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ABSTRACT
Policy testing is an important means for quality assurance of access

control policies. Experimental studies on the testing methods of

XACML policies have shown their varying levels of effectiveness.

However, there is a lack of explanation for why they are unable to

detect certain types of faults. It is unclear what is essential to the

fault detection capability. To address this issue, we propose a theory

on policy testing by formalizing the fault detection conditions with

respect to a comprehensive fault model of XACML policies. The

detection condition of a policy fault, composed of the reachability,

necessity, and propagation constraints, is sufficient and necessary

for revealing the fault. The formalized fault detection conditions can

qualify the inherent strengths and limitations of testing methods.

We have applied the formalization to the qualitative evaluations of

five testing methods for the current version of the XACML standard.

The results show that, for each method, there are certain types of

faults that can always or never be revealed, while the detection of

other faults may depend on the particular policy structure.

CCS CONCEPTS
• Security and privacy→ Access control; Software security engi-
neering; Authorization.
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1 INTRODUCTION
Policy testing has emerged as an important approach to security

analysis of access control policies [1]-[4][11]-[15][18][19]. It aims
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at executing the policy under test with a test suite (i.e., a set of test

cases) and checks if the policy produces a correct result for each

test. A test case consists of a test input (i.e., access request) and

an oracle value (i.e., correct response in terms of the actual access

control requirement). It fails if the policy’s actual response to the

request is different from the oracle value. The failure implies the

presence of policy faults (bugs). If none of the tests fails, however,

one cannot assert that the policy is bug-free. To evaluate a testing

method, the common approach is experimental mutation analysis.

It creates a set of mutants of a given correct policy by seeding faults

into the policy according to a fault model (i.e., typical bugs). The

test cases produced by a testing method are then executed against

all mutants. A mutant is said to be killed if at least one test fails. A

live mutant not killed by any test is either faulty or functionally

equivalent to the original policy (called equivalent mutant). The

fault detection capability of the testing method is measured by its

mutation score, i.e., the ratio between the number of mutants killed

and the total number of non-equivalent mutants.

As an industry standard for access control policies used in major

identity management products (e.g., Oracle Identity Manager and

WSO2 Identity Server), XACML (eXtensible Access Control Markup

Language) [16] has been the main subject of policy testing research.

Mutation experiments using sample policies have shown that the

existing testing methods have varying fault detection capabilities.

The mutation scores range from 30% to 60% for Cirg [22], 75% to 79%

for Targen [3] [13], 75% to 96% for X-CREATE [2], 62% to 98% for

the rule-coverage-based test selection [4], 37% to 93% for XPTester

[12], 50% to 63.6% for the rule-coverage (RC) testing [18], 62.5%

to 96.6% for the decision-coverage (DC) testing [18], and 97.7% to

100% for the modified-condition/decision coverage (MC/DC) testing

[18]. Recent work has found several XACML policies for which

the mutation scores can be as allow as 26% for the RC method

and 50% for the DC and MC/DC methods [19]. It remains unclear

why the existing methods are unable to reveal certain types of

faults. Although mutation experiments are useful for empirical

evaluations, they do not address the fundamental question: what is

essential to the fault detection capability of policy testing?

This paper presents a theory on testing XACML policies [16].

Unlike the existing work that relies on experiments, the proposed

theory builds upon the formalization of fault detection conditions. A

testing method can find a fault if and only if its tests can satisfy the

detection condition. It is feasible to measure the inherent strengths

and limitations of testing methods, independent of policy examples.
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The contribution of this paper is twofold. First, we present a com-

plete formalization of the sufficient and necessary fault detection

conditions for all fault types in a well-studied fault model [18][19]

of the current XACML standard. The fault detection condition con-

sists of the reachability, necessity, and propagation constraints that

any test must satisfy in order to reveal the fault in a given policy.

Although the notions of reachability, necessity, and propagation

constraints originate from program mutation testing or constraint-

based software testing [6][7][8], there is a lack of formal treatment

of these constraints. The problem with propagation constraints of

software is known to be intractable [7][8] because of the explosion

of program execution paths. As demonstrated in this paper, how-

ever, the unique features of XACML make it feasible to formalize

the reachability, necessity, and propagation constraints of XACML

policies in a three-valued logic (𝑡𝑟𝑢𝑒 , 𝑓 𝑎𝑙𝑠𝑒 , and 𝐸𝑟𝑟𝑜𝑟 ). Understand-

ing these constraints and thus fault detection conditions is essential

to the design of a highly effective policy testing method.

Second, we apply the formalized fault detection conditions to the

qualitative evaluation of five recent testing methods for XACML

v3.0 policies: rule coverage (RC), decision coverage (DC), non-error

decision coverage (NE-DC), modified decision/condition coverage

(MC/DC), and non-error MC/DC (NE-MC/DC) [18]. The empirical

studies have demonstrated that these methods outperform previous

approaches [18]. In this paper, we evaluate them by analyzing

whether or not they satisfy the fault detection condition of each

fault type. This does not require the experimentation with specific

policies, although we may use a running example for illustration

purposes. The results of the qualitative evaluation show that there

are certain types of faults that can always or never be revealed by

each of the five methods, while the detection of other types of faults

may depend on the particular policy structure. For example, the RC

method cannot kill many types of mutants – this explains why its

mutation scores are mostly low in the existing experiments.

The remainder of this paper is organized as follows. Section

2 reviews related work. Section 3 describes XACML policies and

mutation operators. Section 4 presents the formalization of fault

detection conditions. Section 5 evaluates the fault detection capa-

bilities of five testing methods with the formalized fault detection

conditions. Section 6 concludes this paper.

2 RELATEDWORK
The existing approaches to testing XACML policies fall into two

categories: model-based testing that derives tests from models and

policy-based testing that produces test inputs directly from the

policy under test. As access control policies are extra-constraints

on system functions, the model-based testing approach usually inte-

grates functional models with access control specifications and can

generate both test inputs and oracle values. Safarzadeh et al. [17]

have proposed to specify system functions and access control poli-

cies by extended finite-state machines and XACML, respectively.

They derive test conditions from the state machines and the rules

in the XACML policy and then apply MC/DC to the conditions for

test generation. Khamaiseh et al. [11] proposed a model-based test-

ing method for obligatory Attribute-Based Access Control (ABAC)

systems, where access control policies are implemented in XACML.

Although the above methods have both involved XACML, the sys-

tem implementation tested by the model-based approach may or

may not rely on XACML. How to build effective test models, how-

ever, remains a critical challenge.

This paper is more related to the work that generates test inputs

from the XACML policy under test. It has commonly used muta-

tion analysis of XACML policies to measure testing effectiveness

with mutation scores. Cirg [14] generates test inputs from coun-

terexamples produced by the model checker Margrave through the

change-impact analysis of two synthesized versions. The difference

of the two versions of a policy targets a test coverage goal, such

as rule coverage or condition coverage. Targen [13] derives test

inputs to satisfy all the possible combinations of truth-values of the

attribute id-value pairs found in a given policy. Considering that

requests must conform to the XML Context Schema, Bertolino et

al. have developed the X-CREATE framework for dealing with the

structures of the Context Schema [2]. They have also developed

other test selection strategies, such as Simple Combinatorial and

Incremental XPT [1]. Bertolino et al. [4] proposed an approach

to selecting tests based on the rule coverage criterion. It chooses

existing tests to match each rule target set, which is the union of

the target of the rule and all enclosing policy and policy set targets.

XPTester uses symbolic execution technique to generate test inputs

from XACML policies [12]. It converts the policy under test into a

semantically equivalent C Code Representation (CCR) and symbol-

ically executes CCR to create test inputs. The above methods are

all based on earlier versions of XACML (1.0 or 2.0).

XPA (XACML Policy Analyzer) [18] offers various coverage-

based testing methods for XACML v3.0 policies. They include rule-

coverage (RC), decision coverage (DC), modified condition/decision

coverage (MC/DC), non-error DC, and non-error MC/DC. The DC

and MC/DC method can generate error tests, which are syntac-

tically valid requests, but make decision expressions evaluate to

error occurrence and result in an indeterminate decision. They are

different from those tests using out-of-range attribute values [2],

which make a logic expression evaluate to false, rather than error.

XPA also provides a method for generating test cases from the

policy mutants [19]. Different from the mutation analysis, this pa-

per formalizes fault detection conditions of policy mutants, which

opens the door for qualitative evaluation of testing methods.

3 XACML POLICIES AND POLICY MUTATION
3.1 XACML Policies
To avoid excessive formal notations, this paper focuses on policies,

rather than policy sets. A policy 𝑃 is a triple < 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 >, where

𝑃𝑇 is the policy target, 𝑅𝐶𝐴 is the rule-combining algorithm, and 𝑅

is the list of rules. Each rule 𝑟 ∈ 𝑅 is a triple < 𝑟𝑡, 𝑟𝑐, 𝑟𝑒 >, where 𝑟𝑡

is the rule target, 𝑟𝑐 is the rule condition, and 𝑟𝑒 ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}
is the rule effect. < 𝑟𝑡, 𝑟𝑐, 𝑃𝑒𝑟𝑚𝑖𝑡 > is called a permit rule, whereas

< 𝑟𝑡, 𝑟𝑐, 𝐷𝑒𝑛𝑦 > is a deny rule. The target of a rule or policy spec-

ifies the set of requests to which the rule or policy is intended to

apply. It is represented as a conjunctive sequence of AnyOf clauses.
Each AnyOf clause is a disjunctive sequence of AllOf clauses, and
each AllOf clause is a conjunctive sequence of match predicates. A

match predicate compares attribute values in a request with the

embedded attributes. Logical expressions for match predicates and
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rule conditions are usually defined on four categories of attributes:

subject, resource, action, and environment. The condition of a rule

refines the applicability of the rule established by the rule target.

We use the following Sample-PO policy [19] as a running example.

For readability purposes, it is presented in plain text without at-

tribute types and categories.𝐴𝑙𝑙𝑜 𝑓 and𝐴𝑛𝑦𝑂𝑓 clauses are replaced

with traditional logical operators “𝑎𝑛𝑑" and “𝑜𝑟 ". The attributes are

department, title, location, and job-class. The policy target is defined

over the department attribute, whereas the four permit rules and

two deny rules are defined over title, location and job-class.
Policy name: Sample-PO
Policy target: department = “HR” or department = “IT”
Rule-Combining Algorithm: Permit-overrides
Rules:

R1: <title=“director”, location=“on-campus”, Permit>
R2: <title=“director”, location=“off-campus”, Permit>
R3: <title=“deputy”, location=“on-campus”, Permit>
R4: <title=“deputy”, location=“off-campus”, Permit>
R5: <job-class=“guest” or job-class=“part-time”,

location=“off-campus”, Deny>
R6: <job-class=“intern” or job-class=“contractor”,

location=“off-campus”, Deny>
An access request consists of attribute names, categories, values,

and types. Unless explicitly specified, we use a set of attribute name

and value pairs to represent a request, assuming that the attribute

categories and types are correct. For example, {department = “HR”,
title=“deputy”, location=“on-campus”} is a valid request of the run-

ning example. Note that a valid request may cause the occurrence

of a runtime error for different reasons, such as mismatch of an

attribute type and an exception of expression and function eval-

uation. Consider {department = “HR”}. If the category of attribute

𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 and the type of value “HR” match those in the running

policy, the policy target will evaluate to true, otherwise its evalu-

ation leads to an error occurrence. This is similar for rule target

and rule condition. Error-handling has intricate implications on the

semantics of policies and the evaluation of access decisions.

Let 𝜔 be a decision expression (policy target, rule target, or rule

condition) and 𝑞 be an access request. We use 𝜔 , ¬𝜔 , and 𝐸𝑟𝑟𝑜𝑟 (𝜔)
to represent that 𝜔 evaluates to 𝑡𝑟𝑢𝑒 (i.e., there is a match if 𝜔 is a

target), 𝑓 𝑎𝑙𝑠𝑒 (i.e., no-match if 𝜔 is a target), and indeterminate (i.e.,

𝑒𝑟𝑟𝑜𝑟 occurrence) with respect to 𝑞, respectively. This is based on

a three-valued logic because each predicate or logical expression

has three possible outcomes. Per the XACML 3.0 standard specifi-

cation [16], rule-level and policy-level decisions are formalized by

Definitions 1 and 2, respectively.

Definition 1.Given a rule 𝑟 =< 𝑟𝑡, 𝑟𝑐, 𝑟𝑒 > and an access request

𝑞, the rule decision, denoted as 𝑑 (𝑟, 𝑞), is defined as follows:

𝑑 (𝑟, 𝑞) =



𝑃𝑒𝑟𝑚𝑖𝑡 if 𝑟𝑒 = 𝑃𝑒𝑟𝑚𝑖𝑡 ∧ 𝑟𝑡 ∧ 𝑟𝑐

𝐷𝑒𝑛𝑦 if 𝑟𝑒 = 𝐷𝑒𝑛𝑦 ∧ 𝑟𝑡 ∧ 𝑟𝑐

𝑁 /𝐴 if ¬𝑟𝑡 ∨ (𝑟𝑡 ∧ ¬𝑟𝑐𝑖 )
𝐼𝐷 if 𝑟𝑒 = 𝐷𝑒𝑛𝑦∧

(𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡) ∨ 𝑟𝑡 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑐))
𝐼𝑃 if 𝑟𝑒 = 𝑃𝑒𝑟𝑚𝑖𝑡∧

(𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡) ∨ 𝑟𝑡 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑐))

Table 1: Decision Table or Permit-overrides

𝑃𝑒𝑟𝑚𝑖𝑡 𝐷𝑒𝑛𝑦 𝑁 /𝐴 𝐼𝐷 𝐼𝑃 𝐼𝐷𝑃

𝑃𝑒𝑟𝑚𝑖𝑡 Permit Permit Permit Permit Permit Permit

𝐷𝑒𝑛𝑦 Permit Deny Deny Deny IP IDP

𝑁 /𝐴 Permit Deny N/A ID IP IDP

𝐼𝐷 Permit Deny ID ID IDP IDP

𝐼𝑃 Permit IP IP IDP IP IDP

where 𝑁 /𝐴, 𝐼𝐷 , and 𝐼𝑃 denote Not-applicable, Indeterminate Deny,
and Indeterminate Permit, respectively.

Definition 2. Given policy 𝑃 =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 > and an access

request 𝑞, the policy decision, denoted as 𝑑 (𝑃, 𝑞), is defined as [19]:

𝑑 (𝑃, 𝑞) =



𝑁 /𝐴 if ¬𝑃𝑇
𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) if 𝑃𝑇

𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) if 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ) ∧ 𝑟𝑐𝑎(𝑅𝐶𝐴,
𝑅, 𝑞) ∈ {𝑁 /𝐴, 𝐼𝐷, 𝐼𝑃, 𝐼𝐷𝑃}

𝐼𝑃 if 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 )∧
𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) = 𝑃𝑒𝑟𝑚𝑖𝑡

𝐼𝐷 if 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 )∧
𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) = 𝐷𝑒𝑛𝑦

where 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) represents the combined decision of all rules

in 𝑅 with respect to 𝑞 by the rule-combining algorithm 𝑅𝐶𝐴, and

𝐼𝐷𝑃 denotes Indeterminate Deny/Permit.
The rule-combining algorithm 𝑅𝐶𝐴 in policy 𝑃 =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 >

aims at rendering a single decision by combining the decisions of

all individual rules in 𝑅 when the policy target 𝑃𝑇 is not false.

𝑅𝐶𝐴 resolves the potential conflicting decisions of different rules.

Given access request {department = “HR”, title=“deputy-director”, job-
class=“part-time”, location=“off-campus”}, rules R4 and R6 in Sample-
PO yield 𝑃𝑒𝑟𝑚𝑖𝑡 and 𝐷𝑒𝑛𝑦, respectively. The rule-combining al-

gorithm Permit-overrides resolves the conflict by giving the prior-

ity to 𝑃𝑒𝑟𝑚𝑖𝑡 , and thus the policy’s decision is 𝑃𝑒𝑟𝑚𝑖𝑡 . The main

rule-combining algorithms in XACML 3.0 include Permit-overrides
(PO), Deny-overrides (DO), Permit-unless-deny (PUD), Deny-unless-
permit (DUP), First-applicable (FA), Ordered-permit-overrides, and
Ordered-deny-overrides. Their semantics are explained in the stan-

dard specification and can be formulated by decision tables [10].

For instance, Table 1 presents the decision table of Permit-overrides.
Each entry represents a combined decision of the current policy

decision (column) and the next rule decision (row). For example, if

the current policy decision is 𝐷𝑒𝑛𝑦 and the next rule evaluates to

𝑃𝑒𝑟𝑚𝑖𝑡 , then the combined policy decision becomes 𝑃𝑒𝑟𝑚𝑖𝑡 . The

proofs of all theorems related to Permit-overrides rely on the deci-

sion table. This paper focuses on five rule-combining algorithms

because Ordered-permit-overrides is similar to Permit-overrides and
Ordered-deny-overrides is similar to Deny-overrides.

3.2 Mutation Operators
This paper formalizes fault detection conditions with respect to

faults represented by policy mutants. Policy mutants are created

by mutation operators, which modify a policy element of the given

policy (i.e., mutation point) according to a fault type. We follow the

current fault model and mutation operators of XACML 3.0 [18][19],

as shown in Table 2. The fault types include incorrect policy (policy
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Table 2: Mutation Operators

No Name Meaning Fault Type

1 PTT set Policy Target True Incorrect policy target

2 PTF set Policy Target False

3 CRC Change RCA Incorrect RCA

4 CRE Change Rule Effect Incorrect rule effect

5 RTT set Rule Target True Incorrect rule target

6 RTF set Rule Target False

7 RCT set Rule Condition True Incorrect rule condition

8 RCF set Rule Condition False

9 ANF Add Not in condition

10 RNF Remove Not in condition

11 FPR First Permit Rule Incorrect rule ordering

12 FDR First Deny Rule

13 RER REmove a Rule Missing rule

14 RPTE Remove Parallel Element Missing target element

Table 3: Sample Mutants of the Sample-PO Policy

Mutant Name Mutated Element

Sample-PO-PTT Policy target: true

Sample-PO-RPTE0-1 Policy target: department = “HR”

Sample-PO-CRE3 R3:<title=“deputy”, location=

“on-campus”, Deny>

Sample-PO-RTT5 R5: <true, location=“off-campus”, Deny>

Sample-PO-RPTE5-1 R5: <job-class=“guest”, location=

“off-campus”, Deny>

Sample-PO-RCT3 R3: <title=“deputy”, true, Permit>

Sample-PO-RER3 R3 is removed

Sample-PO-CRC-FA RCA: First-applicable

set) target, incorrect rule-combining (policy-combining) algorithm,

incorrect rule effect, incorrect rule target, incorrect rule conditions,

incorrect rule ordering, missing rule, and missing a parallel target

element (i.e., 𝐴𝑛𝑦𝑂𝑓 or 𝐴𝑙𝑙𝑂 𝑓 clause).

Each mutant is named after the original policy, the mutation op-

erator, and the indices of the mutated element if applicable. Table 3

shows some sample mutants of the running example. Sample-PO-
PTT is obtained by changing the policy target to true (i.e., the policy

target is removed). Sample-PO-RPTE0-1 is created by applying RPTE
to the policy target’s second parallel element. Sample-PO-CRE3 re-
sults from applying CRE to rule R3, which changes the effect from

𝑃𝑒𝑟𝑚𝑖𝑡 to 𝐷𝑒𝑛𝑦.

4 FORMALIZATION OF FAULT DETECTION
CONDITIONS

4.1 Fault Detection Conditions
Given a correct policy 𝑃 and its mutant 𝑃 ′ obtained by some muta-

tion operator in Table 2, 𝑃 ′ represents a policy fault if it is not an

equivalent mutant. The fault detection condition (FDC) for reveal-

ing the fault in 𝑃 ′ refers to the sufficient and necessary condition

on access request 𝑞 that makes 𝑃 and 𝑃 ′ produce different pol-

icy decisions, i.e., 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞). It consists of the following

constraints:

• Reachability constraint: 𝑞 must trigger the execution of the

faulty policy element (i.e., mutation point) in 𝑃 ′.
• Necessity constraint: 𝑞 must make the faulty policy element

in 𝑃 ′ and the original element in 𝑃 evaluate to different

intermediate results.

• Propagation constraint: 𝑞 must make the different interme-

diate results propagated to the final decisions of 𝑃 and 𝑃 ′.

𝑃 ′ is an equivalent mutant if the FDC is unsatifiable; otherwise,

any request (test) satisfying the FDC can kill 𝑃 ′, demonstrating that

𝑃 ′ is different from 𝑃 .

Consider mutant Sample-PO-PTT in Table 3, where the policy

target is set to 𝑡𝑟𝑢𝑒 . There is no reachability constraint because

the policy target is always evaluated. The necessity constraint is

that the original policy target is false, which makes the original

policy evaluate to 𝑁 /𝐴. To propagate the difference to the policy

level, the mutant’s decision should not be 𝑁 /𝐴. Consider mutant

Sample-PO-CRE3, where rule 𝑅3’s effect is changed. To reach rule

𝑅3, we may make the policy target evaluate to 𝑡𝑟𝑢𝑒 and all rules

before rule 𝑅3 evaluate to 𝑁 /𝐴. The necessity constraint is that

rule 𝑅3 must be fired to obtain different rule-level decisions. To

propagate the difference, no permit rule after rule 𝑅3 should be

fired. Rule 𝑅4 is the only permit rule after rule 𝑅3. Putting the above

constraints together, we have the following FDC:

(department=“HR” ∨ department=“IT”) ∧ //reachability

¬ (title=“director" ∧ location="on-campus") ∧
¬ (title=“director" ∧ location="off-campus") ∧
(title=“deputy" ∧ location="on-campus") ∧ //necessity

¬ (title=“deputy" ∧ location=“off-campus") //propagation
It is simplified as department ∈ {“HR”, “IT”} ∧ (title=“deputy”) ∧

(location=“on-campus”). Any test that satisfies this condition can

kill the mutant.

In the following, we formalize the FDCs of all themutants created

by the mutation operators in Table 2. For each fault type with

multiple mutation operators, we first deal with the general FDC

and then apply it to the concrete mutation operators of the fault

type. For example, a mutant with an incorrect policy target may

result from the application of mutation operator PTT (set policy

target true), PTF (set policy target false), or RPTE (remove parallel

target element in policy target). The general FDC of incorrect policy

target applies to all mutants of PTT, PTF, and RPTE. This not only

facilitates the discussion, but also allows new mutation operators of

the same fault type to be introduced in the future: the FDC of each

new mutant is a simplified version of the general FDC. To avoid

duplication, we will discuss the common fault detection constraints

for all fault types beyond incorrect policy target.

For convenience, we also denote rule 𝑟𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 , 𝑟𝑒𝑖 > as

< 𝑟𝑏𝑖 , 𝑟𝑒𝑖 >, where 𝑟𝑏𝑖 , called rule body, consists of 𝑟𝑡𝑖 and 𝑟𝑐𝑖 . Per

the XACML standard specification, 𝑟𝑏𝑖 = 𝑟𝑡𝑖 ∧𝑟𝑐𝑖 when rule 𝑟𝑖 fires;

¬𝑟𝑏𝑖 = ¬𝑟𝑡𝑖 ∨ (𝑟𝑡𝑖 ∧¬𝑟𝑐𝑖 ) when rule 𝑟𝑖 is not applicable. 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )
= 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 ) ∨ (𝑟𝑡𝑖 ∧𝐸𝑟𝑟𝑜𝑟 (𝑟𝑐𝑖 )) when there is an error occurrence.

Given an expression 𝜔 and its mutant 𝜔 ′
, 𝜔 ≠ 𝜔 ′

means that 𝜔

and 𝜔 ′
evaluate to different results. There are six possible cases:

𝜔 ∧¬𝜔 ′
, 𝜔 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝜔 ′), ¬𝜔 ∧𝜔 ′

, ¬𝜔 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝜔 ′), 𝐸𝑟𝑟𝑜𝑟 (𝜔) ∧𝜔 ′
,

and 𝐸𝑟𝑟𝑜𝑟 (𝜔) ∧ ¬𝜔 ′
. The theorems involving 𝜔 ≠ 𝜔 ′

are typically

proven by dealing with all these cases.
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4.2 FDC of Incorrect Policy Target
Let 𝑃 ′ =< 𝑃𝑇 ′, 𝑅𝐶𝐴, 𝑅 > be a mutant of 𝑃 =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 >. 𝑃 ′ has
an incorrect policy target 𝑃𝑇 ′

. There is no reachability constraint

because 𝑃𝑇 and 𝑃𝑇 ′
are always evaluated. The necessity constraint

is 𝑃𝑇 ≠ 𝑃𝑇 ′
. The propagation constraint depends on 𝑅𝐶𝐴. For

Permit-unless-deny or Deny-unless-permit, there is no additional

propagation constraint. The sufficient and necessary FDC is that 𝑃𝑇

and 𝑃𝑇 ′
evaluate to different results. This is formalized by Theorem

1.

Theorem 1. Suppose 𝑃 ′ =< 𝑃𝑇 ′, 𝑅𝐶𝐴, 𝑅 > be a mutant of 𝑃 =<

𝑃𝑇, 𝑅𝐶𝐴, 𝑅 > and 𝑅𝐶𝐴 ∈ {Permit-unless-deny, Deny-unless-permit}.
𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞) if and only if 𝑃𝑇 ≠ 𝑃𝑇 ′

with respect to 𝑞.

Proof. (a) Sufficient condition: If 𝑃𝑇 ≠ 𝑃𝑇 ′
, then 𝑑 (𝑃, 𝑞) ≠

𝑑 (𝑃 ′, 𝑞) for each of these six cases. We discuss three of them and

others are symmetric.

If 𝑃𝑇 ∧ ¬𝑃𝑇 ′
, then 𝑑 (𝑃 ′, 𝑞) = 𝑁 /𝐴, but 𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞)

is either 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦.

If 𝑃𝑇 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′), then 𝑑 (𝑃, 𝑞) is either 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦, but

𝑑 (𝑃 ′, 𝑞) is either 𝐼𝐷 or 𝐼𝑃 .

If ¬𝑃𝑇 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′), then 𝑑 (𝑃, 𝑞) = 𝑁 /𝐴, but 𝑑 (𝑃 ′, 𝑞) is either
𝐼𝐷 or 𝐼𝑃 .

(b) Necessary condition: 𝑃𝑇 = 𝑃𝑇 ′
implies 𝑑 (𝑃, 𝑞) = 𝑑 (𝑃 ′, 𝑞) as

they also have the same 𝑅𝐶𝐴 and 𝑅. Therefore, 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞)
implies 𝑃𝑇 ≠ 𝑃𝑇 ′

. □

For First-applicable, the FDC is that 𝑃𝑇 ≠ 𝑃𝑇 ′
and at least one

rule fires or, when 𝑃𝑇 or 𝑃𝑇 ′
is false, one rule evaluates to indeter-

minate. This is formalized by Theorem 2.

Theorem 2. Suppose 𝑃 ′ =< 𝑃𝑇 ′, First-applicable, 𝑅 > be a mu-

tant of 𝑃 =< 𝑃𝑇,First-applicable, 𝑅 >. 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞) if and only

if 𝑃𝑇 ≠ 𝑃𝑇 ′∧ (∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 ∨ ((¬𝑃𝑇 ∨ ¬𝑃𝑇 ′) ∧∃𝑟𝑖 ∈ 𝑅

such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ))).

Proof. (a) Sufficient condition: Suppose 𝑃𝑇 ≠ 𝑃𝑇 ′ ∧ (∃𝑟𝑖 ∈ 𝑅

such that 𝑟𝑏𝑖 ∨ ((¬𝑃𝑇 ∧ ¬𝑃𝑇 ′) ∧ ∃𝑟𝑖 ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )))
holds. 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞) holds for all the six cases of 𝑃𝑇 ≠ 𝑃𝑇 ′

. We

elaborate on three on them.

(1) 𝑃𝑇 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′): (¬𝑃𝑇 ∨ ¬𝑃𝑇 ′) is false. “(∃𝑟𝑖 ∈ 𝑅 such

that 𝑟𝑏𝑖 ∨ ((¬𝑃𝑇 ∧ ¬𝑃𝑇 ′) ∧ ∃𝑟𝑖 ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )))” re-
duces to “∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖”. Because 𝑅𝐶𝐴 is First-applicable,
𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦} no matter whether there exists

rule 𝑟𝑘 before rule 𝑟𝑖 that fires. According to Definition 2, 𝑑 (𝑃, 𝑞) =
𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. 𝑑 (𝑃 ′, 𝑞) is simplified as follows:

𝑑 (𝑃 ′, 𝑞) =


𝑟𝑐𝑎 if 𝑟𝑐𝑎 ∈ {𝑁 /𝐴, 𝐼𝐷, 𝐼𝑃, 𝐼𝐷𝑃}
𝐼𝑃 if 𝑟𝑐𝑎 = 𝑃𝑒𝑟𝑚𝑖𝑡

𝐼𝐷 if 𝑟𝑐𝑎 = 𝐷𝑒𝑛𝑦

where 𝑟𝑐𝑎 denotes 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞). Therefore, 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞).
(2) 𝑃𝑇 ∧ ¬𝑃𝑇 ′

: 𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) and 𝑑 (𝑃 ′, 𝑞) = 𝑁 /𝐴 ac-

cording to Definition 2. “(∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 ∨ ((¬𝑃𝑇 ∨ ¬𝑃𝑇 ′)
∧∃𝑟𝑖 ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )))” reduces to “∃𝑟𝑖 ∈ 𝑅 such that

𝑟𝑏𝑖 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )”. We prove that 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴. When

there exists rule 𝑟𝑖 such that 𝑟𝑏𝑖 , there are two cases: (i) no rule

before 𝑟𝑖 is fired. In this case, 𝑑 (𝑟𝑖 , 𝑞) = 𝑟𝑒𝑖 according to Definition 1.

𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) will evaluate to 𝑟𝑒𝑖 (either 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦). There-

fore, 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴. (ii) rule 𝑟𝑘 is the first rule before 𝑟𝑖 that

is fired. 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) will evaluate to 𝑟𝑒𝑘 (either 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦).

Therefore, 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴. When there exists rule 𝑟𝑖 such

that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ), 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴 because 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) =

𝑁 /𝐴 only if all rules evaluate to 𝑁 /𝐴.
(3) ¬𝑃𝑇 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′): 𝑑 (𝑃, 𝑞) = 𝑁 /𝐴. “(∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 ∨

((¬𝑃𝑇 ∨¬𝑃𝑇 ′) ∧∃𝑟𝑖 ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )))” reduces to “∃𝑟𝑖 ∈
𝑅 such that 𝑟𝑏𝑖 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )”. In either case, 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴.
According to Definition 2, 𝑑 (𝑃 ′, 𝑞) ≠ 𝑁 /𝐴. So 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞).

(b) Necessary condition: Suppose 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞) and 𝑃𝑇 ≠

𝑃𝑇 ′
. We prove that (∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖∨((¬𝑃𝑇∨¬𝑃𝑇 ′) ∧∃𝑟𝑖 ∈ 𝑅

such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ))) holds for all six cases of 𝑃𝑇 ≠ 𝑃𝑇 ′
. We

elaborate on three of them.

(1) 𝑃𝑇 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′): 𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞), whereas

𝑑 (𝑃 ′, 𝑞) =


𝑟𝑐𝑎 if 𝑟𝑐𝑎 ∈ {𝑁 /𝐴, 𝐼𝐷, 𝐼𝑃, 𝐼𝐷𝑃}
𝐼𝑃 if 𝑟𝑐𝑎 = 𝑃𝑒𝑟𝑚𝑖𝑡

𝐼𝐷 if 𝑟𝑐𝑎 = 𝐷𝑒𝑛𝑦

where 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) is denoted by 𝑟𝑐𝑎. If 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑁 /𝐴, 𝐼𝐷,
𝐼𝑃, 𝐼𝐷𝑃}, then 𝑑 (𝑃, 𝑞) = 𝑑 (𝑃 ′, 𝑞), which is a contradiction. Thus,

𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. This means that at least one rule

fires, i.e., ∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 holds.

(2) 𝑃𝑇 ∧ ¬𝑃𝑇 ′
: 𝑑 (𝑃 ′, 𝑞) = 𝑁 /𝐴. 𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴.

This means not all rules evaluate to 𝑁 /𝐴. In other words, there

exists 𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ).
(3)¬𝑃𝑇∧𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′):𝑑 (𝑃, 𝑞) = 𝑁 /𝐴. Because𝑑 (𝑃 ′, 𝑞) ≠ 𝑑 (𝑃, 𝑞),

we have 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴. This implies that there exists 𝑟𝑖 ∈ 𝑅

such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ). □

ForDeny-overrides, the FDC is that 𝑃𝑇 ≠ 𝑃𝑇 ′
and one of the deny

rules is fired, or a permit rule is fired but no deny rule evaluates

to indeterminate, or, when 𝑃𝑇 or 𝑃𝑇 ′
is false, one rule is fired or

evaluate to indeterminate. This is formalized by Theorem 3.

Theorem3. Suppose 𝑃 ′ =< 𝑃𝑇 ′,Deny-overrides, 𝑅 > be amutant

of 𝑃 =< 𝑃𝑇,Deny-overrides, 𝑅 >. 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞) if and only

if 𝑃𝑇 ≠ 𝑃𝑇 ′ ∧(∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝑟𝑏𝑖 ∨ (∃𝑟𝑖 =

(𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅 such that 𝑟𝑏𝑖 ∧¬∃𝑟 𝑗 = (𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that

𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )))∨ ((¬𝑃𝑇 ∨¬𝑃𝑇 ′)∧∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )).

Proof. (a) Sufficient condition: We discuss three cases of 𝑃𝑇 ≠

𝑃𝑇 ′
.

(1) 𝑃𝑇∧𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′): Because¬𝑃𝑇∨¬𝑃𝑇 ′
is false,∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦)

∈ 𝑅 such that 𝑟𝑏𝑖 ∨ (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅 such that 𝑟𝑏𝑖 ∧¬∃𝑟 𝑗 =
(𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )). Thus, 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈
{𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. 𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. Ac-
cording to Definition 2, 𝑑 (𝑃 ′, 𝑞) ∈ {𝐼𝑃, 𝐼𝐷}. Therefore, 𝑑 (𝑃, 𝑞) ≠

𝑑 (𝑃 ′, 𝑞).
(2) 𝑃𝑇 ∧¬𝑃𝑇 ′

:𝑑 (𝑃 ′, 𝑞) = 𝑁 /𝐴. If ∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that

𝑟𝑏𝑖 ∨ (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅 such that 𝑟𝑏𝑖 ∧¬∃𝑟 𝑗 = (𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈
𝑅 such that𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )),𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}.
Therefore, 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞). If ∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ),
𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴. Thus, 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞).

(3) ¬𝑃𝑇 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′): 𝑑 (𝑃, 𝑞) = 𝑁 /𝐴, whereas:

𝑑 (𝑃 ′, 𝑞) =


𝑟𝑐𝑎 if 𝑟𝑐𝑎 ∈ {𝑁 /𝐴, 𝐼𝐷, 𝐼𝑃, 𝐼𝐷𝑃}
𝐼𝑃 if 𝑟𝑐𝑎 = 𝑃𝑒𝑟𝑚𝑖𝑡

𝐼𝐷 if 𝑟𝑐𝑎 = 𝐷𝑒𝑛𝑦

If ∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝑟𝑏𝑖 ∨ (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅

such that 𝑟𝑏𝑖 ∧ ¬∃𝑟 𝑗 = (𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )),
𝑑 (𝑃 ′, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. Therefore, 𝑑 (𝑃, 𝑞) ≠
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𝑑 (𝑃 ′, 𝑞). If ∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ), 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠

𝑁 /𝐴. So 𝑑 (𝑃 ′, 𝑞) ≠ 𝑁 /𝐴.
(b) Necessary condition: Suppose 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞). For each of

the six cases of 𝑃𝑇 ≠ 𝑃𝑇 ′
, we prove that (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦) ∈ 𝑅

such that 𝑟𝑏𝑖 ∨ (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅 such that 𝑟𝑏𝑖 ∧ ¬∃𝑟 𝑗 =

(𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 ))) ∨ ((¬𝑃𝑇 ∨¬𝑃𝑇 ′) ∧∃𝑟𝑖 ∈ 𝑅

such that 𝑟𝑏𝑖 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )) .
(1) 𝑃𝑇∧𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′):𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞). If 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈

{𝑁 /𝐴, 𝐼𝐷, 𝐼𝑃, 𝐼𝐷𝑃}, then 𝑑 (𝑃, 𝑞) = 𝑑 (𝑃 ′, 𝑞), which is a contradic-

tion. Thus, 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. This means that ∃𝑟𝑖 =
(𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝑟𝑏𝑖 ∨ (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅 such that

𝑟𝑏𝑖 ∧ ¬∃𝑟 𝑗 = (𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )).
(2) 𝑃𝑇 ∧ ¬𝑃𝑇 ′

: 𝑑 (𝑃 ′, 𝑞) = 𝑁 /𝐴. 𝑑 (𝑃, 𝑞) = 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠

𝑁 /𝐴. This means not all rules evaluate to 𝑁 /𝐴. In other words,

there exists 𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ). This subsumes

𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ∈ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦}. So (∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦) ∈ 𝑅 such

that 𝑟𝑏𝑖∨(∃𝑟𝑖 = (𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡) ∈ 𝑅 such that 𝑟𝑏𝑖∧¬∃𝑟 𝑗 = (𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦) ∈
𝑅 such that 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 ))) ∨ (∃𝑟𝑖 ∈ 𝑅 such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )).

(3)¬𝑃𝑇∧𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′):𝑑 (𝑃, 𝑞) = 𝑁 /𝐴. Because𝑑 (𝑃 ′, 𝑞) ≠ 𝑑 (𝑃, 𝑞),
we have 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑁 /𝐴. This implies that there exists 𝑟𝑖 ∈ 𝑅

such that 𝑟𝑏𝑖 or 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ). □

Since Permit-overrides and Deny-overrides are symmetric, this

paper will present the relevant theorems for one of them. Now we

discuss how the above FDCs apply to the incorrect policy target

mutants created by the relevant mutation operators. When 𝑃 ′ is a
PTT mutant of 𝑃 , i.e., 𝑃𝑇 ′

is always true. The necessity constraint

𝑃𝑇 ≠ 𝑃𝑇 ′
reduces to ¬𝑃𝑇 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ). When 𝑃 ′ is a PTF mutant

of 𝑃 , i.e., 𝑃𝑇 ′
is always false, the necessity constraint reduces to

𝑃𝑇 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ). For RPTE, it can be applied to either an AllOf or

AnyOf clause. Consider 𝑃𝑇 = 𝑐1∧...∧𝑐𝑖−1∧𝑐𝑖∧𝑐𝑖+1 ...∧𝑐𝑛 and 𝑃𝑇 ′ =
𝑐1∧ ...∧𝑐𝑖−1∧𝑐𝑖+1 ...∧𝑐𝑛 where 𝑐𝑖 is removed. When 𝑃𝑇 is true, 𝑃𝑇 ′

is true. When 𝑃𝑇 ′
is false, 𝑃𝑇 is false. When 𝑃𝑇 ′

evaluates to error,

𝑃𝑇 also evaluates to error. Thus 𝑃𝑇 ∧ (¬𝑃𝑇 ′ ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′)) is false,
¬𝑃𝑇 ∧ (𝑃𝑇 ′∨𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ′)) becomes ¬𝑐𝑖 ∧𝑐1∧ ...∧𝑐𝑖−1∧𝑐𝑖+1 ...∧𝑐𝑛 .
𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ) ∧ (𝑃𝑇 ′ ∨ ¬𝑃𝑇 ′) becomes 𝐸𝑟𝑟𝑜𝑟 (𝑐𝑖 ) ∧ ¬𝐸𝑟𝑟𝑜𝑟 (𝑐 𝑗 ) for
any 𝑗 ≠ 𝑖 . Thus, the necessity constraint reduces to ¬𝑐𝑖 ∧ 𝑐1 ∧ ... ∧
𝑐𝑖−1 ∧ 𝑐𝑖+1 ... ∧ 𝑐𝑛 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑐𝑖 ) ∧ ¬𝐸𝑟𝑟𝑜𝑟 (𝑐 𝑗 ) for any 𝑗 ≠ 𝑖 . It means

that the removed clause evaluates to false while all other clauses

evaluates to true or it evaluates to error while none of the other

clauses evaluates to error. In essence, this is to capture the impact

of the removed clause 𝑐𝑖 . A special case is that 𝑃𝑇 = 𝑐1 and 𝑐1 is

removed, it reduces to ¬𝑐1 ∨𝐸𝑟𝑟𝑜𝑟 (𝑐1). This is the same as the case

of PTT mutant. Similarly, when RPTE removes 𝑐𝑖 from the AnyOf
clause 𝑐1 ∨ ... ∨ 𝑐𝑖−1 ∨ 𝑐𝑖 ∨ 𝑐𝑖+1 ... ∨ 𝑐𝑛 , the necessity constraint is

simplified to capture the impact of the removed clause 𝑐𝑖 .

4.3 Common Constraints for Other Fault Types
Before presenting the fault detection condition of other fault types,

let us first discuss their common reachability and propagation con-

straints. To reach the rule-combining algorithm and individual

rules of a policy, the policy target should not evaluate to false. Let

𝑃 ′ =< 𝑃𝑇, 𝑅𝐶𝐴′, 𝑅′ >, where the mutated element is either the rule-

combining algorithm or a rule. When 𝑃𝑇 is true, 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞)
if and only if 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞). When an error

occurs in the evaluation of 𝑃𝑇 , 𝑑 (𝑃, 𝑞) ≠ 𝑑 (𝑃 ′, 𝑞) if and only

if 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞) and < 𝑃𝑒𝑟𝑚𝑖𝑡, 𝐼𝑃 > and <

𝐷𝑒𝑛𝑦, 𝐼𝐷 > are not the results of< 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞), 𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞) >
or < 𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞), 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) >. So the common reachabil-

ity constraint is 𝑃𝑇 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ), and the common propagation

constraint is 𝐸𝑟𝑟𝑜𝑟 (𝑃𝑇 ) → ¬(𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) = 𝑃𝑒𝑟𝑚𝑖𝑡 ∧
𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞) = 𝐼𝑃)∧¬(𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) = 𝐼𝑃∧𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞) =
𝑃𝑒𝑟𝑚𝑖𝑡) ∧ ¬(𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) = 𝐷𝑒𝑛𝑦 ∧ 𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞) = 𝐼𝐷) ∧
¬(𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) = 𝐼𝐷∧𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞) = 𝐷𝑒𝑛𝑦). In the following,
these constraints are assumed. Because they have covered the error

occurrence of 𝑃𝑇 , we focus on 𝑟𝑐𝑎(𝑅𝐶𝐴, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(𝑅𝐶𝐴′, 𝑅′, 𝑞)
when 𝑃𝑇 is true.

4.4 FDC of Incorrect Rule Effect
Suppose 𝑃 ′ =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅′ > is a mutant of 𝑃 =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 >

with an incorrect rule effect. Without loss of generality, we assume

that rule 𝑟𝑖 in 𝑃 is < 𝑟𝑏𝑖 , 𝑃𝑒𝑟𝑚𝑖𝑡 >, whereas the incorrect rule 𝑟𝑖
in 𝑃 ′ is < 𝑟𝑏𝑖 , 𝐷𝑒𝑛𝑦 >. While the necessity constraint is that rule

𝑟𝑖 in 𝑃 and rule 𝑟𝑖 in 𝑃 ′ produce different rule-level decisions, the
additional reachability and propagation constraints depend on 𝑅𝐶𝐴.

When 𝑅𝐶𝐴 =Permit-overrides, the additional condition besides

the aforementioned common constraints is that rule 𝑟𝑖 is fired

and no other permit rule is fired, or when rule 𝑟𝑖 evaluates to

indeterminate, all other permit rules are not-applicable. This is

formalized by Theorem 4.

Theorem 4. 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-overrides,
𝑅′, 𝑞) if and only if 𝑟𝑏𝑖 ∧ (¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for any permit rule

𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖) ∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )∧ ≠ 𝑟𝑏 𝑗 for any permit

rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖).

Proof. (a) Sufficient condition: Suppose 𝑟𝑏𝑖∧(¬𝑟𝑏 𝑗∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 ))
for any permit rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖). Since no permit

rule before 𝑟𝑖 is fired, 𝑟𝑖 is reached. It is fired because 𝑟𝑏𝑖 is true,

and evaluates to its effect (i.e., 𝑃𝑒𝑟𝑚𝑖𝑡 in 𝑃 and 𝐷𝑒𝑛𝑦 in 𝑃 ′). So
𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) = 𝑃𝑒𝑟𝑚𝑖𝑡 . Since no permit rule after 𝑟𝑖
is fired, 𝑟𝑐𝑎(Permit-overrides, 𝑅′, 𝑞) ≠ 𝑃𝑒𝑟𝑚𝑖𝑡 . Thus, 𝑟𝑐𝑎(Permit-
overrides, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-overrides, 𝑅′, 𝑞).

Suppose𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )∧¬𝑟𝑏 𝑗 for any permit rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 >

( 𝑗 ≠ 𝑖). Since no permit rule before 𝑟𝑖 is fired, 𝑟𝑖 is reached. It

evaluates to 𝐼𝑃 in 𝑃 and 𝐼𝐷 in 𝑃 ′ because 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ). If 𝑟𝑖 is the
last rule, then 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) = 𝐼𝑃 , and 𝑟𝑐𝑎(Permit-

overrides, 𝑅′, 𝑞) = 𝐼𝐷 . Thus, 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-
overrides, 𝑅′, 𝑞). If 𝑟𝑖 is not the last rule, consider each rule after

𝑟𝑖 . It cannot evaluate to 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐼𝑃 because ¬𝑟𝑏 𝑗 for any permit

rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖). So each rule after 𝑟𝑖 evaluates to

𝑁 /𝐴, 𝐷𝑒𝑛𝑦, or 𝐼𝐷 . 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) ∈ {𝐼𝑃, 𝐼𝐷𝑃}, whereas
𝑟𝑐𝑎(Permit-overrides, 𝑅′, 𝑞) ∈ {𝐷𝑒𝑛𝑦, 𝐼𝐷}.

(b) Necessary condition: Suppose 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) ≠
𝑟𝑐𝑎(Permit-overrides, 𝑅′, 𝑞). ¬𝑟𝑏𝑖 should not hold, otherwise rule

𝑟𝑖 evaluates to 𝑁 /𝐴 and 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) = 𝑟𝑐𝑎(Permit-
overrides, 𝑅′, 𝑞). Thus, 𝑟𝑏𝑖∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ). In the case of 𝑟𝑏𝑖 , 𝑟𝑐𝑎(Permit-
overrides, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-overrides, 𝑅′, 𝑞) implies that (¬𝑟𝑏 𝑗 ∨
𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for any permit rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖), other-
wise both evaluate to 𝑃𝑒𝑟𝑚𝑖𝑡 . In the case of 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ), rule 𝑟𝑖 evalu-
ates to 𝐼𝑃 in 𝑃 and 𝐼𝐷 in 𝑃 ′. 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-
overrides, 𝑅′, 𝑞) implies that each other permit rule should evaluate

to 𝑁 /𝐴, i.e., ¬𝑟𝑏 𝑗 for any permit rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠

𝑖). □
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When 𝑅𝐶𝐴 =Permit-unless-deny, the additional fault detection
constraint is that rule 𝑟𝑖 is fired and no other deny rule is fired. This

is formalized by Theorem 5.

Theorem 5. 𝑟𝑐𝑎(Permit-unless-deny, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-unless-
deny, 𝑅′, 𝑞) if and only if 𝑟𝑏𝑖 ∧ (¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for any deny

rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦 > ( 𝑗 ≠ 𝑖).
When 𝑅𝐶𝐴 =First-Applicable, the additional fault detection con-

straint is that rule 𝑟𝑖 is fired and no rule before 𝑟𝑖 is fired, or rule

𝑟𝑖 evaluates to indeterminate, all rules before 𝑟𝑖 are not-applicable,

and no rule after 𝑟𝑖 is fired. This is formalized by Theorem 6.

Theorem6. 𝑟𝑐𝑎(First-Applicable, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(First-Applicable, 𝑅′, 𝑞)
if and only if 𝑟𝑏𝑖 ∧ (¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for any rule 𝑟 𝑗 ( 𝑗 < 𝑖) ∨
𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ∨𝑟𝑏 𝑗 for any rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 > ( 𝑗 < 𝑖) ∧ (¬𝑟𝑏𝑘 ∨
𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑘 )) for any rule 𝑟𝑘 =< 𝑟𝑏𝑘 , 𝑟𝑒𝑘 > (𝑘 > 𝑖).

4.5 FDC of Incorrect Rule Target/Condition
Suppose 𝑃 ′ =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅′ > is a mutant of 𝑃 =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 >,

where the mutation point is the body (target or condition) of rule

𝑟𝑖 , i.e., < 𝑟𝑏𝑖 , 𝑟𝑒𝑖 > in 𝑃 and < 𝑟𝑏 ′
𝑖
, 𝑟𝑒𝑖 > in 𝑃 ′. The reachability

and propagation constraints depend on 𝑅𝐶𝐴. When 𝑅𝐶𝐴 =First-
applicable, the additional fault detection constraint is that none of

the rules before rule 𝑟𝑖 are fired, and the rule bodies 𝑟𝑏𝑖 and 𝑟𝑏 ′
𝑖

evaluate to different results, and when one of 𝑟𝑏𝑖 and 𝑟𝑏
′
𝑖
is true,

there should not exist rule 𝑟 𝑗 after 𝑟𝑖 that is fired with the same

effect as 𝑟𝑖 , or when one of 𝑟𝑏𝑖 and 𝑟𝑏 ′
𝑖
is false and the other is

error, all rules before 𝑟 𝑗 evaluate to 𝑁 /𝐴, no rule after 𝑟𝑖 is fired,

and there exists rule 𝑟𝑠 with different effect than 𝑟𝑖 that evaluates

to indeterminate and all rules between 𝑟𝑖 and 𝑟𝑠 evaluate to 𝑁 /𝐴 or

all rules after 𝑟𝑖 evaluate to 𝑁 /𝐴. This is formalized by Theorem 7.

Theorem 7. 𝑟𝑐𝑎(First-Applicable, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(First-Applicable,
𝑅′, 𝑞) if and only if ¬𝑟𝑏 𝑗 ∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 ) for any rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 >

( 𝑗 < 𝑖) ∧𝑟𝑏𝑖 ≠ 𝑟𝑏𝑖 ′∧((𝑟𝑏𝑖∨𝑟𝑏 ′𝑖 )∧(¬∃𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 > ( 𝑗 > 𝑖) such
that (𝑟𝑒 𝑗 = 𝑟𝑒𝑖 ) ∧ 𝑟𝑏𝑖 ) ∨ (¬𝑟𝑏𝑖 ∧𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′

𝑖
) ∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧¬𝑟𝑏 ′

𝑖
) ∧

¬𝑟𝑏 𝑗 for any rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 > ( 𝑗 < 𝑖) ∧ ¬∃𝑟𝑘 =< 𝑟𝑏𝑘 , 𝑟𝑒𝑘 >

(𝑘 > 𝑖) such that 𝑟𝑏𝑘 holds ∧(∃𝑟𝑠 =< 𝑟𝑏𝑠 , 𝑟𝑒𝑠 > (𝑠 > 𝑖) such that

(𝑟𝑒𝑙 ≠ 𝑟𝑒𝑖 ) ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑠 ) ∧ ¬𝑟𝑏𝑡 for any rule 𝑟𝑡 =< 𝑟𝑏𝑡 , 𝑟𝑒𝑡 > (𝑖 <
𝑡 < 𝑠) ∨ ¬𝑟𝑏𝑢 for any rule 𝑟𝑢 =< 𝑟𝑏𝑢 , 𝑟𝑒𝑢 > (𝑖 < 𝑢))).

When 𝑅𝐶𝐴 =Permit-overrides, none of the permit rules before

rule 𝑟𝑖 should be fired, otherwise rule 𝑟𝑖 is not evaluated. The ne-

cessity constraint requires that the rule bodies 𝑟𝑏𝑖 and 𝑟𝑏
′
𝑖
evaluate

to different results. When one of 𝑟𝑏𝑖 and 𝑟𝑏 ′
𝑖
is true, none of the

permit rules after rule 𝑟𝑖 should be fired if rule 𝑟𝑖 is a permit rule

and none of the other rules should be fired if rule 𝑟𝑖 is a deny rule.

When one of 𝑟𝑏𝑖 and 𝑟𝑏
′
𝑖
is false and the other is error, all permit

rules after rule 𝑟𝑖 should be non-applicable and no deny rule is fired

if rule 𝑟𝑖 is a permit rule, and none of the other rules should be fired

and no deny rule should occur an error if rule 𝑟𝑖 is a deny rule.

When 𝑅𝐶𝐴 =Permit-unless-deny, none of the deny rules before

𝑟𝑖 should be fired, otherwise 𝑟𝑖 is not evaluated. The necessity

constraint requires that 𝑟𝑖 should be a deny rule: if 𝑟𝑖 is a per-

mit rule, both 𝑟𝑐𝑎(Permit-unless-deny, 𝑅, 𝑞) and 𝑟𝑐𝑎(Permit-unless-
deny, 𝑅′, 𝑞) depend on the rules after 𝑟𝑖 and thus have the same

decision. The necessity constraint also requires that 𝑟𝑏𝑖 and 𝑟𝑏 ′
𝑖

evaluate to different results but one of them is true. The propaga-

tion constraint requires that none of the other deny rules should

be fired. This is formalized by Theorem 8.

Table 4: Instantiation of 𝑟𝑏𝑖 ≠ 𝑟𝑏 ′
𝑖
∧ (𝑟𝑏𝑖 ∨ 𝑟𝑏 ′

𝑖
)

Mutation Mutated Rule Instantiated version of

Operator in 𝑃 ′ (i.e., 𝑟𝑏 ′
𝑖
=) 𝑟𝑏𝑖 ≠ 𝑟𝑏 ′

𝑖
∧ (𝑟𝑏𝑖 ∨ 𝑟𝑏 ′

𝑖
)

RTT < 𝑡𝑟𝑢𝑒, 𝑟𝑐𝑖 > (¬𝑟𝑡𝑖 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 )) ∧ 𝑟𝑐𝑖
RTF < 𝑓 𝑎𝑙𝑠𝑒, 𝑟𝑐𝑖 > (𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 ) ∨ (𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 ) ∧ ¬𝑟𝑐𝑖 )
RCT < 𝑟𝑡𝑖 , 𝑡𝑟𝑢𝑒 > 𝑟𝑡𝑖 ∧ ¬𝑟𝑐𝑖
RCF < 𝑟𝑡𝑖 , 𝑓 𝑎𝑙𝑠𝑒 > 𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖
ANF < 𝑟𝑡𝑖 , 𝑛𝑜𝑡 𝑟𝑐𝑖 > 𝑟𝑡𝑖

Table 5: Instantiation of ¬𝑟𝑏𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′
𝑖
) ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ¬𝑟𝑏 ′

𝑖

Mutation Mutated Rule Instantiated version of ¬𝑟𝑏𝑖∧
Operator in 𝑃 ′ (i.e., 𝑟𝑏 ′

𝑖
=) 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′

𝑖
) ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ¬𝑟𝑏 ′

𝑖

RTT < 𝑡𝑟𝑢𝑒, 𝑟𝑐𝑖 > (¬𝑟𝑡𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑐𝑖 ))∨
(𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 ) ∧ ¬𝑟𝑐𝑖 )

RTF < 𝑓 𝑎𝑙𝑠𝑒, 𝑟𝑐𝑖 > (𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 ) ∧ ¬𝑟𝑐𝑖 )
RCT < 𝑟𝑡𝑖 , 𝑡𝑟𝑢𝑒 > Not satifiable

RCF < 𝑟𝑡𝑖 , 𝑓 𝑎𝑙𝑠𝑒 > 𝑟𝑡𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑐𝑖 )
ANF < 𝑟𝑡𝑖 , 𝑛𝑜𝑡 𝑟𝑐𝑖 > Not satifiable

Theorem 8. 𝑟𝑐𝑎(Permit-unless-deny, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-unless-
deny, 𝑅′, 𝑞) if and only if 𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦 ∧ 𝑟𝑏𝑖 ≠ 𝑟𝑏 ′

𝑖
∧ (𝑟𝑏𝑖 ∨ 𝑟𝑏 ′

𝑖
) ∧

(¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for any deny rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝐷𝑒𝑛𝑦 > ( 𝑗 ≠ 𝑖).
In the above general FDCs, the key expressions about the mu-

tation point are 𝑟𝑏𝑖 ≠ 𝑟𝑏 ′
𝑖
∧ (𝑟𝑏𝑖 ∨ 𝑟𝑏 ′

𝑖
) and ¬𝑟𝑏𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′

𝑖
) ∨

𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ¬𝑟𝑏 ′
𝑖
. They can be instantiated for each mutant type

of incorrect rule target and incorrect rule condition. Tables 4 and 5

show their instantiated versions for the mutants corresponding

to mutation operators RTT (Rule Target True), RTF (Rule Target

False), RCT (Rule Condition True), RCF (Rule Condition False), and

ANF (Add Not Function in rule condition).

For each mutant of incorrect rule condition, the satisfaction

of rule target 𝑟𝑡𝑖 is also a reachability constraint: the mutation

point 𝑟𝑐 ′
𝑖
is evaluated only when 𝑟𝑡𝑖 evaluates to 𝑡𝑟𝑢𝑒 . Thus, 𝑟𝑏𝑖

becomes 𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 and ¬𝑟𝑏𝑖 becomes 𝑟𝑡𝑖 ∧ ¬𝑟𝑐𝑖 . For a RCT mutant

where 𝑟𝑏𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 > and 𝑟𝑏 ′
𝑖
=< 𝑟𝑡𝑖 , 𝑡𝑟𝑢𝑒 >, the constraint

¬𝑟𝑏𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′
𝑖
) ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ¬𝑟𝑏 ′

𝑖
is not satisfiable because

𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′
𝑖
) = 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 ) is impossible (actually 𝑟𝑡𝑖 is true) when

¬𝑟𝑏𝑖 (i.e., 𝑟𝑡𝑖∧¬𝑟𝑐𝑖 ), and¬𝑟𝑏 ′𝑖 (i.e., 𝑟𝑡
′
𝑖
∧¬𝑟𝑐 ′

𝑖
) is impossible (actually

𝑟𝑏 ′
𝑖
evaluates to error) when 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) = 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑡𝑖 ). In this case,

the fault detection condition is simplified by removing the entire

sub-constraint of ¬𝑟𝑏𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′
𝑖
) ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ¬𝑟𝑏 ′

𝑖
. For an

RCF mutant where 𝑟𝑏𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 > and 𝑟𝑏 ′
𝑖
=< 𝑟𝑡𝑖 , 𝑓 𝑎𝑙𝑠𝑒 >, 𝑟𝑏 ′

𝑖
is false whenever 𝑟𝑏𝑖 evaluates to true (i.e., 𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 ) or error (i.e.,

𝑟𝑡𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑐𝑖 )).
For an ANF mutant where 𝑟𝑏𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 > and 𝑟𝑏 ′

𝑖
=< 𝑟𝑡𝑖 , 𝑛𝑜𝑡

𝑟𝑐𝑖 >. Whenever 𝑟𝑡𝑖 is true (reachability constraint), one of 𝑟𝑏𝑖 and

𝑟𝑏 ′
𝑖
is true and the other is false. The necessity constraint of the

mutation point is met. (¬𝑟𝑏𝑖 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 ′
𝑖
) ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ ¬𝑟𝑏 ′

𝑖
) is

not satisfiable because 𝑟𝑏 ′
𝑖
evaluates to indeterminate if and only

if 𝑟𝑏𝑖 evaluates to indeterminate. Thus, this sub-constraint can be

removed.

Session 3: Policy Mining and Testing  SACMAT ’22, June 8–10, 2022, New York, NY, USA

109



4.6 FDC of Missing Rule
Suppose 𝑃 ′ =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅′ > is a mutant of 𝑃 =< 𝑃𝑇, 𝑅𝐶𝐴, 𝑅 >,

where rule 𝑟𝑖 in𝑅 is missing in𝑅′
. Let𝑅 =< 𝑟1, ..., 𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1, ...𝑟𝑛 >,

and 𝑅′ =< 𝑟1, ..., 𝑟𝑖−1, 𝑟𝑖+1, ..., 𝑟𝑛 >. When 𝑅𝐶𝐴 =Permit-overrides,
no permit rule before rule 𝑟𝑖 should be fired to reach rule 𝑟𝑖 in 𝑃 . To

make rule 𝑟𝑖 take effect, 𝑟𝑖 should not evaluate to 𝑁 /𝐴. (1) When

rule 𝑟𝑖 in 𝑃 is fired and its decision is 𝑟𝑒𝑖 . If 𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 , then the

propagation constraint requires that no permit rule after rule 𝑟𝑖
should be fired. Together with the reachability constraint, it means

that no other permit rule should be fired. If 𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦, then no

permit rule after rule 𝑟𝑖 should be fired and none of the other deny

rules should be fired. Together with the reachability constraint, it

means that no other rule should be fired. (2) When rule 𝑟𝑖 evaluates

to indeterminate and its decision is 𝐼 (𝑟𝑒𝑖 ). If 𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 , all other

permit rules should evaluate to 𝑁 /𝐴. If 𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦, all other rules

should evaluate to 𝑁 /𝐴. Formally, we have Theorem 9.

Theorem 9. Let 𝑅 = [𝑟1, ..., 𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1, ..., 𝑟𝑛], 𝑅′ = [𝑟1, ..., 𝑟𝑖−1,
𝑟𝑖+1, ..., 𝑟𝑛]. 𝑟𝑐𝑎(Permit-overrides, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Permit-overrides, 𝑅′, 𝑞)
if and only if (𝑟𝑏𝑖 ∧ (𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡) ∧ (¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for
any permit rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖)) ∨ (𝑟𝑏𝑖 ∧ (𝑟𝑒𝑖 =

𝐷𝑒𝑛𝑦) ∧ (¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for any rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 > ( 𝑗 ≠
𝑖))) ∨ (𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ (𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡) ∧ ¬𝑟𝑏 𝑗 for any permit rule

𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖)) ∨ (𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 ) ∧ (𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦) ∧ ¬𝑟𝑏 𝑗
for any rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 > ( 𝑗 ≠ 𝑖)).

When 𝑅𝐶𝐴 =Deny-unless-permit, no permit rule before rule 𝑟𝑖
should be fired to reach rule 𝑟𝑖 . To make 𝑃 and 𝑃 ′ evaluate to

different decisions, rule 𝑟𝑖 in 𝑃 should be fired. (1) If 𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 ,

the propagation constraint requires that no permit rule after rule

𝑟𝑖 should be fired. (2) If 𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦, then 𝑃 and 𝑃 ′ have the same

decision, regardless of the evaluation results of rules 𝑟𝑖+1, ..., 𝑟𝑛 . To
summarize, the missing rule must be the only permit rule that is

fired in 𝑃 . This is formalized by Theorem 10.

Theorem10. Let𝑅 = [𝑟1, ..., 𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1, ..., 𝑟𝑛].𝑅′ = [𝑟1, ..., 𝑟𝑖−1,
𝑟𝑖+1, ..., 𝑟𝑛]. 𝑟𝑐𝑎(Deny-unless-permit, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(Deny-unless-permit,
𝑅′, 𝑞) if and only if 𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 ∧𝑟𝑏𝑖 ∧ (¬𝑟𝑏 𝑗 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏 𝑗 )) for
any permit rule 𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 > ( 𝑗 ≠ 𝑖).

When 𝑅𝐶𝐴 is First-applicable, all rules before rule 𝑟𝑖 should

evaluate to 𝑁 /𝐴, otherwise rule 𝑟𝑖 in 𝑃 will not be triggered. Note

that if a rule before rule 𝑟𝑖 evaluates to indeterminate, its decision,

either 𝐼𝐷 or 𝐼𝑃 , becomes the decision of both 𝑃 and 𝑃 ′. To make

𝑃 and 𝑃 ′ different, 𝑟𝑖 in 𝑃 should not evaluate to 𝑁 /𝐴, otherwise
both 𝑃 and 𝑃 ′ depend on the evaluation results of rules 𝑟𝑖+1, .., 𝑟𝑛 .
In other words, 𝑟𝑖 in 𝑃 should fire or evaluate to indeterminate. In

this case, its decision becomes 𝑃 ’s decision. In 𝑃 ′, however, rules
𝑟𝑖+1, ..., 𝑟𝑛 continue to be evaluated. To propagate the difference,

the result of 𝑟𝑐𝑎(First-applicable, [𝑟𝑖+1, . . . 𝑟𝑛], 𝑞) must be different

from 𝑟𝑖 ’s decision. This is formalized by Theorem 11.

Theorem11. Let𝑅 = [𝑟1, ..., 𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1, ..., 𝑟𝑛].𝑅′ = [𝑟1, ..., 𝑟𝑖−1,
𝑟𝑖+1, ..., 𝑟𝑛]. 𝑟𝑐𝑎(First-applicable, 𝑅, 𝑞) ≠ 𝑟𝑐𝑎(First-applicable, 𝑅′, 𝑞)
if and only if ¬𝑟𝑏 𝑗 for any rule 𝑟 𝑗 (0 < 𝑗 < 𝑖) ∧(𝑟𝑏𝑖∧𝑟𝑒𝑖 ≠ 𝑟𝑐𝑎(First-
applicable, [𝑟𝑖+1, ..., 𝑟𝑛], 𝑞)∨𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑖 )∧𝐼 (𝑟𝑒𝑖 ) ≠ 𝑟𝑐𝑎(First-applicable,
[𝑟𝑖+1, ..., 𝑟𝑛], 𝑞)).

5 QUALITATIVE EVALUATION OF TESTING
METHODS

This section applies the formalized FDCs to the qualitative evalua-

tion of five testing methods for XACML3.0, including rule-coverage

(RC), decision coverage (DC), no-error decision coverage (NE-DC),

MC/DC, and no-error MC/DC (NE-MC/DC) [18]. They are the main

methods publicly available for the current standard of XACML. The

empirical studies showed that they have outperformed the previous

methods. As they have all considered the reachability of rules and

decision expressions (policy target, rule target, and rule condition),

our discussion focuses on whether or not they satisfy the neces-

sity and propagation constraints of each fault type. As mentioned

before, other related work was based on the earlier versions of

XACML, and thus is difficult to compare. Nevertheless, it appears

that the rule coverage-based test selection [4] is comparable to RC,

and XPTester [12] comparable to NE-DC.

Tables 6 and 7 summarize the analysis results. Table 6 presents

the fault detection capabilities of the testing methods with respect

to the incorrect use of rule-combining algorithms (i.e., mutants

created by the CRC operator). For each pair of rule-combining

algorithms < 𝑅𝐶𝐴1, 𝑅𝐶𝐴2 >, the mutation is either changing 𝑅𝐶𝐴1

to 𝑅𝐶𝐴2 or 𝑅𝐶𝐴2 to 𝑅𝐶𝐴1. Table 7 shows their fault detection

capabilities with respect to other fault types. In each table, “Yes”

(or “No”) means that the mutants created by the corresponding

mutation operator are “always” (or “never”) killed. “Yes*” means

that the mutants are conditionally killed. The conditions are mostly

about propagation constraint and can further be refined according

to structural patterns of policies (e.g., permit-only or deny-only

rules). “No*” means that, generally, the testing method cannot kill

the mutants, but exceptions may exist. For either “Yes*” or “No*”,

some mutants are killed, while others are live. However, we use

“No*” to indicate that the cases of killed mutants are exceptional

or coincidental. Table 7 covers all the rule-combining algorithms,

where each entry indicates the minimum capability. For example,

when the rule-combining algorithm is First-applicable, all entries of
the CRE row is unconditional “Yes”, because the decision of a fired

rule becomes the policy decision. An unconditional “Yes” or “No”

applies to any rule-combining algorithm, whereas a conditional

“Yes*” or “No” may imply different conditions for different rule-

combining algorithms. FPR and FDR apply only when the rule-

combining algorithm is First-applicable.

The error tests, which are the difference between NE-DC and

DC and between NE-MC/DC and MC/DC, can kill more mutants

of RTT, RTF, RCT, RCF, ANF, and RNF. Compared to DC, MC/DC

deals with the necessity constraint of most all RPTE mutants of

compound policy and rule targets. MC/DC may also kill additional

mutants of CRE, RTT, RTF, RCT, RCF, ANF, BNF, and RER. Neverthe-

less, MC/DC does not directly satisfy their propagation constraints,

which largely depend on concrete policies. Therefore, in Table 7,

the entries of MC/DC are mostly conditional “Yes*”, rather than

unconditional “Yes”.

In the following, we elaborate on how the qualitative evalua-

tion was performed using Permit-overrides as the rule-combining

algorithm. Although the evaluation is independent of specific poli-

cies, we use the Sample-PO policy for illustration purposes. Table 8

presents all the test cases generated by the five testing methods,
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Table 6: Fault detection capabilities of incorrect rule-
combining algorithms (PO: Permit-overrides, DO: Deny-
overrides, FA: First-applicable, DUP: Deny-unless-permit,
PUD: Permit-unless-deny)

CRC:

Change RCA RC NE-DC DC NE-MC/DC MC/DC

PO vs DO No* Yes Yes Yes Yes

PO vs DUP No Yes Yes Yes Yes

PO vs PUD No* Yes Yes Yes Yes

PO vs FA No* No* Yes No* Yes

DO vs DUP No* Yes Yes Yes Yes

DO vs PUD No Yes Yes Yes Yes

DO vs FA No* No* Yes No* Yes

DUP vs PUD No* Yes Yes Yes Yes

DUP vs FA No* Yes Yes Yes Yes

PUD vs FA No* Yes Yes Yes Yes

Table 7: Fault detection capabilities of other fault types

Mutation NE-

operator RC NE-DC DC MC/DC MC/DC

PTT No Yes Yes Yes Yes

PTF Yes Yes Yes Yes Yes

CRE Yes* Yes* Yes* Yes* Yes*

RTT No* Yes* Yes* Yes* Yes*

RTF Yes* Yes* Yes* Yes* Yes*

RCT No* Yes* Yes* Yes* Yes*

RCF Yes* Yes* Yes* Yes* Yes*

ANF Yes* Yes* Yes* Yes* Yes*

RNF Yes* Yes* Yes* Yes* Yes*

FPR No* No* No* Yes* Yes*

FDR No* No* No* Yes* Yes*

RER Yes* Yes* Yes* Yes* Yes*

RPTE No* No* No* Yes* Yes*

where (𝑤𝑡) denotes that the value has a wrong type for the at-

tribute. Table 9 shows whether or not each of the sample mutants

in Section III is killed by each testing method. If killed, the test cases

are listed.

5.1 Rule Coverage
The RC method generates exactly one test to fire each rule. The test

generation constraint for rule 𝑟𝑖 is the conjunction of the reachabil-

ity constraint of 𝑟𝑖 and 𝑟𝑡𝑖∧𝑟𝑐𝑖 . The test that covers rule 𝑟𝑖 also satis-
fies 𝑃𝑇 and ¬𝑟𝑡 𝑗 ∨¬𝑟𝑐 𝑗 for any permit rule 𝑟 𝑗 =< 𝑟𝑡 𝑗 , 𝑟𝑐 𝑗 , 𝑃𝑒𝑟𝑚𝑖𝑡 >

before 𝑟𝑖 . Tests 1-6 in Table 8 form the RC test suite for Sample-
PO. Although each RC test fires a rule, the rule’s effect does not

necessarily become the policy’s decision. For example, if the two

deny rules were listed before the permit rules in Sample-PO, the
tests covering the deny rules would lead to a policy decision of 𝐼𝑃 .

Even though a deny rule is fired, the permit rules continue to be

evaluated. These tests would make the permit rules evaluate to 𝐼𝑃

because there is no value for the title attribute.

Table 8: Sample-PO Test Cases Created by Testing Methods
RC(1), NE-DC(2), DC(3), NE-MC/DC(4), MC/DC(5)

Test Input: < department, Oracle Test Method

# title, job-class, location> value 1 2 3 4 5

1 HR, director, ,on-campus Permit x x x x x

2 IT, director, ,off-campus Permit x x x x x

3 HR, deputy, ,on-campus Permit x x x x x

4 HR, deputy, ,off-campus Permit x x x x x

5 HR, ar, guest, off-campus Deny x x x x x

6 HR, ar, intern, off-campus Deny x x x x x

7 A, , , N/A x x x x

8 HR, aaI, , aas ID x x x x

9 HR, director, , aaaaaan ID x x x x

10 HR, deputy, , av ID x x x x

11 HR, deputy, aC, k N/A x x x x

12 IT, director, guest, aav N/A x x x x

13 IT, director, intern, aav N/A x x x x

14 A(wt), , , N/A x x

15 HR, aaaI(wt), , aas IDP x x

16 HR,director, ,on-campus(wt) IDP x x

17 HR,deputy, ,on-campus(wt) IDP x x

18 HR,ar,guest,off-campus(wt) N/A x x

19 HR,ar,intern,off-campus(wt) N/A x x

20 HR,ar,part-time,off-campus Deny x x

21 HR,ar,contractor,off-campus Deny x x

Table 9: Testing results of the sample mutants (Y: Yes, N: No)

Mutant NE- NE-

name RC DC DC MC/DC MC/DC

PTT N Y(7) Y(7,14) Y(7) Y(7,14)

RPTE0-1 N N N Y(2) Y(2)

CRE3 Y(3) Y(3) Y(3) Y(3) Y(3)

RTT5 N N N N N

RPTE5-1 N N N Y(20) Y(20)

RCT3 N Y(10,11) Y(10,11,17) Y(10,11) Y(10,11,17)

CRC-FA N N Y(15-19) N Y(15-19)

5.1.1 CRC (Change Rule-Combining algorithm). RC may or may

not kill the CRC/Deny-overrides mutant (i.e., Permit-overrides is
changed toDeny-overrides).When Permit-overrides andDeny-overrides
are non-equivalent, 𝑃 contains a pair of permit and deny rules that

conflict with each other. Suppose 𝑟𝑖 =< 𝑟𝑏𝑖 , 𝑟𝑒𝑖 > appears before

𝑟 𝑗 =< 𝑟𝑏 𝑗 , 𝑟𝑒 𝑗 > (𝑖 < 𝑗), 𝑟𝑏𝑖 and 𝑟𝑏 𝑗 are not identical, and 𝑟𝑒𝑖 ≠ 𝑟𝑒 𝑗 .

The test that fires rule 𝑟𝑖 does not kill the mutant unless it happens

to (a) fire rule 𝑟 𝑗 or (b) evaluate 𝑟 𝑗 to indeterminate. (a) is unlikely

because 𝑟𝑏 𝑗 is not used for solving 𝑟𝑏𝑖 . The test that fires rule 𝑟 𝑗
does not fire rule 𝑟𝑖 due to 𝑟 𝑗 ’s reachability constraint. (b) can be

satisfied only when rules 𝑟𝑖 and 𝑟 𝑗 involve different attributes and

the test covering rule 𝑟𝑖 has no value for some attribute in rule 𝑟 𝑗 .

The CRC/Deny-overrides mutant of Sample-PO falls into the case of

(b) and is killed by the RC method.

RC cannot kill the CRC/Deny-unless-permit mutant. When a RC

test makes 𝑃 evaluate to a permit decision, a permit rule was fired.

So 𝑃 ′ also results in a 𝑃𝑒𝑟𝑚𝑖𝑡 decision. When a RC test makes 𝑃
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evaluate to a 𝑑𝑒𝑛𝑦 decision, a deny rule was fired but no permit rule

was fired. 𝑃 ′ also results in a 𝐷𝑒𝑛𝑦 decision. Here non-equivalence

of Permit-overrides and Deny-unless-permit (or Permit-unless-deny)
does not require that 𝑃 should contain both permit and deny rules.

RC cannot kill the CRC/Permit-unless-denymutant where Permit-
overrides is changed to Permit-unless-deny except that a test covering
a permit (or deny) rule also fires a deny (or permit) rule. In the

exceptional case, the decision of 𝑃 is 𝑃𝑒𝑟𝑚𝑖𝑡 , whereas the decision of

𝑃 ′ is 𝐷𝑒𝑛𝑦. This is unlikely because RC aims at covering individual

rules.

RC cannot kill the CRC/First-applicable mutant where Permit-
overrides is changed to First-applicable except that the test covering
a deny rule also fires a permit rule after it (the decision of 𝑃 is

𝑃𝑒𝑟𝑚𝑖𝑡 , whereas the decision of 𝑃 ′ is 𝐷𝑒𝑛𝑦). As shown in Table 9,

RC cannot kill Sample-PO-CRC-FA.

5.1.2 PTT (Policy Target True). The RC method cannot kill PTT

mutants because every RC test makes the policy target true. The

necessity constraint is not satisfied. As shown in Table 9, for exam-

ple, the RC test suite cannot kill Sample-PO-PTT. RC kills all PTF

(policy target false) mutants because they result in an 𝑁 /𝐴 policy

decision for each test.

5.1.3 CRE (Change Rule Effect). RC can kill CRE mutants with

possible exceptions. The test covering the mutated rule 𝑟𝑖 meets

the necessity constraint. It kills the mutant as along as it fires no

permit rule after 𝑟𝑖 so that the propagation constraint is satisfied.

In Table 9, test 3 kills Sample-PO-CRE3. It satisfies the fault de-

tection condition department ∈ {“HR”, “IT”} ∧ (title=“deputy”) ∧
(location=“on-campus”) described in Section IV.

5.1.4 RTT (Rule Target True). RC cannot kill RTT mutants with

possible exceptions. For an RTT mutant with 𝑟𝑖 =< 𝑡𝑟𝑢𝑒, 𝑟𝑐𝑖 , 𝑟𝑒𝑖 >,

the test covering the mutated rule 𝑟𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 , 𝑟𝑒𝑖 > does not kill

it because the necessity constraint is not satisfied. An exception

is that there exists another rule 𝑟 𝑗 =< 𝑟𝑡 𝑗 , 𝑟𝑐 𝑗 , 𝑟𝑒 𝑗 > such that 𝑟𝑡 𝑗
implies ¬𝑟𝑡 𝑗 (e.g., title=“director” implies title ≠ “deputy”) and 𝑟𝑐 𝑗
implies 𝑟𝑐𝑖 (e.g., they are equal or 𝑟𝑐𝑖 is empty). The test covering

𝑟 𝑗 makes 𝑟𝑖 not-applicable in 𝑃 but fired in 𝑃 ′. To propagate the

difference, 𝑟 𝑗 should be a deny rule, otherwise both 𝑃 and 𝑃 ′ result
in a 𝑃𝑒𝑟𝑚𝑖𝑡 decision. This implies that 𝑟𝑖 should be a permit rule

otherwise both 𝑃 and 𝑃 ′ evaluate to deny once 𝑟 𝑗 is fired. In addition,
the test should not fire any other permit rule. To summarize, the

PTT mutant is killed only when the mutated rule 𝑟𝑖 is a permit

rule and there exists a deny rule 𝑟 𝑗 =< 𝑟𝑡 𝑗 , 𝑟𝑐 𝑗 , 𝐷𝑒𝑛𝑦 > such that

𝑟𝑡 𝑗 ∧ 𝑟𝑐 𝑗 ∧ ¬𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 ∧ 𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 ∧ (¬𝑟𝑏𝑘 ∨ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑘 )) for
any permit rule 𝑟𝑘 =< 𝑟𝑏𝑘 , 𝑃𝑒𝑟𝑚𝑖𝑡 > (𝑘 ≠ 𝑗, 𝑘 ≠ 𝑖). In Table 9, RC

does not kill Sample-PO-RTT5. None of its tests satisfies the FDC
department ∈ {“HR”, “IT”} ∧ title ∉ {“deputy”, “director”} ∧ job-class ∉
{“guest”, “part-time”, “intern”, “contractor”} ∧ (location=“off-campus”)
described in Section IV.

5.1.5 RCT (Rule Condition True). Similarly, RC cannot kill RCT

mutants although there exist exceptions. For an RCT mutant 𝑟𝑖 =<

𝑟𝑡𝑖 , 𝑡𝑟𝑢𝑒, 𝑟𝑒𝑖 >, the test covering themutated rule 𝑟𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 , 𝑟𝑒𝑖 >

in 𝑃 does not kill it because the necessity constraint is not satisfied.

The exception is that there exists another rule 𝑟 𝑗 =< 𝑟𝑡 𝑗 , 𝑟𝑐 𝑗 , 𝑟𝑒 𝑗 >

such that 𝑟𝑡 𝑗 implies 𝑟𝑡 𝑗 (e.g., they are equal or 𝑟𝑡𝑖 is empty) and

𝑟𝑐 𝑗 implies ¬𝑟𝑐𝑖 (e.g., location=“on-campus” implies location ≠ “off-
campus”). In this case, the test covering 𝑟𝑖 makes 𝑟𝑖 not-applicable

in 𝑃 but fired in 𝑃 ′. Similar to the above discussion on RTT, the

RCT mutant is killed when 𝑟𝑖 is a permit rule and there exists

a deny rule 𝑟 𝑗 =< 𝑟𝑡 𝑗 , 𝑟𝑐 𝑗 , 𝐷𝑒𝑛𝑦 > such that 𝑟𝑡 𝑗 ∧ 𝑟𝑐 𝑗 ∧ 𝑟𝑡𝑖 ∧
¬𝑟𝑐𝑖 ∧ 𝑟𝑒𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 ∧ (¬𝑟𝑏𝑘 ∧ 𝐸𝑟𝑟𝑜𝑟 (𝑟𝑏𝑘 )) for any permit rule

𝑟𝑘 =< 𝑟𝑏𝑘 , 𝑃𝑒𝑟𝑚𝑖𝑡 > (𝑘 ≠ 𝑗, 𝑘 ≠ 𝑖). In Table 9, RC does not kill

Sample-PO-RCT3.

5.1.6 RTF (Rule Target False), RCF (Rule Condition False), ANF (Add
Negation Function), and RNF (Remove Negation Function). For each
RTF (rule target false) mutant, the test that covers the mutated rule

𝑟𝑖 has satisfied the reachability and necessity constraints. Generally,

RC can kill an RTF mutant if and only if this test does not fire

any permit rule after 𝑟𝑖 (or any other rule) when 𝑟𝑖 is a permit (or

deny) rule. This is similar for RCF (rule condition false), ANF (add

negation function), and RNF (remove negation function).

5.1.7 RER (REmove a Rule). RC may or may not kill RER mutants.

For an RER mutant where rule 𝑟𝑖 =< 𝑟𝑏𝑖 , 𝑟𝑒𝑖 > is missing, the test

covering 𝑟𝑖 evaluates 𝑟𝑖 to 𝑟𝑒𝑖 . If 𝑟𝑖 = 𝑃𝑒𝑟𝑚𝑖𝑡 , then the mutant is

killed if the test fires no other permit rule. Consider rules 𝑟1 =<

𝑎∨𝑏,, 𝑃𝑒𝑟𝑚𝑖𝑡 > and 𝑟2 =< 𝑎∨𝑐,, 𝑃𝑒𝑟𝑚𝑖𝑡 > that are overlapping, but

not subsumed by each other. The RC test for 𝑟1 (or 𝑟2) that satisfies

𝑎 does not kill the RER mutant where 𝑟1 (or 𝑟2) is removed. If

𝑟𝑖 = 𝐷𝑒𝑛𝑦, the mutant is killed when no other rule is fired and there

does not exist a pair of permit and deny rules that both evaluate to

indeterminate.

5.1.8 RPTE (Remove Parallel Target Element). RC cannot kill RPTE

mutants with possible exceptions. As shown in Table 10, RC does

not kill Sample-PO-RPTE0-1 or Sample-PO-RPTE5-1. RPTE applies

to a policy or rule target of the form 𝑐1 ∧ ... ∧ 𝑐𝑛 or 𝑐1 ∨ ... ∨ 𝑐𝑛
(𝑛 > 1). A test that satisfies 𝑐1 ∧ ... ∧ 𝑐𝑖−1 ∧ 𝑐𝑖 ∧ 𝑐𝑖+1 ... ∧ 𝑐𝑛 also

satisfies 𝑐1 ∧ ... ∧ 𝑐𝑖−1 ∧ 𝑐𝑖+1 ... ∧ 𝑐𝑛 where 𝑐𝑖 is removed. A test

that satisfies 𝑐1 ∨ ... ∨ 𝑐𝑖−1 ∨ 𝑐𝑖 ∨ 𝑐𝑖+1 ... ∨ 𝑐𝑛 also satisfies 𝑐1 ∨ ... ∨
𝑐𝑖−1 ∨ 𝑐𝑖+1 ...∨ 𝑐𝑛 with 𝑐𝑖 removed except that 𝑐𝑖 is true and each 𝑐 𝑗
( 𝑗 ≠ 𝑖) is false. So the necessity constraint is not met. RC may kill

1

𝑛 of the RPTE mutants where 𝑛 is the number of parallel elements

in 𝑐1 ∨ ... ∨ 𝑐𝑖−1 ∨ 𝑐𝑖 ∨ 𝑐𝑖+1 ... ∨ 𝑐𝑛 . In Sample-PO, 𝑛 = 2 for each

compound expression. RC kills Sample-PO-RPTE5-0 where the first
parallel target element job-class=“guest” is removed. The test that

covers rule R5 evaluates the mutated target of rule R5 to false.

5.2 Decision Coverage and Non-Error Decision
Coverage

The DC method derives tests to make the policy target evaluate to

𝑡𝑟𝑢𝑒 , 𝑓 𝑎𝑙𝑠𝑒 , and 𝐸𝑟𝑟𝑜𝑟 , respectively, and the rule target (condition)

of each rule evaluate to 𝑡𝑟𝑢𝑒 , 𝑓 𝑎𝑙𝑠𝑒 , and 𝐸𝑟𝑟𝑜𝑟 , respectively. The

“true” case of one-level decision expression is used as a reachabil-

ity constraint for the next level decision expression (e.g., policy

target vs rule target, and rule target vs rule condition). NE-DC is

a special case of DC without error tests. It ensures that, for each

rule 𝑟𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 , 𝑟𝑒𝑖 >, there are three tests to cover the following

combinations of rule target and rule condition: 𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 , 𝑟𝑡𝑖 ∧ ¬𝑟𝑐𝑖 ,
and ¬𝑟𝑡𝑖 . When solving ¬𝑟𝑡𝑖 , it also tries to satisfy 𝑟𝑐𝑖 if feasible.

In other words, ¬𝑟𝑡𝑖 is likely ¬𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 (including the case of 𝑟𝑐𝑖
being empty). 𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 is also in the RC test suite. ¬𝑟𝑡𝑖 (or 𝑟𝑡𝑖 ∧¬𝑟𝑐𝑖

Session 3: Policy Mining and Testing  SACMAT ’22, June 8–10, 2022, New York, NY, USA

112



when 𝑟𝑡𝑖 is empty) might be covered by the RC test suite if the rule

is a permit rule, but not the last rule in the policy. The reachability

constraint of the rules after it requires that either its target or its

condition should evaluate to false. Generally, NE-DC has a test that

makes the last rule not applicable and thus leads the policy to an

𝑁 /𝐴 decision. As shown in Table Table 8, the NE-DC test suite

for Sample-PO has 13 tests, including the six RC tests. DC adds

six more error tests to NE-DC. Note that, when NE-DC and DC

test suites are generated separately, the random values created by

the constraint solver could be different. An example is “A” for the
attribute department in test 7. For convenience, Table 8 uses the

same random value for all test suites so that they can fit in one

table to demonstrate the relationships among the testing methods.

This does not affect fault detection. This is similar for NE-MC/DC

and MC/DC.

NE-DC is similar to RC for the followingmutants: PTF, CRC/Deny-
overrides, CRC/First-applicable, CRE, RTF, RCF, ANF, BNF, and RER.

5.2.1 CRC (Change Rule-Combining algorithm). NE-DC kills the

CRC/Deny-unless-permit mutant where Permit-overrides is changed
to Deny-unless-permit. Consider the last rule 𝑟𝑛 =< 𝑟𝑡𝑛, 𝑟𝑐𝑛, 𝑟𝑒𝑛 >.

There is a test for ¬𝑟𝑡𝑛 or 𝑟𝑡𝑛 ∧ ¬𝑟𝑐𝑛 , which evaluates the rule

to 𝑁 /𝐴. In this case, no permit rule is fired. Assuming that this

test fires no deny rule, the decision of 𝑃 is not deny, whereas the

decision of 𝑃 ′ is deny.
NE-DC kills the CRC/Permit-unless-deny mutant where Permit-

overrides is changed to Permit-unless-deny. Consider the last rule
𝑟𝑛 =< 𝑟𝑡𝑛, 𝑟𝑐𝑛, 𝑟𝑒𝑛 >. There is a test for ¬𝑟𝑡𝑛 or 𝑟𝑡𝑛 ∧ ¬𝑟𝑐𝑛 , which
evaluates the rule to 𝑁 /𝐴. In this case, no permit rule is fired. The

decision of 𝑃 is not 𝑃𝑒𝑟𝑚𝑖𝑡 , whereas the decision of 𝑃 ′ is 𝑃𝑒𝑟𝑚𝑖𝑡

assuming that this test fires no deny rule.

5.2.2 PTT (Policy Target True). NE-DC kills PTT mutants because

it has a test that evaluates the policy target to false. The decision

of 𝑃 is 𝑁 /𝐴, whereas a PTT mutant typically evaluates to inde-

terminate because of missing attribute values when the rules are

evaluated. For Sample-PO, test 7 makes the policy target false and

the policy evaluate to 𝑁 /𝐴. It kills Sample-PO-PTT, which results

in 𝐼𝐷𝑃 because each permit/deny rule evaluates to 𝐼𝑃/𝐼𝐷 and the

combined decision is 𝐼𝐷𝑃 .

5.2.3 RTT (Rule Target True). NE-DC kills RTT mutants although

there are exceptions. Consider an RTTmutantwith 𝑟𝑖 =< 𝑡𝑟𝑢𝑒, 𝑟𝑐𝑖 , 𝑟𝑒𝑖 >.

The test for ¬𝑟𝑡𝑖 likely satisfies the necessity constraint ¬𝑟𝑡𝑖 ∧ 𝑟𝑐𝑖 .

As mentioned before, when solving ¬𝑟𝑡𝑖 , NE-DC considers 𝑟𝑐𝑖 if

feasible. This test makes 𝑟𝑖 not-applicable in 𝑃 but fired in 𝑃 ′. The
necessity constraint can also be satisfied by a NE/DC test for a

different rule 𝑟 𝑗 =< 𝑟𝑡 𝑗 , 𝑟𝑐 𝑗 , 𝑟𝑒 𝑗 > such that 𝑟𝑡 𝑗 implies ¬𝑟𝑡 𝑗 and
¬𝑟𝑐 𝑗 implies 𝑟𝑐𝑖 . This test for 𝑟𝑡 𝑗 ∧ ¬𝑟𝑐 𝑗 makes 𝑟𝑖 not-applicable in

𝑃 but fired in 𝑃 ′. The effect of rule 𝑟 𝑗 does not matter. Either of the

above tests kills the mutant if (a) it does not fire any other permit

rule, and (b) it fires no other deny rule and makes no permit rule

evaluate to indeterminate if 𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦.

5.2.4 RCT (Rule Condition True). NE-DC can kill RCT mutants

with exceptions. Consider an RCTmutantwith 𝑟𝑖 =< 𝑟𝑡𝑖 , 𝑡𝑟𝑢𝑒, 𝑟𝑒𝑖 >.

The new test for 𝑟𝑡𝑖 ∧¬𝑟𝑐𝑖 always satisfies the necessity constraint.

It makes 𝑟𝑖 not-applicable in 𝑃 and but fired in 𝑃 ′. It kills the RCT

mutant if it does not fire any other rule, which is very likely. As

shown in Table 9, tests 10 and 11 of Sample-PO kill Sample-PO-RCT3.

5.2.5 RPTE (Remove Parallel Target Element). NE-DC cannot kill

RPTE mutants with exceptions. NE-DC introduces a new test for

¬(𝑐1∧ ...∧𝑐𝑛) or¬(𝑐1∨ ...∨𝑐𝑛). A test that satisfies¬(𝑐1∧ ...∧𝑐𝑖−1∧
𝑐𝑖∧𝑐𝑖+1 ...∧𝑐𝑛) also satisfies¬(𝑐1∧ ...∧𝑐𝑖−1∧𝑐𝑖+1 ...∧𝑐𝑛) except that
𝑐𝑖 is false and 𝑐 𝑗 is true for all 𝑗 ≠ 𝑖 (i.e., NE/DC may kill

1

𝑛 of the

RPTEmutants). A test that satisfies ¬(𝑐1∨ ...∨𝑐𝑖−1∨𝑐𝑖∨𝑐𝑖+1 ...∨𝑐𝑛)
also satisfies ¬(𝑐1∨ ...∨𝑐𝑖−1∨𝑐𝑖+1 ...∨𝑐𝑛). It does not kill additional
RPTE mutants.

5.2.6 Summary. To summarize, in addition to the mutants killed

by the RC method, NE-DC improves the fault detection capability

by dealing with PTT, CRC/Deny-unless-permit, CRC/Permit-unless-
deny, and RCT mutants.

Compared to NE-DC, DC introduces error tests for policy target,

rule target and condition. Error tests do not kill any mutants of

CRE, ANF, RNF, and RPTE (where the error does not occur in the

removed clause) because the mutation point evaluates to the same

type of indeterminate in both the original policy and the mutant.

However, they satisfy the necessity constraints of mutants created

by PTT, PTF, RTT, RTF, RCT, RCF, RER, and RPTE (where the error

occurs only in the removed clause). They kill PTF mutants when

the rule-combining result is not 𝑁 /𝐴, and PTF mutants when the

rule-combining result is 𝑃𝑒𝑟𝑚𝑖𝑡 or 𝐷𝑒𝑛𝑦. We will not elaborate on

this as these mutants are already killed by other tests. For other

mutants listed above, propagation of the difference requires that

no other rule should evaluate to the same type of indeterminate.

This indicates that other rules should not involve the same attribute

that causes the error occurrence. It can be hard to satisfy this con-

straint because rules in the same policy are usually defined over

the same set of attributes – error occurrence in one rule implies

the occurrence of the same error in all other rules defined over

the same attributes. As shown in the empirical study, there are

only a small number of error tests. Error tests for rules can kill the

CRC/First-applicable mutant (e.g., Sample-PO-CRC-FA in Table 9).

This requires that an error occurs in both permit and deny rules so

that the result of Permit-overrides is 𝐼𝐷𝑃 whereas the result of First-
applicable is 𝐼𝑃 or 𝐼𝐷 . This is the case when Permit-overrides and
First-applicable are non-equivalent: there are both deny and permit

rules defined over the same set of attributes. In addition, error tests

can reveal incorrect attribute types, which are not handled by the

existing mutation operators.

5.3 MC/DC and Non-Error MC/DC
The MC/DC method generates tests to achieve MC/DC and cover

error occurrence for each decision expression. It is different from

DC only when the decision expression has one or more logical

connectives. For conjunction 𝑐1 ∧ ... ∧ 𝑐𝑛 , MC/DC produces 𝑛 + 1

tests: one test that evaluates all 𝑐𝑖 to true and 𝑛 tests that each

evaluates one 𝑐𝑖 to false and all other 𝑐 𝑗 to true. For 𝑐1 ∨ ... ∨ 𝑐𝑛 ,

MC/DC creates 𝑛 + 1 tests including one that evaluates all 𝑐𝑖 to

false and 𝑛 tests that each evaluates one 𝑐𝑖 to true and all other

𝑐 𝑗 to false. NE-MC/DC is a special case of MC/DC without error

tests. For Sample-PO, MC/DC is different from DC because of the

policy target, rule R5, and rule R6. As shown in Table 8, test 2
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of MC/DC (or NE-MC/DC) uses “IT” for department to achieve a

different coverage of the policy target. Tests 20 and 21 deal with

rules R5 and R6, respectively.

Themutants killed byNE-DC are also killed byNE-MC/DC. If it is

a “Yes*” for NE-DC, it remains unchanged for NE-MC/DC. However,

NE-MC/DC may kill additional mutants of RTT, RTF, RCT, RCF,

ANF, BNF, and RER because it creates more tests for compound 𝑟𝑡𝑖
and 𝑟𝑐𝑖 (e.g., ¬𝑟𝑡𝑖 and 𝑟𝑡𝑖 ∧ ¬𝑟𝑐𝑖 for killing RTT mutants discussed

before). These tests increase the chance of meeting the propagation

requirements related to the evaluations of other rules.

Compared to NE-DC, a major new capability of NE-MC/DC is

the detection of faults in RPTE mutants. It always satisfies the

necessity constraint. If 𝜔 = 𝑐1 ∧ ... ∧ 𝑐𝑖−1 ∧ 𝑐𝑖 ∧ 𝑐𝑖+1 ... ∧ 𝑐𝑛 and

𝜔 ′ = 𝑐1 ∧ ... ∧ 𝑐𝑖−1 ∧ 𝑐𝑖+1 ... ∧ 𝑐𝑛 where 𝑐𝑖 is removed. NE-MC/DC

has a test where 𝑐𝑖 is false and 𝑐 𝑗 is true for all 𝑗 ≠ 𝑖 . This test

makes𝜔 false and𝜔 ′
true. If𝜔 = 𝑐1∨ ...∨𝑐𝑖−1∨𝑐𝑖 ∨𝑐𝑖+1 ...∨𝑐𝑛 and

𝜔 ′ = 𝑐1 ∨ ... ∨ 𝑐𝑖−1 ∨ 𝑐𝑖+1 ... ∨ 𝑐𝑛 where 𝑐𝑖 is removed. NE-MC/DC

has a test where 𝑐𝑖 is true, and 𝑐 𝑗 is false for all 𝑗 ≠ 𝑖 . It makes

𝜔 true and 𝜔 ′
false. When 𝜔 is the policy target, the propagation

constraint is satisfied, assuming the rules use at least one attribute

that does not appear in 𝜔 . In Table 9, test 2 of NE-MC/DC kills

Sample-PO-RPTE0-1 as it evaluates the mutated policy target to

𝑁 /𝐴.
Consider RPTE applied to the mutated rule 𝑟𝑖 =< 𝑟𝑡𝑖 , 𝑟𝑐𝑖 , 𝑟𝑒𝑖 >.

When 𝑟𝑡𝑖 = 𝑐1∧ ...∧𝑐𝑖−1∧𝑐𝑖∧𝑐𝑖+1 ...∧𝑐𝑛 and the MC/DC test makes

𝑟𝑡𝑖 false and 𝑟𝑡
′
𝑖
true. It also makes 𝑟𝑐𝑖 true (or 𝑟𝑐𝑖 is empty) as the

MC/DC method attempts to satisfy 𝑟𝑐𝑖 if feasible when solving ¬𝑟𝑡𝑖 .
When 𝑟𝑡𝑖 = 𝑐1 ∨ ... ∨ 𝑐𝑖−1 ∨ 𝑐𝑖 ∨ 𝑐𝑖+1 ... ∨ 𝑐𝑛 , the MC/DC test for

𝑟𝑡𝑖 being true and 𝑟𝑡
′
𝑖
being false makes 𝑟𝑐𝑖 true because it is used

as part of the reachability constraint of 𝑟𝑐𝑖 . So, the test kills the

mutant if (a) it does not fire any other permit rule, and (b) it fires no

other deny rule and makes no permit rule evaluate to indeterminate

if 𝑟𝑒𝑖 = 𝐷𝑒𝑛𝑦. For Sample-PO, test 20 kills Sample-PO-RPTE5-1 as
shown in Table 9.

6 CONCLUSIONS
We have presented the sufficient and necessary conditions for de-

tecting XACML policy faults according to a comprehensive fault

model. The conditions allow the fault detection capabilities of test-

ing methods to be qualitatively evaluated by identifying whether

or not they can detect each type of faults. This is distinct from the

existing research that solely relies on mutation experiments with

sample policies.

In this paper, the fault detection conditions are formalized with

respect to fault types, not limited to the existing mutation oper-

ators. They can be instantiated and simplified whenever a new

mutation operator is introduced for a fault type. The formalized

fault detection conditions also provide a fundamental guideline for

the design of effective testing methods for access control policies in

XACML and other similar languages. Although the existing work

has commonly applied mutation experiments to the quantitative

measurement of testing effectiveness, the fault model used to derive

mutants is essentially an afterthought, not a built-in component

of testing methods. Because the main purpose of testing is to find

potential faults in a given policy, understanding of fault detection

conditions is key to effective testing. An effective method should

target specific types of policy faults and deal with the reachability,

necessity, and propagation constraints of fault detection.

Our future work aims to investigate fault detection conditions

of NGAC (Next Generation Access Control) [9] policies based

on the fault model and mutation operators [5]. Although NGAC

and XACML are both ABAC standards, they are very different.

XACML specifies policies through logical rules defined over at-

tributes, whereas NGAC expresses policies through configurations

of relations among attributes (e.g., assignments, associations, prohi-

bitions, and obligations). As the reference implementation of NGAC

has become available, testing methods have begun to emerge [5].
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