Session: Access Control and Authentication

SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

Automated Coverage-Based Testing of XACML Policies

Dianxiang Xu
Department of Computer Science
Boise State University
Boise, ID 83725, USA
dianxiangxu@boisestate.edu

ABSTRACT

While! the standard language XACML is very expressive for
specifying fine-grained access control policies, defects can get
into XACML policies for various reasons, such as
misunderstanding of access control requirements, omissions, and
coding errors. These defects may result in unauthorized accesses,
escalation of privileges, and denial of service. Therefore, quality
assurance of XACML policies for real-world information systems
has become an important issue. To address this issue, this paper
presents a family of coverage criteria for XACML policies, such
as rule coverage, rule pair coverage, decision coverage, and
Modified  Condition/Decision = Coverage (MC/DC). To
demonstrate the assurance levels of these coverage criteria, we
have developed methods for automatically generating tests, i.e.,
access requests, to satisfy the coverage criteria using a constraint
solver. We have evaluated these methods through mutation
analysis of various policies with different levels of complexity.
The experiment results have shown that the rule coverage is far
from adequate for revealing the majority of defects in XACML
policies, and that both MC/DC and decision coverage tests have
outperformed the existing methods for testing XACML policies.
In particular, MC/DC tests achieve a very high level of quality
assurance of XACML policies.
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1 INTRODUCTION
XACML (eXtensible Access Control Markup Language) [1] is an
OASIS standard for specifying attribute-based access control
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(ABAC) policies in the XML format. ABAC [2] is a new access
control method where authorization elements are defined in
terms of attributes, rather than identities, of subjects, actions,
resources, and environments. These attributes are characteristics
of subjects (e.g., job title and age), actions, resources (e.g., data,
programs, and networks), and environments (e.g., current time
and IP address) that are predefined and pre-assigned by an
authority [3]. By combining various attributes into access
control decisions, ABAC enables fine-grained access control of
resources. ABAC also facilitates collaborative policy
administration within a large enterprise or across multiple
organizations [1]. The Federal Identity, Credential, and Access
Management (FICAM) Roadmap and Implementation Plan v2.0
[4] has called out ABAC as a recommended access control model
for promoting information sharing between diverse and
disparate organizations. The National Strategy for Information
Sharing and Safeguarding included a Priority Objective that the
federal government should extend and implement the FICAM
Roadmap across federal networks in all security domains [3].
Currently XACML3.0 has been used in the mainstream identity
management products, such as Oracle’s Identity Manager and
WSO02’s Identity Server.

XACML supports a variety of data types, functions, and
combining algorithms for policy composition. While such
expressiveness is highly desirable for representing real-world
ABAC policies, it raises challenges for validating whether
XACML policies indeed meet the access control requirements.
When an ABAC policy is coded in XACML, defects can be
introduced for various reasons, such as misunderstanding of the
access control requirements, omissions, and coding errors [5].
These defects may result in unauthorized accesses, escalation of
privileges, and denial of service. To reveal these defects, a major
practice is to test the policy by feeding the policy together with
test inputs to an XACML engine (or policy decision point) and
check if the policy interpreted by the XACML engine produces
correct responses. A test input is an access request that consists
of attribute names, types, and values. In this paper, we assume
that the implementation of the XACML engine conforms to the
XACML3.0 standard. The response to an access request by a
given policy is consistent with the standard.

Several methods have been proposed to generate test inputs
for XACML 1.0 or 2.0 policies [6]-[14]. These methods, however,
have two problems. First, their experimental results have shown
that they are incapable of detecting the majority of defects and
produce a large number of tests. Second, the tests generated by
these methods do not achieve adequate coverage of the XACML
policy under test. For example, some of them [9] [10] do not
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necessarily cover all reachable rules in the policy under test,
while others [8][11] aim at selecting or generating test inputs to
cover all rules. This paper will show that a test suite for rule
coverage is far from adequate for quality assurance. Adequate
test coverage is important because a defect in a policy element
will not be revealed unless the policy element is exercised by
some test. This paper demonstrates that coverage-based testing
is very useful for quality assurance of XACML policies.

The contributions of this paper are as follows:

. We define a family of coverage criteria for XACML 3.0
policies, including rule coverage, decision coverage,
Modified Condition/Decision Coverage (MC/DC), rule
pair coverage, and permit/deny rule pair coverage.
These coverage criteria are defined over the essential
access control constraints in XACML 3.0 policies,
including policy set target, policy target, rule target,
and rule condition. They can be used to measure the
adequacy of tests for an XACML policy under
development and determine whether or not more tests
need to be created and performed in order to achieve
an expected level of quality assurance. Even for a
policy in operational use (i.e., its tests are actual access
requests in an operational environment), the coverage
criteria can indicate the confidence levels of policy
quality. For example, when the actual accesses are
already MC/DC-adequate and none of them have led to
security violation, we are confident that the policy is
highly assured, even though it has not been tested
adequately before the deployment.

o We have developed efficient methods for automatically
generating tests to meet each of these coverage criteria
using a constraint solver. They have been applied to a
number of policies with different levels of complexity
and demonstrated satisfactory time performance.

. We have conducted empirical studies to evaluate the
cost-effectiveness of the coverage-based tests through
comprehensive mutation analysis of XACML policies.
The defect detection capability is measured by
mutation score, ie., mutant-killing ratio between the
total number of policy mutants killed by a test suite
and the total number of non-equivalent policy mutants.
A policy mutant is a variant of the original policy with
an injected fault. The injected faults represent the
typical defects that may occur in XACML policies. A
mutant is said to be killed if there is at least one test
that reports a failure. Our experiment results have
shown that both the MC/DC tests and the decision
coverage tests are much more effective than the
existing testing methods for XACML policies. In
particular, MC/DC-adequate tests can provide high
assurance of XACML policies.

The remainder of this paper is organized as follows. To make
the paper self-contained, Section 2 briefly introduces XACML 3.0
policies. Section 3 defines the test coverage criteria. Section 4
describes the coverage-based test generation methods. Section 5
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presents the empirical studies. Section 6 reviews related work.
Section 7 concludes this paper.

2 ACCESS CONTROL POLICIES IN XACML3.0
The main components of the XACML3.0 model are rule, policy,
and policy set. As the most elementary unit of policy, a rule
consists of a target, a condition, and an effect. The target is a
logical expression that specifies the set of requests to which the
rule is intended to apply. The condition is a Boolean expression
that refine the applicability of the rule established by the target.
A policy comprises a policy target, a rule-combining algorithm
identifier, and a list of rules. A policy set consists of a policy set
target, a policy-combining algorithm identifier, and a list of
policies or policy sets. The target of a rule, policy, or policy set is
a conjunctive sequence of AnyOf clauses. Each AnyOf clause is a
disjunctive sequence of AllOf clauses, and each AlIOf clause is a
conjunctive sequence of match predicates. A match predicate
compares attribute values in a request with the embedded
attributes. Logical expressions for match predicates and rule
conditions are usually defined on four categories of attributes:
subject, resource, action, and environment. They can use a great
variety of predefined functions and data types.

We use the policy in Figure 1 as a running example. It is one
of the sample policies in Balana, an open source implementation
of XACML 3.0 [15]. For simplicity, some text is not omitted. The
policy is named “KmarketBluePolicy” and the rule combining
algorithm is deny-overrides (line 2). The policy’s target (lines 3-
14) means role=blue, where role is an attribute in the subject
category and both role and blue are strings. There are three rules:
deny-liquor-medicine (line 16-37), max-drink-amount (lines 38-
61), and permit-rule (line 62).

The target of rule deny-liquor-medicine (lines 18-35) means
resource-id=Liquor (line 19-26) v resource-id=Medicine (lines 27-
34), where resource-id is an attribute in the resource category.
Because the rule’s condition is omitted, the rule will result in a
“deny” decision if resource-id=Liquor v resource-id=Medicine. The
target of rule max-drink-amount means resource-id=Drink, and
the condition means amount>10. Thus the rule results in a deny
decision if resource-id=Drink A amount>10. Rule permit-rule has
neither target nor condition. It results in a permit decision
whenever it is applied.

To facilitate our discussion, we use policy set as a general
structure of XACML specification. Formally, a policy set PS is a
triple < pst, pca, [P1, Ps,..., Pm]>, where pst is the policy set target,
pca is the policy combining algorithm, and [Py, Ps,..., Pm] is the
list of policies in the policy set. <pst, pca, [P1, Pa,..., Pm]> reduces
to a policy when pst and pca are omitted and m=1. Thus, the
discussions in the subsequent sections apply to individual
policies. Each policy Pi is a triple <pt;, reai, [Ri, Rz,..., Rn]> , where
pti is the policy target, rcai is the rule combining algorithm, and
[R1, ..., Ra] is the list of rules in the policy. Each rule R; is a triple
< rtj, rcj, rej >, where rtj is the rule target, rc; is the rule condition,
and rej €[Permit, Deny} is the rule effect. < rtj, rci, Permit> is
called a permit rule, whereas < rtj, r¢j, Deny> is a deny rule. If

both rtj and rc are omitted (always true), then the rule < _, _, rej >
is a default rule. More specifically, < _, _, Deny> is a default deny
rule, whereas < _, _, Permit> is a default permit rule.
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"

<Policy xmIns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

Policyld="KmarketBluePolicy" RuleCombiningAlgld= "...deny-
overrides" Version="1.0">
<Target>
<AnyOf>
<AllIOf>
<Match Matchld="...function:string-equal">
<AttributeValue

DataType=".. .#string">blue</AttributeValue>
<AttributeDesignator AttributeIld="...role"
Category=""...subject-category:access-subject"
DataType="...string" MustBePresent="true"/>

</Match>
</AllOf>
</AnyOf>
</Target>

<Rule Effect="Deny" Ruleld="deny-liquor-medicine">
<Target>

<AnyOf>
<AllOf>
<Match Matchld="...function:string-equal">
<AttributeValue
DataType="...string">Liquor</AttributeValue>
<AttributeDesignator Attributeld="...:resource-id"

Category="...attribute-category:resource"
DataType="...string" MustBePresent="true"/>
</Match>
</AllOf>
<AllOf>
<Match Matchld="...function:string-equal">
<AttributeValue
DataType="...string">Medicine</AttributeValue>
<AttributeDesignator Attributeld="...resource-id"
Category="...attribute-category:resource"
DataType="...string" MustBePresent="true"/>
</Match>
</AlOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Deny" Ruleld="max-drink-amount">
<Target>
<AnyOf>
<AllOf>
<Match Matchld="...function:string-equal">
<AttributeValue
DataType="...string">Drink</AttributeValue>

<AttributeDesignator Attributeld="...resource-id"

Category="...attribute-category:resource"
DataType="...string" MustBePresent="true"/>
</Match>
</AllOf>
</AnyOf>
</Target>
<Condition>

<Apply Functionld="...function:integer-greater-than">
<Apply Functionld="...function:integer-one-and-only">

<AttributeDesignator Attributeld="...amount"

Category=""...category"

DataType="
</Apply>
<AttributeValue

DataType="...integer">10</AttributeValue>
</Apply>
</Condition>
</Rule>
<Rule Ruleld="permit-rule" Effect="Permit"/>
</Policy>

Figure 1: A sample XACML policy.

...#integer" MustBePresent="true"/>

SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

An access request consists of attribute names, types, and
values. For an access request, a policy or policy set responds
with an access decision, such as permit or deny. The semantics
of a policy set PS= < pst, pca, [P1, P,..., Pm]> can be informally
described as follows: given an access request g, PS is evaluated to
produce a response (i.e., access decision) to g, denoted as d(PS, g).
Policy set target pst is first evaluated according to the attribute
values in q. If the result of evaluation is false (or an error occurs
during the evaluation), then d(PS, q)= Not-Applicable (or
Indeterminate), otherwise policies Pi, Ps,..., and Pm will be
evaluated. d(PS, q) depends on policy combining algorithm pca
and the decisions of individual policies with respect to g
(denoted as d(Pi, q)). Similarly, for an individual policy Pi = <pt;,
reai, [R1, Rz,..., Rn] >, policy target pti is evaluated according to
the attribute values in q. If the evaluation result is false (or an
error occurs during the evaluation), then d(Pi, g)= Not-Applicable
(or Indeterminate), otherwise rules Ri, Rz.., and R will be
evaluated. d(P;, q) depends on rule combining algorithm rca and
the decisions of individual rules. Decision of rule Rj = < rt;, rcj, rej
> with respect to g, denoted as d(R), g), is defined as follows:

. Permit: access is granted when rej = Permit and rtj A rc;

is true with respect to q.

. Deny: access is denied when rej = Deny, and rtj A r¢j is
true with respect to q.

. NotApplicable, or simply N/A: q is not applicable, i.e., rtj
A rgjis false with respect to q.

. IndeterminateD or simply I(D): An error occurred when
rtj or r¢j was evaluated and rej=Deny. The decision
could have evaluated to Deny if no error had occurred.

. IndeterminateP, or simply I(P): An error occurred when
rtj or rcj was evaluated and rej=Permit. The decision
could have evaluated to Permit if no error had
occurred.

For a default rule ri= < _, _, rej > and any access request g,
d(rj, q) = rej. A syntactically valid access request may cause the
occurrence of a runtime error for different reasons, such as
missing an attribute value, mismatch of an attribute type, and an
exception of expression and function evaluation.

In XACML 3.0, there are 11 rule combining algorithms and 12
policy combining algorithms (11 of them use the same names as
respective rule combining algorithms). Four of them are for
compatibility support of old versions - Legacy Ordered-deny-
overrides, Legacy Permit-overrides, Legacy Ordered-permit-
overrides, and Legacy Ordered-permit-overrides. In Balana [15],
the implementations of Ordered-deny-overrides and Ordered-
permit-overrides are the same as Deny-overrides and Permit-
overrides. As such, our work focuses on five rule combining
algorithms and six policy combining algorithms: Deny-overrides,
Permit-overrides, Deny-unless-permit, Permit-unless-deny, First-
applicable, and Only-one-applicable.

3 TEST COVERAGE CRITERIA FOR XACML

A test case for a policy set or policy is an access request (i.e., test
input) together with the correct response to the request by the
policy set or policy under test (ie., oracle value). Generally
oracle values for given test inputs are determined by the access
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control requirements. In an evolving policy development
process, the actual responses of test inputs from earlier policy
versions can be recorded and then used as the oracle values for
testing the current or future versions if their correctness is
confirmed. A test passes (or fails) if the actual response is the
same as (or different from) the oracle value. Sometimes we
simply refer to a test as an access request (i.e., the input part of
the test). A test suite is a set of tests. In the following, we define
a family of test coverage criteria for XACML policies.

3.1 Rule Coverage (RC)

Definition 1. A test suite TS for a policy set PS is said to
satisfy Rule Coverage (RC) of PS if, for each rule R; in each policy
Pi of PS, there is as least one test q in TS that evaluates rule R;j to
its specified effect reji.e., d(Rj, q) = re;.

A test ¢ making R;j evaluate to its specified effect re; must
satisfy the following three conditions:

(1)  Reachability of policy P:i: the test must reach policy P;
otherwise no rule in P; will be evaluated. This means that
PS’s target evaluates to true and no policy before P
terminates the evaluation of PS. For any policy Pk (0<k<i)
before P;, its evaluation will make P; unreachable if:

. d(Px, q) = Deny when pca = Deny-overrides / Permit-

unless-deny,

. d(Pk, q) = Permit when pca = Permit-overrides / Deny-

unless-permit, or

) d(Px, q) # N/A when pca = First-applicable.

(2)  Reachability of rule Ri: After P;is reached, the test triggers
the evaluation of rule Ri only if the policy target of Pi
evaluates to true and no rule before R; in P; terminates the
evaluation of Pi For any rule Rs (0<s<j) before Rj its
evaluation will make Rs unreachable if:

. d(Rs, q) = Deny when rcaj = Deny-overrides / Permit-

unless-deny,

. d(Rs, q) = Permit when rcaj = Permit-overrides / Deny-

unless-permit, or

) d(Rs, q) # N/A when rcaj = First-applicable.

(3)  Reachability of rule effect re;: the test makes evaluate to its
specified effect only if rti A rci evaluates to true.

For instance, a test that covers rule max-drink-amount in the
running policy example must satisfy the following conditions:

. Rule reachability: role=blue A — (resource-id=Liquor v

resource-id=Medicine)

. Effect reachability: resource-id=Drink A amount>10

3.2 Decision Coverage (DC)

A policy set PShas different points of decision-making, such as
policy set target, policy target, rule target, and rule condition.
Each of these decision points can evaluate to true, false, or error.
These different evaluation results lead to different access control
decisions. It is desirable to test whether these decision points
work correctly. In the following, we refer to policy set target,
policy target, rule target, and rule condition collectively as
decision expressions.
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Definition 2. A test suite TS for a policy set PS is said to
satisfy Decision Coverage (DC) of PS if TS covers all three
decisions of each decision expression, i.e.,

(1) TS has three tests to make policy set target pst evaluate to
true, false, and error, respectively,

(2)  For each policy P; in policy set PS, TS has three tests to
make policy P/’s target pti evaluate to true, false, and error,
respectively, and

(3)  For each rule Rj in each policy P; of PS, TS has three tests
to make rule target evaluate to true, false, and error,
respectively.

(4)  For each rule Rj in each policy P; of PS, TS has three tests
to make rule condition evaluate to true, false, and error,
respectively.

In (1), if a test makes policy set target pst evaluate to true,
then individual policies in PS will continue to be evaluated. If a
test makes pst evaluate to false or error, then the evaluation of
PS result in a decision of N/A or Indeterminate. A test that makes
pst evaluate to error (called error test) refers to a valid access
request that leads to the Indeterminate decision due to such
semantic issues as missing attribute value and mismatch of
attribute type. This is similar for policy targets, rule targets, and
rule conditions. Section 3.5 will discuss why error tests are
useful for detecting defects in XACML policies. As described
before, the reachability condition of P; is assumed in (2). The
reachability condition of Rj is assumed in (3) and (4). (4) also
implies that R/’s target evaluates to true. “false” and “error” do
not apply to omitted rule target in (3) or omitted rule condition
in (4). Consider the running example, the full decision coverage
of the policy target requires a test to cover the following
situations:

. role=blue
. — (role=blue), i.e., role=blue
. an error occurs when the match predicate for role=blue

(lines 6-11) is evaluated (e.g., if the access request
contains no value for attribute role)

The full decision coverage of the rule target of max-drink-

amount requires one test to cover the following constraints:

. role=blue A — (resource-id=Liquor v resource-id=
Medicine) A resource-id=Drink

. role=blue A — (resource-id=Liquor Vv resource-id=
Medicine) A — (resource-id=Drink)

. role=blue A — (resource-id=Liquor Vv resource-id=
Medicine) A an error occurs when resource-id=Drink is
evaluated

The full decision coverage of the rule condition of max-drink-

amount requires one test to cover the following constraints:

. role=blue A — (resource-id=Liquor v resource-id=
Medicine) A resource-id=Drink A amount>10

. role=blue A — (resource-id=Liquor v resource-id=
Medicine) A resource-id=Drink A — (amount>10)

. role=blue A — (resource-id=Liquor v resource-id=
Medicine) A resource-id=Drink A an error occurs when
amount>10 is evaluated (e.g., if the access request
contains no value for attribute amount)
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The full decision coverage of rule deny-liquor-medicine’
target, resource-id=Liquor v resource-id=Medicine, requires one
test to meet each of the following constraints in addition to the
rule’s reachability condition role=blue:

. resource-id=Liquor v resource-id= Medicine
. —( resource-id=Liquor v resource-id= Medicine)
. an error occurs when rule max-drink-amount is

evaluated (e.g., if the access request contains no value
for attribute resource-id).

Definition 2 has considered the occurrence of errors when a
policy (set) target, a rule target, or a rule condition is evaluated.
A variation of decision coverage is non-error decision coverage
(NE-DC), where error tests are not considered.

3.3 Modified-Condition/Decision Coverage

MC/DC originated from NASA’s RTCA/DO-178B document [16],
which is “the primary means used by aviation software
developers to obtain Federal Aviation Administration (FAA)
approval of airborne computer software” [17]. DO-178B requires
level-A software to achieve MC/DC of the software structure.
Here a condition is a primitive Boolean valued expression that
cannot be broken down into simpler Boolean expressions,
whereas a decision is a Boolean-valued expression made up of
conditions and logic operators (e.g., A, v, and —). Consider rule
deny-liquor-medicine’s target as an example: resource-id=Liquor v
resource-id= Medicine is a decision. It is composed of two
conditions resource-id=Liquor and resource-id= Medicine, and the
logic operator v. Note that, here the term “condition” is different
from “condition” in XACML rules. In addition to condition
coverage (i.e., make a decision true and false at least once),
MC/DC requires that: (1) every condition in a decision has taken
on all possible outcomes at least once, and (2) each condition has
been shown to independently affect the decision’s outcome. For
example, MC/DC of a conjunctive decision with n conditions
(e.g., c1 A...A cn) requires n+1 tests: one test that evaluates all
conditions to true and n tests that evaluate one condition to false
and other conditions evaluate to true. MC/DC of a disjunctive
decision with n conditions (e.g., c1v...vcn) requires n+1 tests: one
test that evaluates all conditions to false and n tests that evaluate
one condition to true and other conditions evaluate to false.

In this paper, we apply MC/DC to each decision expression
(i.e, policy set target, policy target, rule target, and rule
condition) in XACML policies. We not only consider two truth
values (i.e., true and false), but also error conditions.

Definition 3. A test suite TS for a policy set PS is said to
satisfy MC/DC of PS if TS satisfies MC/DC of each decision
expression:

(1) TS satisfies MC/DC of policy set target pst, and has a test
to make pst evaluate to error,

(2)  For each policy Piin PS, TS achieves MC/DC of policy Pi’s
target pti, and has a test to make pti evaluate to error,

(3)  For each rule R;in each policy P; of PS, TS achieves MC/DC
of R/’s target and has a test to make Ry’s target evaluate to
error.
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(4)  For each rule Rjin each P; of PS, TS achieves MC/DC of R’s
condition and has a test to make R;’s condition evaluate to
error.

The reachability condition of Pi is assumed in (2), and the
reachability condition of Rj is assumed in (3) and (4). (4) also
implies that rule R/’s target evaluates to true. A variation of the
above MC/DC is non-error MC/DC (NE-MC/DC), where error
tests are not considered.

Consider rule deny-liquor-medicine’s target: resource-
id=Liquor v resource-id= Medicine. Its MC/DC requires one test to
meet each of the following constraints in addition to the rule’s
reachability condition role=blue:

° resource-id=Liquor A

resource-id=Liquor

—(resource-id= Medicine), i.e.,
. —(resource-id=Liquor) A  resource-id= Medicine, i.e.,
resource-id= Medicine
. —(resource-id=Liquor) A —(resource-id= Medicine), i.e.,
resource-id=Liquor A resource-id= Medicine
. an error occurs when resource-id=Liquor v resource-id=
Medicine is evaluated, e.g., if the access request
contains no value for attribute resource-id.
In this example, MC/DC requires one more test than decision
coverage. Both of the first two tests make the expression true.
Only one is needed to achieve the decision coverage.

3.4 Rule Pair Coverage (PC)

Policy combining algorithms and rule combining algorithms are
meant to combining multiple conflicting decisions into a single
access decision. Such conflicting decisions typically arise from
different rules. Thus, testing may target the circumstances under
which multiple rules evaluate to their specified effects.

Definition 4. A test suite TS for a policy set PS is said to
achieve rule Pair Coverage (PC) of PS if, for each pair of rules
within each policy Pi (excluding default rules), TS has a test to
make both rules evaluate to their specified effects if feasible.

Because covering a pair of default rule and non-default rule
would be the same as covering the non-default rule, Definition 4
excludes pairing of default rules. When there are default rules,
rule pair coverage focuses on pairs of non-default rules. Note
that, it is not always feasible to make two rules evaluate to their
specified effects. In fact, different rules may deal with mutually
exclusive circumstances. Consider rules deny-liquor-medicine
and max-drink-amount in the running example. No test can
satisfy the targets of both rules: resource-id=Liquor v resource-
id=Medicine and resource-id=Drink.

A variation of rule pair coverage is Permit/Deny Rule Pair
Coverage (PD-PC), where each rule pair consists of a permit rule
and a deny rule. Testing may target such heterogeneous rule
pairs in that homogeneous rule pairs do not necessarily yield
conflicting decisions.

Definition 5. A test suite TS for a policy set PS is said to
achieve Permit/Deny rule Pair Coverage (PD-PC) of PS if, for each
pair of permit and deny rules within each policy Pi (excluding
default rules), TS has a test to make both rules evaluate to their
specified rule effects if feasible.
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3.5 Relationships among Coverage Criteria

The aforementioned test coverage criteria are closely related to
each other. Figure 2 shows the “subsumes” relationships between
the coverage criteria. MC/DC subsumes decision coverage (DC)
in that a test suite that achieves MC/DC always achieves the
decision coverage. Similarly, decision coverage (DC) subsumes
rule coverage, and rule pair coverage (PC) subsumes permit/deny
rule pair coverage (PD-PC). In addition, MC/DC subsumes non-
error (NE-) MC/DC, whereas decision coverage (DC) subsumes
non-error decision coverage (NE-DC) because of the error tests.
Error tests are syntactically valid access requests that make
decision expressions (policy set target, policy target, and rule
target/condition) evaluate to an Indeterminate decision. Since
such an intermediate decision affects the next level decision of
the containing policy element (policy set, policy, and rule), error
tests are useful for detecting defects in XACML policies.
Consider the following faulty policy with two deny rules (Rulel
and Rule2) and a default permit rule (Rule3).

<RuleCombiningAlgld = Deny-overrides >

Rule 1: < name = “Tom”, gender = “Male”, deny>

Rule 2: < name = “Lee”, class = “CS221”, deny>

Rule 3: <, , deny>

Non-error < MC/DC
(NE-) MC/DC | sybsume
subsume
y
Non-error .
Decision subsume Decision Rule Pair
Coverage (NE- Coverage Coverage (PC)
DC) (C) .
subsume o lsubsume
y Lt
Rule Permit/Deny Rule Pair
Coverage (RC) Coverage (PD-PC)

Figure 2: Relationships among test coverage criteria.

Suppose the given rule combing algorithm Deny-overrides is
incorrect and the correct one is Permit-unless-deny. A non-error
test that makes the two deny rules evaluate to either
NotApplicable or deny requires that the access request contain a
valid value for each of the three attributes: name, gender, and
class. A request that contains no valid value for one of the
attributes is an error test that would lead to an error occurrence.
For example {name = “Lee”, gender="Male”} is an error test
because it contains no value for attribute class. Rule 1 evaluates
to NotApplicable, whereas Rule 2 evaluates to IndeterminateD.
The decision of the faulty policy is IndeterminateD. As the
correct combining algorithm is Permit-unless-deny, however, the
correct decision is permit. Thus, the above error test can reveal
the fault. A non-error test makes Rule I and Rule 2 evaluate to
either NotApplicable or deny. If either Rule 1 or Rule 2 evaluate to
deny, the faulty and correct policies result in the same decision
of deny. If both Rule 1 and Rule 2 evaluate to NotApplicable, the
faulty and correct policies also yield the same decision of permit.
Thus, non-error tests cannot reveal the fault. It is worth pointing
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out that the tests in this paper (including the error tests) target
faults in the policy under test, rather than error in the XACML
implementations as studied by [18]. They can be useful for
testing XACML implementations, though. None of the existing
research on testing XACML policies has discussed the concept of
error tests. Note that rule pair coverage (PC) does not necessarily
subsume rule coverage (RC) although each test that covers a pair
of rules also covers the individual rules in the pair. As discussed
before, tests for a specific rule pair may not exist.

3.6 Application of Coverage Criteria

The test coverage criteria can be applied as follows:

e Measuring test coverage adequacy of given tests. These
tests may be produced by other testing methods when a
policy is developed or represent actual access requests in
a running system. As will be shown in Section 5, test
suites of different coverage criteria have different levels
of fault detection capabilities. Measurement of coverage
adequacy of tests provides important guidelines for the
development of access control tests. For instance, if
MC/DC is required of a policy but the current tests are
not yet adequate for MC/DC, then more tests need to be
developed and executed. As test suites for rule coverage
have a poor record in finding defects (refer to Section 5),
a test suite that does not even achieve the rule coverage
cannot assure the policy quality.

e Generating access requests automatically to meet a
certain coverage criterion. The proposed coverage criteria
provide guidelines for automated test generation when
validating XACML policies under development. As
described in Section 4, we have developed methods for
generating tests to satisfy the coverage criteria. They
make it possible to empirically evaluate the levels of
quality assurance implies by the coverage criteria. In
practice, when the proposed test generation methods are
applied to an XACML policy, the tester needs to define
the oracle value (i.e., expected response) of each test
input in order to determine if the test passes or fails.

Because it is easy to implement the measurement of coverage

criteria, this paper focuses on automated test generation for the
coverage criteria and empirical evaluation of their effectiveness.

4 COVERAGE-BASED TEST GENERATION

The coverage-based test generators produce access requests from
a given policy set or policy to satisfy a coverage criterion. They
first collect the constraints on attributes according to the
criterion as described in Section 3. Then they feed each
constraint to the Z3-str constraint solver, and convert the result
into an access request if the constraint is solved. Z3-str [19] is an
extension to Z3 [20], an efficient SMT (Satisfiability Modulo
Theories) Solver freely available from Microsoft Research. SMT
generalizes boolean satisfiability (SAT) by adding equality
reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers,
and other useful first-order theories. Z3-str treats strings as a
primitive type with common string operations.
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The test generator for rule coverage aims to generate a test to
cover each rule. It first composes the constraint for each rule in
each policy of the given policy set and then uses Z3-str to
generate an access request for the constraint. The algorithms are
given below. The constraint for covering a rule includes policy
set target, policy reachability condition, policy target, rule
reachability condition, rule target and rule condition. Obtaining
the reachability condition of each policy within the policy set
and obtaining the reachability condition of each rule within a
policy are described separately in Algorithms 2 and 3. Policy
reachability depends on the policy combining algorithm in the
policy set and rule reachability depends on the rule combining
algorithm in each policy. They are reflected by the conditional
statements in Algorithms 2 and 3, respectively.

Algorithm 1. generateTestsForRuleCoverage(PS)
Function: Generate tests for rule coverage
Input: Policy set PS= < pst, pca, [P1, Pz,..., Pm]>
Output: A set of access requests Q
Q« U
for each policy Pi = <pti, rcai, [Ri, R,..., Ra]> in PS, do
constraint < pst
constraint <— constraint A policyReachability(PS, P;)
constraint <— constraint /A pti
for each rule Rj =<rt;, r¢j, rej> in Pi, do
ruleConstraint < constraint A ruleReachability(PiR;)
ruleConstraint <— ruleConstraint A (rtj A rcj)
Q < QU{Z3-request(ruleConstraint)}

O 0 NN R W

Algorithm 2. policyReachability(PS, Pi)
Function: Generate policy reachability constraint
Input: Policy set PS= < pst, pca, [P1, Pa,..., Pm]>
Policy Pi = <pti, rcai, [R1, Ra,..., Ru]>
Output: constraint
constraint <—
for k=1to i-1, do
if PK’s target ptk is not empty
constraint <«— constraint A — (ptk)

[z

else

if pca = Deny-overrides or Permit-unless-deny
rules «— all deny rules in Pk

else if pca = Permit-overrides or Deny-unless-permit
rules « all permit rules in Pk

else if pca = First-applicable
rules «— all rules in Pk

for each rule Rs =<rts, rcs, res> in rules, do
constraint <— constraint A — (rts A rcs)

O S0 NN A WN =

O Y
LW~

Algorithm 3. ruleReachability(Pi, R;)
Function: Generate rule reachability constraint
Input: Policy Pi = <pt;, reai, [R1, Rz,..., Rn]>

Rule R;j =<rtj, rcj, rej>in P;
Output: constraint
constraint <
if rcai = Deny-overrides or Permit-unless-deny

2

rules « all deny rules before R;in P; (s<j)
else if rcai=Permit-overrides or Deny-unless-permit

rules «— all permit rules before R;in Pi (s<j)
else if rcai = First-applicable

AR LN =

SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

7 rules « all rules before R;in P; (s<j)
8 for each rule Rs =<rt;, rcs, res> in rules
9 constraint < constraint A — (rts A rcs)

To deal with MC/DC and decision coverage, we use a truth
table to manage its coverage status for each decision expression
(e.g., policy set target, policy target, rule target, and rule
condition). Each entry consists of three parts: a truth value for
each of the basic conditions that comprise the decision
expression, truth value of the decision expression (TRUE, FALSE,
or ERROR), and whether the entry is covered by some existing
test (TRUE or FALSE). Table 1 shows a sample MC/DC truth
table for decision expression resource-id=Liquor v resource-id=
Medicine. The four entries are corresponding the four expected
MC/DC tests discussed in Section 3.3. Entry 0 represents that
resource-id=Liquor is True and resource-id= Medicine is False. In
this case, the decision expression resource-id=Liquor v resource-
id= Medicine evaluates to True. “Covered” is False because no
existing test has covered this entry. Entries 1-3 can represent
tests for decision coverage. Let conditions (constraint, i) represent
the conjunction of the basic conditions in the i-th entry.
Consider entry 0 of Table 1. conditions (resource-id=Liquor v
resource-id=  Medicine, 0) means (resource-id=Liquor) A
—(resource-id=Medicine). Let decision(constraint, i) represent the
decision in the i-th entry and covered(constraint, i) represent
whether or not the i-th entry is covered by existing tests. For
convenience, the truth table of an empty decision expression
(e.g., policy set target, policy target, rule target, rule condition)
has one entry, where conditions(constraint, 0) and
decision(constraint, 0) are both True.

Table 1: MC/DC Truth Table for resource-id=Liquor v
resource-id= Medicine

Basic Conditions Decision Covered

resource-id resource-id resource-id=Liquor v

=Liquor = Medicine resource-id= Medicine
TRUE FALSE TRUE FALSE
FALSE TRUE TRUE FALSE
FALSE FALSE FALSE FALSE
ERROR FALSE

When dealing with a decision expression for test generation
purposes, we check each entry of its MC/DC truth table. If an
entry is already covered by the existing tests, no new test is
needed for the entry. If it is not covered by any existing test and
the truth value of the decision expression is TRUE, the conditions
in this entry will be carried to the next decision expression (e.g., if
the current expression is rule target, the next is rule condition). If
it is not covered by any existing test and the truth value of the
decision expression is FALSE or ERROR, a new test will be
generated according to the entry’s conditions together with all
the constraints for reaching this decision expression.

Algorithm 4 below describes how to generate MC/DC tests
for a policy set. Lines 2-7 initialize MC/DC truth tables. Then we
deal with four levels of MC/DC truth tables for pst (policy set
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target), pti (policy target of each policy), rtj(rule target of each
rule), and r¢ (for rule condition of each rule). pti is reachable
only when pst is true (line 13). rt; is reachable only when pst and
pti are true (line 23). rcj is reachable when if pst, pti, and rtj are
true (line 32). Therefore, at each level, we explore the next level
only when the decision of the current entry is true. If the
decision of current entry is false and it is not yet covered, we use
Z3-str to generate a request: lines 9-10 for pst, lines 16-18 for pt;,
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lines 26-28 for rtj, line 35 for rc;. If the decision of the current
entry is error and is not yet covered, we generate an error
request (lines 11-12 for pst, lines 19-21 for pt;, lines 29-21 for rt;,
line 37 for rc). After a request is generated, we update the
coverage information in all MC/DC truth tables. Note that
generation of a normal or error request also involves policy
reachability constraint (Algorithm 2) and/or rule reachability
constraint (Algorithm 3).

Algorithm 4. generateTestsForMC/DC(PS)
Function: Generate tests for MC/DC

Input: Policy set PS= < pst, pca, [P1, Pa,..., Pm]>
Output: A set of access requests Q

Steps:
1 Q« U
2 create MC/DC truth table for pst
3 for each policy Pi = <pti, rcai, [Ri1, Rz,..., Ru]> in PS, do
4 create MC/DC truth table for pti
5 for each rule Rj =('rt;, rcj, rej) in Pi do
6 create MC/DC truth table for rt;
7 create MC/DC truth table for rc;
8 for each entry u of pst’s truth table
9 if decision(pst, u) = FALSE
10 Q <« QU{Z3-request(conditions(pst, u))}
11 else if decision(pst, u) = ERROR
2 Q <« QuU{error-request(_, pst)}
13 else if decision(pst, u) = TRUE
14 for each Pi = <pt;, rcai, [Ri1, Rz,..., Rn]>, do
15 for each entry v of pti’s truth table
16 if decision(pti, v)=FALSE & covered(pti, v)=FALSE
17 q < Z3-request(conditions(pst, u) A policyReachability(PS,Pi) A conditions(pti, v))
18 add g to Q and update truth tables
19 else if decision(pti, v)=ERROR & covered(pti, v)=FALSE
20 q <—error-request(conditions(pst, u) A policyReachability(PS,Pi), pti)
21 add g to Q and update truth tables
23 else if decision(pti, v) = TRUE
24 for each rule R; =<rt, r¢j, rej>, do
25 for each entry w of rt’s truth table, do
26 if decision(rtj,w)=FALSE & covered(rtjw)=FALSE
27 q < Z3-request(conditions(pst, u) A policyReachability(PS,Pi)»
ruleReachability(Pi, Ri) conditions(pti, v)A conditions(rtj, w))
28 add q to Q and update truth tables
29 if decision(rtj,w)=ERROR & covered(rtjw)=FALSE
30 q <—error-request(conditions(pst, u) A policyReachability(PS,Pi) A
ruleReachability(P, R;) A conditions(pti, v), pti)
31 add g to Q and update truth tables
32 else if decision(rtj, w)=TRUE
33 for each entry z of rc¢/’s truth table such that covered(rcj, z)=FALSE, do
34 if decision(rcj,z)!=ERROR
35 q<—Z3-request(conditions(pst,u)r policyReachability(PS,Pi) A
ruleReachability(Pi, Rj) A conditions(pti, v) A conditions(rtj, w) A conditions(rcj, z))
36 else // decision(rcj, z) = ERROR
37 g<—error-request(conditions(pst,u) policyReachability(PS;,P) »
ruleReachability(Pi, Rj)Aconditions(pti,v)A conditions(rtj,w), rcj)
38 add g to Q and update tables

The test generation algorithm for decision coverage is a
special case of Algorithm 4. Specifically, the MC/DC truth table in
Algorithm 4 is replaced with the decision table. Consider resource-
id=Liquor v resource-id= Medicine whose MC/DC table is shown

in Table 1. Its decision table has two columns as in Table 1:
Decision and Covered. It has only one decision entry for TRUE,
FALSE, and ERROR.
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5 EMPIRICAL STUDIES

We have implemented our approach in a Balana-based tool. It
has facilitated conducting empirical studies for evaluating
scalability and cost-effectiveness of the coverage-based test
generation methods. This section presents experiment setup and
results and discusses threats to validity.

5.1 Experiment Setup

Our experiments use a total of seven cases studies (nine
XACML3.0 policies) with different levels of complexity. As
shown in Table 2, the number of rules ranges from a dozen to
1,280. Kmarket is the demonstration application of Balana with
three individual policies and a total of 12 rules. All other policies
are from the literature.

Table 2: Subject Policies

# Policy #Rules #A’(I;t;;r)l s # A/;K/It;)nts
1 Kmarket [15] 12 38 67

2 fedora? 12 94 58

3 conf[21] 15 107 64

4 itrust? 64 515 259

5 itrust5 [5] 320 2,563 1,283

6 itrust10 [5] 640 5,123 2,563

7 itrust20 [5] 1,280 10,243 5,123

Our approach to the evaluation of testing effectiveness is
mutation analysis of subject policies. Mutation analysis is a
widely applied technique for evaluating testing methods. The
main hypotheses underlying mutation analysis [22] are: (a) the
mutants are based on actual fault models and are representative
of real faults, (b) developers produce programs (policies) that are
close to being correct, (c) tests sufficient to detect simple faults
(i.e., in mutants) are also capable of detecting complex faults.
Recent experiments have confirmed that mutants are indeed
similar to real faults for the purpose of evaluating testing
techniques [23]. As discussed below, these hypothesis are valid
for mutation analysis of XACML policies in this paper.

We generated mutants of each policy by using all the
mutation operators in Table 3. Each mutant is a variant of the
given policy with one fault injected by a mutation operator. The
mutants generated by the mutation operators in Table 3
represent a great variety of faults in XACML policies. Each
mutation operator may generate a number of mutants for a
given policy. For example, given a policy with n rules, CRE
(Change Rule Effect) creates n mutants because it creates a
mutant by changing the effect of each rule. We use M14 and M8
to denote the set of all 14 mutation operators and the set of the
first 8 mutation operators, respectively. M8 represents the set of
mutation operators commonly used by the majority of the
existing work on XACML policy testing. It is equivalent to the 11
mutation operators in [14] because the mutation operators in

2 http://www.fedora.info
3 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start

1
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Table 3 are more coarse-grained. For instance, CRC (Change
applies to both
combining algorithm and policy combining algorithm. It

Rule/Policy Combining Algorithm. rule
represents two traditional mutation operators in [14]. M14 is
based on the mutation operators in the XACML 2.0 mutant
generator, XACMUT [24]. It does not include ANR (Add New
Rule), RUF (RemoveUnique-nessFunction), AUF (AddUniqueness
Function), CNOF (Change-N-OF-Function), and CLF (Change
LogicalFunction). This paper evaluates the fault detection
capabilities of the coverage-based test generation methods with
both M14 and MS8. Table 3 includes the numbers of non-
equivalent mutants of each policy created by M14 and M8,
respectively. It excludes those mutants that are equivalent to
their original policy. As proven in [25], for example, the rule
combining algorithms Permit-overrides and Deny-overrides
make no difference with respect to a policy with permit-only (or
deny-only) rules.

Table 3: Mutation Operators of XACML Policies

Mutation Operator

# Fault Type Name Mutation
1 Incorrect policy =~ PTT* set Policy/set Target True
2 /policy set target PTF  set Policy/set Target False
3 Incorrect rule/ .
policy combining CRC g}c:frigiflilﬂnggiﬁm
algorithm &g
4 Incorrect rule CRE Change Rule Effect
effect
5 Incorrect rule RTT  set Rule Target True
6 target RTF  set Rule Target False
7 Incorrect rule RCT  set Rule Condition True
8 condition RCF  set Rule Condition False
9 ANF  Add Not Function in condition
10 RNF Rem(.)\{e Not Function in
condition
11 Incorrect rule FPR  First Permit Rules
12 ordering FDR  First Deny Rules
13 Missing rule RER  REmove a Rule
14 Missing target RPTE Remove Parallel Target

element Element

Our experiments use the same protocol for each subject
policy. First, we generate a test suite by each of the coverage-
based test generation method. Second, we run each test suite
against the given policy and record the actual response of each
test. It will be used as the oracle value of this test when the
policy mutants are tested. Third, we generate mutants of the
policy using all the mutation operators in Table 3. Fourth, we
run the test suite of each test generation method against each
mutant. Since mutants represent the faults that likely occur in
XACML policies, mutation score is considered the main indicator
of the fault-detection capability.

5.2 Results

We present the experiment results from three perspectives: time
performance of test generation, fault detection capability (i.e.,
effectiveness), and cost-effectiveness.
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5.2.1
number of tests generated by each test generation method for

Time performance of test generation. Table 4 shows the

each subject policy. Typically, the test suite for decision
coverage has more tests than that for rule coverage, whereas the
MC/DC test suite may have many more tests than those of rule
coverage and decision coverage. It depends on the complexity of
policy/rule targets and rule conditions. For itrustX, pair coverage
and permit/deny pair coverage are not applicable because the
rules are all mutually exclusive.

Table 4: Number of Generated Tests

. NE-DC MC/ NE- PC PD-

Subject RC DC DC MC/DC PC
Kmarket 12 32 19 33 20 15 9
fedora 12 27 18 33 24 25 13
Conf 15 18 16 27 25 14 14
itrust 64 66 65 197 196 N/A N/A
itrust5 320 322 321 983 982 N/A N/A
itrust10 640 642 641 1,965 1,964 N/A N/A
itrust20 1,280 1,282 1,281 3,929 3,928 N/A N/A

10000
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Figure 3: Test generation time.

Given a policy, the test generation time of a testing method is
related to the total number of tests generated, which depends on
the number and complexity of rules in the policy. Figure 3 shows
the test generation time of each testing method with respect to
the number of rules in all subject policies. The test generation
was performed on a 64bit Ubuntu laptop (Inter Core i5-2410
@2.3 GHz, 3.8GB memory). Using a series of policies with
similar rule structures (i.e., itrust, itrust5, itrust10, and itrust20)
provides a good measurement of the scalability of test
generation. Because MC/DC entails a much larger test suite than
decision coverage and rule coverage, it also consumes more time
for test generation. Nevertheless, the test generation time of
each method is approximately linear to the number of rules. It is
satisfactory even for the largest policy (i.e., itust20 with 1,280
rules). From the time performance perspective, all the test
generation methods are applicable to large policies.

5.2.2  Fault detection capabilities. Table 5 shows the mutation
scores of the coverage-based testing methods with respect to all
subject policies. The mutation scores range from 50% to 63.6% for
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the rule coverage tests, from 62.5% to 96.6% for the decision
coverage tests, and from 97.01% to 100% for the MC/DC tests,
58.2% to 70.3% for all rule pairs tests, and 43.1% to 70.3% for all
PD-pairs tests. The results demonstrate that the rule coverage
tests are far from adequate for high assurance of XACML
policies because they cannot reveal many faults, and that the
MC/DC tests are the most capable and provide high assurance of
XACML policies. Further analysis of the mutant-killing results
indicates that the rule coverage tests did not kill any of the
mutants created by PTT, RTT, RCT or RPTE, and some of the
mutants created CRC, FPR, and FDR. The decision coverage tests
did not kill all of the mutants created by RTT, FPR, FDR, and
RPTE. The MC/DC tests did not kill all of the mutants created
RTT, FPR and FDR. Different from the rule coverage and
decision coverage tests, they killed all RPTE mutants. The error
tests for MC/DC and decision coverage killed some CRC and
RPTE mutants.

Table 5: Mutation Scores (%) with M14

. NE- MC/DC NE-MC PC
Subject RC DC DC DC PD-PC
Kmarket 63.6 96.6 89.8 97.7 90.9 63.6 63.6
fedora 56.4 94.7 904 979 97.9 56.4 479
conf 55.1 869 72 100 98.1 55.1 55.1
itrust 499 629 62.7 100 100 N/A N/A
itrust5 50 62.6 625 100 100 N/A N/A
itrust10 50 62.5 62.5 100 100 N/A N/A
itrust20 50 62.5 62.5 100 100 N/A  N/A
Average 50.1 63.0 62.9 99.98 99.94 57.9 54.9
Table 6: Mutation Scores (%) with M8
. NE- MC/ NE- PC PD-
Subject  RC  DC "n 1o mempe PC
Kmarket 58.2 97.01 88.1 97.01 88.1 58.2 58.2
fedora 56.9 100 100 100 100 56.9 43.1
conf 70.3 100 96.9 100 96.9 70.3 703
itrust 74.5 100 100 100 100 N/A N/A
itrust5 74.9 100 100 100 100 N/A N/A
itrust10 75 100 100 100 100 N/A N/A
itrust20 75 100 100 100 100 N/A N/A
Average 74.68 99.98 99.89 99.98 99.89 61.9 57.7

Table 6 shows the mutation scores using M8. The mutation
scores of the rule coverage tests are similar to those in Table 5.
However, the decision coverage tests and the MC/DC tests have
the same high mutation scores. The decision coverage tests are
highly capable of killing M8 mutants, i.e., detecting the types of
faults represented by all mutation operators in M8. Both the
decision coverage tests and the MC/DC tests have higher
mutation scores. For the three policies (i.e., fedora, conference,
itrust) that are commonly used by the related work and this
paper, the decision coverage tests and the MC/DC tests have
killed all the mutants. They have outperformed the existing
testing methods as described in the related work section.
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Table 7: MKPT scores

. NE- MC/ NE- PC
Subject RC DC DC  DC MC/DC PD- PC
Kmarket 4.67 2.66 4.16 2.61 4.00 3.73 6.22
Fedora 4.42 330 472 279 383 212 3.46
Conf 3.93 5.17 481 396 420 4.21 4.21
itrust 4.02 491 497 261 263 N/A N/A
itrust5 4.00 498 499 261 261 N/A N/A
itrustl0  4.00 499 5.00 2.61 261 N/A N/A
itrust20  4.00 5.00 5.00 2.61 2.61 N/A N/A
Average 4.01 4.94 499 261 2.62 3.11 4.44

—Hmutan

s killed per test
Figure 4: Cost-effectiveness of testing methods.

5.2.3 Cost-effectiveness. While mutation score is a good
indicator of the fault detection capability of a testing method, it
does not account for the testing cost. Ideally, we expect to find
all potential faults in a given policy so as to achieve high
assurance. In practice, this may be infeasible due to limited
resources available (e.g., time and budget). Thus we need to take
testing cost into consideration. Here we use the total number of
tests created by a testing method as the main cost factor of
testing because it often reflects the total test generation time and
test execution time. We consider the average number of Mutants
Killed Per Test (MKPT) as the indicator of cost-effectiveness.
Table 7 shows MKPT scores for all coverage-based test
generation methods. Figure 4 compares MKPT scores with
mutation scores. While MC/DC is the most capable testing
method in terms of mutation scores, it is not the most cost-
effective. Although rule coverage is the least capable, it is more
cost-effective than MC/DC. Among all the testing methods,
decision coverage is the most cost-effective. The analysis of cost-
effectiveness leads to the following observations: (1) when
testing resources (e.g., time and budget) are very limited in the
evolving process of policy development and validation, decision
coverage (or even rule coverage) is a better choice than MC/DC.
The tests for decision coverage (or rule coverage) should be
performed first. (2) As the testing process progresses, it gets
more and more expensive to find additional faults because more
and more tests need to be created and executed. Nevertheless,
before an XACML policy is deployed, a MC/DC-like test suite is
high desirable to ensure correct enforcement of access control.
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6 RELATED WORK

Martin et al. [13] defined several coverage measurements for
XACML1.0/2.0 policies, such as policy hit percentage, rule hit
percentage, and condition hit percentage. They used coverage
information to reduce test suites produced by existing test
generation methods. In comparison, this paper presents test
criteria and methods for generating tests to satisfy the criteria.
Decision coverage and MC/DC consider error tests for targets
and conditions.

Cirg [11] generates access requests from counterexamples
produced by Margrave [21] through the change-impact analysis
of two synthesized versions. The difference of the two versions
of a policy targets a test coverage goal, such as rule coverage or
condition coverage. Because request generation from change-
impact analysis may result in a large number of requests, Cirg
reduces the number of tests by selecting tests based on policy
structural coverage. The mutation scores of the testing methods
in Cirg ranged from 30% to 60% in the case studies (except 100%
for a trivial policy). Targen [12] derives access requests to satisfy
all the possible combinations of truth values of the attribute id-
value pairs found in a given policy. The mutation scores of
Targen ranged from 75% to 79% for different case studies [7].

Access requests generated by Cirg and Targen typically use a
limited number of subject, resource, action, and environment
attributes. Generally, a request could use any combination of at-
tributes. Because XACML requests are encoded in XML, they
must be conforming to a specific XML Schema called the Context
Schema. Bertolino et al., have developed the X-CREATE frame-
work with multiple test generation algorithms by considering
the structures of the Context Schema [9]. These algorithms can
generate requests that use more than one subject, resource,
action, or environment attribute. The mutation scores of the
testing methods in X-CREATE ranged from 75% to 96% for
several small policies. Bertolino et al., have also developed other
test selection strategies, such as Simple Combinatorial and
Incremental XPT [7]. The mutation scores ranged from 3% to
100%, whereas the mutation scores of the Incremental XPT
strategy ranged from 55% to 100%. Bertolino et al., [8] proposed
an approach to select tests from a given large test suite based on
the rule coverage criterion. It selects tests to match each rule
target set, which is the union of the target of the rule and all
enclosing policy and policy sets targets. The mutation scores of
this approach ranged from 62% to 98%. Our paper proposes
several additional criteria. Our empirical studies show that
decision coverage and MC/DC are more capable. Li et al., [10]
have developed XPTester, which used a symbolic execution
technique to generate requests from XACML policies. They con-
vert the policy under test into semantically equivalent C Code
Representation (CCR) and symbolically execute CCR to create
test inputs and translate the test inputs to access requests. This
approach has the same fault detection capability as the
Preliminary XPT algorithm in the X-CREATE framework, but it
produces smaller test suites. The mutation scores of XPTester
ranged from 37% to 93% in the case studies.
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This paper is different from the above work on test
generation from XACML policies [6]-[14]. First, this paper
targets XACML 3.0, whereas the above work all deals with
earlier versions of XACML (i.e., 2.0 or 1.0). Second, this paper
aims at stronger coverage criteria, i.e., decision coverage and
MC/DC, whereas the existing work is only concerned with rule
coverage. As discussed before, a test suite for rule coverage can
be very weak at fault detection. In addition to mutation scores,
this paper also provides an analysis of cost-effectiveness using
average number of mutants killed per test.

Safarzadeh et al. have proposed a model-based approach for
testing the implementation of access control in a system, where
system functional model and access control policy are specified
by extended finite state machines and XACML, respectively.
This approach derives conditions from rules in the policy and
the functionality and applies MC/DC to the conditions for test
generation. Our approach does not rely on functional models.

7 CONCLUSIONS

We have described the test coverage criteria for XACML3.0
policies and efficient methods for generating tests to satisfy each
of the coverage criteria. We have also presented the empirical
studies for evaluating the scalability, fault detection capabilities,
and cost-effectiveness of the coverage-based test generation
methods. The results show that the coverage-based tests,
especially MC/DC tests, can achieve high assurance of access
control enforcement.

The empirical studies also indicate that some mutants may
not be killed by a given coverage-based test suite. It is highly
desirable to conduct a theoretical analysis on why they are not
killed. One approach is to formalize the fault detection
conditions of these mutants which must be satisfied by the tests
in order to kill them. It is also interesting to investigate whether
the coverage-based test suites can be reduced while maintaining
the same level of fault detection capability. Our future work will
also exploit the proposed coverage criteria to select tests from
large test suites generated by other testing methods. For
example, combinational test generation for XACML policies may
produce a large number of tests. Not all of them make
contributions to the fault detection. The coverage criteria can be
used to select tests in order to improve cost-effectiveness.
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