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ABSTRACT

While the existing methods for testing XACML policies have vary-
ing levels of effectiveness, none of them can reveal the majority of
policy faults. The undisclosed faults may lead to unauthorized ac-
cess and denial of service. This paper presents an approach to strong
mutation testing of XACML policies that automatically generates
tests from the mutants of a given policy. Such mutants represent the
targeted faults that may appear in the policy. In this approach, we
first compose the strong mutation constraints that capture the se-
mantic difference between each mutant and its original policy. Then,
we use a constraint solver to derive an access request (i.e., test). The
test suite generated from all the mutants of a policy can achieve
a perfect mutation score, thus uncover all hypothesized faults or
demonstrate their absence. Based on the mutation-based approach,
this paper further explores optimal test suite that achieves a perfect
mutation score without duplicate tests. To evaluate the proposed ap-
proach, our experiments have included all the subject policies in the
relevant literature and used a number of new policies. The results
demonstrate that: (1) it is scalable to generate a mutation-based test
suite to achieve a perfect mutation score, (2) it can be impractical
to generate the optimal test suite due to the expensive removal of
duplicate tests, (3) different from the results of the existing study,
the modified-condition/decision coverage-based method, currently
the most effective one, has low mutation scores for several policies.
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1 INTRODUCTION

While high expressiveness of XACML allows for the specification
of fine-grained attribute-based access control policies, its increased
complexity has raised concerned about the likelihood of policy
faults. Such faults may lead to unauthorized access and denial of
service if a policy is not thoroughly validated [23]. As an important
practice for quality assurance of access control systems, policy
testing has recently gained much attention. The basic idea is to
execute the policy under test against a test suite (i.e., a set of test
cases) with the intent to find faults. Each test case consists of a test
input (i.e., access request) and an oracle value (i.e., correct response).
The policy is faulty if one of the tests fails, i.e., the policy’s actual
response to the request is different from the oracle value. Several
methods have been proposed to automatically generate test inputs
from XACML policies [1-5, 15-18, 23], where oracle values need to
be defined manually according to the access control requirements.
To evaluate the effectiveness of these methods, a common approach
is mutation analysis. It creates a set of mutants of a correct policy
and then exercises each mutant against the tests generated by the
testing method under evaluation. A mutant is a modified version
of the given policy where a policy element is mutated according
to a fault model of representative types of errors. A mutant is said
to be killed if at least one test fails, otherwise it is a live mutant.
A live mutant is either faulty or functionally equivalent to the
original policy (called equivalent mutant). The effectiveness of the
testing method is measured by its mutation score, i.e., the ratio
between the total number of mutants killed and the total number
of non-equivalent mutants. Experimental studies have shown that
the existing methods have varying levels of effectiveness in terms
of their mutation scores (refer to Section 2.2).

The above research, however, has two issues. First, none of the
existing methods can reveal the majority of faults seeded in XACML
policies. Even for the most effective MC/DC method, our study in
Section 7 shows that its mutation scores can be as low as 50%. If
these methods are applied to a real-world system, they may leave
numerous access control vulnerabilities in the deployed system. So,
is it possible to achieve a 100% mutation score, at least for all the
XACML policies studied so far? Second, to calculate the mutation
score in a mutation analysis experiment, we need to examine each
live mutant manually to determine if it is equivalent to the original
policy. This can be a daunting task when there are a large number
of live mutants. For example, the mutation scores of 50%-63.6% for
the rule-coverage testing [23] indicate that 36.4%-50% of all the
mutants in the experiments had to be inspected.

To address these issues, this paper presents an approach to strong
mutation testing that automatically generates test inputs from the
mutants of a given policy. For each mutant, the approach aims to
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find an access request to which the mutant and its original policy
will respond differently — if the given policy is correct, then the
mutant is faulty, and vice versa. To do so, we first compose the
strong mutation constraints that capture the semantic difference
between the mutant and its original policy. They include: (a) reach-
ability constraint that any request must satisfy in order to trigger
the evaluation of the mutated policy element; (b) necessity con-
straint that any request must satisfy in order to make the mutated
policy element and the original policy element evaluate to different
immediate decisions; (c) propagation constraint that any request
must satisfy in order to make the mutant and the original policy
produce different policy-level decisions. Once these constraints are
obtained and analyzed, we feed them to a constraint solver (e.g.,
Z3 [6]) to find an access request. As such, we can generate a set
of tests from all mutants of the given policy. Note that, solving
the above reachability, necessity, and propagation constraints of
all XACML policies is in general a hard problem due to the com-
plexity of XACML policies. This is similar to the existing methods
that rely on a constraint solver for test generation from XACML
policies[22, 23]. Nevertheless, our experiments in Section 7 have
shown that the mutation-based test generation approach is scalable
for all the policy examples. The test suite generated directly from
all mutants of each policy can kill all non-equivalent mutants and
thus achieve a 100% mutation score. This has addressed the first issue.
A mutant is non-equivalent to the original policy if the mutation-
based test generation approach returns an access request, otherwise
it is an equivalent mutant in that the reachability, necessity, and
propagation constraints are unsatisfiable. Here we assume that the
constraint solver is sound and complete for all types of solvable
constraints in each given policy. Therefore, the mutation-based test
generation approach can automatically determine whether or not
a mutant is equivalent to the original policy. This has addressed the
second issue.

In practice, the test suite generated by the proposed mutation-
based approach can most effectively assure the quality of the policy
even though the policy is not yet known correct or faulty before
it is tested. If the policy passes all the mutation-based tests, then
it is free from all the faults represented by the mutants. If it fails
a test, the failure not only indicates that the given policy is faulty,
but also suggests a possible fix because the mutated policy element
in the mutant from which the test was generated might be a correct
version of the corresponding policy element.

This paper is the first work on mutation-based test generation for
XACML policies. In comparison, the existing work has used policy
mutants only for evaluating the effectiveness of testing methods in
terms of mutation scores. The notions of reachability, necessity, and
propagation constraints originate from program mutation testing
or constraint-based software testing [7-9]. Because the problem
with propagation constraint of software is known to be intractable
due to the explosion of program execution paths and the halting
problem [8, 9], the existing mutation-based software testing meth-
ods only deal with reachability and necessity constraints. This is
also known as weak mutation testing [11], which cannot achieve
100% mutation score and cannot automatically determine whether
live mutants are equivalent mutants [8, 25]. In fact, this paper is the
first work on the implementation of strong mutation testing that
integrates all reachability, necessity, and propagation constraints.
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It is feasible because of the unique features of XACML policies,
especially without loop structure.

A further contribution of this paper is the investigation of opti-
mal test suites of XACML policies. A test suite for a given policy
is said to be optimal if it achieves a 100% mutation score without
any duplicate tests — every test kills at least one unique mutant
that is not killed by any other test in the test suite. Based on the
mutation-based approach, we have developed an algorithm for
generating such optimal test suites. This enables quantitative com-
parison of cost-effectiveness with the existing testing methods.
Although mutation score is commonly used as the primary indica-
tor of effectiveness (i.e., fault detection capability), a testing method
with a higher mutation score is not necessarily more cost-effective.
As demonstrated in [23], for example, the MC/DC method has
much higher mutation scores than the rule coverage method. It
is also more expensive because it produces many more tests. The
MC/DC method is actually less cost-effective from the perspective
of mutants killed per test (MKPT). This paper presents an empirical
comparison between the proposed strong mutation approach and
the existing methods in terms of MKPT score.

The remainder of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces XACML policies and
policy mutation. Section 4 describes the basic constraint-based
test generation techniques in our approach. Section 5 presents test
generation from individual policy mutants. Section 6 discusses
mutation-based generation of optimal test suites. Section 7 presents
the experiments. Section 8 concludes this paper.

2 RELATED WORK
2.1 Mutation Testing

Mutation testing, originated from the area of software testing, is a
widely applied technique for the empirical evaluation of software
testing methods [12]. Mutation analysis of a program under test is
to mutate the program to various faulty versions, i.e., mutants. Each
mutant has one fault injected by a mutation operator. Mutation
operators are defined with respect to a fault model, which is a
collection of fault types in the programming language. The main
hypotheses of mutation testing [20] include: (a) the mutants are
based on actual fault models and are representative of real faults,
(b) developers produce programs that are close to being correct,
and (c) tests sufficient to detect simple faults (i.e., in mutants) are
also capable of detecting complex faults. Experiments have shown
that mutants are indeed similar to real faults for the purpose of
evaluating testing techniques [13].

The existing work on software mutation testing falls into three
categories: (a) infrastructure and tool support such as fault models,
mutation operators, and test execution and analysis of mutants, (b)
empirical evaluation of the fault detection capability of a testing
method in terms of mutation score. It typically applies the testing
method to the mutants of given subject programs, and (c) mutation-
based test generation, which derives a test from one or more mutant
of a given program so that the mutant and its original program
produce different execution results. Such a test needs to meet the
reachability, necessity, and propagation constraints. The existing
techniques primarily follow the concept of weak mutation testing
[11] that uses the reachability and necessity constraints to generate
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test inputs [25]. The main reason is that it is intractable to solve
the propagation constraint [8].

This paper aims at strong mutation testing of XACML poli-
cies that deals with all reachability, necessity, and propagation
constraints for automated test generation. Different from general-
purpose programming languages, XACML has no loops and thus
does not suffer from the explosion of execution paths or the halt-
ing problem. The propagation constraint primarily depends on
the rule and policy combining algorithms. Although the various
combining algorithms in XACML are complicated, it is tractable to
deal with the propagation constraint as demonstrated in this paper.
The existing work on mutation testing of XACML policies focuses
on mutation tools and evaluation of testing methods with policy
mutants. Similar to software mutation testing, a major challenge
is to determine whether or not a live mutant is equivalent to the
original policy. This is usually done by manual review and analysis
of the mutant code. In comparison, this paper provides a way to
automatically determine equivalent mutants: a mutant is equivalent
to its original policy if and only if its reachability, necessity, and
propagation constraints are not satisfiable. If it is not equivalent,
our approach will result in a test that demonstrates the difference.

2.2 Testing of XACML Policies

The existing approaches to test generation for XACML policies fall
into two categories: model-based testing that derives tests from
models (i.e., black-box testing), and policy-based testing that pro-
duces test inputs directly from the policy under test (i.e., white-box
testing). As access control policies are extra constraints on sys-
tem functions, the model-based testing approach usually integrates
functional models with access control specifications, and can gen-
erate both test inputs and oracle values. Safarzadeh et al. [21] have
proposed to specify system functions and access control policies
by extended finite state machines and XACML, respectively. They
derive test conditions from the state machines and the rules in the
XACML policy and then apply MC/DC to the conditions for test
generation. Khamaiseh et al. [14] proposed a model-based testing
method for obligatory ABAC systems, where access control policies
are implemented in XACML. Given a test model that consists of
a functional Petri net model and an obligatory ABAC policy, the
approach weaves the policy with the functional model into an inte-
grated model so as to generate access control tests. Although the
above methods have both involved XACML, the system implemen-
tation tested by them may or may not rely on XACML. How to
build effective test models, however, remains a critical challenge.
This paper is primarily related to the work that generates test
inputs from the XACML policy under test. Compared to the model-
based testing, this approach does not produce the oracle value of
each test. Mutation analysis of XACML policies had been com-
monly used to evaluate testing effectiveness. Cirg [17] generates
test inputs from the counterexamples produced by a model checker
through the change-impact analysis of two synthesized versions.
The difference of the two versions of a policy targets a test coverage
goal, such as rule coverage or condition coverage. Mutation scores
range from 30% to 60% in different case studies (except 100% for
a simple policy). Targen [16] derives test inputs to satisfy all the
possible combinations of truth-values of the attribute id-value pairs
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found in a given policy. The mutation scores range from 75% to
79% for different policies [4]. Considering that requests must con-
form to the XML Context Schema, Bertolino et al. have developed
the X-CREATE framework for dealing with the structures of the
Context Schema [2]. Mutation scores range from 75% to 96% for
several small policies. They have also developed other test selection
strategies, such as Simple Combinatorial and Incremental XPT [1].
Mutation scores of Simple Combinatorial range from 3% to 100%,
whereas mutation scores of Incremental XPT ranged from 55% to
100%. Bertolino et al. [5] proposed an approach to selecting tests
based on the rule coverage criterion. It chooses existing tests to
match each rule target set, which is the union of the target of the
rule and all enclosing policy and policy set targets. Mutation scores
of this approach range from 62% to 98%. XPTester uses symbolic
execution technique to generate test inputs from XACML policies
[15]. It converts the policy under test into a semantically equivalent
C Code Representation (CCR) and symbolically executes CCR to
create test inputs. Mutation scores of XPTester range from 37% to
93%. The above methods are all based on earlier versions of XACML
(1.0 or 2.0).

XPA (XACML Policy Analyzer) is an integrated toolkit for testing,
mutating, and debugging XACML 3.0 policies [22-24]. XPA offers
a number of coverage-based test generators[23]. Mutation scores
of the rule coverage and decision coverage methods range from
50% to 63.6%, and from 62.5% to 96.6, respectively. The MC/DC
method has achieved a mutation score of 97.7% or higher although
it did not kill all mutants for all subject policies. The fault-based
testing of combining algorithms aims to generate tests for revealing
incorrect uses of combining algorithms [22]. This approach falls
into mutation-based test generation, but is limited to only one
mutation operator.

3 MUTATION OF XACML POLICIES

3.1 XACML Policies

This paper is based on XACML 3.0, the current version of the
standard [19]. For convenience, this paper focuses on policies, rather
than policy sets, although our implementation has covered both. A
policy P is a triple < PT,RCA, R >, where PT is the policy target,
RCA is the rule-combining algorithm, and R is the list of rules.
Each rule r € R is a triple < rt,rc,re >, where rt is the rule
target, rc is the rule condition, and re € {Permit, Deny} is the
rule effect. < rt,rc, Permit > is called a permit rule, whereas <
rt, rc, Deny > is a deny rule. The target of a policy (or rule) specifies
the set of requests to which the policy (or rule) is intended to
apply. It is represented as a conjunctive sequence of AnyOf clauses.
Each AnyOfclause is a disjunctive sequence of AllOf clauses, and
each AllOf clause is a conjunctive sequence of match predicates. A
match predicate compares attribute values in a request with the
embedded attributes. Logical expressions for match predicates and
rule conditions are usually defined on four categories of attributes:
subject, resource, action, and environment. The condition of a rule
refines the applicability of the rule established by the rule target.
We use the following Sample-PO policy as a running example.
For readability purposes, it is presented in plain text without at-
tribute types and categories. Allof and AnyOf clauses are replaced
with traditional logical operators "and" and "or". The attributes are
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department, title, location, and job-class. The policy target is defined
over the department attribute, whereas the four permit rules and
two deny rule are defined over title, location and job-class.
Policy name: Sample-PO
Policy target: department = “HR” or department = “IT”
Rule-Combining Algorithm: Permit-overrides
Rules:
R1: <title="director”, location="on-campus”, Permit>
R2: <title="director”, location="off-campus’, Permit>
R3: <title="deputy-director”, location="on-campus”, Permit>
R4: <title="deputy-director”, location="off-campus’, Permit>
R5: <job-class="guest” or job-class="part-time”,
location="off-campus”, Deny>
R6: <job-class="“intern” or job-class="contractor’,
location="off-campus”, Deny>
An access request consists of attribute names, categories, val-
ues, and types. Unless explicitly specified, we use a set of attribute
name and value pairs to represent a request, assuming that the
attribute categories and types are correct. For example, {department
= "HR", title="deputy-director", location="on-campus"} is a valid re-
quest of the running example. Note that a valid request may cause
the occurrence of a runtime error for different reasons, such as
mismatch of an attribute type and an exception of expression and
function evaluation. Consider {department = "HR'}. If the category
of attribute department and the type of value "HR" match those in
the running policy, the policy target will evaluate to true, otherwise
its evaluation leads to an error occurrence. This is similar for rule
target and rule condition. Error handling has intricate implications
on the semantics of policies and the evaluation of access decisions.
Given a logical expression w (policy target, rule target, or rule
condition) and a request g, we use w, —w, and error(w) to rep-
resent that w evaluates to true (i.e., there is a match if w is a
target), false (i.e., no-match if w is a target), and indeterminate
(i.e., error occurrence), respectively. Given rule r =< rt,rc,re >,
let fire(rt,rc) denote rt A rc, notApplicable(rt,rc) denote —rt vV
(rt A =rc), and error(rt, rc) denote error(rt) V (rt A error(rc)), and
notFire(rt, rc) denote notApplicable (rt,rc) Verror(rt, rc). Accord-
ing to the XACML 3.0 specification [19], rule-level and policy-level
decisions are formalized by Definitions 1 and 2, respectively.
Definition 1. Given a rule r =< rt, rc,re > and an access re-
quest g, the rule decision, denoted as d(r, q), is defined as:

Permit if re = Permit A fire(rt,rc),
Deny if re = Deny A fire(rt, rc),
N/A if notApplicable(rt,rc),
ID ifre = Deny A error(rt,rc),
IP if re = Permit A error(rt,rc).

where N/A, ID, and IP denote Not-applicable, Indeterminate Deny,
and Indeterminate Permit, respectively.

Definition 2. Given policy P =< PT,RCA, R > and an access
request g, the policy decision, denoted as d(P, q), is defined as:

N/A if -PT,
rca(RCA,R,q) if PT,

rca(RCA,R,q) if error(PT) A rca(RCA,R, q) € {N/A,ID,IP,IDP},

IP if error(PT) A rca(RCA, R, q) = Permit,
ID if error(PT) A rca(RCA, R, q) = Deny.

SACMAT ’20, June 10-12, 2020, Barcelona, Spain

Table 1: Mutation Operators

No Name Meaning Fault Type
1 PTT  setPolicy Target True Incorrect policy target
2 PTF set Policy Target False
3 CRC Change RCA Incorrect RCA
4 CRE  Change Rule Effect Incorrect rule effect
5 RTT  setRule Target True Incorrect rule target
6 RTF set Rule Target False
7 RCT  setRule Condition True  Incorrect rule condition
8 RCF  setRule Condition False
9 ANF  Add Not in condition
10 RNF  Remove Not in condition
11 FPR First Permit Rule Incorrect rule ordering
12 FDR  First Deny Rule
13 RER  REmove a Rule Missing rule
14 RPTE Remove Parallel Element Missing target element

where rca(RCA, R, q) represents the combined decision of all rules
in R with respect to g by the rule-combining algorithm RCA, and
IDP denotes Indeterminate Deny/Permit.

The main rule combining algorithms in XACML 3.0 include
Permit-overrides, Deny-overrides, Permit-unless-deny, Deny-unless-
permit, First-applicable, Ordered-permit-overrides, and Ordered-deny-
overrides. Their semantics are explained in the standard specifica-
tion and can be formulated by decision tables [10]. This paper
will elaborate on five of them because Ordered-permit-overrides is
similar to Permit-overrides and Ordered-deny-overrides is similar to
Deny-overrides.

3.2 Mutation Operators

This paper follows the fault model and mutation operators of
XACML 3.0 in the recent literature [23], as shown in Table 1. The
fault types include incorrect policy (policy set) target, incorrect
rule-combining (policy-combining) algorithm, incorrect rule effect,
incorrect rule target, incorrect rule conditions, incorrect rule order-
ing, missing rule, and missing a parallel target element (i.e., AnyO f
or AllOf clause). Some of the fault types are named based on the
assumption that the policy under mutation is correct. For example,
RPTE (“Remove Parallel Target Element”) creates mutants with a
fault of missing target element by removing a parallel AnyOf or
AlIOf clause in a correct rule (policy or policy set) target. In this
paper, however, the mutation-based test generation approach aims
at finding access request g such that policy P and its mutant P’
produce distinct responses, i.e., d(P, q) # d(P’, q). It covers the case
where P is incorrect and P’ is correct. In this case, the fault type in P
is not directly named from the mutation operator that has obtained
P’ from P. Instead, it should be reflected by the opposite mutation
operator that mutates P’ to P. Generally if P’ is a mutant of P, then
P is also a mutant of P’. The underlying mutation operator is the
opposite. Consider RER (“REmove a Rule”) and RPTE in Table 1,
their opposite mutation operators, “Add a Rule” and “Add Parallel
Target Element”, are undefined. This paper is applicable to both
directions of mutation. It covers the faults that can be created by
the reversed version of each operator, if unspecified, in Table 1.
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Table 2: Sample Mutants of the Sample-PO Policy

Name Mutated Element

Sample-PO-PTT
Sample-PO-RPTE0-1
Sample-PO-CRE3

Policy target: true

Policy target: department = “HR”
R3:<title="deputy-director”,
location=“on-campus”, Deny>

R5: <true, location="off-campus”, Permit>
R5: <job-class=“guest”,
location="“off-campus”, Deny>

R3: <title=“deputy-director”, true, Permit>

Sample-PO-RTT5
Sample-PO-RPTE5-1

Sample-PO-RCT3
Sample-PO-CRC-FA

Rule-combining algorithm: First-applicable

Each mutant is named after the original policy, the mutation
operator, and the indices of the mutated element if applicable. For
a RPTE mutant, the first index is to specify whether it is applied
to the policy target (0) or a rule and the second index refers to the
removed parallel target element. Table 2 shows several mutants of
the running example. Sample-PO-PTT is obtained by changing the
policy target to true (i.e., the policy target is removed). Sample-PO-
RPTE0-1 is created by applying RPTE to the policy target’s second
parallel element. Sample-PO-CRE3 results from applying CRE to
rule 3, which changes the effect from Permit to Deny.

4 CONSTRAINT-BASED GENERATION OF
POLICY TESTS

In this section, we introduce the basic idea of constraint-based test
generation in the mutation-based approach.

4.1 Test Generation with Non-Error and Error
Constraints

Let normalTest(¢) represent an access request that satisfies a non-
error constraint ¢, which does not involve error occurrence. For
example, (department="HR" V department ="IT") A title="deputy-
director” A location="on-campus" is a non-error constraint. Using a
constraint solver, normalTest would return an access request like
the following: {department="HR", title="deputy-director", location="on-
campus"}.

Let errorTest(¢, ) represent an access request that satisfies pA g,
where ¢ is a non-error constraint and ¢ is an error constraint. Be-
cause constraint solvers, including Z3, do not deal with error con-
straints in XACML, errorTest(¢, ) first tries to solve the non-error
constraint ¢ and then deals with the error constraint ¢. Generally,
the satisfiability of ¢ A ¢ requires that ¢ should contain an attribute
that does not appear in ¢. If every attribute in the error constraint ¢
also appears in the non-error constraint ¢, then the solution to the
non-error constraint ¢ returned by the constraint solver, if exists,
will have an attribute value for every attribute in the non-error
constraint ¢. Such a solution will never satisfy ¢ A ¢ because ¢
requires each of its attributes (values) to have a correct category
(type), whereas ¢ requires that at least one of its attributes (or
values) should have an incorrect category (or type) or no value.

One of the major challenges of the proposed strong mutation
approach for XACML policies is the transformation of collective
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reachability, necessity, and propagation constraints of d(P, q) #
d(P’, q) into the form of ¢ A ¢ with clear separation of non-error
and error constraints. These constraints are much more complex
than those in the coverage-based test generation [23]. Let test(5)
represent an access request that satisfies the constraint § with mixed
non-error and error predicates or clauses. The general constraint
of d(P,q) # d(P’,q) is typically of the conjunctive normal form.
The following is a generic example, where « is a normal or error
constraint from the policy target, rt; and rc; are the target and
condition of rule r;.

an

(=rty V (rty A =rer) Veerror(rty) V (rty A error(rep)))A

(=rt; V (rt; A =re;i) Verror(rt;) V (rti A error(rc;)))A

(=rty V (rtp A =rey) Verror(rtn) V (rty A error(rey)))

Note that —rt; V (rt; A=rci)Verror(rt;)V (rt; Aerror(rc;)) means
that rule r; isnot fired, i.e., notFire(rt;, rc;) = not Applicable(rt;, rc;)
Verror(rt;, rc;). We realize test(5) by applying both normalTest(¢)
and errorTest(¢, ). Each conjunction —rt; V(rtj A=rc;) Verror(rt;)
V(rt; A error(rc;)) is separated into four clauses: —rt;, rt; A —rc;,
error(rt;), rt; A error(rc;). In addition to the handling of a, test(5)
uses the backtracking technique to find one solvable combination
of the four clauses for all rules from ry to r,. The combination is
either a non-error constraint (e.g., aAN-rty ANrti AL ATEy ATey,
assuming @ is a normal constraint) or an error constraint with
clear separation of non-error and error clauses (e.g..a A =rt; A
...arti A ... ANerror(rtp)). They are corresponding to normalTest(¢)
and errorTest(¢p, ¢), respectively. In the worst-case scenario, the
backtracking needs to explore 4" possible combinations. This hap-
pens only when every rule uses a different set of attributes. In
practice, we have not seen any XACML policy of this form.

To accelerate the backtracking process, it is important to take
advantage of the logical relationships between different predicates
and clauses. Consider the targets rt; and rt; of two rules that share
the same set of attributes, e.g., title="director" in rule 1 and 2 and
title="deputy-director” in rule 3 and 4 of the running example. rt;
may imply rt; or —rtj. rt; (or —=rt;) implies that error(rt;) is not
satisfiable and thus should not be considered. When error(rt;) is
assumed, then rt; or —rt; may not be considered. As such, the
feasible combinations of rt; and rt; are significantly reduced. This
is similar for r¢; and rc;.

4.2 Reachability Constraint of Rules

A common function in our mutation-based test generation approach
is the composition of reachability constraint that must be satisfied
in order to trigger the evaluation of a given rule r; in a policy. The
reachability constraint depends on the policy target, all rules before
rule r;, and the rule-combining algorithm in the policy. If the rule-
combining algorithm is First-applicable, r; is not triggered unless all
rules before it evaluate to N/A. If the rule-combining algorithm is
Deny-overrides or Permit-unless-deny, r; is triggered only if none of
the deny rules before it is fired. If the rule-combining algorithm is
Permit-overrides or Deny-unless-permit, r; is triggered only if none
of the permit rules before it is fired. Algorithm 1 describes how the
reachability constraint is composed.
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Algorithm 1: Compose reachability constraint of rule r;

Function name: reachabilityConstraint
Input: Policy P =< PT,RCA, [r1,r2, ..., n] >, rule index
i(0 <i<n)
Output: constraint
1 constraint < PT V error(PT);
2 switch RCA do
3 case First-Applicable do
4 for each rulery = (rty,reg,reg) € [r1,r2, ooy ri-1]
do
5 constraint «
constraint A notApplicable(rty, rcy);

6 end

7 end

8 case Deny-overrides or Permit-unless-deny do
9 for each deny rule

re = (rtg, reg, Deny) € [r1,ra, ..., ri—1] do

10 ‘ constraint « constraint A notFire(rty, rcg);
end

nd

ase Permit-overrides or Deny-unless-permit do

for each permit rule

11

12

o

13

(<]

14
ri = (rtg, reg, Permit) € [r1,r2,...,ri—1] do
15 ‘ constraint « constraint A notFire(rty, rcy);

16 end

17 end
15 end

For clarity, Algorithm 1 deals with an individual rule. As all rules
are mutated for test generation, there is no need to apply it to every
rule separately. Instead, it is used in an incremental fashion — the
reachability constraint of rule r;41 is composed from rule r; and
the reachability constraint of r;.

5 TEST GENERATION FROM MUTANTS

In this section, we describe how to generate an access request g
from an individual mutant P’ of a given policy P such that d(P, q) #
d(P’, q). Syntactically, the difference between P’ and P is created by
applying a mutation operator to a policy element in P. The semantic
difference, however, also depends on other policy elements. It is
captured by the collective reachability, necessity, and propagation
constraints. The idea of test generation from a mutant is to compose
and analyze these constraints, find one solution with a constraint
solver, and convert the solution, if exists, into a request.

Our mutation-based test generation approach includes a signifi-
cant number of test generation algorithms, e.g., at least one for the
mutants of each mutation operator in Table 1. It would be tedious
and unnecessary to elaborate on each of them. In this paper, we
present the approach according to the fault types in Table 1. Al-
though one fault type may have several mutation operators, the
test generation algorithms for the mutation operators of the same
fault type bear much similarity. Moreover, it is impossible to cover
all fault types in this paper due to limited space. In the following,
we only introduce the algorithms for mutants of incorrect policy
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target and incorrect rule effect and briefly discuss mutants of in-
correct rule target/condition. We can formally prove that our test
generation algorithms are sound: the resultant request g returned
by each algorithm, if exists, always satisfies d(P, q) # d(P’, q). As
an example, we will only present the proof of the algorithm for test
generation from policy target mutants.

5.1 Policy Target Mutants

Given policy P, a policy target mutant P’ is created by applying
PTT (set Policy Target True), PTF (set Policy Target False), or
RPTE (remove Parallel Target Element) to P’s policy target without
changing any other policy element. It simulates a faulty policy
where the policy target is incorrect. Let P =< PT,RCA,R > and
P’ =< PT’,RCA,R >, where R = [r1, 12, ..., ' ]. To show the differ-
ence between P’ and P, there is no reachability constraint because
the target of a policy is always evaluated.

The necessity constraint is that the original policy target PT and
the mutated policy target PT’ evaluate to different results, i.e., PT #
PT’. Different from the classical two-valued logic, here PT # PT’
implies six cases: (PT A =PT’)V (=PT APT’)V (PT Aerror(PT")) v
(=PT Aerror(PT”))V(error(PT)APT’)V (error(PT)A—=PT’) because
of the handling of error occurrence in XACML. It reduces to (PT A
-PT’) vV (=PT A PT’) when error occurrences are not considered.
It is simplified when a concrete mutation operator is applied. For
PTT (i.e., PT’ is true), PT # PT’ reduces to =PT V error(PT). In
Sample-PO-PTT, for example, the policy target is set to true. Test
generation from this mutant will make the original policy target
evaluate to false or error. For PTF (i.e., PT’ is false), PT # PT’
reduces to PT V error(PT).

Note that PT # PT’ does not guarantee that P’ and P will re-
sult in different policy-level decisions. We need to propagate the
difference of PT # PT’ to the policy-level, which depends on the
rule-combining algorithm RCA and the rules. Algorithm 2 describes
the procedure for generating a test from a policy target mutant,
where test(5) generates a request from the given constraint §, which
may or may not involve error occurrence. fireRule returns a request
that activates the first firable permit or deny rule. fireFirstApplica-
bleRule generates an access request that fires the first-applicable
rule. triggerRuleError generates an access request that makes a rule
evaluate to indeterminate.

If RCA is Permit-unless-deny or Deny-unless-permit, there is no
propagation constraint. The test is generated from the necessity
constraint (line 4). If RCA is First-applicable, the propagation con-
straint is that at least one rule fires (line 7) or, when PT or PT’
is false, one of the rules evaluates to indeterminate (lines 8-13).
If RCA is Permit-overrides, the propagation constraint is that one
of the permit rules is fired (line 16), or when all permit rules are
not-applicable (lines 20-23), a deny rule is fired (line 24), or, when
PT or PT’ is false, one of the rules is fired or evaluate to indetermi-
nate (lines 25-36). The case of Deny-overrides is similar to that of
Permit-overrides (i.e., permit is replaced with deny). It is thus not
described in the algorithm. Considering the mutation operator used
to create the mutant, the propagation constraint can be simplified.
If it is PTT (i.e., PT’ is true), necessity A —=PT’ is not satisfiable.
Lines 11-13, 28-30, and 34-36 can be removed.
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Algorithm 2: Generate an access request from a policy
target mutant

Function name: policyTargetMutantTest
Input: Policy P =< PT,RCA, R >, mutant

P’ =< PT’,RCA,R >,R=[r1,r2, ..., ']
Output: access request g

1 necessity « PT # PT’;

2 switch RCA do

3 case Permit-unless-deny or Deny-unless-permit do

4 ‘ return test(necessity);

5 end

6 case First-Applicable do

7 q « fireFirstApplicableRule(necessity, R);

8 if ¢ = null then

9 ‘ q < triggerRuleError(necessity A —=PT,R);
10 end

1 if g = null then

12 ‘ q < triggerRuleError(necessity A —=PT’, R);
13 end

14 end

15 case Permit-overrides do

16 q « fireRule(necessity, R, Permit);

17 if g # null then

18 ‘ return gq;

19 end

20 nopermit < true;

21 for each permit rule ry = (rty, rc, Permit) € R do
22 ‘ nopermit < nopermit A notApplicable(rty, rcy.);
23 end

24 q < fireRule(necessity A nopermit, R, Deny);
25 if ¢ = null then

26 q —

fireFirstApplicableRule(necessity A =PT, R);

27 end

28 if g = null then

29 q —

fireFirstApplicableRule(necessity A —=PT’, R);

30 end

31 if ¢ = null then

32 ‘ q < triggerRuleError(necessity A —=PT,R);
33 end

34 if ¢ = null then

35 ‘ q < triggerRuleError(necessity A —=PT’, R);
36 end
37 end
38 end
39 return gq;

Theorem 1. Let g = policyTargetMutantTest(P, P’). If q # null,
then d(P, q) # d(P’, q).

Proof: q # null implies that PT # PT’ is satisfied (line 1 of the
algorithm). We show that d(P, q) # d(P’, q) for each of the six cases
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of PT # PT’ according to Definition 2. The proof focuses on three
cases because the others are symmetric.

(1) Suppose RCA is Permit-unless-deny or Deny-unless-permit. q
only results from test(necessity) in line 4, i.e., test(PT # PT’).

e PT A=PT’:d(P’,q) = N/A, but d(P,q) = rca(RCA,R, q) is
either Permit or Deny.

e PTAerror(PT’): d(P, q) is either Permit or Deny,butd(P’, q) €
{IP, ID, IDP}.

e —PT A error(PT’): d(P,q) = N/A. However, d(P’, q) € {IP,
D, IDP}.

(2) Suppose RCA is First-applicable.
If q results from fireFirstApplicableRule(PT # PT’,R) in line 7,
then d(P, q) # d(P’, q) for all cases of PT # PT’ as discussed below:

e PTA=PT’:d(P, q)=rca(RCA,R, q) € { Permit, Deny}, whereas
d(P’,q)=N/A.

e PT Aerror(PT’): d(P, q) = rca(RCA, R, q) € { Permit, Deny}.
According to Definition 2, d(P’, q) = IP if rca(RCA,R, q)
= Permit, and d(P,q) = ID if rca(RCA,R,q) = Deny. So
d(P’,q) € { IP, ID}. Therefore, d(P, q) # d(P’, q).

e —PT Aerror(PT’): d(P, q) = N/A, whereas d(P’, q) €{ IP, ID}.

If g results from triggerRuleError(necessity A =PT, R) in line 9,
thend(P, q) = N/A.rca(RCA,R, q) € {IP,ID},and PT # PT' A=PT
is satisfied. This implies PT” V error(PT’). In either case, d(P’, q) =
rca(RCA, R, q) € {IP,ID}. This is similar for the case where g re-
sults from triggerRuleError(necessity A =PT’,R) in line 12.

(3) Suppose RCA is Permit-overrides.

If q results from fireRule(necessity, R, permit) in line 16, then
there is a permit rule that is fired by g. Consider all the cases of
PT + PT'.

e PT A =PT’: d(P,q) = rca(RCA,R,q) = Permit, whereas

d(P’,q) = N/A
e PT Aerror(PT’):d(P, q) = rca(RCA, R, q) = Permit, whereas
d(P’,q) = IP.

e —PT Aerror(PT’): d(P,q) = N/A, whereas d(P’, q) = IP.

If g results from fireRule(necessity A nopermit, R, Deny) in line
24, then all permit rules are not applicable (lines 21-23) and a deny
rule is fired (line 24). Consider all the cases of PT # PT’.

e PTA-PT’:d(P, q) = rca(RCA, R, q) = Deny, whereas d(P’, q)

= N/A.
e PT Aerror(PT’): d(P, q) = rca(RCA, R, q) = Deny, whereas
d(P’,q) = ID.

e —PT Aerror(PT’): d(P,q) = N/A, whereas d(P’, q) = ID.

If q results from fireFirstApplicableRule(necessity A PT, R) in
line 26, then rca(RCA, R, q) € {Permit, Deny}. d(P,q) = N/A be-
cause of —=PT. If PT’ is true, then d(P’,q) = rca(RCA,R,q) €
{Permit, Deny}. If error(PT’), then d(P’, q) € {IP,ID, IDP}. In ei-
ther case, d(P, q) # d(P’, g). This is similar when gq results from
fireFirstApplicableRule(necessity A PT’, R) in line 29.

If g results from triggerRuleError(necessity A —=PT, R) in line 32,
then d(P, q) = N/A because of —PT. If PT’ is true, then d(P’, q) €
{IP, ID, IDP}.For either PT’ or error(PT’),d(P’, q) = rca(RCA, R, q)
€ {IP,ID,IDP}. Thus, d(P, q) # d(P’, q). This is similar when g re-
sults from triggerRuleError(necessity A =PT’, R) in line 35.

[m]
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Theorem 1 demonstrates that Algorithm 2 is sound - a resul-
tant request is sufficient for satisfying d(P,q) # d(P’, q). In fact,
the algorithm is designed based on the sufficient and necessary
condition of d(P, q) # d(P’, q). Consider RCA = First-applicable as
an example. fireFirstApplicableRule(necessity, R) would return
an access request for a well-designed policy where the policy target
is not in conflict with any rule target or rule condition (i.e., each
rule is meant to be satisfiable under the given policy target). In
reality, however, not all policies are well-designed. It is possible
that fireFirstApplicableRule(necessity, R) does not return a valid
request. In this case, the algorithm continues to look for an alter-
native that satisfies d(P, q) # d(P’, q). If the necessary condition of
d(P,q) # d(P’,q) is not addressed, we cannot conclude that P’ is
an equivalent mutant when the algorithm returns null. We have
formalized the sufficient and necessary conditions for all types of
XACML policy mutants in a separate paper. This paper will not
prove how the test generation algorithms meet the necessary condi-
tions. Note that, constraint satisfaction is in general a hard problem.
The test generation algorithms in this paper are sound and complete
only when the constraint solver used in the approach is sound and
complete with respect to the constraints.

Let us consider the application of Algorithm 2 to Sample-PO-PTT.
As mentioned before, the necessity constraint is that the original
policy target, department = "HR" or department = "IT", should evalu-
ate to false or error. For the propagation constraint, the algorithm
first checks on the permit rules one at a time. For the first permit
rule, the combined constraint for test generation is: ((department =
"HR"V department = "IT") V error (department = "HR" V department
= "IT")) A title="director" A location="on-campus". As this constraint
is satisfiable, the call to fireRule will return a valid request, such
as {department = "HR", title="director", location="on-campus'}.

5.2 Rule Effect Mutant

Given policy P, a rule effect mutant P’ is created by applying CRE
(Change Rule Effect) to one of the rules in P without changing any
other policy element. It simulates a faulty policy where a rule has an
incorrect effect. Let P =< PT, RCA,R > and P’ =< PT,RCA,R’ >,
where R = [r1,....,7i5 .. tn], R" = [r1, ...s rlf, ... 7n), and r; and ri'
have the same rule target rt; and rule condition rc;, but different ef-
fects (one is deny and the other is permit). To show the difference be-
tween P’ and P, we must reach r; in P and rlf in P’ as described in Al-
gorithm 1. The necessity constraint is fire(rt;, rc;) V error(rt;, rc;).
When RCA=First-Applicable, there is no propagation constraint.
When RCA=Permit-unless-deny (or Deny-unless-permit), the propa-
gation constraint requires that no other deny (or permit) rule should
be fired. When RCA=Permit-overrides, the propagation constraint
is that no other permit rule is fired if rule r; is fired, or all other
permit rules are not-applicable if rule r; evaluates to indeterminate.
Algorithm 3 describes how a test is generated from a rule effect
mutant.

Theorem 2. Let g = ruleEffectMutantTest(P, P’). If ¢ # null, then
d(P,q) #d(P’, q).
[m}

Let us consider Sample-PO-CRE3 as an example, where the effect
of rule 3 is changed from Permit to Deny. To reach rule 3, the policy
target should evaluate to true or error, and none of the permit rules
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Algorithm 3: Generate an access request from a rule effect
mutant
Function name: ruleEffectMutantTest
Input: Policy P =< PT,RCA, [r1, ...ri, ..., rn] >, mutant
P’ =< PT’,RCA, [r1, ...ri’, o
ri =<rti,rei,re; >, r; =<rtj,rcj,re >
Output: access request g

1 constraint « reachabilityConstraint([r1, ..., rn], 1);
2 switch RCA do
3 case Permit-unless-deny do
4 constraint « constraint A fire(rt;, rc;);
5 for each deny rule ry =< rty,rcg, Deny > in
[rit1s..n ] do
6 ‘ constraint < constraint A notFire(rty,rcy);
7 end
8 q test(newConstraint);
9 end
10 case First-Applicable do
11 q < test(constraint A fire(rt;,rc;);
12 if ¢ = null then
13 ‘ q < constraint A error(rt, rc;);
14 end
15 end
16 case Permit-overrides do
17 newConstraint < constraint A fire(rt;, rc;);
18 for each permit rule ri. =< rty, rcg, Permit > in
[rit1,...n rn] do
19 newConstraint <
newConstraint A notFire(rty, rcg);
20 end
21 q < test(newConstraint);
22 if ¢ = null then
23 newConstraint « constraint A error(rti, rc;);
24 for each permit rule ry =< rty, rcy, Permit > in
[ri+1,...,rn] do
25 newConstraint «—
newConstraint A notApplicable(rty, rcy);
26 end
27 q < test(newConstraint);
28 end
29 end
30 end
31 return g;

before rule 3 (rules 1 and 2) should be fired. Algorithm 3 will try
to satisfy constraint A fire(rt;, rc;) (line 17), i.e., evaluate rule 3 to
Permit in P, but Deny in P’ and none of other permit rules after rule
3 fired (lines 18-20). The test can be generated from the following
non-error constraint:

e Reachability: (department = "HR" V department = "IT") A=
(title ="director" A location="on-campus") A (title = "director”
A location="off-campus")

o Necessity: (title="deputy-director” A location="on-campus").
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e Propagation: — (title = "deputy-director” A location = "off-
campus”).
The collective constraint is simplified as (department = "HR"
V department = "IT") A (title="deputy-director") A (location="on-
campus”).

5.3 Rule Target/Condition Mutants

Given policy P, a rule target mutant P’ is created by applying
one of the following mutation operators to a rule target: RTT (set
Rule Target True), RTF (set Rule Target False), and RPTE (Remove
Paralle] Target Element). It simulates a faulty policy where a rule
has an incorrect rule target. Let r; =< rt;,rcj,re; > and ri’ =<
rtl.’, rci,rej >. They have the same rule condition and effect, but
different targets. To show the difference between P’ and P, we must
reach r; in P and r in P’ as in Algorithm 1. The necessity constraint
is rt; # rt]. The propagation constraint depends on RCA.

Consider Sample-PO-RTT5, where the target of rule 5 is changed
to true. The satisfiable non-error constraint for test generation is
as follows:

e Reachability: the policy target is true and all rules before
rule 5 are not applicable.

e Necessity: rule 5” original target is false.

e Propagation: rule 5’s condition is true and no deny rule after
rule 5 is fired.

The collective constraint is simplified as department € {"HR",
"IT"} A title ¢ {"deputy-director", "director"} A job-class ¢ {"guest",
"part-time", "intern", "contractor"} A (location="off-campus").

In Sample-PO-RPTE5-1, job-class="part-time" as the second par-
allel element is removed from the target of rule 5. The necessity
constraint is that the original rule target job-class="guest" or job-
class="part-time" and the mutated target job-class="guest" evaluate
to different results. This means that job-class="part-time". The prop-
agation constraint is the same as that for Sample-PO-RTT5. Thus,
the satisfiable non-error constraint for test generation by Algorithm
7 is department € {"HR", "IT"} A title ¢ {"deputy-director", "director"}
A (job-class="part-time") A (location="off-campus").

A rule condition mutant created by applying one of the following
mutation operators to a rule target: RCT (set Rule Condition True),
RCF(set Rule Condition False), ANF (Add Not Function in condition),
and RNF (Remove Not Function in condition). The test generation
algorithm is similar to that for a rule target mutant, except for the
additional reachability r¢; and the necessity constraint rc; # rc;.

6 GENERATION OF OPTIMAL TEST SUITES

Let mutationTest (P, P’) denote the test generated from P/, a mu-
tant of policy P. If P’ is not equivalent to P, mutationTest(P, P’)
will return an access request to which P and P’ produce different
responses. If P is correct, then the test will kill P’ (i.e., P’ fails when
it is exercised with the test). Note that, when a mutation operator is
applied to a policy, it may yield a number of mutants. For example,
the application of CRE (Change Rule Effect) produces n mutants,
where n is the number of rules in the policy. Let Q be a list of
mutation operators and M(P, Q) be the set of all non-equivalent
mutants created by applying each mutant operator in Q to policy
P. The test suite {mutationTest(P, P’) : P’ € M(P, Q)} is the set of
tests generated from all mutants in M(P, Q). Its mutation score is
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100% when all constraints are solvable. However, such a test suite is
not necessarily optimal because a test generated from one mutant
may kill another mutant. For example, a test generated from a CRE
mutant may also kill the ANF and RNF mutants of the same rule.

Algorithm 4: Generate a test suite from all policy mutants

Function name: : SMT (or NO-SMT without lines 5 and 11)
Input: Policy P =< PT,RCA, [r1, 12, ..., rn] > and a set of
mutation operators Q
Output: A set of access requests Q
Variables: M is a mutant pool, OPS is a list of mutation
operators, constraint is a logical constraint, q is
an access request

10«0

2 while Q # 0 do

3 OPS « select one or more mutation operators from Q;
4 M « a set of mutants created by all operators in OPS;
5 M — M — kill(M, Q);

6 while M # (0 do

7 constraint < constraint of one or more mutants;

8 q < test(constraint);

9 if g # null then

10 Q < QU{q}:

11 M «— M — kill(M, Q);

12 end

13 end
14 end

In this section, we discuss generation of optimal test suite that
not only achieves a perfect mutation score, but has no duplicate
tests. A test is considered duplicate if all mutants it kills can be
killed by other tests. Due to the extra cost for test generation and
test execution, duplicate tests significantly affect cost-effectiveness
of testing. Our approach explores both static and dynamic strategies
for the generation of an optimal test suite: (1) Static analysis of
logical relationships between different types of mutants: We group
mutants with some common satisfiable constraints (typically non-
error constraints) and attempt to exploit these constraints first. If a
common constraint is satisfiable, then only one test is generated
for a group of mutants. (2) Dynamic checking: before the attempt
to generate test from a new mutant, we run the mutant against the
existing tests. If the mutant is killed, there is no need to generate a
new test for the mutant.

Algorithm 4 describes the procedure for the generation of op-
timal test suite, where kill(M, Q) denotes the set of mutants in
M that are killed by test suite Q. We refer to the algorithm as
optimized Strong Mutation-based Testing (SMT), because it
integrates the reachability, necessity, and propagation constraints
of mutants and has no duplicate tests. Unless explicitly chosen by
the user, Q includes by default all the mutation operators in Table 1.
Algorithm 4 groups mutants with common sufficient conditions
that are identified through static analysis. It creates new mutants
for one or mutation operators at a time (lines 3-4) and runs the
mutants against the existing tests so as to avoid generating dupli-
cate tests. The mutants that are already killed by the existing tests
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are removed from the mutant pool (line 5). Then the algorithm
composes the constraint for one or more compatible mutants (line
7) and attempts to generate a test from the constraint (line 8). If the
constraint is solved, the solution is converted into a test and added
to the test suite (lines 9-12), otherwise the mutant is considered an
equivalent mutant. The algorithm also runs the new test against the
current mutant pool. Mutants killed by the new test will be removed
from the pool (line 11). The algorithm without optimization (lines
5 and 11) may also generate a test suite that achieves a perfect mu-
tant score. It is called Non-Optimized Strong Mutation-based
Testing (NO-SMT).

Suppose n is the number of rules in the policy under test. Algo-
rithm 4 deals with all mutants of the policy and, for each mutant,
the reachability and propagation constraints require the traverse
of almost all rules. The number of mutants is believed to be linear
to n. Thus, the complexity of NO-SMT is O(n2) X O(Z3, n), where
0O(Z3, n) stands for the complexity of test(constraint), which relies
on the Z3 constraint solver. As discussed in Section 4.1, the worst-
case scenario can be O(Z3) x n*. kill(M, Q) is to run the current test
suite against the mutant pool. Executing a test with each mutant
has a complexity of O(n). So the complexity of kill(M, Q) is O(n?),
assuming the test suite size is linear to the policy size based on
the observations in the experiments in the next section. The time
complexity of kill(M, q) within the inner while loop is similar. As
such, the complexity of SMT is O(n?) X O(Z3, n).

7 EXPERIMENTS

Our experiments aim to evaluate the performance of SMT (Algo-
rithm 4) and NO-SMT (Algorithm 4 without lines 5 and 11) through
various XACML policies and compare them with the existing meth-
ods from the perspectives of cost (e.g., test generation time and test
suite size), effectiveness (e.g., mutation score) and cost-effectiveness
(e.g., MKPT score). As this work is based on the current XACML
3.0 standard, our comparative study chooses three representative
testing methods from those for XACML 3.0: rule coverage (RC),
decision coverage (DC), and MC/DC [23]. Other testing methods
include non-error decision coverage (NE-DC), non-error MC/DC
(NE-MC/DC), rule pair coverage (PC), and permit/deny rule pair
coverage (PD-PC). MC/DC subsumes NE-MC/DC, i.e., for a given
policy, the MC/DC test suite is made up of the NE-MC/DC tests
and certain error tests. DC subsumes NE-DC, i.e., the DC test suite
is composed of the NE-MC/DC tests and certain error tests. PC and
PD-PC are applicable only to the policies that contain both permit
and deny rules. When applicable, they have had a poor record of
fault detection[23]. Among the existing methods, MC/DC is the
most effective as indicated by its highest mutation scores.

7.1 Experiment Setup

The XACML policies used in this paper include all the subjects in
the relevant literature [23] as well as new examples. They are listed
in Table 3. Policies 1-9 are those from the literature, demonstrating
that the comparative study is meaningful. Policies 10-13 are new
samples for further evaluating the testing methods. They are syn-
thesized from the fedora policy by adding more rules and complex
expressions.
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Table 3: Subject Policies

No Policy Name RCA #rules LOC

1 Kmarket-blue  Deny-overrides 4 84

2 Kmarket-gold  Deny-overrides 4 58

3 Kmarket-silver Deny-overrides 4 106

4  fedora Deny-overrides 12 226

5 Conf Permit-overrides 15 228

6  itrust First-applicable 64 1,282
7  itrust5 First-applicable 320 6,402
8  itrustl0 First-applicable 640 12,806
9  itrust20 First-applicable 1,280 25,602
10  fedora2 Deny-overrides 32 588
11 fedora3 Deny-overrides 212 2,748
12 fedora4 Deny-overrides 612 7,549
13 fedora5 Deny-overrides 312 4,727

Our experiments were performed on a 64bit Ubuntu laptop with
8th Generation Intel® Core™ i7-8550U Processor (1.80GHz 8MB)
and 16.0GB DDR4 2400MHz. The open-source implementation to-
gether with all the new subject policies will be publicly available
after the work has been accepted for publication.

7.2 Results

7.2.1 Test generation time and test suite size. Table 4 presents the
test generation time of each testing method. It shows that all meth-
ods except SMT are scalable. NO-SMT is comparable to MC/DC,
the most effective method in the existing study. It took SMT over
36 hours (129,656 seconds in Table 4) to complete the test genera-
tion for itrust10. Compared to NO-SMT, SMT’s non-scalability is
caused by the optimization that aims to identify and remove dupli-
cate tests. We did not apply SMT to itrust20 because the previous
study has shown that, for each of the existing methods, itrust20 has
the same mutation score and MKPT score as itrust10. In essence,
itrust5, itrust10, and itrust20 share the same policy structure and
rule pattern but have different number of rules for the purposes of
scalability study.

Table 5 presents the number of tests generated by each testing
method. Even though SMT produces optimal test suites, its test
suite sizes are not necessarily the smallest. For example, the size of
each RC test suite is the number of rules. While it is the smallest, it
is the least effective [23]. Generally, test suite size is not a good per-
formance indicator of testing although it affects the test execution
time. Nevertheless, SMT produces smaller test suites than MC/DC.
The size of NO-SMT test suite is two-fold or three-fold of MC/DC.
Compared to NO-SMT, SMT has a significant contribution to the
removal of duplicate tests although it is very time-consuming. The
removal rate, (NO-SMT test suite size — SMT test suite size) / NO-SMT
test suite size, ranges from 55% to 68%.

7.2.2  Mutation score. Mutation score is the percentage of non-
equivalent mutants killed by the test suite of a testing method.
It has been commonly used as the primary indicator of testing
effectiveness. In the existing study [23], RC did not kill most of the
mutants, DC killed most of the mutants, and MC/DC killed the vast
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Table 4: Time Generation Time (s)

Subject Testing Method
Policy RC DC MC/DC NO-SMT SMT
Kmarket-blue 114 .264 315 .600 523
Kmarket—gold 77 236 .241 419 486
Kmarket-silver .137 .371 .341 .605 746
fedora 396 .700 .865 1.87 3.07
Conf 429 427 773 2.15 3.61
itrust 1.64 351 8.35 10.4 172
itrust5 8.71 244 64.8 48.1 15,876
itrust10 139 843 211 177 129,656
itrust20 459 563 696 710 -
fedora2 847 1.29 194 4.53 14.9
fedora3 536 8.12 10.3 22.6 930
fedora4 16.4 37.5 40.2 73.6 14,725
fedora5 8.43 10.1 39.9 74.2 4,206
Table 5: Test Suite Sizes
Subject Testing Method
Policy RC DC MC/DC NO-SMT SMT
Kmarket-blue 4 10 11 17 7
Kmarket-gold 3 9 9 12 5
Kmarket-silver 5 13 13 19 8
fedora 12 25 30 61 21
Conf 15 16 25 74 25
itrust 64 66 197 387 196
itrust5 320 322 983 1,923 982
itrust10 640 642 1,965 3,843 1,964
itrust20 1,280 1,282 3,929 7,683 -
fedora2 32 45 70 161 60
fedora3 212 225 250 701 240
fedora4 612 625 650 1,901 640
fedora5 312 325 631 1,261 420
Table 6: Mutation Scores (%)

Subject Testing Method

Policy RC DC MC/DC NO-SMT SMT

fedora2 36.71 55.07 56.52 100 100

fedora3 27.62 51.13 51.46 100 100

fedora4 25.95 5042 50.53 100 100

fedora5 47.83 67.67 74.17 100 100

majority of mutants. However, none of them was able to kill all
mutants of all policies. Different from these methods, both SMT

and NO-SMT have achieved a 100% mutation score for all policies.

They can also determine whether or not a mutant is equivalent to
the original policy, and if not, they produce an access request to
which the mutant yields a different response.

In the existing study, MC/DC has obtained very high mutation
scores, ranging from 97.7% to 100% [23]. As shown in Table 6,
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Table 7: MKPT Scores

Subject Testing Method

Policy RC DC MC/DC NO-SMT SMT
Kmarket-blue 5.5 2.6 2.45 1.58 3.86
Kmarket—gold 5.67 2.22 222 1.75 4.2
Kmarket-silver 5.2 246 2.46 1.68 4
fedora 4.67 296 2.57 1.42 4.14
Conf 4.6 444 3.64 1.22 3.64
itrust 3 397 228 1.16 2.3
itrust5 3 3.99 2.28 1.17 2.28
itrust10 3 4 2.28 1.16 2.28
itrust20 3 4 2.28 1.16 -
fedora2 238 2,53 1.67 1.28 3.45
fedora3 1.21 211 1091 1.32 3.86
fedora4 1.07 2.03 1.96 1.33 3.94
fedora5 243 33 1.87 1.26 3.78

however, MC/DC’s mutation scores can be as low as 50% for several
new policies - it only kills about half of the non-equivalent mutants.
At first sight, this is discouraging because the low mutation scores
indicate that MC/DC is quite ineffective. An in-depth examination
reveals that the large number of live mutants were all created by
four mutation operators RTF, RCF, RER, and RPTE. These mutants
are non-equivalent because SMT and NO-SMT have successfully
generated access requests from each of them. MC/DC has killed all
non-equivalent mutants created by all other mutation operators.
As such, it can be inaccurate or misleading to use mutation scores
as the key indicator of testing effectiveness.

7.2.3  MKPT score. MKPT score has been used to measure cost-
effectiveness [23]. It is defined as the total number of killed mutants
divided by the total number of tests. Table 7 shows the MKPT
scores of each testing method. While NO-SMT and SMT both have
perfect mutation scores, the test suite size of NO-SMT is two-fold
or three-fold of SMT. Thus, the MKPT scores of SMT are two-fold
or three-fold of NO-SMT. However, we cannot draw the conclusion
that SMT is more cost-effective because SMT is not scalable from
the perspective of test generation time. Note that even though SMT
test suites are optimal, it does not mean they have the lowest MKPT
scores. In fact, RC has the highest MKPT scores for several policies
even though it is the least effective in terms of mutation scores.
Compared to MC/DC, SMT has higher MKPT scores (except for
Conf and intrustX), whereas NO-SMT has lower MKPT scores.

7.2.4  Summary. NO-SMT and SMT can kill all non-equivalent mu-
tants, i.e., reveal all hypothesized faults in a given policy. Compared
to the existing methods, however, they either produce larger test
suites or require more time for test generation. While test gener-
ation time, mutation score, and MKPT score are all meaningful
performance metrics, they should not be used alone for the mea-
surement of testing effectiveness and cost-effectiveness. SMT is a
viable method for thoroughly testing small policies and for com-
paring other testing methods to the optimal test suite. NO-SMT is
scalable for dealing with all hypothesized faults of large policies.
Because missing the chance of finding an access control fault can
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lead to serious security incidents, effectiveness of access control
testing must be given a priority. Thus, both NO-SMT and SMT are
important for revealing access control faults. To achieve a perfect
mutation score for a large policy, a scalable cost-effective approach
is to combine MC/DC with the application of NO-SMT to the mu-
tation operators whose mutants are not always killed by MC/DC.
It is more effective than MC/DC (i.e., higher mutation score) and
more cost-effective than NO-SMT (i.e., higher MPKT score).

8 CONCLUSIONS

We have presented the approach to automated strong mutation
testing of XACML policies. It relies on the composition and solving
of reachability, necessity, and propagation constraints that capture
the semantic difference between a given policy and each of its mu-
tants. Although constraint solving in general is a hard problem,
the implementation of our approach has successfully generated
mutation-based test suites for all the sample policies publicly avail-
able so far and nine new examples. These test suites can achieve
a perfect mutation score and reveal all hypothesized faults. Thus,
the mutation-based approach is more effective than the existing
methods. It can also help improve other testing methods by deter-
mining whether or not a mutant is equivalent to its original policy,
i.e., whether or not a syntactical difference in a mutant is a sematic
fault. Nevertheless, the mutation-based approach is not necessarily
the most cost-effective when test generation time and test suite size
(or test execution time) are taken into consideration. For high assur-
ance of large policies, a scalable yet more cost-effective approach
is to enhance the MC/DC method by applying the mutation-based
method (e.g., NO-SMT) to the mutation operators whose mutants
are not killed by MC/DC. It would result in a higher mutation score
than MC/DC and a higher MPKT score than NO-SMT.

In this paper, mutants are created by applying an individual
mutation operator to make a single change to a given policy. They
simulate various faults that likely occur in XACML policies. Using
such first-order mutants has been the common practice in the field
of mutation testing. Empirical studies have shown that program
mutants are indeed similar to real faults in software for the purposes
of evaluating software testing techniques [13]. A real fault might be
a combination of single changes in a number of first-order mutants.
The test generated from a first-order mutant would likely fail the
program with a composite fault, and thus reveal the composite fault.
We believe this is also the case for policy testing.

Our future work will investigate test generation from higher-
order mutants that are created by applying more than one mutation
operators or one mutation operator more than once. When debug-
ging a program with multiple bugs, we often try to locate and fix
the first one. Likewise, test generation from higher order mutants
may start from the first mutated element and obtain its reachability
and necessity constraints. The main challenge, however, is that the
propagation constraint depends on other mutated elements.
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