233

compared to the 5-element CCA. For FeCoNiCu (without Cr), the differences in the local234

environments are more pronounced than for CrFeCoNi (without Cu), explaining why the235

model shows very poor performance. We observe the same trends for the other bispectrum236

coefficients. This is due to the use of atomic number as prefactors in the construction of237

bispectrum coefficients. Ni, Fe, and Co lie between the elements trained on while Cr has238
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FIG. 6: MAE for predictions on untrained compositions for: (a) Relaxed vfe, (b) Cohesive

Energy, (c) Pressure, and (d) Volume. The model was trained on equiatomic CrFeCoNi.

the lowest atomic number of the group and Cu has the highest atomic number.239

IV. DISCUSSION AND CONCLUSIONS240

We combined molecular statics, atomic level featurization, and data science to develop241

models for atomic properties in high entropy alloys from local atomic environment and ele-242

mental information. Our approach relates descriptors that are easy to obtain from unrelaxed243

atomic structures to properties that require atomic relaxations and, thus, are computation-244

ally more intensive to obtain. Evaluation of the models requires simply generating an atomic245

structure, performing a local structure calculation, computing atomic-based descriptors, and246

evaluating a neural network. For testing data, the model predictions were within 10% of the247

range for each of the properties studied. This level of accuracy is comparable with that of248

the pair approximation models of Daigle et al. when only the first neighboring cell is used.249

[23] The authors demonstrate improvements in accuracy as additional shells are included.250

We assessed the ability of our models to predict concentrations and chemistries not used251

during training, and we find that the model has can predict properties for several unseen252

concentrations and chemistries.253

The local atomic properties modeled are important in determining several macroscopic254
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FIG. 7: Parity plots for relaxed vacancy formation energy for predictions on CrFeCoNiCu.

Model was trained on FeCoNiCu (a), CrCoNiCu (b), CrFeNiCu (c), CrFeCoCu (d), and

CrFeCoNi (e). The grey, dashed lines bound

±

20% of the range for each property.

properties of CCAs. As mentioned above, models for local volumes and stresses can inform255

single crystal strength models [8]. In addition, the distribution of VFEs affect vacancy con-256
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FIG. 8: Distribution for zeroth bispectrum coefficient for FeCoNiCu (a), CrCoNiCu (b),

CrFeNiCu (c), CrFeCoCu (d), and CrFeCoNi (e) compared with CrFeCoNiCu. Bispectrum

coefficient was normalized using the mean and standard deviation for FeCoNiCu (a),

CrCoNiCu (b), CrFeNiCu (c), CrFeCoCu (d), and CrFeCoNi (e).

centrations. To exemplify the importance of capturing distributions, Figure 9 compares the257

equilibrium vacancy concentrations vs. inverse temperature for each element in a CrFeCoNi258

alloy considering the distribution of VFEs (solid circles) with the values assuming a constant259

value (set to the mean VFE for each element). The vacancy fraction calculated from neural260

network predictions of VFE compares well with the vacancy fraction calculated from molec-261

ular mechanics predictions of VFE. As also observed in shown borides, [23] a distribution262

of VFEs results in non-Arrhenius behavior as the relative contribution of different values is263

temperature dependent. All calculation details are includes as supplementary material in264
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online Jupyter notebooks [43].265

FIG. 9: Vacancy Fraction of HEA elements in an alloy given the mean VFE (solid lines),

and calculating a population of vacancies based on the full distribution (circles) using

neural network predictions (a) and molecular mechanics predictions (b)

In summary, atomic-level fluctuations in CCAs and other multi-principal component266

materials result in unique and often desirable properties. Our results indicate that atomic267

level simulations, appropriate descriptors, and machine learning tools can be used to capture268

such variability. In this paper we used properties computed from a many body force field269

for computational expediency, but the overall approach can be used with more accurate ab270

initio results.271

V. DATA AND MODEL AVAILABILITY272

The code developed and data used in this paper are available on the nanoHUB platform273

for online simulations [43]. The tool makes use of interactive Jupyter notebooks and includes274

the complete workflows in this work. They include: i) the generation of atomic structures,275

ii) determination of descriptors (bispectrum coefficients and chemistry based), iii) training276

of machine learning models, and iv) their application to predict various composition’s prop-277

erties within the CoCrCuFeNi alloy family. We also include code to plot the distributions278

of vacancy occupancy based on relaxed vacancy formation energy. While specific to this279

potential, the workflows and code provided are general enough to extend to other material280

systems.281
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