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ABSTRACT

Policy testing is an important means for quality assurance of access
control policies. Experimental studies on the testing methods of
XACML policies have shown their varying levels of effectiveness.
However, there is a lack of explanation for why they are unable to
detect certain types of faults. It is unclear what is essential to the
fault detection capability. To address this issue, we propose a theory
on policy testing by formalizing the fault detection conditions with
respect to a comprehensive fault model of XACML policies. The
detection condition of a policy fault, composed of the reachability,
necessity, and propagation constraints, is sufficient and necessary
for revealing the fault. The formalized fault detection conditions can
qualify the inherent strengths and limitations of testing methods.
We have applied the formalization to the qualitative evaluations of
five testing methods for the current version of the XACML standard.
The results show that, for each method, there are certain types of
faults that can always or never be revealed, while the detection of
other faults may depend on the particular policy structure.
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1 INTRODUCTION

Policy testing has emerged as an important approach to security
analysis of access control policies [1]-[4][11]-[15][18][19]. It aims
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at executing the policy under test with a test suite (i.e., a set of test
cases) and checks if the policy produces a correct result for each
test. A test case consists of a test input (i.e., access request) and
an oracle value (i.e., correct response in terms of the actual access
control requirement). It fails if the policy’s actual response to the
request is different from the oracle value. The failure implies the
presence of policy faults (bugs). If none of the tests fails, however,
one cannot assert that the policy is bug-free. To evaluate a testing
method, the common approach is experimental mutation analysis.
It creates a set of mutants of a given correct policy by seeding faults
into the policy according to a fault model (i.e., typical bugs). The
test cases produced by a testing method are then executed against
all mutants. A mutant is said to be killed if at least one test fails. A
live mutant not killed by any test is either faulty or functionally
equivalent to the original policy (called equivalent mutant). The
fault detection capability of the testing method is measured by its
mutation score, i.e., the ratio between the number of mutants killed
and the total number of non-equivalent mutants.

As an industry standard for access control policies used in major
identity management products (e.g., Oracle Identity Manager and
WSO2 Identity Server), XACML (eXtensible Access Control Markup
Language) [16] has been the main subject of policy testing research.
Mutation experiments using sample policies have shown that the
existing testing methods have varying fault detection capabilities.
The mutation scores range from 30% to 60% for Cirg [22], 75% to 79%
for Targen [3] [13], 75% to 96% for X-CREATE [2], 62% to 98% for
the rule-coverage-based test selection [4], 37% to 93% for XPTester
[12], 50% to 63.6% for the rule-coverage (RC) testing [18], 62.5%
to 96.6% for the decision-coverage (DC) testing [18], and 97.7% to
100% for the modified-condition/decision coverage (MC/DC) testing
[18]. Recent work has found several XACML policies for which
the mutation scores can be as allow as 26% for the RC method
and 50% for the DC and MC/DC methods [19]. It remains unclear
why the existing methods are unable to reveal certain types of
faults. Although mutation experiments are useful for empirical
evaluations, they do not address the fundamental question: what is
essential to the fault detection capability of policy testing?

This paper presents a theory on testing XACML policies [16].
Unlike the existing work that relies on experiments, the proposed
theory builds upon the formalization of fault detection conditions. A
testing method can find a fault if and only if its tests can satisfy the
detection condition. It is feasible to measure the inherent strengths
and limitations of testing methods, independent of policy examples.
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The contribution of this paper is twofold. First, we present a com-
plete formalization of the sufficient and necessary fault detection
conditions for all fault types in a well-studied fault model [18][19]
of the current XACML standard. The fault detection condition con-
sists of the reachability, necessity, and propagation constraints that
any test must satisfy in order to reveal the fault in a given policy.
Although the notions of reachability, necessity, and propagation
constraints originate from program mutation testing or constraint-
based software testing [6][7][8], there is a lack of formal treatment
of these constraints. The problem with propagation constraints of
software is known to be intractable [7][8] because of the explosion
of program execution paths. As demonstrated in this paper, how-
ever, the unique features of XACML make it feasible to formalize
the reachability, necessity, and propagation constraints of XACML
policies in a three-valued logic (true, false, and Error). Understand-
ing these constraints and thus fault detection conditions is essential
to the design of a highly effective policy testing method.

Second, we apply the formalized fault detection conditions to the
qualitative evaluation of five recent testing methods for XACML
v3.0 policies: rule coverage (RC), decision coverage (DC), non-error
decision coverage (NE-DC), modified decision/condition coverage
(MC/DC), and non-error MC/DC (NE-MC/DC) [18]. The empirical
studies have demonstrated that these methods outperform previous
approaches [18]. In this paper, we evaluate them by analyzing
whether or not they satisfy the fault detection condition of each
fault type. This does not require the experimentation with specific
policies, although we may use a running example for illustration
purposes. The results of the qualitative evaluation show that there
are certain types of faults that can always or never be revealed by
each of the five methods, while the detection of other types of faults
may depend on the particular policy structure. For example, the RC
method cannot kill many types of mutants — this explains why its
mutation scores are mostly low in the existing experiments.

The remainder of this paper is organized as follows. Section
2 reviews related work. Section 3 describes XACML policies and
mutation operators. Section 4 presents the formalization of fault
detection conditions. Section 5 evaluates the fault detection capa-
bilities of five testing methods with the formalized fault detection
conditions. Section 6 concludes this paper.

2 RELATED WORK

The existing approaches to testing XACML policies fall into two
categories: model-based testing that derives tests from models and
policy-based testing that produces test inputs directly from the
policy under test. As access control policies are extra-constraints
on system functions, the model-based testing approach usually inte-
grates functional models with access control specifications and can
generate both test inputs and oracle values. Safarzadeh et al. [17]
have proposed to specify system functions and access control poli-
cies by extended finite-state machines and XACML, respectively.
They derive test conditions from the state machines and the rules
in the XACML policy and then apply MC/DC to the conditions for
test generation. Khamaiseh et al. [11] proposed a model-based test-
ing method for obligatory Attribute-Based Access Control (ABAC)
systems, where access control policies are implemented in XACML.
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Although the above methods have both involved XACML, the sys-
tem implementation tested by the model-based approach may or
may not rely on XACML. How to build effective test models, how-
ever, remains a critical challenge.

This paper is more related to the work that generates test inputs
from the XACML policy under test. It has commonly used muta-
tion analysis of XACML policies to measure testing effectiveness
with mutation scores. Cirg [14] generates test inputs from coun-
terexamples produced by the model checker Margrave through the
change-impact analysis of two synthesized versions. The difference
of the two versions of a policy targets a test coverage goal, such
as rule coverage or condition coverage. Targen [13] derives test
inputs to satisfy all the possible combinations of truth-values of the
attribute id-value pairs found in a given policy. Considering that
requests must conform to the XML Context Schema, Bertolino et
al. have developed the X-CREATE framework for dealing with the
structures of the Context Schema [2]. They have also developed
other test selection strategies, such as Simple Combinatorial and
Incremental XPT [1]. Bertolino et al. [4] proposed an approach
to selecting tests based on the rule coverage criterion. It chooses
existing tests to match each rule target set, which is the union of
the target of the rule and all enclosing policy and policy set targets.
XPTester uses symbolic execution technique to generate test inputs
from XACML policies [12]. It converts the policy under test into a
semantically equivalent C Code Representation (CCR) and symbol-
ically executes CCR to create test inputs. The above methods are
all based on earlier versions of XACML (1.0 or 2.0).

XPA (XACML Policy Analyzer) [18] offers various coverage-
based testing methods for XACML v3.0 policies. They include rule-
coverage (RC), decision coverage (DC), modified condition/decision
coverage (MC/DC), non-error DC, and non-error MC/DC. The DC
and MC/DC method can generate error tests, which are syntac-
tically valid requests, but make decision expressions evaluate to
error occurrence and result in an indeterminate decision. They are
different from those tests using out-of-range attribute values [2],
which make a logic expression evaluate to false, rather than error.
XPA also provides a method for generating test cases from the
policy mutants [19]. Different from the mutation analysis, this pa-
per formalizes fault detection conditions of policy mutants, which
opens the door for qualitative evaluation of testing methods.

3 XACML POLICIES AND POLICY MUTATION
3.1 XACML Policies

To avoid excessive formal notations, this paper focuses on policies,
rather than policy sets. A policy P is a triple < PT, RCA, R >, where
PT is the policy target, RCA is the rule-combining algorithm, and R
is the list of rules. Each rule r € Ris a triple < rt,rc,re >, where rt
is the rule target, rc is the rule condition, and re € {Permit, Deny}
is the rule effect. < rt, rc, Permit > is called a permit rule, whereas
< rt,rc, Deny > is a deny rule. The target of a rule or policy spec-
ifies the set of requests to which the rule or policy is intended to
apply. It is represented as a conjunctive sequence of AnyOf clauses.
Each AnyOfclause is a disjunctive sequence of AllOf clauses, and
each AllOf clause is a conjunctive sequence of match predicates. A
match predicate compares attribute values in a request with the
embedded attributes. Logical expressions for match predicates and
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rule conditions are usually defined on four categories of attributes:
subject, resource, action, and environment. The condition of a rule
refines the applicability of the rule established by the rule target.
We use the following Sample-PO policy [19] as a running example.
For readability purposes, it is presented in plain text without at-
tribute types and categories. Allof and AnyOf clauses are replaced
with traditional logical operators “and" and “or". The attributes are
department, title, location, and job-class. The policy target is defined
over the department attribute, whereas the four permit rules and
two deny rules are defined over title, location and job-class.
Policy name: Sample-PO
Policy target: department = “HR” or department = “IT”
Rule-Combining Algorithm: Permit-overrides
Rules:
R1:
R2:
R3:
R4:
R5:

<title="director”, location="on-campus”, Permit>
<title="director”, location="off-campus’, Permit>
<title="deputy’, location="“on-campus’, Permit>
<title="deputy’, location="off-campus”, Permit>
<job-class="guest” or job-class="part-time”,

location="off-campus’, Deny>

R6: <job-class="intern” or job-class="contractor”,
location="off-campus’, Deny>

An access request consists of attribute names, categories, values,
and types. Unless explicitly specified, we use a set of attribute name
and value pairs to represent a request, assuming that the attribute
categories and types are correct. For example, {department = “HR’,
title="deputy’, location="on-campus’} is a valid request of the run-
ning example. Note that a valid request may cause the occurrence
of a runtime error for different reasons, such as mismatch of an
attribute type and an exception of expression and function eval-
uation. Consider {department = “HR’}. If the category of attribute
department and the type of value “HR” match those in the running
policy, the policy target will evaluate to true, otherwise its evalu-
ation leads to an error occurrence. This is similar for rule target
and rule condition. Error-handling has intricate implications on the
semantics of policies and the evaluation of access decisions.

Let w be a decision expression (policy target, rule target, or rule
condition) and g be an access request. We use w, —w, and Error(w)
to represent that w evaluates to true (i.e., there is a match if w is a
target), false (i.e., no-match if w is a target), and indeterminate (i.e.,
error occurrence) with respect to g, respectively. This is based on
a three-valued logic because each predicate or logical expression
has three possible outcomes. Per the XACML 3.0 standard specifi-
cation [16], rule-level and policy-level decisions are formalized by
Definitions 1 and 2, respectively.

Definition 1. Given arule r =< rt, rc,re > and an access request
q, the rule decision, denoted as d(r, q), is defined as follows:

Permit  if re = Permit Art Arc
Deny ifre=DenyArtArc
N/A if =rt Vv (rt A =rej)
d(r,q) = ID ifre = DenyA
(Error(rt) V rt A Error(rc))
IP  if re = PermitA
(Error(rt) V rt A Error(rc))
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Table 1: Decision Table or Permit-overrides

Permit | Deny | N/A ID Ip IDP

Permit | Permit | Permit | Permit | Permit | Permit | Permit
Deny | Permit | Deny | Deny | Deny 1P IDP
N/A | Permit | Deny N/A ID 1P IDP
ID Permit | Deny ID 1D IDP IDP
IP Permit P P IDP P IDP

where N /A, ID, and IP denote Not-applicable, Indeterminate Deny,
and Indeterminate Permit, respectively.

Definition 2. Given policy P =< PT,RCA,R > and an access
request g, the policy decision, denoted as d(P, g), is defined as [19]:

NJ/A if -PT
rca(RCA,R,q) if PT
rca(RCA,R,q) if Error(PT) A rca(RCA,

R q) € {N/A ID,IP,IDP

IP if Error(PT)A
rca(RCA, R, q) = Permit
ID if Error(PT)A

rca(RCA, R, q) = Deny

where rca(RCA, R, q) represents the combined decision of all rules
in R with respect to g by the rule-combining algorithm RCA, and
IDP denotes Indeterminate Deny/Permit.

The rule-combining algorithm RCA in policy P =< PT,RCA,R >
aims at rendering a single decision by combining the decisions of
all individual rules in R when the policy target PT is not false.
RCA resolves the potential conflicting decisions of different rules.
Given access request {department = “HR’, title="“deputy-director’, job-
class="part-time”, location="off-campus”}, rules R4 and R6 in Sample-
PO yield Permit and Deny, respectively. The rule-combining al-
gorithm Permit-overrides resolves the conflict by giving the prior-
ity to Permit, and thus the policy’s decision is Permit. The main
rule-combining algorithms in XACML 3.0 include Permit-overrides
(PO), Deny-overrides (DO), Permit-unless-deny (PUD), Deny-unless-
permit (DUP), First-applicable (FA), Ordered-permit-overrides, and
Ordered-deny-overrides. Their semantics are explained in the stan-
dard specification and can be formulated by decision tables [10].
For instance, Table 1 presents the decision table of Permit-overrides.
Each entry represents a combined decision of the current policy
decision (column) and the next rule decision (row). For example, if
the current policy decision is Deny and the next rule evaluates to
Permit, then the combined policy decision becomes Permit. The
proofs of all theorems related to Permit-overrides rely on the deci-
sion table. This paper focuses on five rule-combining algorithms
because Ordered-permit-overrides is similar to Permit-overrides and
Ordered-deny-overrides is similar to Deny-overrides.

3.2 Mutation Operators

This paper formalizes fault detection conditions with respect to
faults represented by policy mutants. Policy mutants are created
by mutation operators, which modify a policy element of the given
policy (i.e., mutation point) according to a fault type. We follow the
current fault model and mutation operators of XACML 3.0 [18][19],
as shown in Table 2. The fault types include incorrect policy (policy
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Table 2: Mutation Operators

No | Name | Meaning Fault Type
1 | PTT | setPolicy Target True Incorrect policy target
2 | PTF set Policy Target False
3 | CRC | Change RCA Incorrect RCA
4 | CRE | Change Rule Effect Incorrect rule effect
5 | RTT | set Rule Target True Incorrect rule target
6 | RTF set Rule Target False
7 | RCT | set Rule Condition True | Incorrect rule condition
8 | RCF | set Rule Condition False
9 | ANF | Add Not in condition
10 | RNF | Remove Not in condition
11 | FPR First Permit Rule Incorrect rule ordering
12 | FDR | First Deny Rule
13 | RER | REmove a Rule Missing rule
14 | RPTE | Remove Parallel Element | Missing target element

Table 3: Sample Mutants of the Sample-PO Policy

Mutated Element

Policy target: true

Policy target: department = “HR”
R3:<title=“deputy”, location=
“on-campus”, Deny>

R5: <true, location="“off-campus”, Deny>
R5: <job-class="guest”, location=
“off-campus”, Deny>

R3: <title="deputy”, true, Permit>
R3 is removed

RCA: First-applicable

Mutant Name
Sample-PO-PTT
Sample-PO-RPTE0-1
Sample-PO-CRE3

Sample-PO-RTT5
Sample-PO-RPTE5-1

Sample-PO-RCT3
Sample-PO-RER3
Sample-PO-CRC-FA

set) target, incorrect rule-combining (policy-combining) algorithm,
incorrect rule effect, incorrect rule target, incorrect rule conditions,
incorrect rule ordering, missing rule, and missing a parallel target
element (i.e., AnyOf or AllOf clause).

Each mutant is named after the original policy, the mutation op-
erator, and the indices of the mutated element if applicable. Table 3
shows some sample mutants of the running example. Sample-PO-
PTTis obtained by changing the policy target to true (i.e., the policy
target is removed). Sample-PO-RPTE(-1 is created by applying RPTE
to the policy target’s second parallel element. Sample-PO-CRE3 re-
sults from applying CRE to rule R3, which changes the effect from
Permit to Deny.

4 FORMALIZATION OF FAULT DETECTION
CONDITIONS

4.1 Fault Detection Conditions

Given a correct policy P and its mutant P’ obtained by some muta-
tion operator in Table 2, P’ represents a policy fault if it is not an
equivalent mutant. The fault detection condition (FDC) for reveal-
ing the fault in P’ refers to the sufficient and necessary condition
on access request g that makes P and P’ produce different pol-
icy decisions, i.e., d(P,q) # d(P’,q). It consists of the following
constraints:
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e Reachability constraint: ¢ must trigger the execution of the
faulty policy element (i.e., mutation point) in P’.

o Necessity constraint: ¢ must make the faulty policy element
in P’ and the original element in P evaluate to different
intermediate results.

e Propagation constraint: ¢ must make the different interme-
diate results propagated to the final decisions of P and P’.

P’ is an equivalent mutant if the FDC is unsatifiable; otherwise,
any request (test) satisfying the FDC can kill P/, demonstrating that
P’ is different from P.

Consider mutant Sample-PO-PTT in Table 3, where the policy
target is set to true. There is no reachability constraint because
the policy target is always evaluated. The necessity constraint is
that the original policy target is false, which makes the original
policy evaluate to N/A. To propagate the difference to the policy
level, the mutant’s decision should not be N/A. Consider mutant
Sample-PO-CRE3, where rule R3’s effect is changed. To reach rule
R3, we may make the policy target evaluate to true and all rules
before rule R3 evaluate to N/A. The necessity constraint is that
rule R3 must be fired to obtain different rule-level decisions. To
propagate the difference, no permit rule after rule R3 should be
fired. Rule R4 is the only permit rule after rule R3. Putting the above
constraints together, we have the following FDC:

(department="HR”V department="IT") A //reachability

- (title="director" A location="on-campus") A

= (title="director” A location="off-campus") A

(title="deputy" A location="on-campus”) A //necessity

- (title="deputy" A location="off-campus") //propagation

It is simplified as department € {"HR”, “IT"} A (title="deputy”) A
(location="on-campus”). Any test that satisfies this condition can
kill the mutant.

In the following, we formalize the FDCs of all the mutants created
by the mutation operators in Table 2. For each fault type with
multiple mutation operators, we first deal with the general FDC
and then apply it to the concrete mutation operators of the fault
type. For example, a mutant with an incorrect policy target may
result from the application of mutation operator PTT (set policy
target true), PTF (set policy target false), or RPTE (remove parallel
target element in policy target). The general FDC of incorrect policy
target applies to all mutants of PTT, PTF, and RPTE. This not only
facilitates the discussion, but also allows new mutation operators of
the same fault type to be introduced in the future: the FDC of each
new mutant is a simplified version of the general FDC. To avoid
duplication, we will discuss the common fault detection constraints
for all fault types beyond incorrect policy target.

For convenience, we also denote rule r; =< rt;,rci,re; > as
< rbj,re; >, where rb;, called rule body, consists of r¢; and rc;. Per
the XACML standard specification, rb; = rt; Arc; when rule r; fires;
=rbi = =rt; V (rt; A=rc;) when rule r; is not applicable. Error(rb;)
= Error(rt;) V (rtj A Error(rc;)) when there is an error occurrence.
Given an expression w and its mutant 0/, 0 # »’ means that v
and ’ evaluate to different results. There are six possible cases:
w A=0w’, o ANError(w’), =0 A, =o A Error(w’), Error(w) A w’,
and Error(w) A —w’. The theorems involving @ # «’ are typically
proven by dealing with all these cases.
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4.2 FDC of Incorrect Policy Target

Let P’ =< PT’,RCA, R > be a mutant of P =< PT,RCA,R >. P’ has
an incorrect policy target PT’. There is no reachability constraint
because PT and PT’ are always evaluated. The necessity constraint
is PT # PT’. The propagation constraint depends on RCA. For
Permit-unless-deny or Deny-unless-permit, there is no additional
propagation constraint. The sufficient and necessary FDC is that PT
and PT’ evaluate to different results. This is formalized by Theorem
1.

Theorem 1. Suppose P’ =< PT’, RCA, R > be a mutant of P =<
PT,RCA,R > and RCA € {Permit-unless-deny, Deny-unless-permit}.
d(P,q) # d(P’,q) if and only if PT # PT’ with respect to q.

Proor. (a) Sufficient condition: If PT # PT’, then d(P,q) #
d(P’, q) for each of these six cases. We discuss three of them and
others are symmetric.

If PT A =PT’, then d(P’,q) = N/A, but d(P, q) = rca(RCA, R, q)
is either Permit or Deny.

If PT A Error(PT’), then d(P, q) is either Permit or Deny, but
d(P’, q) is either ID or IP.

If =PT A Error(PT’), then d(P, q) = N/A, but d(P’, q) is either
ID or IP.

(b) Necessary condition: PT = PT’ implies d(P, q) = d(P’,q) as
they also have the same RCA and R. Therefore, d(P, q) # d(P’,q)
implies PT # PT’. ]

For First-applicable, the FDC is that PT # PT’ and at least one
rule fires or, when PT or PT’ is false, one rule evaluates to indeter-
minate. This is formalized by Theorem 2.

Theorem 2. Suppose P’ =< PT’, First-applicable, R > be a mu-
tant of P =< PT,First-applicable, R >. d(P,q) # d(P’, q) if and only
if PT # PT’A (3r; € R such that rb; vV ((=PT V =PT’) A3r; € R
such that Error(rb;))).

Proor. (a) Sufficient condition: Suppose PT # PT’ A (3r; € R
such that rb; V ((=PT A =PT’) A 3r; € R such that Error(rb;)))
holds. d(P, q) # d(P’, q) holds for all the six cases of PT # PT’". We
elaborate on three on them.

(1) PT A Error(PT’): (=PT Vv =PT’) is false. “(3r; € R such
that rb; V ((=PT A =PT’) A 3r; € R such that Error(rb;)))” re-
duces to “Ir; € R such that rb;”. Because RCA is First-applicable,
rca(RCA, R, q) € {Permit, Deny} no matter whether there exists
rule i before rule r; that fires. According to Definition 2, d(P, q) =
rca(RCA, R, q) € {Permit, Deny}. d(P’, q) is simplified as follows:

rca ifrca€ {N/AID,IP,IDP}
d(P’,q) = IP ifrca = Permit
ID if rca = Deny

where rca denotes rca(RCA, R, q). Therefore, d(P, q) # d(P’,q).
(2) PT A =PT’: d(P,q) = rca(RCA,R,q) and d(P’,q) = N/A ac-
cording to Definition 2. “(3r; € R such that rb; vV ((=PT v =PT’)
AJr; € R such that Error(rb;)))” reduces to “3r; € R such that
rb; V Error(rb;)”. We prove that rca(RCA,R,q) # N/A. When
there exists rule r; such that rb;, there are two cases: (i) no rule
before r; is fired. In this case, d(r;, q) = re; according to Definition 1.
rca(RCA, R, q) will evaluate to re; (either Permit or Deny). There-
fore, rca(RCA, R, q) # N/A. (ii) rule ry. is the first rule before r; that
is fired. rca(RCA, R, q) will evaluate to rey (either Permit or Deny).
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Therefore, rca(RCA, R, q) # N/A. When there exists rule r; such
that Error(rb;), rca(RCA,R,q) # N/A because rca(RCA,R,q) =
N/A only if all rules evaluate to N/A.

(3) =PT A Error(PT’): d(P,q) = N/A. “(3r; € R such that rb; v
((=PT V =PT’) A3r; € R such that Error(rb;)))” reduces to “3r; €
R such that rb; V Error(rb;)”. In either case, rca(RCA,R, q) # N/A.
According to Definition 2, d(P’,q) # N/A.So d(P, q) # d(P’,q).

(b) Necessary condition: Suppose d(P,q) # d(P’,q) and PT #
PT’. We prove that (3r; € Rsuchthatrb;V((=PTV—-PT’) A3r; € R
such that Error(rb;))) holds for all six cases of PT # PT’. We
elaborate on three of them.

(1) PT A Error(PT’): d(P, q) = rca(RCA, R, q), whereas

if rca € {N/A,ID, IP,IDP}
IP if rca = Permit
ID if rca = Deny

where rca(RCA, R, q) is denoted by rca.If rca(RCA, R, q) € {N/A, ID,
IP,IDP}, then d(P, q) = d(P’,q), which is a contradiction. Thus,
rca(RCA, R, q) € {Permit, Deny}. This means that at least one rule
fires, i.e., dr; € R such that rb; holds.

(2) PT A=PT’:d(P’,q) = N/A.d(P,q) = rca(RCA,R,q) + N/A.
This means not all rules evaluate to N/A. In other words, there
exists r; € R such that rb; or Error(rb;).

(3) =PT AError(PT’):d(P,q) = N/A.Because d(P’,q) # d(P,q),
we have rca(RCA, R, q) # N/A. This implies that there exists r; € R
such that rb; or Error(rb;). o

rca
d(P',q) =

For Deny-overrides, the FDC is that PT # PT’ and one of the deny
rules is fired, or a permit rule is fired but no deny rule evaluates
to indeterminate, or, when PT or PT’ is false, one rule is fired or
evaluate to indeterminate. This is formalized by Theorem 3.

Theorem 3. Suppose P’ =< PT’,Deny-overrides, R > be a mutant
of P =< PT,Deny-overrides,R >. d(P,q) # d(P’,q) if and only
if PT # PT’ A(3r; = (rb;,Deny) € R such that rb; v (3r; =
(rbi, Permit) € R such that rb; A —~3rj = (rbj, Deny) € R such that
Error(rb;j)))V ((=PTV—PT’) Adr; € Rsuchthatrb; Vv Error(rb;)).

Proor. (a) Sufficient condition: We discuss three cases of PT #
PT’.

(1) PTAError(PT’): Because ~PTV—PT’ is false, 3r; = (rb;, Deny)
€ R such that rb; V (3r; = (rb;, Permit) € Rsuch that rb; A=3r; =
(rbj, Deny) € R such that Error(rbj)). Thus, rca(RCA,R,q) €
{Permit, Deny}. d(P,q) = rca(RCA,R,q) € {Permit, Deny}. Ac-
cording to Definition 2, d(P’,q) € {IP,ID}. Therefore, d(P, q) #
d(P’,q).

(2) PTA=PT’:d(P’,q) = N/A.If 3r; = (rb;, Deny) € R such that
rb; vV (3r; = (rb;, Permit) € Rsuch thatrb; A=3r; = (rbj, Deny) €
Rsuchthat Error(rb;)),d(P,q) = rca(RCA, R, q) € {Permit, Deny}.
Therefore, d(P, q) # d(P’, q). If 3r; € R such that rb; or Error(rb;),
d(P,q) = rca(RCA,R,q) # N/A. Thus, d(P, q) # d(P’,q).

(3) =PT A Error(PT’): d(P,q) = N/A, whereas:

rca ifrcae {N/AID,IP,IDP}
d(P',q) =4 IP ifrca= Permit
ID if rca = Deny
If 3r; = (rbi, Deny) € R such that rb; V (3r; = (rb;, Permit) € R

such that rb; A =3r; = (rbj, Deny) € R such that Error(rbj)),
d(P’,q) = rca(RCA,R, q) € {Permit, Deny}. Therefore, d(P, q) #
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d(P’,q). If 3r; € R such that rb; or Error(rb;), rca(RCA,R,q) #
N/A.Sod(P’,q) + N/A.

(b) Necessary condition: Suppose d(P, q) # d(P’, q). For each of
the six cases of PT # PT’, we prove that (3r; = (rb;, Deny) € R
such that rb; V (3r; = (rb;, Permit) € R such that rb; A =3r; =
(rbj, Deny) € R such that Error(rbj))) vV ((=PTV -PT’) A3r; € R
such that rb; V Error(rb;)).

(1) PTAError(PT’):d(P, q) = rca(RCA,R, q).Ifrca(RCA,R, q) €
{N/A,ID,IP,IDP}, then d(P,q) = d(P’,q), which is a contradic-
tion. Thus, rca(RCA, R, q) € {Permit, Deny}. This means that r; =
(rbj, Deny) € R such that rb; V (3r; = (rb;, Permit) € R such that
rbi A =3rj = (rbj, Deny) € R such that Error(rbj)).

(2) PT A =PT’: d(P',q) = N/A. d(P,q) = rca(RCA,R,q) #
N/A. This means not all rules evaluate to N/A. In other words,
there exists r; € R such that rb; or Error(rb;). This subsumes
rca(RCA, R, q) € {Permit, Deny}. So (3r; = (rb;, Deny) € R such

thatrb;V(3r; = (rb;, Permit) € Rsuchthat rb;A—3r;j = (rbj, Deny) €

R such that Error(rbj))) V (3r; € R such that rb; or Error(rb;)).
(3) =PT AError(PT’):d(P,q) = N/A.Because d(P’, q) # d(P,q),

we have rca(RCA, R, q) # N/A. This implies that there exists r; € R

such that rb; or Error(rb;). O

Since Permit-overrides and Deny-overrides are symmetric, this
paper will present the relevant theorems for one of them. Now we
discuss how the above FDCs apply to the incorrect policy target
mutants created by the relevant mutation operators. When P’ is a
PTT mutant of P, i.e., PT’ is always true. The necessity constraint
PT # PT’ reduces to =PT V Error(PT). When P’ is a PTF mutant
of P, i.e., PT’ is always false, the necessity constraint reduces to
PT V Error(PT). For RPTE, it can be applied to either an AllOf or
AnyOf clause. Consider PT = c1A...Acj—1 ACiACi41...Acy and PT’ =
C1A...ACi—1 ACis1... Acp Where c; is removed. When PT is true, PT’
is true. When PT” is false, PT is false. When PT’ evaluates to error,
PT also evaluates to error. Thus PT A (=PT’ V Error(PT’)) is false,
—PT A (PT’V Error(PT’)) becomes =¢; Aci A ... ACi—1 ACi41... ACn.
Error(PT) A (PT’ V =PT’) becomes Error(c;) A —~Error(c;) for
any j # i. Thus, the necessity constraint reduces to =c; Aci A ... A
Ci—1 A Ci+1... A cn A Error(ci) A —Error(cj) for any j # i. It means
that the removed clause evaluates to false while all other clauses
evaluates to true or it evaluates to error while none of the other
clauses evaluates to error. In essence, this is to capture the impact
of the removed clause c;. A special case is that PT = c¢; and ¢; is
removed, it reduces to —¢1 V Error(cy). This is the same as the case
of PTT mutant. Similarly, when RPTE removes c; from the AnyOf
clause ¢ V...V cj—1 V ¢; V Ciy1... V cp, the necessity constraint is
simplified to capture the impact of the removed clause c;.

4.3 Common Constraints for Other Fault Types

Before presenting the fault detection condition of other fault types,
let us first discuss their common reachability and propagation con-
straints. To reach the rule-combining algorithm and individual
rules of a policy, the policy target should not evaluate to false. Let
P’ =< PT,RCA’,R’ >, where the mutated element is either the rule-
combining algorithm or a rule. When PT is true, d(P, q) # d(P’,q)
if and only if rca(RCA,R,q) # rca(RCA’,R’,q). When an error
occurs in the evaluation of PT, d(P,q) # d(P’,q) if and only
if rca(RCA,R,q) # rca(RCA’,R’,q) and < Permit,IP > and <
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Deny, ID > are not the results of < rca(RCA, R, q), rca(RCA’, R, q) >
or < rca(RCA’,R’, q), rca(RCA, R, q) >. So the common reachabil-
ity constraint is PT V Error(PT), and the common propagation
constraint is Error (PT) — —(rca(RCA, R, q) = Permit A
rca(RCA’,R’, q) = IP) A= (rca(RCA,R, q) = IPArca(RCA’,R’,q) =
Permit) A =(rca(RCA,R,q) = Deny A rca(RCA’,R’,q) = ID) A
=(rca(RCA, R, q) = IDArca(RCA’,R’, q) = Deny). In the following,
these constraints are assumed. Because they have covered the error
occurrence of PT, we focus on rca(RCA,R,q) # rca(RCA’,R’,q)
when PT is true.

4.4 FDC of Incorrect Rule Effect

Suppose P’ =< PT,RCA,R’ > is a mutant of P =< PT,RCA,R >
with an incorrect rule effect. Without loss of generality, we assume
that rule r; in P is < rb;, Permit >, whereas the incorrect rule r;
in P’ is < rbj, Deny >. While the necessity constraint is that rule
ri in P and rule r; in P’ produce different rule-level decisions, the
additional reachability and propagation constraints depend on RCA.

When RCA =Permit-overrides, the additional condition besides
the aforementioned common constraints is that rule r; is fired
and no other permit rule is fired, or when rule r; evaluates to
indeterminate, all other permit rules are not-applicable. This is
formalized by Theorem 4.

Theorem 4. rca(Permit-overrides, R, q) # rca(Permit-overrides,
R’,q) if and only if rb; A (—rb; V Error(rb;)) for any permit rule
rj =< rbj,Permit > (j # i) VError(rb;)A # rbj for any permit
rule rj =< rbj, Permit > (j # i).

Proor. (a) Sufficient condition: Suppose rb; A(=rb;VError(rb;))
for any permit rule r; =< rbj, Permit > (j # i). Since no permit
rule before r; is fired, r; is reached. It is fired because rb; is true,
and evaluates to its effect (i.e., Permit in P and Deny in P’). So
rca(Permit-overrides, R, q) = Permit. Since no permit rule after r;
is fired, rca(Permit-overrides,R’,q) # Permit. Thus, rca(Permit-
overrides, R, q) # rca(Permit-overrides,R’, q).

Suppose Error(rb;) A—rb; for any permit rule rj =< rb;, Permit >
(j # i). Since no permit rule before r; is fired, r; is reached. It
evaluates to IP in P and ID in P’ because Error(rb;). If r; is the
last rule, then rca(Permit-overrides,R,q) = IP, and rca(Permit-
overrides, R’, ) = ID. Thus, rca(Permit-overrides, R, q) # rca(Permit-
overrides, R, q). If r; is not the last rule, consider each rule after
ri. It cannot evaluate to Permit or IP because —rb; for any permit
rule rj =< rbj, Permit > (j # i). So each rule after r; evaluates to
N/A, Deny, or ID. rca(Permit-overrides, R, q) € {IP,IDP}, whereas
rca(Permit-overrides, R’, q) € {Deny, ID}.

(b) Necessary condition: Suppose rca(Permit-overrides, R, q) #
rca(Permit-overrides, R, q). —rb; should not hold, otherwise rule
ri evaluates to N/A and rca(Permit-overrides, R, q) = rca(Permit-
overrides, R’, q). Thus, rb;VError(rb;).In the case of rb;, rca(Permit-
overrides, R, q) # rca(Permit-overrides, R’, q) implies that (-rb iV
Error(rbj)) for any permit rule r; =< rbj, Permit > (j # i), other-
wise both evaluate to Permit. In the case of Error(rb;), rule r; evalu-
atesto IPin Pand ID in P’. rca(Permit-overrides, R, q) # rca(Permit-
overrides, R’, q) implies that each other permit rule should evaluate
to N/A, i.e., —rb; for any permit rule r; =< rbj, Permit > (j #
i). ]
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When RCA =Permit-unless-deny, the additional fault detection
constraint is that rule 7; is fired and no other deny rule is fired. This
is formalized by Theorem 5.

Theorem 5. rca(Permit-unless-deny, R, q) # rca(Permit-unless-
deny, R’,q) if and only if rb; A (-rb; V Error(rbj)) for any deny
rule rj =< rbj, Deny > (j # i).

When RCA =First-Applicable, the additional fault detection con-
straint is that rule r; is fired and no rule before r; is fired, or rule
ri evaluates to indeterminate, all rules before r; are not-applicable,
and no rule after r; is fired. This is formalized by Theorem 6.

Theorem 6. rca(First-Applicable, R, q) # rca(First-Applicable, R’, q)
if and only if rb; A (=rbj V Error(rb;)) for any rule r;(j < i) Vv
Error(rb;) A Vrb; for any rule rj =< rbj,rej > (j < i) A (-rbg Vv
Error(rby)) for any rule r =< rby, reg > (k > i).

4.5 FDC of Incorrect Rule Target/Condition

Suppose P’ =< PT,RCA,R’ > is a mutant of P =< PT,RCA,R >,
where the mutation point is the body (target or condition) of rule
ri, i.e, < rbj,re; > in P and < rb,re; > in P’. The reachability
and propagation constraints depend on RCA. When RCA =First-
applicable, the additional fault detection constraint is that none of
the rules before rule r; are fired, and the rule bodies rb; and rblf
evaluate to different results, and when one of rb; and rblf is true,
there should not exist rule r; after r; that is fired with the same
effect as r;, or when one of rb; and rblf is false and the other is
error, all rules before r; evaluate to N/A, no rule after r; is fired,
and there exists rule rg with different effect than r; that evaluates
to indeterminate and all rules between r; and rs evaluate to N/A or
all rules after r; evaluate to N/A. This is formalized by Theorem 7.

Theorem 7. rca(First-Applicable, R, q) # rca(First-Applicable,
R’,q) if and only if -=rb; V Error(rb;) for any rule rj =< rbj,re; >
(J < i) Arb; # rbi’ A((rbiVrb;) A(-3rj =< rbj,rej > (j > i) such
that (rej = re;) Arb;) V (=rb; A Error(rb]) V Error(rb;) A =rb]) A
—rbj for any rule rj =< rbj,rej > (j < i) A —~3rg =< rby,reg >
(k > i) such that rb; holds A(Irg =< rbg,res > (s > i) such that
(re; # re;) A Error(rbs) A —rb; for any rule ry =< rbs,re; > (i <
t <)V =rby for any rule r, =< rby,re,; > (i < u))).

When RCA =Permit-overrides, none of the permit rules before
rule r; should be fired, otherwise rule r; is not evaluated. The ne-
cessity constraint requires that the rule bodies rb; and rb; evaluate
to different results. When one of rb; and rblf is true, none of the
permit rules after rule r; should be fired if rule r; is a permit rule
and none of the other rules should be fired if rule r; is a deny rule.
When one of rb; and rblf is false and the other is error, all permit
rules after rule r; should be non-applicable and no deny rule is fired
if rule r; is a permit rule, and none of the other rules should be fired
and no deny rule should occur an error if rule r; is a deny rule.

When RCA =Permit-unless-deny, none of the deny rules before
r; should be fired, otherwise r; is not evaluated. The necessity
constraint requires that r; should be a deny rule: if r; is a per-
mit rule, both rca(Permit-unless-deny, R, q) and rca(Permit-unless-
deny,R’, q) depend on the rules after r; and thus have the same
decision. The necessity constraint also requires that rb; and rb]
evaluate to different results but one of them is true. The propaga-
tion constraint requires that none of the other deny rules should
be fired. This is formalized by Theorem 8.
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Table 4: Instantiation of rb; # rb/A (rb; V rb))

Mutation | Mutated Rule Instantiated version of
Operator | in P’ (i.e.,, rb] =) | rb; # rbiA (rb; V rb))
RTT < true,rc; > (=rt; V Error(rt;)) A rc;
RTF < false,rci > (rti Arci) V (Error(rt;) A —re;)
RCT < rtj, true > rti A —rej
RCF < rtj, false > rti Arc;
ANF < rtj, not rc; > rti

Table 5: Instantiation of —rb; A Error(rb;) V Error(rb;) A —rb]

Mutation | Mutated Rule Instantiated version of —rb; A
Operator | in P’ (i.e, rb] =) | Error(rb]) V Error(rb;) A —rb]
RTT < true,rc; > (=rtj A Error(rci))V
(Error(rt;) A =rc;)
RTF < false,rci > (Error(rt;) A —rc;)
RCT < rtj, true > Not satifiable
RCF <rtj, false > rt; A Error(rc;)
ANF < rtj, not rc; > | Not satifiable

Theorem 8. rca(Permit-unless-deny, R, q) # rca(Permit-unless-
deny,R’,q) if and only if re; = Deny A rb; # rb; A (rb; V rb]) A
(=rbj Vv Error(rbj)) for any deny rule rj =< rbj, Deny > (j # i).

In the above general FDCs, the key expressions about the mu-
tation point are rb; # rb; A (rb; v rb]) and —rb; A Error(rb]) v
Error(rb;) A =rb]. They can be instantiated for each mutant type
of incorrect rule target and incorrect rule condition. Tables 4 and 5
show their instantiated versions for the mutants corresponding
to mutation operators RTT (Rule Target True), RTF (Rule Target
False), RCT (Rule Condition True), RCF (Rule Condition False), and
ANF (Add Not Function in rule condition).

For each mutant of incorrect rule condition, the satisfaction
of rule target rt; is also a reachability constraint: the mutation
point rclf is evaluated only when rt; evaluates to true. Thus, rb;
becomes rt; A rc; and —rb; becomes rt; A =rci. For a RCT mutant
where rb; =< rtj,rc; > and rblf =< rtj, true >, the constraint
—rbi A Error(rb]) V Error(rb;) A —rb] is not satisfiable because
Error(rbl{) = Error(rt;) is impossible (actually rt; is true) when
-rb; (e, rtiA=re;), and —rb] (ie., rt] A=rc]) is impossible (actually
rb] evaluates to error) when Error(rb;) = Error(rt;). In this case,
the fault detection condition is simplified by removing the entire
sub-constraint of —rb; A Error(rb;) V Error(rb;) A —rb]. For an
RCF mutant where rb; =< rt;,rc; > and rb; =< rt;, false >, rb]
is false whenever rb; evaluates to true (i.e., rt; A rc;) or error (i.e.,
rt; A Error(rc;)).

For an ANF mutant where rb; =< rtj,rc; > and rblf =< rt;, not
rc; >. Whenever rt; is true (reachability constraint), one of rb; and
rb] is true and the other is false. The necessity constraint of the
mutation point is met. (=rb; A Error(rb]) V Error(rb;) A —rb]) is
not satisfiable because rb] evaluates to indeterminate if and only
if rb; evaluates to indeterminate. Thus, this sub-constraint can be
removed.
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4.6 FDC of Missing Rule

Suppose P’ =< PT,RCA,R’ > is a mutant of P =< PT,RCA,R >,
where rule r; in Ris missing in R’. Let R =< 11, ..., Ti—1, Ti, Tit1, ---T'n >,
and R’ =< r1, .., 7i—1, Fi+1, ..., ’'n >. When RCA =Permit-overrides,
no permit rule before rule r; should be fired to reach rule r; in P. To
make rule r; take effect, r; should not evaluate to N/A. (1) When
rule r; in P is fired and its decision is re;. If re; = Permit, then the
propagation constraint requires that no permit rule after rule r;
should be fired. Together with the reachability constraint, it means
that no other permit rule should be fired. If re; = Deny, then no
permit rule after rule r; should be fired and none of the other deny
rules should be fired. Together with the reachability constraint, it
means that no other rule should be fired. (2) When rule r; evaluates
to indeterminate and its decision is I(re;). If re; = Permit, all other
permit rules should evaluate to N/A. If re; = Deny, all other rules
should evaluate to N/A. Formally, we have Theorem 9.

Theorem 9. Let R = [r1, ..., 7i—1, Ti, Fit1s oo T ), R = [F1, eos Tie 1,
Tit1s - T'n). rea(Permit-overrides, R, q) # rca(Permit-overrides, R’, q)
if and only if (rb; A (re; = Permit) A (-rbj V Error(rbj)) for
any permit rule r; =< rbj, Permit > (j # i)) V (rbi A (re;
Deny) A (-rbj v Error(rbj)) for any rule rj =< rbj,rej > (j #
i))) V (Error(rb;) A (re; = Permit) A —rb; for any permit rule
rj =<rbj, Permit > (j # i)) V (Error(rb;) A (re; = Deny) A —rb;
for any rule rj =< rbj,re; > (j # i)).

When RCA =Deny-unless-permit, no permit rule before rule r;
should be fired to reach rule r;. To make P and P’ evaluate to
different decisions, rule r; in P should be fired. (1) If re; = Permit,
the propagation constraint requires that no permit rule after rule
r; should be fired. (2) If re; = Deny, then P and P’ have the same
decision, regardless of the evaluation results of rules rj;1, ..., 7. To
summarize, the missing rule must be the only permit rule that is
fired in P. This is formalized by Theorem 10.

Theorem 10.LetR = [rq, ..., 7i—1, i, Fit1s o Tn)- R' = [F1, oo Fie1,
Tit1s .- 'n]- rea(Deny-unless-permit, R, q) # rca(Deny-unless-permit,
R’,q) if and only if re; = Permit Arb; A (-rbj V Error(rbj)) for
any permit rule rj =< rbj, Permit > (j # i).

When RCA is First-applicable, all rules before rule r; should
evaluate to N /A, otherwise rule r; in P will not be triggered. Note
that if a rule before rule r; evaluates to indeterminate, its decision,
either ID or IP, becomes the decision of both P and P’. To make
P and P’ different, r; in P should not evaluate to N /A, otherwise
both P and P’ depend on the evaluation results of rules rit1, .., .
In other words, r; in P should fire or evaluate to indeterminate. In
this case, its decision becomes P’s decision. In P’, however, rules
Ti+1, ..., 'n continue to be evaluated. To propagate the difference,
the result of rca(First-applicable, [rit1, ...rn], g) must be different
from r;’s decision. This is formalized by Theorem 11.

Theorem 11.LetR = [rq, ..., 7i—1, i, Fitls o T ). R' = [F1, oo Fie1,
Tit1, .- 'n]- rea(First-applicable, R, q) # rca(First-applicable,R’, q)
ifand only if —rb; for any rule r; (0 < j < i) A(rb; Are; # rca(First-
applicable, [rit1, ..., rn], Q) VError(rbi)Al(re;) # rca(First-applicable,
[ris1s -srnls Q).
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5 OQUALITATIVE EVALUATION OF TESTING
METHODS

This section applies the formalized FDCs to the qualitative evalua-
tion of five testing methods for XACML3.0, including rule-coverage
(RC), decision coverage (DC), no-error decision coverage (NE-DC),
MC/DC, and no-error MC/DC (NE-MC/DC) [18]. They are the main
methods publicly available for the current standard of XACML. The
empirical studies showed that they have outperformed the previous
methods. As they have all considered the reachability of rules and
decision expressions (policy target, rule target, and rule condition),
our discussion focuses on whether or not they satisfy the neces-
sity and propagation constraints of each fault type. As mentioned
before, other related work was based on the earlier versions of
XACML, and thus is difficult to compare. Nevertheless, it appears
that the rule coverage-based test selection [4] is comparable to RC,
and XPTester [12] comparable to NE-DC.

Tables 6 and 7 summarize the analysis results. Table 6 presents
the fault detection capabilities of the testing methods with respect
to the incorrect use of rule-combining algorithms (i.e., mutants
created by the CRC operator). For each pair of rule-combining
algorithms < RCA;, RCA, >, the mutation is either changing RCA;
to RCAs or RCAy to RCA;. Table 7 shows their fault detection
capabilities with respect to other fault types. In each table, “Yes”
(or “No”) means that the mutants created by the corresponding
mutation operator are “always” (or “never”) killed. “Yes*” means
that the mutants are conditionally killed. The conditions are mostly
about propagation constraint and can further be refined according
to structural patterns of policies (e.g., permit-only or deny-only
rules). “No*” means that, generally, the testing method cannot kill
the mutants, but exceptions may exist. For either “Yes*” or “No*”,
some mutants are killed, while others are live. However, we use
“No*” to indicate that the cases of killed mutants are exceptional
or coincidental. Table 7 covers all the rule-combining algorithms,
where each entry indicates the minimum capability. For example,
when the rule-combining algorithm is First-applicable, all entries of
the CRE row is unconditional “Yes”, because the decision of a fired
rule becomes the policy decision. An unconditional “Yes” or “No”
applies to any rule-combining algorithm, whereas a conditional
“Yes*” or “No” may imply different conditions for different rule-
combining algorithms. FPR and FDR apply only when the rule-
combining algorithm is First-applicable.

The error tests, which are the difference between NE-DC and
DC and between NE-MC/DC and MC/DC, can kill more mutants
of RTT, RTF, RCT, RCF, ANF, and RNF. Compared to DC, MC/DC
deals with the necessity constraint of most all RPTE mutants of
compound policy and rule targets. MC/DC may also kill additional
mutants of CRE, RTT, RTF, RCT, RCF, ANF, BNF, and RER. Neverthe-
less, MC/DC does not directly satisfy their propagation constraints,
which largely depend on concrete policies. Therefore, in Table 7,
the entries of MC/DC are mostly conditional “Yes*”, rather than
unconditional “Yes”.

In the following, we elaborate on how the qualitative evalua-
tion was performed using Permit-overrides as the rule-combining
algorithm. Although the evaluation is independent of specific poli-
cies, we use the Sample-PO policy for illustration purposes. Table 8
presents all the test cases generated by the five testing methods,
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Table 6: Fault detection capabilities of incorrect rule-
combining algorithms (PO: Permit-overrides, DO: Deny-
overrides, FA: First-applicable, DUP: Deny-unless-permit,
PUD: Permit-unless-deny)

CRC:

Change RCA | RC | NE-DC | DC | NE-MC/DC | MC/DC
PO vs DO No* Yes Yes Yes Yes
PO vs DUP No Yes Yes Yes Yes
PO vs PUD No* Yes Yes Yes Yes
PO vs FA No* No* Yes No* Yes
DO vs DUP No* Yes Yes Yes Yes
DO vs PUD No Yes Yes Yes Yes
DO vs FA No* No* Yes No* Yes
DUP vs PUD | No* Yes Yes Yes Yes
DUP vs FA No* Yes Yes Yes Yes
PUD vs FA No* Yes Yes Yes Yes

Table 7: Fault detection capabilities of other fault types

Mutation NE-

operator | RC | NE-DC | DC | MC/DC | MC/DC
PTT No Yes Yes Yes Yes
PTF Yes Yes Yes Yes Yes
CRE Yes* Yes* Yes* Yes* Yes*
RTT No* Yes* Yes* Yes™® Yes*
RTF Yes* Yes* Yes* Yes* Yes*
RCT No* Yes* Yes* Yes* Yes*
RCF Yes* Yes* Yes* Yes* Yes*
ANF Yes* Yes* Yes* Yes* Yes*
RNF Yes* Yes* Yes* Yes* Yes*
FPR No* No* No* Yes* Yes*
FDR No* No* No* Yes* Yes*
RER Yes* Yes* Yes* Yes* Yes*
RPTE No* No* No* Yes* Yes*

where (wt) denotes that the value has a wrong type for the at-
tribute. Table 9 shows whether or not each of the sample mutants
in Section I1T is killed by each testing method. If killed, the test cases
are listed.

5.1 Rule Coverage

The RC method generates exactly one test to fire each rule. The test
generation constraint for rule r; is the conjunction of the reachabil-
ity constraint of r; and rt; Arc;. The test that covers rule r; also satis-
fies PT and —rt; V —rc; for any permit rule r; =< rtj, rcj, Permit >
before r;. Tests 1-6 in Table 8 form the RC test suite for Sample-
PO. Although each RC test fires a rule, the rule’s effect does not
necessarily become the policy’s decision. For example, if the two
deny rules were listed before the permit rules in Sample-PO, the
tests covering the deny rules would lead to a policy decision of IP.
Even though a deny rule is fired, the permit rules continue to be
evaluated. These tests would make the permit rules evaluate to IP
because there is no value for the title attribute.
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Table 8: Sample-PO Test Cases Created by Testing Methods
RC(1), NE-DC(2), DC(3), NE-MC/DC(4), MC/DC(5)

Test Input: < department, Oracle Test Method
# title, job-class, location> value |1 |2 (3|45
1 HR, director, ,on-campus Permit | x | x| x| x| X
2 | IT, director, ,off-campus Permit | x | x| x| X | X
3 | HR, deputy, ,on-campus Permit | x | x| x| x| X
4 | HR, deputy, ,off-campus Permit | x | x| x| x| x
5 | HR, ar, guest, off-campus Deny |x|x|x|x|x
6 HR, ar, intern, off-campus Deny | x| x|x|x|x
7 1A, N/A X|x|x|x
8 HR, aal, , aas ID X | x| x|x
9 | HR, director, , aaaaaan ID X|x|x|x
10 | HR, deputy, , av ID Xx|x|x|x
11 | HR, deputy, aC, k N/A X | x| xX|x
12 | IT, director, guest, aav N/A X | x|x|x
13 | IT, director, intern, aav N/A x| x| x|x
14 | A(wt), ,, N/A X X
15 | HR, aaal(wt), , aas IDP X X
16 | HR,director, ,on-campus(wt) IDP X X
17 | HR,deputy, ,on-campus(wt) IDP X X
18 | HRar,guest,off-campus(wt) N/A X X
19 | HR,ar,intern,off-campus(wt) N/A X X
20 | HR,ar,part-time,off-campus Deny X | X
21 | HR,ar,contractor,off-campus | Deny X | x

Table 9: Testing results of the sample mutants (Y: Yes, N: No)

Mutant NE- NE-
name RC DC DC MC/DC | MC/DC
PTT N Y(7) Y(7,14) Y(7) Y(7,14)
RPTEO-1 | N N N Y(2) Y(2)
CRE3 Y(3) Y(3) Y(3) Y(3) Y(3)
RTT5 N N N N N
RPTE5-1 | N N N Y(20) Y(20)
RCT3 N | Y(10,11) | Y(10,11,17) | Y(10,11) | Y(10,11,17)
CRC-FA | N N Y(15-19) N Y(15-19)
5.1.1 CRC (Change Rule-Combining algorithm). RC may or may

not kill the CRC/Deny-overrides mutant (i.e., Permit-overrides is
changed to Deny-overrides). When Permit-overrides and Deny-overrides
are non-equivalent, P contains a pair of permit and deny rules that
conflict with each other. Suppose r; =< rb;, re; > appears before
rj =<rbj,rej > (i < j),rb; and rbj are not identical, and re; # re;.
The test that fires rule r; does not kill the mutant unless it happens
to (a) fire rule r; or (b) evaluate r; to indeterminate. (a) is unlikely
because rb; is not used for solving rb;. The test that fires rule r;
does not fire rule r; due to r;’s reachability constraint. (b) can be
satisfied only when rules r; and r; involve different attributes and
the test covering rule r; has no value for some attribute in rule r;.
The CRC/Deny-overrides mutant of Sample-PO falls into the case of
(b) and is killed by the RC method.

RC cannot kill the CRC/Deny-unless-permit mutant. When a RC
test makes P evaluate to a permit decision, a permit rule was fired.
So P’ also results in a Permit decision. When a RC test makes P



Session 3: Policy Mining and Testing

evaluate to a deny decision, a deny rule was fired but no permit rule
was fired. P’ also results in a Deny decision. Here non-equivalence
of Permit-overrides and Deny-unless-permit (or Permit-unless-deny)
does not require that P should contain both permit and deny rules.

RC cannot kill the CRC/Permit-unless-deny mutant where Permit-
overridesis changed to Permit-unless-deny except that a test covering
a permit (or deny) rule also fires a deny (or permit) rule. In the
exceptional case, the decision of P is Permit, whereas the decision of
P’ is Deny. This is unlikely because RC aims at covering individual
rules.

RC cannot kill the CRC/First-applicable mutant where Permit-
overrides is changed to First-applicable except that the test covering
a deny rule also fires a permit rule after it (the decision of P is
Permit, whereas the decision of P’ is Deny). As shown in Table 9,
RC cannot kill Sample-PO-CRC-FA.

5.1.2  PTT (Policy Target True). The RC method cannot kill PTT
mutants because every RC test makes the policy target true. The
necessity constraint is not satisfied. As shown in Table 9, for exam-
ple, the RC test suite cannot kill Sample-PO-PTT. RC kills all PTF
(policy target false) mutants because they result in an N /A policy
decision for each test.

5.1.3 CRE (Change Rule Effect). RC can kill CRE mutants with
possible exceptions. The test covering the mutated rule r; meets
the necessity constraint. It kills the mutant as along as it fires no
permit rule after r; so that the propagation constraint is satisfied.
In Table 9, test 3 kills Sample-PO-CRE3. It satisfies the fault de-
tection condition department € {“HR”, “IT”} A (title="deputy”) A
(location="on-campus”) described in Section IV.

5.1.4 RTT (Rule Target True). RC cannot kill RTT mutants with
possible exceptions. For an RTT mutant with r; =< true, rci, re; >,
the test covering the mutated rule r; =< rt;, rc;, re; > does not kill
it because the necessity constraint is not satisfied. An exception
is that there exists another rule rj =< rtj,rcj,rej > such that rt;
implies —rt; (e.g., title="director” implies title # “deputy”) and rc;
implies rc; (e.g., they are equal or r¢; is empty). The test covering
rj makes r; not-applicable in P but fired in P’. To propagate the
difference, r; should be a deny rule, otherwise both P and P’ result
in a Permit decision. This implies that r; should be a permit rule
otherwise both P and P’ evaluate to deny once r; is fired. In addition,
the test should not fire any other permit rule. To summarize, the
PTT mutant is killed only when the mutated rule r; is a permit
rule and there exists a deny rule rj =< rt;,rcj, Deny > such that
rtj Arcj A —rti Arcp Arep = Permit A (=rbg V Error(rby)) for
any permit rule ryp =< rby, Permit > (k # j, k # i). In Table 9, RC
does not kill Sample-PO-RTT5. None of its tests satisfies the FDC
department € {*HR’, “IT’} A title ¢ {“deputy”, “director”} A job-class ¢
{“guest”, “part-time”, “intern”, “contractor”} A (location="off-campus”)
described in Section IV.

5.1.5 RCT (Rule Condition True). Similarly, RC cannot kill RCT
mutants although there exist exceptions. For an RCT mutant r; =<
rt;, true, re; >, the test covering the mutated rule r; =< rt;, rc;,re; >
in P does not kill it because the necessity constraint is not satisfied.
The exception is that there exists another rule r; =< rtj,rc;, rej >
such that r¢; implies rt; (e.g., they are equal or rt; is empty) and
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rcj implies —rc; (e.g., location="on-campus” implies location # “off-
campus’). In this case, the test covering r; makes r; not-applicable
in P but fired in P’. Similar to the above discussion on RTT, the
RCT mutant is killed when r; is a permit rule and there exists
a deny rule r; =< rtj,rcj, Deny > such that rt; A rcj Art; A
—rc; A rej = Permit A (=rbg A Error(rby)) for any permit rule
ry =< rbg,Permit > (k # j,k # i). In Table 9, RC does not kill
Sample-PO-RCT3.

5.1.6  RTF (Rule Target False), RCF (Rule Condition False), ANF (Add
Negation Function), and RNF (Remove Negation Function). For each
RTF (rule target false) mutant, the test that covers the mutated rule
r; has satisfied the reachability and necessity constraints. Generally,
RC can kill an RTF mutant if and only if this test does not fire
any permit rule after r; (or any other rule) when r; is a permit (or
deny) rule. This is similar for RCF (rule condition false), ANF (add
negation function), and RNF (remove negation function).

5.1.7  RER (REmove a Rule). RC may or may not kill RER mutants.
For an RER mutant where rule r; =< rb;, re; > is missing, the test
covering r; evaluates r; to re;. If r; = Permit, then the mutant is
killed if the test fires no other permit rule. Consider rules r; =<
aVb, Permit > andry =< aVc, Permit > that are overlapping, but
not subsumed by each other. The RC test for r1 (or ry) that satisfies
a does not kill the RER mutant where r; (or rz) is removed. If
ri = Deny, the mutant is killed when no other rule is fired and there
does not exist a pair of permit and deny rules that both evaluate to
indeterminate.

5.1.8 RPTE (Remove Parallel Target Element). RC cannot kill RPTE
mutants with possible exceptions. As shown in Table 10, RC does
not kill Sample-PO-RPTE0-1 or Sample-PO-RPTE5-1. RPTE applies
to a policy or rule target of the formci A ... Acporei V..Vey
(n > 1). A test that satisfies ¢; A ... A ci—1 A ¢j A Cis1... A ¢y also
satisfies ¢c; A ... A ¢j—1 A Cis1... A ¢, Where ¢; is removed. A test
that satisfies ¢1 V ... V ¢ji—1 V ¢; V ¢it1... V ¢p, also satisfies ¢ V ... V
Ci—1V Cit1... V cp With ¢; removed except that c; is true and each c;
(j # i) is false. So the necessity constraint is not met. RC may kill
% of the RPTE mutants where n is the number of parallel elements
incg V..Veci-1 Ve Vcip... Vep. In Sample-PO, n = 2 for each
compound expression. RC kills Sample-PO-RPTE5-0 where the first
parallel target element job-class="guest”is removed. The test that
covers rule R5 evaluates the mutated target of rule R5 to false.

5.2 Decision Coverage and Non-Error Decision
Coverage

The DC method derives tests to make the policy target evaluate to
true, false, and Error, respectively, and the rule target (condition)
of each rule evaluate to true, false, and Error, respectively. The
“true” case of one-level decision expression is used as a reachabil-
ity constraint for the next level decision expression (e.g., policy
target vs rule target, and rule target vs rule condition). NE-DC is
a special case of DC without error tests. It ensures that, for each
rule r; =< rt;, rci, re; >, there are three tests to cover the following
combinations of rule target and rule condition: rt; A rc;, rt; A —rc;,
and —rt;. When solving —rt;, it also tries to satisfy rc; if feasible.
In other words, —rt; is likely —rt; A re; (including the case of r¢;
being empty). rt; A rc; is also in the RC test suite. =rt; (or rt; A —rc;
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when rt; is empty) might be covered by the RC test suite if the rule
is a permit rule, but not the last rule in the policy. The reachability
constraint of the rules after it requires that either its target or its
condition should evaluate to false. Generally, NE-DC has a test that
makes the last rule not applicable and thus leads the policy to an
N/A decision. As shown in Table Table 8, the NE-DC test suite
for Sample-PO has 13 tests, including the six RC tests. DC adds
six more error tests to NE-DC. Note that, when NE-DC and DC
test suites are generated separately, the random values created by
the constraint solver could be different. An example is “A” for the
attribute department in test 7. For convenience, Table 8 uses the
same random value for all test suites so that they can fit in one
table to demonstrate the relationships among the testing methods.
This does not affect fault detection. This is similar for NE-MC/DC
and MC/DC.

NE-DC is similar to RC for the following mutants: PTF, CRC/Deny-
overrides, CRC/First-applicable, CRE, RTF, RCF, ANF, BNF, and RER.

5.2.1 CRC (Change Rule-Combining algorithm). NE-DC kills the
CRC/Deny-unless-permit mutant where Permit-overrides is changed
to Deny-unless-permit. Consider the last rule r, =< rty, rep, rep >.
There is a test for —rt, or rt, A —rc,, which evaluates the rule
to N/A. In this case, no permit rule is fired. Assuming that this
test fires no deny rule, the decision of P is not deny, whereas the
decision of P’ is deny.

NE-DC kills the CRC/Permit-unless-deny mutant where Permit-
overrides is changed to Permit-unless-deny. Consider the last rule
rn =< rtp,rcp, rey >. There is a test for —rt, or rt, A =rcy,, which
evaluates the rule to N/A. In this case, no permit rule is fired. The
decision of P is not Permit, whereas the decision of P’ is Permit
assuming that this test fires no deny rule.

5.2.2  PTT (Policy Target True). NE-DC kills PTT mutants because
it has a test that evaluates the policy target to false. The decision
of P is N/A, whereas a PTT mutant typically evaluates to inde-
terminate because of missing attribute values when the rules are
evaluated. For Sample-PO, test 7 makes the policy target false and
the policy evaluate to N/A. It kills Sample-PO-PTT, which results
in IDP because each permit/deny rule evaluates to IP/ID and the
combined decision is IDP.

5.2.3 RTT (Rule Target True). NE-DC kills RTT mutants although

there are exceptions. Consider an RTT mutant with r; =< true, rcj, re; >.

The test for —rt; likely satisfies the necessity constraint —rt; A rc;.
As mentioned before, when solving —rt;, NE-DC considers rc; if
feasible. This test makes r; not-applicable in P but fired in P’. The
necessity constraint can also be satisfied by a NE/DC test for a
different rule r; =< rtj,rcj,rej > such that rt; implies —rt; and
—rcj implies rc;. This test for rt; A —rc;j makes r; not-applicable in
P but fired in P’. The effect of rule r; does not matter. Either of the
above tests kills the mutant if (a) it does not fire any other permit
rule, and (b) it fires no other deny rule and makes no permit rule
evaluate to indeterminate if re; = Deny.

5.2.4 RCT (Rule Condition True). NE-DC can kill RCT mutants
with exceptions. Consider an RCT mutant with r; =< rt;, true, re; >.
The new test for rt; A —rc; always satisfies the necessity constraint.
It makes r; not-applicable in P and but fired in P’. It kills the RCT

113

SACMAT ’22, June 8-10, 2022, New York, NY, USA

mutant if it does not fire any other rule, which is very likely. As
shown in Table 9, tests 10 and 11 of Sample-POkill Sample-PO-RCT3.

5.25 RPTE (Remove Parallel Target Element). NE-DC cannot kill
RPTE mutants with exceptions. NE-DC introduces a new test for
=(c1A...Acp) or =(c1 V...Vcp). A test that satisfies =(c1 A... Acj—1 A
ciACit1...Acp) also satisfies =(c1 A ... Acj—1 Acj+1... Acy) except that
c; is false and c; is true for all j # i (i.e., NE/DC may kill % of the
RPTE mutants). A test that satisfies —(¢1 V...V ¢cj—1 Vi Veig1... Ven)
also satisfies =(c1 V... Vcj—1 V¢it1... V ¢p). It does not kill additional
RPTE mutants.

5.2.6  Summary. To summarize, in addition to the mutants killed
by the RC method, NE-DC improves the fault detection capability
by dealing with PTT, CRC/Deny-unless-permit, CRC/Permit-unless-
deny, and RCT mutants.

Compared to NE-DC, DC introduces error tests for policy target,
rule target and condition. Error tests do not kill any mutants of
CRE, ANF, RNF, and RPTE (where the error does not occur in the
removed clause) because the mutation point evaluates to the same
type of indeterminate in both the original policy and the mutant.
However, they satisfy the necessity constraints of mutants created
by PTT, PTF, RTT, RTF, RCT, RCF, RER, and RPTE (where the error
occurs only in the removed clause). They kill PTF mutants when
the rule-combining result is not N/A, and PTF mutants when the
rule-combining result is Permit or Deny. We will not elaborate on
this as these mutants are already killed by other tests. For other
mutants listed above, propagation of the difference requires that
no other rule should evaluate to the same type of indeterminate.
This indicates that other rules should not involve the same attribute
that causes the error occurrence. It can be hard to satisfy this con-
straint because rules in the same policy are usually defined over
the same set of attributes — error occurrence in one rule implies
the occurrence of the same error in all other rules defined over
the same attributes. As shown in the empirical study, there are
only a small number of error tests. Error tests for rules can kill the
CRC/First-applicable mutant (e.g., Sample-PO-CRC-FA in Table 9).
This requires that an error occurs in both permit and deny rules so
that the result of Permit-overrides is IDP whereas the result of First-
applicable is IP or ID. This is the case when Permit-overrides and
First-applicable are non-equivalent: there are both deny and permit
rules defined over the same set of attributes. In addition, error tests
can reveal incorrect attribute types, which are not handled by the
existing mutation operators.

5.3 MC/DC and Non-Error MC/DC

The MC/DC method generates tests to achieve MC/DC and cover
error occurrence for each decision expression. It is different from
DC only when the decision expression has one or more logical
connectives. For conjunction ¢; A ... A ¢y, MC/DC produces n + 1
tests: one test that evaluates all ¢; to true and n tests that each
evaluates one c; to false and all other c; to true. For ¢; V ... V ¢y,
MC/DC creates n + 1 tests including one that evaluates all ¢; to
false and n tests that each evaluates one c; to true and all other
c;j to false. NE-MC/DC is a special case of MC/DC without error
tests. For Sample-PO, MC/DC is different from DC because of the
policy target, rule R5, and rule R6. As shown in Table 8, test 2
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of MC/DC (or NE-MC/DC) uses “IT” for department to achieve a
different coverage of the policy target. Tests 20 and 21 deal with
rules R5 and R6, respectively.

The mutants killed by NE-DC are also killed by NE-MC/DC. If it is
a “Yes*” for NE-DC, it remains unchanged for NE-MC/DC. However,
NE-MC/DC may kill additional mutants of RTT, RTF, RCT, RCF,
ANF, BNF, and RER because it creates more tests for compound rt;
and rc¢; (e.g., —rt; and rt; A —rc; for killing RTT mutants discussed
before). These tests increase the chance of meeting the propagation
requirements related to the evaluations of other rules.

Compared to NE-DC, a major new capability of NE-MC/DC is
the detection of faults in RPTE mutants. It always satisfies the
necessity constraint. If o = ¢1 A ... A ci—1 A ¢j A Ciy1... A cp and
o’ =c1 A ... Aci—1 A Cis1... A ¢, Where c; is removed. NE-MC/DC
has a test where c; is false and c; is true for all j # i. This test
makes w false and o’ true. If o = ¢1 V... Vcj_1 V¢; Vcig1... Vcp and
o’ =c1V..Veci—1Vcigl... V ¢y where c; is removed. NE-MC/DC
has a test where c; is true, and c; is false for all j # i. It makes
o true and «’ false. When w is the policy target, the propagation
constraint is satisfied, assuming the rules use at least one attribute
that does not appear in . In Table 9, test 2 of NE-MC/DC kills
Sample-PO-RPTE(-1 as it evaluates the mutated policy target to
N/A.

Consider RPTE applied to the mutated rule r; =< rt;,rcj,re; >.
When rt;j = ¢c1 A...Acj—1 Acj Acit1... Acp and the MC/DC test makes
rt; false and rti’ true. It also makes rc; true (or rc; is empty) as the
MC/DC method attempts to satisfy rc; if feasible when solving —rt;.
When rt; = ¢1 V... Vci—1 V¢ V Cit1... V cp, the MC/DC test for
rt; being true and rt] being false makes rc; true because it is used
as part of the reachability constraint of rc;. So, the test kills the
mutant if (a) it does not fire any other permit rule, and (b) it fires no
other deny rule and makes no permit rule evaluate to indeterminate
if re; = Deny. For Sample-PO, test 20 kills Sample-PO-RPTE5-1 as
shown in Table 9.

6 CONCLUSIONS

We have presented the sufficient and necessary conditions for de-
tecting XACML policy faults according to a comprehensive fault
model. The conditions allow the fault detection capabilities of test-
ing methods to be qualitatively evaluated by identifying whether
or not they can detect each type of faults. This is distinct from the
existing research that solely relies on mutation experiments with
sample policies.

In this paper, the fault detection conditions are formalized with
respect to fault types, not limited to the existing mutation oper-
ators. They can be instantiated and simplified whenever a new
mutation operator is introduced for a fault type. The formalized
fault detection conditions also provide a fundamental guideline for
the design of effective testing methods for access control policies in
XACML and other similar languages. Although the existing work
has commonly applied mutation experiments to the quantitative
measurement of testing effectiveness, the fault model used to derive
mutants is essentially an afterthought, not a built-in component
of testing methods. Because the main purpose of testing is to find
potential faults in a given policy, understanding of fault detection
conditions is key to effective testing. An effective method should
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target specific types of policy faults and deal with the reachability,
necessity, and propagation constraints of fault detection.

Our future work aims to investigate fault detection conditions
of NGAC (Next Generation Access Control) [9] policies based
on the fault model and mutation operators [5]. Although NGAC
and XACML are both ABAC standards, they are very different.
XACML specifies policies through logical rules defined over at-
tributes, whereas NGAC expresses policies through configurations
of relations among attributes (e.g., assignments, associations, prohi-
bitions, and obligations). As the reference implementation of NGAC
has become available, testing methods have begun to emerge [5].
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