
Mutation Analysis of NGAC Policies
Erzhuo Chen, Vladislav Dubrovenski, Dianxiang Xu

Department of Computer Science Electrical Engineering
University of Missouri - Kansas City

Kansas City, MO 64110, USA
{lcrnd,vadpb7}@mail.umkc.edu,dxu@umkc.edu

ABSTRACT
The NGAC (Next Generation Access Control) standard for attribute-
based access control (ABAC) allows for run-time changes of the
permission and prohibition configurations through administrative
obligations triggered by access events. It makes access control more
fine-grained and dynamic. However, it raises challenges for as-
suring the correctness of NGAC policies. As policy testing is an
important technique for quality assurance, this paper presents an
approach to mutation analysis of NGAC policies. It can evaluate
the effectiveness of a testing method and reveal potential faults in
an inadequately tested policy. The mutation analysis covers various
types of potential faults in the assignments, associations, prohibi-
tions, and obligations of NGAC policies. This paper also proposes an
incremental testing approach that first validates the initial configu-
ration of a policy and then the policy as a whole. It helps determine
whether faults appear in the configuration or the obligations. To
evaluate the work, we have developed four working policies and
their test suites based on the current NGAC reference implementa-
tion. The empirical studies show that themutation analysis can shed
light on the strengths and weaknesses of the test suites. They also
demonstrate the need for developing more cost-effective testing
methods.

CCS CONCEPTS
• Security and privacy → Access control; Software security en-
gineering; Authorization.

KEYWORDS
Access control; Next Generation Access Control (NGAC); mutation
testing; policy testing

ACM Reference Format:
Erzhuo Chen, Vladislav Dubrovenski, Dianxiang Xu. 2021. Mutation Analy-
sis of NGAC Policies. In Proceedings of the 26th ACM Symposium on Access
Control Models and Technologies (SACMAT ’21), June 16–18, 2021, Virtual
Event, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3450569.3463563

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT ’21, June 16–18, 2021, Virtual Event, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8365-3/21/06. . . $15.00
https://doi.org/10.1145/3450569.3463563

1 INTRODUCTION
Next Generation Access Control (NGAC) is a new standard created
by the American National Standard Institute to meet the needs
for attribute-based access control (ABAC) in modern distributed
systems [2]. Its reference implementation is being developed and
deployed by NIST [17]. In ABAC, authorization elements are de-
fined in terms of attributes, i.e., characteristics of subjects, actions,
resources, and environments predefined and pre-assigned by an
authority [5]. By combining various attributes into access control
decisions, ABAC enables fine-grained access control. The increased
complexity of ABAC has also raised concerns about quality assur-
ance of access control policies. Faults in ABAC policies may lead
to unauthorized accesses, escalation of privileges, and denial of
service [22].

To address quality assurance of access control policies, policy
testing has gained attention in the past decade. It aims to find poten-
tial faults or vulnerabilities in a policy by running it against certain
test inputs (e.g., access requests). The most recent research has
focused on XACML (eXtensible Access Control Markup Language)
[12] polices [8],[15],[22],[23]. Although NGAC and XACML are
both ABAC standards, they are very different. XACML specifies
access control policies and policy sets with logical expressions and
rules defined over attributes, whereas NGAC policies build upon
sets and relations of attributes.

Figure 1: Abstract Structure of NGAC Policies

As illustrated in Figure 1, an NGAC policy specifies an initial
access control configuration together with a set of obligations. The
configuration consists of permission (assignment and association)
and prohibition relations on the policy elements, such as user/object
attributes, users, objects, and access rights. An obligation describes
the response to an access event performed on behalf of the user.
The response comprises administrative commands that dynamically
change the configuration. Thus, NGAC obligations allow for run-
time changes of permission and prohibition decisions. This offers
unprecedented expressiveness for managing fine-grained access
control of dynamic data and operations. In comparison, the notion

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

71

https://doi.org/10.1145/3450569.3463563
https://doi.org/10.1145/3450569.3463563
https://doi.org/10.1145/3450569.3463563

of obligation in XACML does not support run-time changes of
access control rules.

Although the administrative obligations in NGAC make access
control more dynamic and flexible, it can be difficult to assure
correct access control. As stated in the NGAC standard specification,
the application of NGAC has the potential of "grave harm to the
authorization state through error or intent" [2]. With the NGAC
reference implementation deployment, it is expected that more and
more applications will adopt the NGAC standard. The US National
Strategy for Information Sharing and Safeguarding recommended
that the federal government should extend and implement the
FICAMRoadmap across federal networks in all security domains [5],
where the FICAMRoadmap has called out ABAC as a recommended
access control model for promoting information sharing between
diverse and disparate organizations [4]. Currently, no work has
been done on the quality assurance of NGAC policies.

This paper presents an approach to mutation analysis of NGAC
policies for evaluating the effectiveness of testing methods for re-
vealing potential faults (errors) in NGAC policies. Given an NGAC
policy, it automatically generates a set of policy mutants and exe-
cutes each mutant against the given test suite representing a testing
method under evaluation. A mutant is a modified version of the
original policy where a policy element is mutated according to a
fault model of representative types of errors in NGAC policies. A
mutant is said to be killed if it fails one or more tests; otherwise,
it is a live mutant. Testing effectiveness is indicated by mutation
score, i.e., the ratio between the number of mutants killed and the
total number of non-equivalent mutants.

The contributions of this paper are three-fold:

• This paper is the first work on mutation analysis of NGAC
policies. It offers a comprehensive fault model that accounts
for various potential errors in the configurations and obliga-
tions of NGAC policies. Based on the fault model, mutation
operators are designed and implemented in an open-source
tool. The tool can automatically generate mutants of a given
policy, execute mutants with the policy’s test suite, and re-
port its effectiveness.

• This paper presents an incremental approach to testingNGAC
policies. Given a policy, it applies combinatorial tests to the
initial configuration and then coverage-based tests to the
obligations in the policy (i.e., each obligation is tested at least
once). The incremental testing facilitates fault localization.
When an obligation test fails, it is likely caused by a faulty
obligation because the initial configuration has passed all
the tests. This paper is the first work to present and evaluate
a specific method for testing NGAC policies.

• This paper presents a set of working policies of the NGAC
reference implementation that can be reused by the research
community. One of them is the first fully-fledged open-
source application of the NGAC reference implementation
with 30,249 lines of Java code. It was considered a very inter-
esting case study by the NGAC implementation team, who
helped with the policy design.We have created the test suites
of the sample policies and evaluated their effectiveness. The
experiment results indicate that the existing methods for
testing NGAC policies are inadequate for high assurance.

It motivates further research on new testing methods for
NGAC policies.

The remainder of this paper is organized as follows. Section 2
reviews related work; Section 3 introduces NGAC policies; Section
4 presents the fault models and mutation operators for generating
NGACpolicymutants; Section 5 describes the incremental approach
to testing NGAC policies; Section 6 presents the empirical studies;
Section 7 concludes this paper.

2 RELATED WORK
2.1 Mutation Testing
Mutation analysis is a widely applied approach to evaluating soft-
ware testing methods [6]. It mutates a program by slightly changing
the code without any syntax error. Each modified version, called
a mutant, represents a potential error (fault). Given a program to-
gether with a passing test suite, mutation analysis generates a set
of program mutants and runs each mutant against the test suite. A
mutant is said to be killed if it fails one or more tests; otherwise, it
is a live mutant. After all the mutants have been tested, the num-
bers of killed mutants and equivalent mutants are determined. An
equivalent mutant has the same behavior as the original program
for any input. The mutation score is defined by 𝐾

𝑀−𝐸 , where 𝐾 is
the number of mutants killed,𝑀 is the total number of all mutants,
and 𝐸 is the number of equivalent mutants.𝑀 − 𝐸 is the number of
non-equivalent mutants. Suppose the total number of mutants is
1,000, the number of equivalent mutants is 120, and the number of
killed mutants is 748. The mutation score is 748/(1,000-120)=85%.
Mutation score is an important indicator of testing effectiveness.

The essential hypotheses of mutation testing [13] include: (a)
the mutants are representative of real faults, (b) developers write
programs close to being correct, and (c) tests sufficient to detect
simple faults can detect complex ones. Experiments have shown
that mutants are indeed similar to real faults to evaluate testing
techniques [7].

2.2 Policy Mutation
Mutation analysis of access control policies has also been the main
approach to evaluating policy testing methods. MutaX is a tool
for mutating Organization Based Access Control (OrBAC) policies
[11][18]. It provides five types of mutation operators: replacing
permission rule with prohibition, replacing prohibition rule with
permission, changing role, changing context, and adding a rule. Xu
et al. used these mutation operators for mutation analysis of Role-
Based Access Control (RBAC) policies to evaluate a model-based
testing method of RBAC policies [20][24].

Recent policy testing research has focused on XACML policies
[8][9][15][22]. Several mutation analysis tools have been developed
for different versions of the XACML standard, including [10] for
v1.0, [1] for v2.0, and [22] for v3.0. They have been used to eval-
uate various testing methods for XACML policies. Xu et al. have
also applied mutation analysis to generate test cases from XACML
policies [23] and repair faulty XACML policies [21]. Elrakaiby et al.
proposed a mutation-based approach to testing obligation policy
enforcement, where obligations are independent of access control
rules [3]. Obligations in this work are conceptually distinct from
those in NGAC.

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

72

This paper presents the first mutation tool for NGAC policies
based on the current NGAC reference implementation. As men-
tioned before, NGAC is significantly different from XACML even
though both are ABAC standards. Mutation analysis of XACML
policies deals with such policy elements as policy sets, policies, com-
bining algorithms, and rules. This paper deals with the mutation
of NGAC policy elements such as configuration (assignment, asso-
ciation, and prohibition relations) and obligations. The mutation
tool of XACML v3.0 policies has 14 mutation operators [22] [23].
In this paper, the mutation analysis involves 40 mutation operators
for NGAC policies.

3 NGAC POLICIES
An NGAC policy consists of an initial configuration of permis-
sions and prohibitions and a set of obligations. Specifications of
initial prohibitions and obligations are optional. In the reference
implementation of the NGAC standard, the initial permissions (i.e.,
assignment and association relations), the initial prohibitions, and
the set of obligations of a policy are specified in three separate files.

Figure 2: Architecture of NGAC Applications

NGAC allows the access control policy of an application to be
separated from the business functionality. It reduces hard-coding
of access control constraints and facilitates requirements changes.
Figure 2 shows the general architecture of NGAC applications that
use obligations to manage dynamic permissions and prohibitions.
It includes one or more Policy Enforcement Points (PEPs) in the
application’s functional components and one or more Policy De-
cision Points (PDPs) of the NGAC standard. A PEP sends a user’s
request to a PDP, which renders an access decision according to
the current permission and prohibition configuration and replies
to the PEP. When an access event occurs in the PEP, it triggers the
Event Process Point (EPP), which issues directives to the Policy
Administrative Point (PAP) to find the matching obligations. The
administrative commands in the matched obligations will be exe-
cuted on behalf of the user who established the access event. The
execution will change the current configuration.

To make this paper self-contained, we briefly introduce policy
elements, configurations, and obligations of NGAC policies based
on the standard specification [2].

3.1 Basic Elements
The basic elements of an NGAC policy comprise users, user at-
tributes, objects, object attributes, policy classes, processes, and
operations. Processes operate in a unique memory space of a sys-
tem on behalf of a user. Authenticated users initiate access requests
by creating processes. Operations denote modes of access to be
performed on objects or policy information. Each operation re-
quires one or more access rights. Processes are typically associated
with the PEPs. To separate the analysis of NGAC policies from
the specific PEP implementations, this paper will not elaborate on
processes. Access requests and decisions related to processes are
covered by those for users.

Let 𝑃𝐸 be the set of policy elements of an NGAC policy. 𝑃𝐸 =

𝑈 ∪𝑈𝐴∪𝑂∪𝑂𝐴∪𝑃𝐶 , where𝑈 is a finite set of users,𝑈𝐴 is a finite
set of user attributes,𝑂 is a finite set of objects,𝑂𝐴 is a finite set of
object attributes, and 𝑃𝐶 is a finite set of policy classes.𝑈 ,𝑈𝐴,𝑂𝐴,
and 𝑃𝐶 are disjoint, i.e., each of these elements is uniquely identified.
𝑂 ⊆ 𝑂𝐴 because objects are also treated as object attributes.

Figure 3: A Simple Policy Graph

A policy class is a container of certain users, user attributes,
objects, and object attributes. The notion of policy classes helps
modularize a complicated policy into multiple groups and avoid
interference among access rights of different user attributes and
object attributes. For example, one person can be enrolled as a
student in one course and a teaching assistant in another course.
All elements in 𝑃𝐸 except policy class names should be contained
in one or more policy classes.

In Figure 3, the policy elements are organized in one policy class.
𝑈 = {𝑀𝑖𝑎, 𝐽𝑎𝑚𝑒𝑠},𝑈𝐴 = {𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, 𝐿𝑒𝑎𝑑},𝑂 = {𝑁𝑖𝑐𝑘,𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏},
𝑂𝐴 = {𝑁𝑒𝑤𝐶𝑎𝑠𝑒,𝐶𝑎𝑠𝑒1, 𝑁𝑖𝑐𝑘,𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏}, 𝑃𝐶 = {𝐿𝑎𝑤𝐹𝑖𝑟𝑚𝑃𝑜𝑙𝑖𝑐𝑦}.

3.2 Configurations
A configuration consists of three relations on the policy elements:
assignment, association, and prohibition. The assignment and asso-
ciation relations specify what is permitted. However, the permis-
sions can be overridden by the prohibition relation.

3.2.1 Assignments. The assignment relation, 𝐴𝑆𝑆𝐼𝐺𝑁 , is defined
as follows:

𝐴𝑆𝑆𝐼𝐺𝑁 ⊆ (𝑈 ×𝑈𝐴) ∪ (𝑈𝐴 ×𝑈𝐴) ∪ (𝑂𝐴 ×𝑂𝐴) ∪

(𝑈𝐴 × 𝑃𝐶) ∪ (𝑂𝐴 × 𝑃𝐶)
Given (𝑥,𝑦) ∈ 𝐴𝑆𝑆𝐼𝐺𝑁 , i.e., 𝑥 is assigned to 𝑦, 𝑥 is the direct

ascendant of 𝑦 and 𝑦 is the direct descendant of 𝑥 . A user can be
assigned to a user attribute, and a user attribute can be assigned to

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

73

another user attribute or a policy class. An object can be assigned
to an object attribute, and an object attribute can be assigned to
another object attribute or policy class. A policy class cannot be
assigned to any other policy element. The assignments of objects
to object attributes are implied by 𝑂𝐴 ×𝑂𝐴 because of 𝑂 ⊆ 𝑂𝐴.

In Figure 3, the assignment relation is { (𝑀𝑖𝑎, 𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦), (𝐽𝑎𝑚𝑒𝑠 ,
𝐿𝑒𝑎𝑑), (𝐴𝑙𝑖𝑐𝑒 , 𝐶𝑎𝑠𝑒1),(𝐴𝑙𝑖𝑐𝑒 , 𝑁𝑒𝑤𝐶𝑎𝑠𝑒), (𝐵𝑜𝑏, 𝐶𝑎𝑠𝑒1), (𝑁𝑖𝑐𝑘 ,
𝑁𝑒𝑤𝐶𝑎𝑠𝑒), (𝑁𝑒𝑤𝐶𝑎𝑠𝑒 , 𝐿𝑎𝑤𝐹𝑖𝑟𝑚𝑃𝑜𝑙𝑖𝑐𝑦), (𝐶𝑎𝑠𝑒1, 𝐿𝑎𝑤𝐹𝑖𝑟𝑚𝑃𝑜𝑙𝑖𝑐𝑦),
(𝐿𝑒𝑎𝑑 , 𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦),(𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, 𝐿𝑎𝑤𝐹𝑖𝑟𝑚𝑃𝑜𝑙𝑖𝑐𝑦) }.

The assignment relation can be visualized as acyclic directed
graphs (hierarchies), as illustrated in Figure 3. The root of each
hierarchy is a policy class. It connects two sub-hierarchies: one
for the users and user attributes, and the other for the objects and
object attributes. Compared to RBAC, NGAC introduces object
attribute hierarchies while generalizing role hierarchies of RBAC
by user/user attribute hierarchies.

Let 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥,𝑦) denote 𝑥 contains𝑦. It is defined as follows: (1)
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥, 𝑥) for any 𝑥 ∈𝑈𝐴∪𝑂𝐴∪𝑃𝐶 . (2) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥,𝑦) if (𝑦, 𝑥)
∈ 𝐴𝑆𝑆𝐼𝐺𝑁 . (3) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥, 𝑧) if 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥,𝑦) and 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑦, 𝑧).
In the directed graphs of the assignment relation, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥,𝑦)
indicates that there is a path from node 𝑦 to node 𝑥 .

In Figure 3, 𝐿𝑎𝑤𝐹𝑖𝑟𝑚𝑃𝑜𝑙𝑖𝑐𝑦 contains all other elements. 𝐽𝑎𝑚𝑒𝑠 is
contained by 𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦. 𝐴𝑙𝑖𝑐𝑒 is contained by 𝐶𝑎𝑠𝑒1 and 𝑁𝑒𝑤𝐶𝑎𝑠𝑒 .

3.2.2 Associations. The association relation specifies access rights
between a user attribute and an object (or user) attribute. Let 𝐴𝑅
be the set of all access rights and 𝐴𝑇 = 𝑈𝐴 ∪𝑂𝐴 be the set of user
attributes and object attributes. The ternary association relation is
defined as 𝐴𝑆𝑆𝑂𝐶𝐼𝐴𝑇 𝐼𝑂𝑁 ⊆ 𝑈𝐴 × 2𝐴𝑅 ×𝐴𝑇 .

In Figure 3, the association relation is { (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, {𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒},
𝑁𝑒𝑤𝐶𝑎𝑠𝑒), (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, {𝑤𝑟𝑖𝑡𝑒}, 𝐶𝑎𝑠𝑒1), (𝐿𝑒𝑎𝑑 , {𝑎𝑑𝑑}, 𝐶𝑎𝑠𝑒1) }.
(𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, {𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒}, 𝑁𝑒𝑤𝐶𝑎𝑠𝑒) specifies that any user di-
rectly assigned to user attribute 𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦 (e.g.,𝑀𝑖𝑎) has the access
rights of𝑤𝑟𝑖𝑡𝑒 and 𝑑𝑒𝑙𝑒𝑡𝑒 on an object directly assigned to object
attribute 𝑁𝑒𝑤𝐶𝑎𝑠𝑒 (e.g., object 𝑁𝑖𝑐𝑘).

3.2.3 Prohibitions. The prohibition relation defines the negation
of associations to constrain the access rights granted to policy
elements, i.e., 𝑃𝑅𝑂𝐻𝐼𝐵𝐼𝑇 𝐼𝑂𝑁 ⊆ (𝑈 ∪𝑈𝐴) × 2𝐴𝑅 × 2𝑈𝐴∪𝑈∪𝑂𝐴 .
Each prohibition is a triple (𝑠, 𝑎𝑟𝑠, 𝑡𝑝𝑠), where 𝑠 ∈ 𝑈 ∪ 𝑈𝐴 is
a user or user attribute, 𝑎𝑟𝑠 ⊆ 𝐴𝑅 is a set of access rights, and
𝑡𝑝𝑠 ⊆ 𝑈𝐴 ∪𝑈 ∪𝑂𝐴 is a target prohibition set of policy elements.
𝑡𝑝𝑠 is not specified directly. Instead, its syntax includes an inter-
section operator (𝑐𝑜𝑛 𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 or 𝑑𝑖𝑠 𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒) followed by one or
more container specifications (𝛼𝑖 , 𝑐𝑖), where 𝛼𝑖 is a complement
operator (either 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 or 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛) and 𝑐𝑖 ∈ 𝑈𝐴 ∪𝑂𝐴 ∪ 𝑃𝐶
is a container (user attribute, object attribute, or policy class). Let
𝜌 (𝛼𝑖 , 𝑐𝑖) be the set of policy elements defined by container specifi-
cation (𝛼𝑖 , 𝑐𝑖). 𝜌 (𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛, 𝑐𝑖) of an inclusive container comprises
all policy elements contained by container 𝑐𝑖 . 𝜌 (𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛, 𝑐𝑖) of an
exclusive container consists of all the policy elements not contained
by container 𝑐𝑖 . 𝜌 (𝛼𝑖 , 𝑐𝑖) ⊂ 𝑈𝐴 ∪ 𝑈 if 𝑐𝑖 ∈ 𝑈𝐴. 𝜌 (𝛼𝑖 , 𝑐𝑖) ⊂ 𝑂𝐴 if
𝑐𝑖 ∈ 𝑂𝐴. 𝜌 (𝛼𝑖 , 𝑐𝑖) ⊂ 𝑈𝐴 ∪𝑈 ∪𝑂𝐴 if 𝑐𝑖 ∈ 𝑃𝐶 .

Given target prohibition specification (< 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 >, (𝛼1, 𝑐1),
..., (𝛼𝑛, 𝑐𝑛)), the target prohibition set of policy elements 𝑡𝑝𝑠 is de-
fined as follows:

𝑡𝑝𝑠 =



𝜌 (𝛼1, 𝑐1), 𝑛 = 1
𝑛⋂
𝑖=1

𝜌 (𝛼𝑖 , 𝑐𝑖), 𝑐𝑜𝑛 𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑓 𝑜𝑟 𝑛 > 1

𝑛⋃
𝑖=1

𝜌 (𝛼𝑖 , 𝑐𝑖), 𝑑𝑖𝑠 𝑗𝑢𝑛𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑓 𝑜𝑟 𝑛 > 1

If there is only one container specification, 𝑡𝑝𝑠 = 𝑝𝑒 (𝛼1, 𝑐1);
otherwise, the intersection operator applies to all container specifi-
cations.

3.2.4 Access Decisions. In the NGAC standard specification, an
access request comprises a process, an operation (a list of access
rights), and a list of enumerated arguments (policy elements). Con-
sidering that processes are typically created for users in the PEPs,
this paper uses the basic form of access requests, i.e., (𝑠, 𝑎𝑟, 𝑝𝑒),
where 𝑠 is a subject (user or user attribute), 𝑎𝑟 is an access right,
and 𝑝𝑒 is a policy element (user, user attribute, object, or object
attribute). The advantage is that we can analyze and test an NGAC
policy without the PEPs. Each request in the standard specification
can be converted into one or more basic requests.

Given an access request (𝑠, 𝑎𝑟, 𝑝𝑒) and a configuration of assign-
ments, associations, and prohibitions, the access decision is “permit”
if the following conditions hold, otherwise “deny”:

• (𝑠, 𝑎𝑟, 𝑝𝑒) is permitted by the assignment and association
relations. There exists association (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡) in each policy
class 𝑝𝑐 containing 𝑝𝑒 such that: (1) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠𝑎, 𝑠), (2) 𝑎𝑟 ∈
𝑎𝑟𝑠 , (3) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑎𝑡 , 𝑝𝑒), and (4) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑝𝑐 , 𝑎𝑡).

• No user-based prohibition precludes request (𝑠, 𝑎𝑟, 𝑝𝑒), i.e.,
no prohibition (𝑢, 𝑎𝑟𝑠, 𝑡𝑝𝑠) exists such that: (1) 𝑠 = 𝑢, (2) 𝑎𝑟 ∈
𝑎𝑟𝑠 , and (3) 𝑝𝑒 ∈ 𝑡𝑝𝑠 .

• No user attribute-based prohibition precludes request (𝑠, 𝑎𝑟, 𝑝𝑒),
i.e., no prohibition (𝑢𝑎, 𝑎𝑟𝑠, 𝑡𝑝𝑠) exists such that: (1) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠
(𝑢𝑎, 𝑠), (2) 𝑎𝑟 ∈ 𝑎𝑟𝑠 , and (3) 𝑝𝑒 ∈ 𝑡𝑝𝑠 .

In Figure 3, the association relation directly specifies the fol-
lowing privileges: (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦,𝑤𝑟𝑖𝑡𝑒 , 𝑁𝑒𝑤𝐶𝑎𝑠𝑒), (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, 𝑑𝑒𝑙𝑒𝑡𝑒 ,
𝑁𝑒𝑤𝐶𝑎𝑠𝑒), (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦, 𝑤𝑟𝑖𝑡𝑒 , 𝐶𝑎𝑠𝑒1), (𝐿𝑒𝑎𝑑 , 𝑎𝑑𝑑 , 𝐶𝑎𝑠𝑒1). The user
attribute hierarchy and object attribute hierarchy also imply the fol-
lowing privileges: (𝐿𝑒𝑎𝑑 ,𝑤𝑟𝑖𝑡𝑒 ,𝑁𝑒𝑤𝐶𝑎𝑠𝑒), (𝐿𝑒𝑎𝑑 ,𝑑𝑒𝑙𝑒𝑡𝑒 ,𝑁𝑒𝑤𝐶𝑎𝑠𝑒),
(𝑀𝑖𝑎,𝑤𝑟𝑖𝑡𝑒 ,𝐵𝑜𝑏), (𝐽𝑎𝑚𝑒𝑠 ,𝑤𝑟𝑖𝑡𝑒 ,𝐴𝑙𝑖𝑐𝑒), (𝐽𝑎𝑚𝑒𝑠 ,𝑎𝑑𝑑 ,𝐵𝑜𝑏). However,
access decisions also depend on the prohibitions.

Let us consider user "𝑀𝑖𝑎", access right "𝑤𝑟𝑖𝑡𝑒", and contain-
ers 𝐶𝑎𝑠𝑒1 (𝑐1) and 𝑁𝑒𝑤𝐶𝑎𝑠𝑒 (𝑐2) in Figure 3. (1) If the container
specification is ("𝑀𝑖𝑎", "𝑤𝑟𝑖𝑡𝑒", conjunctive, (exclusion, 𝑐1), (inclu-
sion, 𝑐2)), then 𝑡𝑝𝑠 = {𝑁𝑖𝑐𝑘}. (2) If the container specification is
("𝑀𝑖𝑎", "𝑤𝑟𝑖𝑡𝑒", disjunctive, (exclusion, 𝑐1), (inclusion, 𝑐2)), then
𝑡𝑝𝑠 = {𝑁𝑖𝑐𝑘,𝐴𝑙𝑖𝑐𝑒}. (3) If the container specification is ("𝑀𝑖𝑎",
"𝑤𝑟𝑖𝑡𝑒", conjunctive, (exclusion, 𝑐1), (exclusion, 𝑐2)), then 𝑡𝑝𝑠 = ∅.
(4) If the container specification is ("𝑀𝑖𝑎", "𝑤𝑟𝑖𝑡𝑒", disjunctive, (in-
clusion, 𝑐1), (inclusion, 𝑐2)), then 𝑡𝑝𝑠 = {𝑁𝑖𝑐𝑘,𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏}.

Prohibitions can be an effective tool to manage conflict of interest
and achieve separation of duties. In Figure 3, 𝐴𝑙𝑖𝑐𝑒 is involved in
both 𝐶𝑎𝑠𝑒1 and 𝑁𝑒𝑤𝐶𝑎𝑠𝑒 . With the prohibitions described above,
we can have fine-grained control of the exact permissions𝑀𝑖𝑎 will
have on the nodes contained by 𝐶𝑎𝑠𝑒1 and 𝑁𝑒𝑤𝐶𝑎𝑠𝑒 .

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

74

3.3 Obligations
The obligation relation specifies the responses triggered automati-
cally when certain events of access requests have been completed.
The responses comprise administrative commands that will update
the assignment, association, and prohibition relations of the current
configuration and change run-time authorization state and access
decisions. The user for carrying out the response to a matching
event needs to possess adequate authority at the time of matching.
The use of administrative commands distinguishes NGAC’s nota-
tion of obligation from that in XACML [12] and the Usage CONtrol
Model (UCON) [14]. It is also different from that in Administra-
tive RBAC (ARBAC) [16]. Administrative commands in ARBAC are
performed by system administrators rather than triggered automat-
ically by run-time access events.

Each obligation is specified by an event pattern and a response.
The event pattern consists of the following components:

[< 𝑢𝑠𝑒𝑟 𝑠𝑝𝑒𝑐 >] [< 𝑝𝑐 𝑠𝑝𝑒𝑐 >] < 𝑜𝑝 𝑠𝑝𝑒𝑐 > [< 𝑝𝑒 𝑠𝑝𝑒𝑐 >]

< 𝑢𝑠𝑒𝑟 𝑠𝑝𝑒𝑐 > denotes a set of users and/or user attributes. If it
is omitted, any event that matches the other components would
be accepted by the event pattern. < 𝑝𝑐 𝑠𝑝𝑒𝑐 > represents a set of
policy classes. Considering that one user could exist in multiple
policy classes and initiate the same event in different policy classes,
only the events in the policy classes listed in < 𝑝𝑐 𝑠𝑝𝑒𝑐 > will
be processed. If < 𝑝𝑐 𝑠𝑝𝑒𝑐 > is omitted, events are not filtered
by policy classes. < 𝑜𝑝 𝑠𝑝𝑒𝑐 > specifies a set of event operations
(access rights). < 𝑝𝑒 𝑠𝑝𝑒𝑐 > refers to a set of policy elements. An
event on these policy elements and those contained by these policy
elements is accepted as a match. One event may match the event
patterns of multiple obligations.

A response consists of one or more conditional actions. Condi-
tional action is specified as follows:

[𝑖 𝑓 < 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 > 𝑡ℎ𝑒𝑛] < 𝑎𝑐𝑡𝑖𝑜𝑛 > {, < 𝑎𝑐𝑡𝑖𝑜𝑛 >}

A condition includes one or more factors, i.e., < 𝑓 𝑎𝑐𝑡𝑜𝑟 >

{𝑎𝑛𝑑 < 𝑓 𝑎𝑐𝑡𝑜𝑟 >}. An action is performed only when the specified
condition holds, i.e., all the factors in the condition are true. There
are five types of actions: 𝑐𝑟𝑒𝑎𝑡𝑒 , 𝑎𝑠𝑠𝑖𝑔𝑛, 𝑔𝑟𝑎𝑛𝑡 , 𝑑𝑒𝑛𝑦, and 𝑑𝑒𝑙𝑒𝑡𝑒 . As
defined below, all of them change the configuration:

< 𝑐𝑟𝑒𝑎𝑡𝑒 >::= 𝑐𝑟𝑒𝑎𝑡𝑒 < 𝑐𝑟𝑒𝑎𝑡𝑒 𝑤ℎ𝑎𝑡 >< 𝑐𝑟𝑒𝑎𝑡𝑒 𝑤ℎ𝑒𝑟𝑒 >

< 𝑎𝑠𝑠𝑖𝑔𝑛 >::= 𝑎𝑠𝑠𝑖𝑔𝑛 < 𝑎𝑠𝑠𝑖𝑔𝑛 𝑤ℎ𝑎𝑡 > [< 𝑎𝑠𝑠𝑖𝑔𝑛 𝑤ℎ𝑒𝑟𝑒 >]

< 𝑔𝑟𝑎𝑛𝑡 >::= 𝑔𝑟𝑎𝑛𝑡 < 𝑔𝑟𝑎𝑛𝑡 𝑡𝑜 >< 𝑔𝑟𝑎𝑛𝑡 𝑤ℎ𝑎𝑡 > [< 𝑔𝑟𝑎𝑛𝑡 𝑜𝑛 >]

< 𝑑𝑒𝑛𝑦 >::= 𝑑𝑒𝑛𝑦 < 𝑑𝑒𝑛𝑦 𝑡𝑜 >< 𝑑𝑒𝑛𝑦 𝑤ℎ𝑎𝑡 >< 𝑑𝑒𝑛𝑦 𝑜𝑛 >

< 𝑑𝑒𝑙𝑒𝑡𝑒 >::= 𝑑𝑒𝑙𝑒𝑡𝑒 < 𝑑𝑒𝑙𝑒𝑡𝑒 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑜𝑛 >

A 𝑐𝑟𝑒𝑎𝑡𝑒 action adds a new policy element or a new obligation.
An 𝑎𝑠𝑠𝑖𝑔𝑛 action adds a new assignment to the assignment relation.
A 𝑔𝑟𝑎𝑛𝑡 action adds a new association to the association relation.
A 𝑑𝑒𝑛𝑦 action adds a new prohibition. A 𝑑𝑒𝑙𝑒𝑡𝑒 action removes the
specified policy elements.

The following is a simple obligation from the 𝐿𝑎𝑤𝐹𝑖𝑟𝑚 example:
𝐸𝑣𝑒𝑛𝑡 : {𝑎𝑛𝑦𝑈𝑠𝑒𝑟 : 𝐿𝑒𝑎𝑑𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦,𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤, 𝑁𝑒𝑤𝐶𝑎𝑠𝑒}
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 : {𝑑𝑒𝑙𝑒𝑡𝑒, 𝑁𝑒𝑤𝐶𝑎𝑠𝑒}

If any user contained by “𝐿𝑒𝑎𝑑𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦𝑠” performs the opera-
tion “𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤” on the policy element “𝑁𝑒𝑤𝐶𝑎𝑠𝑒”, then the node
“𝑁𝑒𝑤𝐶𝑎𝑠𝑒” will be deleted.

In essence, the obligation relation specifies the state transitions
from one configuration (state) to another. Let ψ = (𝑈𝐴∪𝑈) ×𝐴𝑅 ×
(𝑈𝐴 ∪𝑈 ∪𝑂𝐴) be the set of all possible access requests. Each con-
figuration ϕ defined by the assignment, association, and prohibition
relations boils down to the access decisions for all possible access
requests, i.e., ϕ ⊆ ψ (the interpretation is that only the requests
in ϕ are permitted and the others are all denied). Thus, the obliga-
tion relation is a binary relation on the set of configurations, i.e.,
𝑂𝐵𝐿𝐼𝐺𝐴𝑇𝐼𝑂𝑁 ⊆ 2ψ × 2ψ . For example, |ψ|=42,400 for the GPMS-
NGAC case study in Section 6 (i.e., the size of the all-combinations
test suite in Table 6). The number of possible configurations can
be as large as 242,400. Therefore, it can be hard to reason about the
correctness of obligations.

4 MUTATION OF NGAC POLICIES
Policy mutation is the act of slightly modifying a given policy
without introducing any syntax error. The modified versions are
called policy mutants. In this paper, policy mutants are created
automatically by mutation operators (programs) according to a
fault model (i.e., a collection of fault types). Each non-equivalent
mutant of a correct policy represents a possible fault in the policy
during its development process. Policy mutation is meaningful even
when we do not know whether a given policy is correct. If it is
faulty, one of its mutants may be a correct version.

In the following, we discuss mutation of the initial configuration
and obligations of an NGAC policy, respectively.

4.1 Mutation of Initial Configuration
The initial configuration of an NGAC policy consists of the assign-
ment, association, and prohibition relations. Mutation applies to all
these relations.

4.1.1 Mutation of Assignments. When a correct policy is supposed
to have an assignment (𝑥,𝑦), the possible faults are incorrect as-
signments with wrong direction (𝑦, 𝑥), wrong descendent (𝑥, 𝑧),
wrong ascendant (𝑧,𝑦), and missing the assignment. As shown in
Table 1, these faults can be represented by the mutants created
with mutation operators RAD, CAD, CAA, and RAG, respectively.
Another possible fault is that there is an extra assignment in the
incorrect policy.

When creating mutants, we need to ensure that the changes
will not lead to syntax errors. Thus, the mutation operators of
the assignment relation must observe the following restrictions of
correct assignments.

• The assignment relation is irreflexive. We cannot create a
mutant by adding a new assignment (𝑥, 𝑥).

• We cannot assign a policy class to any other policy elements.
For example, mutation operator RAD does not apply to any
assignment whose descendent is a policy class.

• The directed graph representation of the assignment relation
is acyclic. A mutant is invalid if it contains a cycle. Assume
that 𝑢𝑎1 is assigned to 𝑢𝑎2 and 𝑢𝑎2 is assigned to 𝑢𝑎3 in
the given policy. We cannot create a mutant by adding a
new assignment from 𝑢𝑎3 to 𝑢𝑎1 because it would result in

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

75

Table 1: Mutation Operators for the Assignment Relation

No Name Meaning Fault Type

1 RAD Reverse Assignment Wrong assignment
Direction direction

2 CAD Change Assignment Wrong descendent
Descendent node

3 CAA Change Assignment Wrong ascendent
Ascendent node

4 RAG Remove an AssiGnment Missing assignment
5 AAG Add an AssiGnment Extra assignment

a cycle. In general, we cannot create mutants by introducing
assignment (𝑥,𝑦) when 𝑦 is contained by 𝑥 . This applies to
mutation operators RAD, CAD, CAA, and AAG in Table 1.

• The assignment relation is policy class connected, i.e., every
element (except policy class) must be contained by some
policy class. When applying mutation operators RAD, CAD,
CAA, and RAG, a policy element could be disconnected from
policy classes. When such disconnection happens to a policy
element, we add a new assignment from the policy element
to the same policy class as the assignment being mutated.

• The assignment relation precludes object attribute to user
attribute assignments and user attribute to object attribute
assignments. All mutation operators of the assignment rela-
tion avoid such assignments.

We also avoid generating mutants known to be equivalent to
the original assignment relation. For example, if (𝑥,𝑦) ∉ 𝐴𝑆𝑆𝐼𝐺𝑁
and 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑦, 𝑥), we will not add assignment (𝑥,𝑦) to create a
mutant because it does not affect the privileges.

4.1.2 Mutation of Associations. When a correct policy is supposed
to have an association (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡), the possible faults are incorrect
associations with wrong source user attribute (𝑠𝑎′, 𝑎𝑟𝑠, 𝑎𝑡), an in-
correct target object/user attribute (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡 ′), a missing access
right (𝑠𝑎, 𝑎𝑟𝑠 ′, 𝑎𝑡) where 𝑎𝑟𝑠 ′ ⊂ 𝑎𝑟𝑠 , an extra access right 𝑎𝑟𝑠 ′ ⊂
𝑎𝑟𝑠 ′ where 𝑎𝑟𝑠 ⊂ 𝑎𝑟𝑠 ′. In addition, an incorrect association rela-
tion may have a missing or extra association. Table 2. shows all
fault types of the association relation and corresponding mutation
operators.

To avoid generating invalid association mutants, we classify ac-
cess rights into two groups as some access rights are only applicable
to objects or object attributes while others are only applicable to
users or user attributes. When applying mutation operator AARA
(add one access right to association) to an association (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡), if
𝑎𝑡 is an object attribute, we only choose the access rights applicable
to object attributes.

We also avoid generating duplicate mutants. When association
(𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡) has only one access right (i.e., |𝑎𝑟𝑠 | = 1), RARA for
removing one access right and RACR for removing the association
will result in the samemutant. To avoid duplication, we apply RARA
only to the associations with two or more access rights.

When applying mutation operator AAC, which stands for adding
one association with one access right, the new added association
(𝑠𝑎, 𝑎𝑟, 𝑎𝑡) will make no change to the initial configuration when

Table 2: Mutation Operators for the Association Relation

No Name Meaning Fault Type

1 CUAA Change User Attribute Incorrect user attribute
of an Association in association

2 COAA Change Object Attribute Incorrect object
of an Association attribute in association

3 RARA Remove one Access Right Missing an access
from an Association right in association

4 AARA Add one Access Right Extra access right
to an Association in association

5 RAC Remove an AssoCiation Missing association
6 AAC Add AssoCiation with Extra association

one access right
7 RARAA Remove an Access Right Missing an access

from All Associations right

there already exists an association (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡) where 𝑎𝑟 ∈ 𝑎𝑟𝑠 .
Adding an association (𝑠𝑎, {𝑎𝑟 }, 𝑎𝑡) when there already exists an
association (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡) such that 𝑎𝑟 ∉ 𝑎𝑟𝑠 is the same as adding
an access right 𝑎𝑟 to association (𝑠𝑎, 𝑎𝑟𝑠, 𝑎𝑡), which is covered by
mutation operator AARA (adding one access right to an associa-
tion). Similar cases are considered by mutation operator AAC (Add
AssoCiation with one access right).

4.1.3 Mutation of Prohibitions. A prohibition consists of four syn-
tactic components: subject, operation (access rights), intersection,
and container specifications. Themutation operators of prohibitions
are designed regarding the fault types of these four components.
They are shown in Table 3. Operator 1 (CSS) represents the fault of
thewrong subject. Operators 2-4 involve different forms of incorrect
access right set. Operators 5-9 deal with incorrect target prohibition
set, including incorrect containers, incorrect intersection operator,
and incorrect complement operator. Operator 10 (ROP) represents
the fault of missing one prohibition.

The following are the main considerations about generating
prohibition mutants:

• Avoid creating a mutant by adding a container that contains
no policy element. It imposes no change to the prohibition.
This applies to Mutation operator AOC (Add One Container).

• Avoid creating a mutant by adding a duplicate container with
the same complement operator. It will not change the target
prohibition set. However, adding a duplicate container with
the reversed complement operator can result in a meaningful
mutant. This applies to mutation operator AOC.

• Adding a new container with different complement opera-
tors will cause different changes to the target prohibition set.
Whenever a new container𝐶1 is added, for example, two mu-
tants will be generated. Onemutant adds {𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑇 (𝐶1))}
while the other adds {𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑇 (𝐶1))} to the target pro-
hibition set. This applies to mutation operator AOC.

• When a prohibition involves only one access right, ROAR
for removing one access right and ROP for removing one

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

76

Table 3: Mutation Operators for the Prohibition Relation

No Name Meaning Fault Type

1 CSS Change Subject Spec Wrong subject
2 AOAR Add One Access Right Extra access right
3 COAR Change One Access Right Wrong operation
4 ROAR Remove One Access Right Missing access right
5 RIS Reverse InterSection Wrong intersection
6 AOC Add One Container Extra container
7 COC Change One Container Wrong container
8 ROCT Remove One ConTainer Missing container
9 RCT Reverse ComplemenT Wrong complement
10 ROP Remove One Prohibition Missing prohibition

prohibition will result in the same mutant. To avoid dupli-
cation, we apply ROAR only to the prohibitions with more
than one access right.

4.2 Mutation of Obligations
As described in Section 3.3, an obligation consists of an event pat-
tern and a response. The mutation operators of obligations are
designed based on the fault types of event patterns and responses.
They are shown in Table 4. Operator #1 (ROB) represents the fault
of missing an obligation. Operators #2-8 deal with incorrect user
specification, operation specification, and target policy element
specification in the event pattern of an obligation. Operators #9-
12 involve different forms of incorrect conditions in the response
pattern of an obligation. Operators #13-18 handle various incorrect
actions in the response part of an obligation.

A major challenge of obligation mutation is to verify if a candi-
date mutant is valid. Unlike the validity checking of the configu-
ration mutants, where invalid mutants can be detected once these
mutants get loaded, an invalid obligation mutant cannot be detected
unless the event, which matches the event pattern of the obliga-
tion with errors, has been executed. The following are the main
considerations to avoid syntax errors when generating obligation
mutants. When applying mutation operator CAC (change action),
not all types of actions are considered to be a candidate of a new
action because actions have specific structures. Constructing a new
action is non-trivial and error-prone. We only change an action to
another with the same structure. For example, both “create” and
“assign”, have three components: action name, policy element the
action happens on, and another policy element where the former
policy element to be assigned to. Actions “grant” and “deny” also
share the same structure. The mutation on action “delete” is not
considered because it has to be aware of the whole policy elements.

We also aim to avoid generating duplicate mutants and equiva-
lent mutants. For example, mutation operator CEU (change event
user) is to change user name in the event to another user name,
and REU (remove event user) is to remove a user name in the list
of users in the event. Assume the origin list contains John, Tom.
Applying CEU to the list would introduce a new list L1= {John,
John}, if changing Tom to John. Applying REU to the list results
in list L2= {John}, if Tom is removed. L1 and L2 are the same even

Table 4: Mutation Operators for the Obligations

No Name Meaning Fault Type

1 ROB Remove one OBligation Missing obligation
2 CEU Change Event User Wrong user name
3 REU Remove Event User Missing user name
4 CEO Change Event Operation Wrong operation
5 AEO Add Event Operation Extra operation
6 REO Remove Event Operation Missing operation
7 CEPE Change Event Policy Element Wrong target
8 REPE Remove Event Policy Element Missing target
9 ROC Remove One Condition Missing condition
10 NCD Negate One Condition Wrong condition
11 ROF Remove One Factor Wrong condition
12 NOF Negate One Factor Wrong condition
13 ROA Remove One Action Missing action
14 COA Change One Action Wrong action
15 ICA Incorrect Create Action Wrong create
16 IAA Incorrect Assign Action Wrong assignment
17 IGA Incorrect Grant Action Wrong grant
18 INA Incorrect Deny Action Wrong deny

though both are syntactically valid. Mutation operators avoid gen-
erating duplicate lists. REO (remove event operation) only applies
to those with two or more operations. Otherwise, it will have the
same effect as ROB (remove obligation). Similarly, ROC (remove
one condition) and ROF (remove one factor) are also overlapping.
When there is only one factor in a condition, removing the factor
is the same as removing the condition.

5 INCREMENTAL POLICY TESTING
We propose an incremental approach to the testing of NGAC poli-
cies. Given an NGAC policy, we first test the initial configuration
and then the policy as a whole. The advantage is that it helps lo-
calize faults. If the initial configuration has passed all the tests, but
the entire policy (including the obligations) fails some tests, the
failure would have to do with the obligations. Our approach takes
the black-box strategy, i.e., it does not use the knowledge about the
implementation details in the input files of the assignments, asso-
ciations, prohibitions, and obligations. Instead, it is based on the
specifications of user attributes, object attributes, and obligations.

It is worth mentioning that the policy testing approach aims
at finding potential policy faults in the development process. It is
performed under the development environment, which is often
different from the operational environment. For example, an op-
erational learning management system (e.g., Canvas) may involve
30,000 users and 1,000 courses. Its development environment does
not need such large numbers of users and courses. In the context
of policy testing, the complexity depends on the number of user
attributes, access rights, and object attributes rather than users
and objects. In our empirical studies, we only assign a small num-
ber of users (or objects) to each user attribute (or object attribute)
adequate for testing purposes.

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

77

5.1 Testing the Initial Configuration
A test case for the initial configuration consists of an access request
and an oracle value. The access request is a triple (𝑠, 𝑎𝑟, 𝑝𝑒), where
subject 𝑠 ∈ 𝑈𝐴 ∪ 𝑈 is a user or user attribute, 𝑎𝑟 ∈ 𝐴𝑅 is an
access right, and 𝑝𝑒 ∈ 𝑈𝐴 ∪ 𝑈 ∪ 𝑂𝐴 is a policy element. The
oracle value is the expected access decision according to the access
control requirements specification. It is either true (i.e., “permit”)
or false (i.e., “deny”). If it is different from the actual access decision
rendered by the initial configuration, then the initial configuration
is faulty. When we believe the policy under test is correct, its actual
decision on a request is saved as its oracle value. It can then be used
to test if a revised policy has resulted in an incorrect decision. This is
very helpful because policies are often developed in an incremental
fashion and revised from time to time.

In this paper, we have implemented the following methods for
automatically generating access requests:

• All combinations: This test suite covers all possible access
requests, i.e., all possible combinations of (𝑠, 𝑎𝑟, 𝑝𝑒), where
𝑠 ∈ 𝑈𝐴 ∪ 𝑈 , 𝑎𝑟 ∈ 𝐴𝑅, and 𝑝𝑒 ∈ 𝑈𝐴 ∪ 𝑈 ∪ 𝑂𝐴. It can be
inefficient for large configurations.

• Pairwise combinations: This test suite covers all possible
pairs of (𝑠, 𝑎𝑟), (𝑠, 𝑝𝑒), and (𝑠, 𝑝𝑒). Note that each request
implies three pairs. For example, (𝐿𝑒𝑎𝑑, 𝑎𝑑𝑑,𝐶𝑎𝑠𝑒) covers
(𝐿𝑒𝑎𝑑, 𝑎𝑑𝑑), (𝐿𝑒𝑎𝑑,𝐶𝑎𝑠𝑒), and (𝑎𝑑𝑑,𝐶𝑎𝑠𝑒). For the same con-
figuration, the pairwise test suite is typically much smaller
than the all-combinations suite.

The test suite generated by each method is stored in a spread-
sheet. To execute the tests, we developed a test harness to read and
execute each test automatically.

5.2 Testing the Obligations
As discussed before, obligations are triggered by access events. To
test an obligation, we need to issue an appropriate access request.
However, the initial configuration may not grant this access request.
In other words, testing an obligation may require a sequence of
other requests to lead the configuration to a certain state that the
target obligation can be triggered by permitted access. As such,
an obligation test consists of a sequence of access requests and
oracle values – each request triggers an obligation to change the
configuration, and its oracle value consists of the expected changes
to the configuration (i.e., certain requests should be permitted or
denied).

Due to the complexity of obligations, we found it difficult to
generate obligation tests automatically. In this paper, we designed
obligation tests manually according to the obligation specifications
and then converted each of them into a JUnit test for automated
execution. Our test design aimed to cover each obligation at least
once by considering the sequential constraints among the obliga-
tions (e.g., obligation A cannot be triggered before obligation B).
One test may exercise multiple obligations. The GPMS-NGAC case
study with 19 obligations in the experiments has eight JUnit tests.
These tests have a total of 764 lines of code.

Appendix A provides a sample test from the GPMS-NGAC case
study. The sequence of access events includes add-copi (lines 11-
13), add-sp (lines 15-17), submit (lines 19-25), and chair-disapprove
(lines 27-31). Line 11 assures the precondition of add-copi obligation

Figure 4: POMA GUI

Figure 5: Mutation Operators

is satisfied (i.e.., the even pattern is defined correctly) before the
add-copi event is issued in line 12. This is similar for other events.

6 EMPIRICAL STUDIES
6.1 Tool Implementation
We have implemented the mutation analysis approach in a tool
called POMA (POlicy Machine Analyzer). The NGAC reference
implementation is coded in Java. So is POMA.

As shown in Figure 4, POMA provides a GUI for visualizing
policy graphs (i.e., the assignment and association relations in a
policy). As illustrated in Figure 5, POMA also allows the user to
choose certain mutation operators for mutation analysis. Given an
NGAC policy and a test suite (in the form of a spreadsheet for the
initial configuration or in the form of a JUnit class), POMA can
automatically generate policy mutants with the chosen mutation
operators, execute the test suite against each mutant, and report
whether each mutant is killed.

6.2 Subject Policies
Table 5 shows the metrics of the subject policies in our empirical
studies, including numbers of policy classes, user attributes, object
attributes, assignments, associations, prohibitions, and obligations.
As mentioned before, the initial configuration of each policy only
assigns a small number of users (or objects) to user attributes (or
object attributes) because the policies under test are meant for the
development environments rather than the operational environ-
ments. Considering that prohibitions and obligations are optional,
we have two policies with no obligation and two policies with no
prohibition in the initial configuration.

In the following, we give a brief introduction to the policies.

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

78

6.2.1 GPMS-NGAC. GPMS-NGAC (or simply GPMS in all rele-
vant tables) is the first fully-fledged open-source application of the
NGAC reference implementation that utilizes NGAC’s obligation
mechanism. It includes not only the access control policy but also
the functionality. The authors received much help from the NGAC
implementation team during the development process; meanwhile,
the NGAC reference implementation was developed and improved.
NGAC’s obligation mechanism was not fully implemented when
the GPMS-NGAC project started.

GPMS-NGAC is a web-based application that aims to automate
the grant proposal approval workflow at an academic institution.
Such workflows apply to many application domains (e.g., health-
care and finance). GPMS-NGAC originated from GPMS, which used
XACML as the access control language [19]. GPMS-NGAC has
30,249 lines of Java code. Its NGAC policy template consists of four
policy classes and 19 obligations. The most important feature is that
each proposal object carries its own NGAC policy instance, includ-
ing the current configuration and obligations because it depends
on the users involved, and its access control is very dynamic. As
this paper focuses on testing, we use the development environment
with a small number of users assigned to limited user attributes. An
operational environment of GPMS-NGAC may have many users
and data objects.

6.2.2 LawFirm Policy. Many law companies utilize case tracking
systems. Large law companies utilize such systems for billing and
file sharing, while smaller ones utilize simple emails for everything
because case tracking systems get very expensive. Also, those sys-
tems are not very secure, as everyone in the company generally
has access to every case file. That may lead to conflicts of interest if,
for example, a company works for multiple clients that have such
opposite interests. Therefore, we created this case study to address
various issues in case tracking systems.

Since we intended to make this example small, we utilize only
three policy classes, called “LawFirm Policy”, “Case Policy”, and
“ValueType Policy”. The first one contains two hierarchies of at-
tributes. One hierarchy consists of user attributes for managing the
employees, and the other hierarchy consists of object attributes for
managing the cases.

Each office has attorneys of various ranks (Lead Attorneys, At-
torneys, and Interns), each with various access privileges. As this
policy is a mock case study intended to be scalable for performance
testing, there can be an unlimited number of offices, cases, attorneys,
and interns. “Case Policy” is the policy that is used for approving a
new case. All of the dynamic changes to this policy are done via
obligations.

6.2.3 Bank Policy. This policy is the management structure of a
hierarchy in a bank system inspired by the example in the NGAC
standard. It only contains one policy class. Similar to the LawFirm
Policy, one hierarchy has 𝑈𝐴 ∪ 𝑈 represented by various bank
offices that contain managers and officers. Another one has𝑂𝐴∪𝑂 ,
which is used to represent loans, accounts, and products.

6.2.4 Healthcare Policy. Healthcare, in general, is widely used in
many articles about access control. Due to The Health Insurance
Portability and Accountability Act (HIPAA), information integrity
in clinical settings is critical because of the private nature of the

Table 5: Subject Policies

#PC #UA #OA #ASM #ASC #PRO #OBL
Healthcare 1 4 5 7 2 1 -

Bank 2 6 10 33 6 - -
LawFirm 2 10 5 29 7 5 7
GPMS 4 34 27 91 8 - 19

#PC: number of policy classes; #UA: number of user at-
tributes; #OA: number of object attributes; #ASM: number
of assignments; #ASC: number of associations; #PRO: num-
ber of prohibitions; #OBL: number of obligations

Table 6: Test Suites of the Subject Policies

Configuration Obligations
Pairwise All-

Combinations
LOC #JUnit

Tests
Healthcare 36 72 - -

Bank 240 960 - -
LawFirm 1,066 3,500 252 7
GPMS 4,240 42,400 764 8

documents stored. The healthcare policy demonstrates an access
control system between the healthcare personnel and their patients.
When creating this policy, we intentionally created every combina-
tion of prohibitions’ logical relations described in Section 3.2.3.

6.3 Policy Testing
We have applied the testing approach when developing the policies.
Table 6 shows the test suite sizes. The pairwise test suite for an
initial configuration is much smaller than the all-combinations
counterpart. Their sizes range from 10% to 50% of the latter.

The testing has revealed various faults during the implementa-
tion of the subject policies. One major bug that one can produce
during the design of a policy graph is the Detached Node Problem.
In Figure 6 only the following privilege exists: (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦𝑠 , 𝑟𝑒𝑎𝑑 ,
𝑁𝑒𝑤𝐶𝑎𝑠𝑒). Note, even though 𝐴𝑙𝑖𝑐𝑒 is contained by 𝑁𝑒𝑤𝐶𝑎𝑠𝑒 , the
following privilege does not exist: (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦𝑠 , 𝑟𝑒𝑎𝑑 , 𝐴𝑙𝑖𝑐𝑒). That is
because 𝐴𝑙𝑖𝑐𝑒 is also contained by 𝐶𝑎𝑠𝑒1, and 𝐶𝑎𝑠𝑒1 belongs to an-
other PC: 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑙𝑎𝑠𝑠 . In 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑙𝑎𝑠𝑠 ,
there is no container that contains 𝐴𝑙𝑖𝑐𝑒 AND has the association
with 𝑟𝑒𝑎𝑑 access right. Therefore, 𝐴𝑙𝑖𝑐𝑒 is considered a “Detached
Node” with the respect to the association relation (𝐴𝑡𝑡𝑜𝑟𝑛𝑒𝑦𝑠 , 𝑟𝑒𝑎𝑑 ,
𝑁𝑒𝑤𝐶𝑎𝑠𝑒). While this problem might not be useful for malicious
purposes, it can definitely make the policy design and implementa-
tion a lot harder since the access rights will simply not be shown.
Furthermore, until a recent fix, the policy analyzer function in
NGAC policy-machine did show this access right in discrepancy
with the policy decider function.

We also would like to discuss a few issues found in the obligation
design of the Law Firm policy. A simple case tracker in a law firm
can be very complex from the testing perspective. In our case study,
there are two loops: one for when the case is sent back for review
and another for disapproving of the newly added case by anyone.

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

79

Figure 6: Detached Node Problem

First, we found that if the new case was accepted by Lead and then
disapproved by Attorney, this would create a "zombie" state of such
case, meaning that no one will perform any actions on it. Another
test found that the state "Accepted" is not reachable if an Attorney
initially refuses to take the case, even though the Lead can still
choose to accept such a case.

6.4 Mutation Analysis
After having tested the subject policies without any failure (i.e., all
known faults have been fixed), we continued to apply mutation
analysis to evaluate the strengths and weaknesses of the test suites
created by the incremental testing method.

For each subject policy and each test suite, we used the following
protocol to conduct the mutation analysis:

• Select all mutation operators relevant to the test suite (i.e.,
the configuration mutation operators for the test suite of the
initial configuration and the obligation mutation operators
for the obligation tests).

• Generate and execute mutants against the test suite.
• Examine the live mutants to determine the number of equiv-
alent mutants.

• Calculate the mutation score, which is the number of killed
mutants divided by the total number of non-equivalent mu-
tants. Mutation score is the main performance indicator of
fault detection capability of the testing method.

A live mutant is a mutant not killed by the test suite, i.e., no fail-
ure was reported. It may or may not be equivalent to the original
counterpart. A configuration mutant is equivalent to the original
configuration if both render the same access decision for every pos-
sible request. As the all-combinations test suite covers all possible
requests, any live configuration mutant of this test suite is equiva-
lent to the initial configuration. Therefore, the equivalent mutants
of each initial configuration can be determined automatically. The
mutation score of an all-combinations test suite is always 100%.

An obligation mutant is equivalent to the original obligation if
and only if both policy versions (including the initial configuration)
lead to the same configuration for every possible sequence of access
requests. The problem of determining equivalent obligationmutants
is believed to be intractable due to the complexity of obligations
and the infinite number of access request sequences. In this paper,
we examined each live obligation mutant manually.

6.4.1 Mutation Analysis of the Initial Configurations. Table 8 shows
the results of configuration mutation analysis. The all-combinations
method yields 100% mutation score for all policies. For relatively
simple policies, healthcare, bank, and law firm, the pairwise method

Table 7: Configuration Mutants

#Total
Mutants

#Equivalent
Mutants

#Non-Equivalent
Mutants

Healthcare 225 39 186
Bank 752 27 725

LawFirm 1,890 266 1,624
GPMS 25,483 2,496 22,987

Table 8: Results of Configuration Mutation Analysis

Pairwise All- Combinations
#KM MS(%) MKPT #KM MS(%) MKPT

Healthcare 148 79.6 4.11 186 100 2.58
Bank 573 79.0 2.39 725 100 0.76

LawFirm 1,439 88.6 1.35 1,624 100 0.46
GPMS 11,784 51.3 2.78 22,987 100 0.54

#KM: number of killed mutants; MS(%): mutation score;
MKPT: average number of mutants killed per test

kills most of the mutants. For the most complex policyGPMS-NGAC,
its mutation score drops to 51.3%.

Because the all-combinations method achieves 100% mutation
score, it can reveal all possible faults in the initial configuration.
However, it is not necessarily efficient or scalable for complex
configurations. For example, it has 42,400 test cases for the GPMS-
NGAC policy. It can be a daunting task to determine the oracle
value for each access request according to the access control re-
quirements. Although themutation scores of the pairwise test suites
range from 51.3% to 88.6%, they are more cost-effective than the
all-combinations test suites in terms of the average number of mu-
tants killed per test (MKPT). As shown in Table 8, the pairwise
method has a better MKPT score than the all-combinations method.
For the most complicated policy GPMS-NGAC, Pairwise’s MKPT is
five-fold of the all-combinations method. As such, neither method is
satisfactory. It is desirable to develop a more cost-effective method
to achieve the perfect mutation score with a minimum test suite.

6.4.2 Mutation Analysis of the Obligations. Table 9 presents the
results of obligation mutation. For the Law Firm policy, the obliga-
tion tests killed 60% of the non-equivalent obligation mutants. For
the GPMS-NGAC policy, the mutation score is 87.2%. Therefore, the
test suites of obligation coverage are inadequate for high assurance
of obligations. In particular, the mutation scores related to three
mutation operators AEO (add event operation), ROF (remove one
factor), and NOF (negate one factor) are very low. They are shown
in Table 10. ROF and NOF did not apply to the GPMS-NGAC policy.
The obligation tests of the LawFirm case study killed 30.4% of the
ROF mutants and 51.9% of the NOF mutants. Even worse, the obli-
gation tests for LawFirm and GPMS-NGAC only killed 2.7% and
4.7% of the AEO mutants. This indicates that the obligation testing
is poor at finding the faults represented by these mutants.

6.4.3 Discussion. Before applying mutation analysis to the initial
configuration of a subject policy, we were sure that the initial con-
figuration was correct. The all-combinations test suite has covered

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

80

Table 9: Results of Obligation Mutation Analysis

#Mutants #Equivalent
Mutants

#Killed
Mutants

Mutation
Score(%)

LawFirm 238 13 135 60.0
GPMS 2,790 15 2,420 87.2

Table 10: Obligation Mutants with Low Mutation Scores

AEO ROF NOF
#M MS(%) #M MS(%) #M MS(%)

LawFirm 149 2.7 23 30.4 54 51.9
GPMS 64 4.7 - - - -
#M: number of mutants; MS(%): mutation score

all possible requests, and the access decision for each request was
proven correct. However, mutation analysis of the obligations is
somewhat different. Before conducting mutation analysis of the
obligations, we were confident, but not sure, that the obligations
were correct. Although the obligation testing had exercised every
obligation without failure, it was not exhaustive. An obligation mu-
tant may be correct, whereas its original obligation is faulty per the
actual access control requirements (i.e., whether they have changed
the access decisions for certain requests). Thus, an examination into
the obligation mutants may reveal faults in the original obligations
for mutation.

7 CONCLUSIONS
We have presented the approach to mutation analysis of NGAC
policies. It deals with various types of faults that may occur in
the initial configurations and obligations of NGAC policies. The
results of the empirical studies demonstrate that mutation analysis
is useful for evaluating the effectiveness of a testing method and
finding potential faults in an inadequately tested policy. The all-
combinations method for testing initial configurations is effective
but inefficient and hardly scalable, whereas the pairwise method
cannot reveal many configuration faults. Testing obligations by cov-
ering each obligation once is inadequate for detecting the majority
of obligation faults.

As the first report on testing NGAC policies, this paper opens
up several interesting topics for future research. First, we need
more cost-effective methods for testing the initial configurations
of NGAC policies. Second, it is inefficient to determine equivalent
configuration mutants by dealing with all access requests. A pos-
sible solution is to formulate the semantic difference between a
configuration mutant and its original counterpart. Equivalence may
be determined by considering only those requests relevant to the
difference. Third, we need effective methods for testing obligations.
Obligation tests can be created from either obligation implementa-
tion (i.e., white-box testing with the yml file) or obligation specifi-
cation (i.e., black-box testing without knowledge of the yml file).
Automated generation of obligation tests is challenging because of
complex state space (i.e., many reachable configurations caused by
obligations of complex policies).

ACKNOWLEDGMENTS
This work was supported in part by US National Science Foundation
(NSF) under grant CNS 1954327 and grant CNS 1618229. The authors
were grateful to the NGAC implementation team for their help in
the design of the NGAC policy of GPMS-NGAC.

REFERENCES
[1] A. Bertolino, S. Daoudagh, F. Lonetti, and E Marchetti. 2013. XACMUT: XACML

2.0 mutants generator. In Proc. of 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation Workshops. 28–33.

[2] W. Jansen (Ed.). 2020. Next Generation Access Control (NGAC), DPANS INCITS
565, Revision 1.00.

[3] Y. Elrakaiby, T. Mouelhi, and Y. Le Traon. 2012. Testing obligation policy en-
forcement using mutation analysis. In Proc. of the 7th International Workshop on
Mutation Analysis. 673–680.

[4] FEDCIO2:. 2011. Federal Identity, Credential, and Access Management (FICAM)
Roadmap and Implementation Guidance Version 2.0.

[5] V. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone.
2013. Guide to Attribute Based Access Control (ABAC) Definition and Considerations,
NIST Special Publication 800-162.

[6] Y. Jia and M Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE Trans. on Software Engineering 37, 5 (2010), 649–678.

[7] R. Just, D. Jalali, L. Inozemtseva, M.D. Ernst, R. Holmes, and G. Fraser. 2014.
Are mutants a valid substitute for real faults in software testing?. In Proc. of the
Symposium on the Foundations of Software Engineering (FSE’14). 654–665.

[8] S. Khamaiseh, P. Chapman, and D. Xu. 2018. Model-based testing of obligatory
ABAC systems. In Proc. of the 18th International Conference on Software Quality,
Reliability and Security (QRS’18). 405–413.

[9] Y. Li, Y. Li, L. Wang, and G. Chen. 2014. Automatic XACML requests generation
for testing access control policies. In Proc. of the 26th International Conf. on
Software Engineering and Knowledge Engineering (SEKE’14).

[10] E. Martin and T. Xie. 2007. A fault model and mutation testing of access control
policies. In Proc. of the 16th International Conf. on World Wide Web (WWW’07).
667–676.

[11] T.Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon. 2008. Amodel-based framework
for security policy specification, deployment and testing. In Proc. of the ACM/IEEE
11th International Conf. on Model Driven Engineering Languages and Systems
(MODELS’08).

[12] OASIS. 2013. eXtensible Access Control Markup Language (XACML) Version 3.0.
http://www.oasisopen.org/committees/xacml/.

[13] A. J. Offut. 2011. A mutation carol: Past, present and future. Information and
Software Technology 53, 10 (2011), 1098–1107.

[14] J. Park and R. Sandhu. 2002. Towards usage control models: beyond traditional
access control. In Proc. of the 7th ACM Symposium on Access Control Models and
Technologies (SACMAT’02). 57–64.

[15] M. Safarzadeh, M. Taghizadeh, B. Zamani, and B.T. Ladani. 2017. An automatic
test case generator for evaluating implementation of access control policies. The
ISC International Journal of Information Security 9, 1 (2017), 73–91.

[16] R.S. Sandhu, V. Bhamidipati, and Q. Munawer. 1999. The ARBAC97 model for
role-based administration of roles. ACM Transactions on Information and Systems
Security 2, 1 (1999), 105–135.

[17] NGAC Implementation Team. 2019. NGAC Reference Implementation. Retrieved
January 2021 from https://github.com/PM-Master/

[18] Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry. 2008. Test-driven assess-
ment of access control in legacy applications. In Proc. of the First IEEE International
Conference on Software, Testing, Verification and Validation (ICST’08). 238–247.

[19] D. Xu. 2021. Modern Software Engineering: Principles and Practices – Writing
Clean, Dependable Code. Independently Published.

[20] D. Xu, M. Kent, L. Thomas, T. Mouelhi, and Y. Le Traon. 2015. Automated model-
based testing of role-based access control using predicate/transition nets. IEEE
Trans. Comput. 64, 9 (2015), 2490–2505.

[21] D. Xu and S. Peng. 2016. Towards automatic repair of access control policies. In
Proc. of the 14th IEEE Conference on Privacy, Security and Trust (PST’16). 485–492.

[22] D. Xu, R. Shrestha, and N Shen. 2018. Automated coverage-based testing of
XACML policies. In Proc. of the 23rd ACM Symposium on Access Control Models
and Technologies (SACMAT’18). 3–14.

[23] D. Xu, R. Shrestha, and N Shen. 2020. Automated strong mutation testing of
XACML policies. In Proc. of the 25th ACM Symposium on Access Control Models
and Technologies (SACMAT’20). 105–116.

[24] D. Xu, L. Thomas, M. Kent, T. Mouelhi, and Y. Le Traon. 2012. A model-based
approach to automated testing of access control policies. In Proc. of the 17th ACM
Symposium on Access Control Models and Technologies (SACMAT’12). 209–218.

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

81

http://www.oasisopen.org/committees/xacml/
https://github.com/PM-Master/

A A SAMPLE OBLIGATION TEST
1 @Test
2 p u b l i c vo id cha i rD i s app r ov e () throws Excep t i on {
3 PReviewDecider d e c i d e r = new PReviewDecider (graph) ;
4 / / g e t PDP loaded
5 PDP pdp = getGPMSpdp (graph , o b l i g a t i o n) ;
6 / / c r e a t e p r opo s a l
7 a s s e r t T r u e (d e c i d e r . check (" Bob " , " " , " PDSWhole " , " c r e a t e ")) ;
8 pdp . getEPP () . p r o c e s sEven t (new Crea t eEven t (graph . getNode (PDSWhole)) , " Bob " , "

") ;
9 a s s e r t T r u e (graph . g e tCh i l d r e n (" P I ") . c o n t a i n s (" Bob ")) ;
10 / / add CoPi
11 a s s e r t T r u e (d e c i d e r . check (" Bob " , " " , " CoPI " , " add− cop i ")) ;
12 pdp . getEPP () . p r o c e s sEven t (new AddCoPIEvent (graph . getNode (" CoPI ") , graph .

getNode (" Michae l ")) , " Bob " , " ") ;
13 a s s e r t T r u e (graph . g e tCh i l d r e n (" CoPI ") . c o n t a i n s (" Michae l ")) ;
14 / / add SP
15 a s s e r t T r u e (d e c i d e r . check (" Michae l " , " " , " SP " , " add− sp ")) ;
16 pdp . getEPP () . p r o c e s sEven t (new AddSPEvent (graph . getNode (" SP ") , graph . getNode (

" A l i c e ")) , " Michae l " , " ") ;
17 a s s e r t T r u e (graph . g e tCh i l d r e n (" SP ") . c o n t a i n s (" A l i c e ")) ;
18 / / submi t p r opo s a l
19 a s s e r t T r u e (d e c i d e r . check (" Bob " , " " , " PDSWhole " , " submi t ")) ;
20 pdp . getEPP () . p r o c e s sEven t (new SubmitEvent (graph . getNode (" PDSWhole ") , t r u e) , "

Bob " , " ") ;

21 a s s e r t F a l s e (d e c i d e r . check (" Bob " , " " , " PDSWhole " , " submi t ")) ;
22 a s s e r t T r u e (d e c i d e r . check (" ChairCSUser " , " " , " PDSWhole " , " approve " , "

d i s app rove ")) ;
23 a s s e r t T r u e (d e c i d e r . check (" ChairCSUser " , " " , " Cha i rApprova l " , " w r i t e ")) ;
24 a s s e r t T r u e (d e c i d e r . check (" ChairChemUser " , " " , " PDSWhole " , " approve " , "

d i s app rove ")) ;
25 a s s e r t T r u e (d e c i d e r . check (" ChairChemUser " , " " , " Cha i rApprova l " , " w r i t e ")) ;

26 / / c h a i r d i s a p p r o v a l
27 pdp . getEPP () . p r o c e s sEven t (new DisapproveEvent (graph . getNode (Cha i rApprova l)) ,

" ChairChemUser " , " ") ;
28 a s s e r t F a l s e (d e c i d e r . check (" ChairCSUser " , " " , " PDSWhole " , " approve " , "

d i s app rove ")) ;
29 a s s e r t F a l s e (d e c i d e r . check (" ChairCSUser " , " " , " Cha i rApprova l " , " w r i t e ")) ;
30 a s s e r t F a l s e (d e c i d e r . check (" ChairChemUser " , " " , " PDSWhole " , " approve " , "

d i s app rove ")) ;
31 a s s e r t F a l s e (d e c i d e r . check (" ChairChemUser " , " " , " Cha i rApprova l " , " w r i t e ")) ;
32 / / check the r e t u r n to the i n i t i a l s t a t e
33 a s s e r t T r u e (d e c i d e r . check (" Bob " , " " , " PDSWhole " , " submi t " , " d e l e t e ")) ;
34 a s s e r t T r u e (d e c i d e r . check (" Bob " , " " , " P I E d i t a b l e " , " w r i t e ")) ;
35 a s s e r t T r u e (d e c i d e r . check (" Bob " , " " , " CoPI " , " add− cop i " , " d e l e t e − cop i ")) ;
36 a s s e r t T r u e (d e c i d e r . check (" Michae l " , " " , " CoP I Ed i t a b l e " , " w r i t e ")) ;
37 a s s e r t T r u e (d e c i d e r . check (" Michae l " , " " , " CoPI " , " add− sp " , " d e l e t e − sp ")) ;
38 a s s e r t F a l s e (d e c i d e r . check (" ChairCSUser " , " " , " PDSSec t ions " , " r ead ")) ;
39 a s s e r t F a l s e (d e c i d e r . check (" ChairChemUser " , " " , " PDSSec t ions " , " r ead ")) ;
40 }

Session 3: Security Policy Testing and Enforcement SACMAT ’21, June 16–18, 2021, Virtual Event, Spain

82

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mutation Testing
	2.2 Policy Mutation

	3 NGAC Policies
	3.1 Basic Elements
	3.2 Configurations
	3.3 Obligations

	4 Mutation of NGAC Policies
	4.1 Mutation of Initial Configuration
	4.2 Mutation of Obligations

	5 Incremental Policy Testing
	5.1 Testing the Initial Configuration
	5.2 Testing the Obligations

	6 Empirical Studies
	6.1 Tool Implementation
	6.2 Subject Policies
	6.3 Policy Testing
	6.4 Mutation Analysis

	7 Conclusions
	Acknowledgments
	References
	A A Sample Obligation Test

