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ABSTRACT 
While1 the standard language XACML is very expressive for 
specifying fine-grained access control policies, defects can get 
into XACML policies for various reasons, such as 
misunderstanding of access control requirements, omissions, and 
coding errors. These defects may result in unauthorized accesses, 
escalation of privileges, and denial of service. Therefore, quality 
assurance of XACML policies for real-world information systems 
has become an important issue. To address this issue, this paper 
presents a family of coverage criteria for XACML policies, such 
as rule coverage, rule pair coverage, decision coverage, and 
Modified Condition/Decision Coverage (MC/DC). To 
demonstrate the assurance levels of these coverage criteria, we 
have developed methods for automatically generating tests, i.e., 
access requests, to satisfy the coverage criteria using a constraint 
solver. We have evaluated these methods through mutation 
analysis of various policies with different levels of complexity. 
The experiment results have shown that the rule coverage is far 
from adequate for revealing the majority of defects in XACML 
policies, and that both MC/DC and decision coverage tests have 
outperformed the existing methods for testing XACML policies. 
In particular, MC/DC tests achieve a very high level of quality 
assurance of XACML policies. 
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1 INTRODUCTION 
XACML (eXtensible Access Control Markup Language) [1] is an 
OASIS standard for specifying attribute-based access control 
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(ABAC) policies in the XML format. ABAC [2] is a new access 
control method where authorization elements are defined in 
terms of attributes, rather than identities, of subjects, actions, 
resources, and environments. These attributes are characteristics 
of subjects (e.g., job title and age), actions, resources (e.g., data, 
programs, and networks), and environments (e.g., current time 
and IP address) that are predefined and pre-assigned by an 
authority [3]. By combining various attributes into access 
control decisions, ABAC enables fine-grained access control of 
resources. ABAC also facilitates collaborative policy 
administration within a large enterprise or across multiple 
organizations [1]. The Federal Identity, Credential, and Access 
Management (FICAM) Roadmap and Implementation Plan v2.0 
[4] has called out ABAC as a recommended access control model 
for promoting information sharing between diverse and 
disparate organizations. The National Strategy for Information 
Sharing and Safeguarding included a Priority Objective that the 
federal government should extend and implement the FICAM 
Roadmap across federal networks in all security domains [3]. 
Currently XACML3.0 has been used in the mainstream identity 
management products, such as Oracle’s Identity Manager and 
WSO2’s Identity Server. 

XACML supports a variety of data types, functions, and 
combining algorithms for policy composition. While such 
expressiveness is highly desirable for representing real-world 
ABAC policies, it raises challenges for validating whether 
XACML policies indeed meet the access control requirements. 
When an ABAC policy is coded in XACML, defects can be 
introduced for various reasons, such as misunderstanding of the 
access control requirements, omissions, and coding errors [5]. 
These defects may result in unauthorized accesses, escalation of 
privileges, and denial of service. To reveal these defects, a major 
practice is to test the policy by feeding the policy together with 
test inputs to an XACML engine (or policy decision point) and 
check if the policy interpreted by the XACML engine produces 
correct responses. A test input is an access request that consists 
of attribute names, types, and values. In this paper, we assume 
that the implementation of the XACML engine conforms to the 
XACML3.0 standard. The response to an access request by a 
given policy is consistent with the standard. 

Several methods have been proposed to generate test inputs 
for XACML 1.0 or 2.0 policies [6]-[14]. These methods, however, 
have two problems. First, their experimental results have shown 
that they are incapable of detecting the majority of defects and 
produce a large number of tests. Second, the tests generated by 
these methods do not achieve adequate coverage of the XACML 
policy under test. For example, some of them [9] [10] do not 
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necessarily cover all reachable rules in the policy under test, 
while others [8][11] aim at selecting or generating test inputs to 
cover all rules. This paper will show that a test suite for rule 
coverage is far from adequate for quality assurance. Adequate 
test coverage is important because a defect in a policy element 
will not be revealed unless the policy element is exercised by 
some test. This paper demonstrates that coverage-based testing 
is very useful for quality assurance of XACML policies.  

The contributions of this paper are as follows: 
 We define a family of coverage criteria for XACML 3.0 

policies, including rule coverage, decision coverage, 
Modified Condition/Decision Coverage (MC/DC), rule 
pair coverage, and permit/deny rule pair coverage. 
These coverage criteria are defined over the essential 
access control constraints in XACML 3.0 policies, 
including policy set target, policy target, rule target, 
and rule condition. They can be used to measure the 
adequacy of tests for an XACML policy under 
development and determine whether or not more tests 
need to be created and performed in order to achieve 
an expected level of quality assurance. Even for a 
policy in operational use (i.e., its tests are actual access 
requests in an operational environment), the coverage 
criteria can indicate the confidence levels of policy 
quality. For example, when the actual accesses are 
already MC/DC-adequate and none of them have led to 
security violation, we are confident that the policy is 
highly assured, even though it has not been tested 
adequately before the deployment. 

 We have developed efficient methods for automatically 
generating tests to meet each of these coverage criteria 
using a constraint solver. They have been applied to a 
number of policies with different levels of complexity 
and demonstrated satisfactory time performance. 

 We have conducted empirical studies to evaluate the 
cost-effectiveness of the coverage-based tests through 
comprehensive mutation analysis of XACML policies. 
The defect detection capability is measured by 
mutation score, i.e., mutant-killing ratio between the 
total number of policy mutants killed by a test suite 
and the total number of non-equivalent policy mutants. 
A policy mutant is a variant of the original policy with 
an injected fault. The injected faults represent the 
typical defects that may occur in XACML policies. A 
mutant is said to be killed if there is at least one test 
that reports a failure. Our experiment results have 
shown that both the MC/DC tests and the decision 
coverage tests are much more effective than the 
existing testing methods for XACML policies. In 
particular, MC/DC-adequate tests can provide high 
assurance of XACML policies. 

The remainder of this paper is organized as follows. To make 
the paper self-contained, Section 2 briefly introduces XACML 3.0 
policies. Section 3 defines the test coverage criteria. Section 4 
describes the coverage-based test generation methods. Section 5 

presents the empirical studies. Section 6 reviews related work. 
Section 7 concludes this paper. 

2 ACCESS CONTROL POLICIES IN XACML3.0 
The main components of the XACML3.0 model are rule, policy, 
and policy set. As the most elementary unit of policy, a rule 
consists of a target, a condition, and an effect. The target is a 
logical expression that specifies the set of requests to which the 
rule is intended to apply. The condition is a Boolean expression 
that refine the applicability of the rule established by the target. 
A policy comprises a policy target, a rule-combining algorithm 
identifier, and a list of rules. A policy set consists of a policy set 
target, a policy-combining algorithm identifier, and a list of 
policies or policy sets. The target of a rule, policy, or policy set is 
a conjunctive sequence of AnyOf clauses. Each AnyOf clause is a 
disjunctive sequence of AllOf clauses, and each AllOf clause is a 
conjunctive sequence of match predicates. A match predicate 
compares attribute values in a request with the embedded 
attributes. Logical expressions for match predicates and rule 
conditions are usually defined on four categories of attributes: 
subject, resource, action, and environment. They can use a great 
variety of predefined functions and data types. 

We use the policy in Figure 1 as a running example. It is one 
of the sample policies in Balana, an open source implementation 
of XACML 3.0 [15]. For simplicity, some text is not omitted. The 
policy is named “KmarketBluePolicy” and the rule combining 
algorithm is deny-overrides (line 2). The policy’s target (lines 3-
14) means role=blue, where role is an attribute in the subject 
category and both role and blue are strings. There are three rules: 
deny-liquor-medicine (line 16-37), max-drink-amount (lines 38-
61), and permit-rule (line 62). 

The target of rule deny-liquor-medicine (lines 18-35) means 
resource-id=Liquor (line 19-26)  resource-id=Medicine (lines 27-
34), where resource-id is an attribute in the resource category. 
Because the rule’s condition is omitted, the rule will result in a 
“deny” decision if resource-id=Liquor  resource-id=Medicine. The 
target of rule max-drink-amount means resource-id=Drink, and 
the condition means amount10. Thus the rule results in a deny 
decision if resource-id=Drink  amount10. Rule permit-rule has 
neither target nor condition. It results in a permit decision 
whenever it is applied.  

To facilitate our discussion, we use policy set as a general 
structure of XACML specification. Formally, a policy set PS is a 
triple < pst, pca, [P1, P2,…, Pm]>, where pst is the policy set target, 
pca is the policy combining algorithm, and [P1, P2,…, Pm] is the 
list of policies in the policy set. <pst, pca, [P1, P2,…, Pm]> reduces 
to a policy when  pst and pca are omitted and m=1. Thus, the 
discussions in the subsequent sections apply to individual 
policies. Each policy Pi is a triple <pti, rcai, [R1, R2,…, Rn]> , where 
pti is the policy target, rcai is the rule combining algorithm, and 
[R1, …, Rn] is the list of rules in the policy. Each rule Rj is a triple 
< rtj, rcj, rej >, where rtj is the rule target, rcj is the rule condition, 
and rej ∈{Permit, Deny} is the rule effect. < rtj, rcj, Permit> is 
called a permit rule, whereas < rtj, rcj, Deny> is a deny rule. If 
both rtj and rc are omitted (always true), then the rule < _, _, rej > 
is a default rule. More specifically, < _, _, Deny> is a default deny 
rule, whereas < _, _, Permit> is a default permit rule.  

 
 

Session: Access Control and Authentication SACMAT’18, June 13-15, 2018, Indianapolis, IN, USA

4



 

 
1 <Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
2 PolicyId="KmarketBluePolicy" RuleCombiningAlgId= "…deny-

overrides" Version="1.0"> 
3 <Target> 
4     <AnyOf> 
5          <AllOf> 
6             <Match MatchId="…function:string-equal"> 
7              <AttributeValue 

DataType="…#string">blue</AttributeValue> 
8                <AttributeDesignator AttributeId="…role" 
9                Category="…subject-category:access-subject" 
10                DataType="…string" MustBePresent="true"/>
11             </Match> 
12          </AllOf> 
13    </AnyOf> 
14 </Target> 
15 … 
16 <Rule Effect="Deny" RuleId="deny-liquor-medicine">
17 <Target> 
18    <AnyOf> 
19       <AllOf> 
20           <Match MatchId="…function:string-equal"> 
21            <AttributeValue 

DataType="…string">Liquor</AttributeValue> 
22            <AttributeDesignator AttributeId="…:resource-id" 
23              Category="…attribute-category:resource"  
24              DataType="…string" MustBePresent="true"/>
25          </Match> 
26      </AllOf> 
27      <AllOf> 
28           <Match MatchId="…function:string-equal"> 
29       <AttributeValue 

DataType="…string">Medicine</AttributeValue> 
30            <AttributeDesignator AttributeId="…resource-id" 
31               Category="…attribute-category:resource"  
32               DataType="…string" MustBePresent="true"/>
33           </Match> 
34        </AllOf> 
35     </AnyOf> 
36    </Target> 
37 </Rule> 
38 <Rule Effect="Deny" RuleId="max-drink-amount">
39    <Target> 
40       <AnyOf> 
41          <AllOf> 
42             <Match MatchId="…function:string-equal"> 
43            <AttributeValue 

DataType="…string">Drink</AttributeValue> 
44                <AttributeDesignator AttributeId="…resource-id" 
45                Category="…attribute-category:resource"  
46                DataType="…string" MustBePresent="true"/>
47             </Match> 
48          </AllOf> 
49       </AnyOf> 
50    </Target> 
51    <Condition> 
52          <Apply FunctionId="…function:integer-greater-than">
53               <Apply FunctionId="…function:integer-one-and-only">
54                  <AttributeDesignator AttributeId="…amount" 
55                  Category="…category"  
56                  DataType="…#integer" MustBePresent="true"/>
57               </Apply> 
58               <AttributeValue 

DataType="…integer">10</AttributeValue> 
59          </Apply> 
60    </Condition> 
61 </Rule> 
62 <Rule RuleId="permit-rule" Effect="Permit"/>     
63 </Policy> 

Figure 1: A sample XACML policy. 

An access request consists of attribute names, types, and 
values. For an access request, a policy or policy set responds 
with an access decision, such as permit or deny. The semantics 
of a policy set PS= < pst, pca, [P1, P2,…, Pm]> can be informally 
described as follows: given an access request q, PS is evaluated to 
produce a response (i.e., access decision) to q, denoted as d(PS, q). 
Policy set target pst is first evaluated according to the attribute 
values in q. If the result of evaluation is false (or an error occurs 
during the evaluation), then d(PS, q)= Not-Applicable (or 
Indeterminate), otherwise policies P1, P2,…, and Pm will be 
evaluated. d(PS, q) depends on policy combining algorithm pca 
and the decisions of individual policies with respect to q 
(denoted as d(Pi, q)). Similarly, for an individual policy Pi = <pti, 
rcai, [R1, R2,…, Rn] >, policy target pti is evaluated according to 
the attribute values in q. If the evaluation result is false (or an 
error occurs during the evaluation), then d(Pi, q)= Not-Applicable 
(or Indeterminate), otherwise rules R1, R2,…, and Rn will be 
evaluated. d(Pi, q) depends on rule combining algorithm rca and 
the decisions of individual rules. Decision of rule Rj = < rtj, rcj, rej 
> with respect to q, denoted as d(Rj, q), is defined as follows:  

 Permit: access is granted when rej = Permit and rtj  rcj 
is true with respect to q. 

 Deny: access is denied when rej = Deny, and rtj  rcj is 
true with respect to q. 

 NotApplicable, or simply N/A: q is not applicable, i.e., rtj 
 rcj is false with respect to q.  

 IndeterminateD or simply I(D): An error occurred when 
rtj or rcj was evaluated and rej=Deny. The decision 
could have evaluated to Deny if no error had occurred.  

 IndeterminateP, or simply I(P): An error occurred when 
rtj or rcj was evaluated and rej=Permit. The decision 
could have evaluated to Permit if no error had 
occurred. 

For a default rule rj= < _, _, rej > and any access request q, 
d(rj, q) = rej. A syntactically valid access request may cause the 
occurrence of a runtime error for different reasons, such as 
missing an attribute value, mismatch of an attribute type, and an 
exception of expression and function evaluation. 

In XACML 3.0, there are 11 rule combining algorithms and 12 
policy combining algorithms (11 of them use the same names as 
respective rule combining algorithms). Four of them are for 
compatibility support of old versions - Legacy Ordered-deny-
overrides, Legacy Permit-overrides, Legacy Ordered-permit-
overrides, and Legacy Ordered-permit-overrides. In Balana [15], 
the implementations of Ordered-deny-overrides and Ordered-
permit-overrides are the same as Deny-overrides and Permit-
overrides. As such, our work focuses on five rule combining 
algorithms and six policy combining algorithms: Deny-overrides, 
Permit-overrides, Deny-unless-permit, Permit-unless-deny, First-
applicable, and Only-one-applicable. 

3  TEST COVERAGE CRITERIA FOR XACML  
A test case for a policy set or policy is an access request (i.e., test 
input) together with the correct response to the request by the 
policy set or policy under test (i.e., oracle value). Generally 
oracle values for given test inputs are determined by the access 
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control requirements. In an evolving policy development 
process, the actual responses of test inputs from earlier policy 
versions can be recorded and then used as the oracle values for 
testing the current or future versions if their correctness is 
confirmed. A test passes (or fails) if the actual response is the 
same as (or different from) the oracle value. Sometimes we 
simply refer to a test as an access request (i.e., the input part of 
the test). A test suite is a set of tests. In the following, we define 
a family of test coverage criteria for XACML policies. 

3.1 Rule Coverage (RC) 
Definition 1. A test suite TS for a policy set PS is said to 

satisfy Rule Coverage (RC) of PS if, for each rule Rj in each policy 
Pi of PS, there is as least one test q in TS that evaluates rule Rj to 
its specified effect rej i.e., d(Rj, q) = rej.  

A test q making Rj evaluate to its specified effect rej must 
satisfy the following three conditions:   
(1) Reachability of policy Pi: the test must reach policy Pi, 

otherwise no rule in Pi will be evaluated. This means that 
PS’s target evaluates to true and no policy before Pi 
terminates the evaluation of PS. For any policy Pk (0<k<i) 
before Pi, its evaluation will make Pi unreachable if:   

 d(Pk, q) = Deny when pca = Deny-overrides / Permit-
unless-deny, 

 d(Pk, q) = Permit when pca = Permit-overrides / Deny-
unless-permit, or 

 d(Pk, q)  N/A when pca = First-applicable. 
(2) Reachability of rule Ri: After Pi is reached, the test triggers 

the evaluation of rule Ri only if the policy target of Pi 
evaluates to true and no rule before Ri in Pi terminates the 
evaluation of Pi. For any rule Rs (0<s<j) before Rj, its 
evaluation will make Rs unreachable if:   

 d(Rs, q) = Deny when rcaj = Deny-overrides / Permit-
unless-deny, 

 d(Rs, q) = Permit when rcaj = Permit-overrides / Deny-
unless-permit, or 

 d(Rs, q)  N/A when rcaj = First-applicable. 
(3) Reachability of rule effect rej: the test makes evaluate to its 

specified effect only if rti   rci evaluates to true.  
For instance, a test that covers rule max-drink-amount in the 

running policy example must satisfy the following conditions:    
 Rule reachability: role=blue   (resource-id=Liquor  

resource-id=Medicine)   
 Effect reachability: resource-id=Drink  amount10 

3.2  Decision Coverage (DC) 
A policy set PS has different points of decision-making, such as 
policy set target, policy target, rule target, and rule condition. 
Each of these decision points can evaluate to true, false, or error. 
These different evaluation results lead to different access control 
decisions. It is desirable to test whether these decision points 
work correctly.  In the following, we refer to policy set target, 
policy target, rule target, and rule condition collectively as 
decision expressions.  

Definition 2. A test suite TS for a policy set PS is said to 
satisfy Decision Coverage (DC) of PS if TS covers all three 
decisions of each decision expression, i.e., 
(1) TS has three tests to make policy set target pst evaluate to 

true, false, and error, respectively,  
(2) For each policy Pi in policy set PS, TS has three tests to 

make policy Pi’s target pti evaluate to true, false, and error, 
respectively, and 

(3) For each rule Rj in each policy Pi of PS, TS has three tests 
to make rule target evaluate to true, false, and error, 
respectively.  

(4) For each rule Rj in each policy Pi of PS, TS has three tests 
to make rule condition evaluate to true, false, and error, 
respectively. 

In (1), if a test makes policy set target pst evaluate to true, 
then individual policies in PS will continue to be evaluated. If a 
test makes pst evaluate to false or error, then the evaluation of 
PS result in a decision of N/A or Indeterminate. A test that makes 
pst evaluate to error (called error test) refers to a valid access 
request that leads to the Indeterminate decision due to such 
semantic issues as missing attribute value and mismatch of 
attribute type. This is similar for policy targets, rule targets, and 
rule conditions. Section 3.5 will discuss why error tests are 
useful for detecting defects in XACML policies. As described 
before, the reachability condition of Pi is assumed in (2). The 
reachability condition of Rj is assumed in (3) and (4). (4) also 
implies that Rj’s target evaluates to true. “false” and “error” do 
not apply to omitted rule target in (3) or omitted rule condition 
in (4). Consider the running example, the full decision coverage 
of the policy target requires a test to cover the following 
situations: 

 role=blue 
  (role=blue), i.e., roleblue 
 an error occurs when the match predicate for role=blue 

(lines 6-11) is evaluated (e.g., if the access request 
contains no value for attribute role) 

The full decision coverage of the rule target of max-drink-
amount requires one test to cover the following constraints: 

 role=blue   (resource-id=Liquor  resource-id= 
Medicine)    resource-id=Drink 

 role=blue   (resource-id=Liquor  resource-id= 
Medicine)     (resource-id=Drink) 

 role=blue   (resource-id=Liquor  resource-id= 
Medicine)    an error occurs when resource-id=Drink is 
evaluated 

The full decision coverage of the rule condition of max-drink-
amount requires one test to cover the following constraints: 

 role=blue   (resource-id=Liquor  resource-id= 
Medicine)    resource-id=Drink  amount10 

 role=blue   (resource-id=Liquor  resource-id= 
Medicine)    resource-id=Drink   (amount10) 

 role=blue   (resource-id=Liquor  resource-id= 
Medicine)   resource-id=Drink   an error occurs when 
amount10 is evaluated (e.g., if the access request 
contains no value for attribute amount) 
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The full decision coverage of rule deny-liquor-medicine’ 
target, resource-id=Liquor  resource-id=Medicine, requires one 
test to meet each of the following constraints in addition to the 
rule’s reachability condition role=blue:  

 resource-id=Liquor  resource-id= Medicine 
 ( resource-id=Liquor  resource-id= Medicine) 
 an error occurs when rule max-drink-amount is 

evaluated  (e.g., if the access request contains no value 
for attribute resource-id). 

Definition 2 has considered the occurrence of errors when a 
policy (set) target, a rule target, or a rule condition is evaluated. 
A variation of decision coverage is non-error decision coverage 
(NE-DC), where error tests are not considered. 

3.3 Modified-Condition/Decision Coverage 
MC/DC originated from NASA’s RTCA/DO-178B document [16], 
which is “the primary means used by aviation software 
developers to obtain Federal Aviation Administration (FAA) 
approval of airborne computer software” [17]. DO-178B requires 
level-A software to achieve MC/DC of the software structure. 
Here a condition is a primitive Boolean valued expression that 
cannot be broken down into simpler Boolean expressions, 
whereas a decision is a Boolean-valued expression made up of 
conditions and logic operators (e.g., , , and ). Consider rule 
deny-liquor-medicine’s target as an example: resource-id=Liquor  
resource-id= Medicine is a decision. It is composed of two 
conditions resource-id=Liquor and resource-id= Medicine, and the 
logic operator . Note that, here the term “condition” is different 
from “condition” in XACML rules. In addition to condition 
coverage (i.e., make a decision true and false at least once), 
MC/DC requires that: (1) every condition in a decision has taken 
on all possible outcomes at least once, and (2) each condition has 
been shown to independently affect the decision’s outcome. For 
example, MC/DC of a conjunctive decision with n conditions 
(e.g., c1 … cn) requires n+1 tests: one test that evaluates all 
conditions to true and n tests that evaluate one condition to false 
and other conditions evaluate to true. MC/DC of a disjunctive 
decision with n conditions (e.g., c1…cn) requires n+1 tests: one 
test that evaluates all conditions to false and n tests that evaluate 
one condition to true and other conditions evaluate to false.  

In this paper, we apply MC/DC to each decision expression 
(i.e., policy set target, policy target, rule target, and rule 
condition) in XACML policies. We not only consider two truth 
values (i.e., true and false), but also error conditions. 

Definition 3. A test suite TS for a policy set PS is said to 
satisfy MC/DC of PS if TS satisfies MC/DC of each decision 
expression:     
(1) TS satisfies MC/DC of policy set target pst, and has a test 

to make pst evaluate to error,  
(2) For each policy Pi in PS, TS achieves MC/DC of policy Pi’s 

target pti, and has a test to make pti evaluate to error,  
(3) For each rule Rj in each policy Pi of PS, TS achieves MC/DC 

of Rj’s target and has a test to make Rj’s target evaluate to 
error.  

(4) For each rule Rj in each Pi of PS, TS achieves MC/DC of Rj’s 
condition and has a test to make Rj’s condition evaluate to 
error. 

The reachability condition of Pi is assumed in (2), and the 
reachability condition of Rj is assumed in (3) and (4). (4) also 
implies that rule Rj’s target evaluates to true. A variation of the 
above MC/DC is non-error MC/DC (NE-MC/DC), where error 
tests are not considered.  

Consider rule deny-liquor-medicine’s target: resource-
id=Liquor  resource-id= Medicine. Its MC/DC requires one test to 
meet each of the following constraints in addition to the rule’s 
reachability condition role=blue:  

 resource-id=Liquor   (resource-id= Medicine), i.e., 
resource-id=Liquor 

 (resource-id=Liquor)   resource-id= Medicine, i.e., 
resource-id= Medicine 

 (resource-id=Liquor)   (resource-id= Medicine), i.e., 
resource-idLiquor   resource-id Medicine 

 an error occurs when resource-id=Liquor  resource-id= 
Medicine is evaluated, e.g., if the access request 
contains no value for attribute resource-id.  

In this example, MC/DC requires one more test than decision 
coverage. Both of the first two tests make the expression true. 
Only one is needed to achieve the decision coverage. 

3.4 Rule Pair Coverage (PC)  
Policy combining algorithms and rule combining algorithms are 
meant to combining multiple conflicting decisions into a single 
access decision. Such conflicting decisions typically arise from 
different rules. Thus, testing may target the circumstances under 
which multiple rules evaluate to their specified effects.  

Definition 4. A test suite TS for a policy set PS is said to 
achieve rule Pair Coverage (PC) of PS if, for each pair of rules 
within each policy Pi (excluding default rules), TS has a test to 
make both rules evaluate to their specified effects if feasible. 

Because covering a pair of default rule and non-default rule 
would be the same as covering the non-default rule, Definition 4 
excludes pairing of default rules. When there are default rules, 
rule pair coverage focuses on pairs of non-default rules. Note 
that, it is not always feasible to make two rules evaluate to their 
specified effects. In fact, different rules may deal with mutually 
exclusive circumstances. Consider rules deny-liquor-medicine 
and max-drink-amount in the running example. No test can 
satisfy the targets of both rules: resource-id=Liquor  resource-
id=Medicine and resource-id=Drink. 

A variation of rule pair coverage is Permit/Deny Rule Pair 
Coverage (PD-PC), where each rule pair consists of a permit rule 
and a deny rule. Testing may target such heterogeneous rule 
pairs in that homogeneous rule pairs do not necessarily yield 
conflicting decisions.   

Definition 5. A test suite TS for a policy set PS is said to 
achieve Permit/Deny rule Pair Coverage (PD-PC) of PS if, for each 
pair of permit and deny rules within each policy Pi (excluding 
default rules), TS has a test to make both rules evaluate to their 
specified rule effects if feasible. 
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3.5 Relationships among Coverage Criteria 
The aforementioned test coverage criteria are closely related to 
each other. Figure 2 shows the “subsumes” relationships between 
the coverage criteria. MC/DC subsumes decision coverage (DC) 
in that a test suite that achieves MC/DC always achieves the 
decision coverage. Similarly, decision coverage (DC) subsumes 
rule coverage, and rule pair coverage (PC) subsumes permit/deny 
rule pair coverage (PD-PC). In addition, MC/DC subsumes non-
error (NE-) MC/DC, whereas decision coverage (DC) subsumes 
non-error decision coverage (NE-DC) because of the error tests. 
Error tests are syntactically valid access requests that make 
decision expressions (policy set target, policy target, and rule 
target/condition) evaluate to an Indeterminate decision. Since 
such an intermediate decision affects the next level decision of 
the containing policy element (policy set, policy, and rule), error 
tests are useful for detecting defects in XACML policies. 
Consider the following faulty policy with two deny rules (Rule1 
and Rule2) and a default permit rule (Rule3).  

<RuleCombiningAlgId = Deny-overrides > 
Rule 1: < name = “Tom”, gender = “Male”, deny> 
Rule 2: < name = “Lee”, class = “CS221”, deny> 
Rule 3: < ,  , deny> 

 

Figure 2: Relationships among test coverage criteria. 

Suppose the given rule combing algorithm Deny-overrides is 
incorrect and the correct one is Permit-unless-deny. A non-error 
test that makes the two deny rules evaluate to either 
NotApplicable or deny requires that the access request contain a 
valid value for each of the three attributes: name, gender, and 
class. A request that contains no valid value for one of the 
attributes is an error test that would lead to an error occurrence. 
For example {name = “Lee”, gender=”Male”} is an error test 
because it contains no value for attribute class. Rule 1 evaluates 
to NotApplicable, whereas Rule 2 evaluates to IndeterminateD. 
The decision of the faulty policy is IndeterminateD. As the 
correct combining algorithm is Permit-unless-deny, however, the 
correct decision is permit. Thus, the above error test can reveal 
the fault. A non-error test makes Rule 1 and Rule 2 evaluate to 
either NotApplicable or deny. If either Rule 1 or Rule 2 evaluate to 
deny, the faulty and correct policies result in the same decision 
of deny. If both Rule 1 and Rule 2 evaluate to NotApplicable, the 
faulty and correct policies also yield the same decision of permit. 
Thus, non-error tests cannot reveal the fault. It is worth pointing 

out that the tests in this paper (including the error tests) target 
faults in the policy under test, rather than error in the XACML 
implementations as studied by [18]. They can be useful for 
testing XACML implementations, though. None of the existing 
research on testing XACML policies has discussed the concept of 
error tests. Note that rule pair coverage (PC) does not necessarily 
subsume rule coverage (RC) although each test that covers a pair 
of rules also covers the individual rules in the pair. As discussed 
before, tests for a specific rule pair may not exist. 

3.6 Application of Coverage Criteria 
The test coverage criteria can be applied as follows:  

 Measuring test coverage adequacy of given tests. These 
tests may be produced by other testing methods when a 
policy is developed or represent actual access requests in 
a running system. As will be shown in Section 5, test 
suites of different coverage criteria have different levels 
of fault detection capabilities. Measurement of coverage 
adequacy of tests provides important guidelines for the 
development of access control tests. For instance, if 
MC/DC is required of a policy but the current tests are 
not yet adequate for MC/DC, then more tests need to be 
developed and executed. As test suites for rule coverage 
have a poor record in finding defects (refer to Section 5), 
a test suite that does not even achieve the rule coverage 
cannot assure the policy quality.  

 Generating access requests automatically to meet a 
certain coverage criterion. The proposed coverage criteria 
provide guidelines for automated test generation when 
validating XACML policies under development. As 
described in Section 4, we have developed methods for 
generating tests to satisfy the coverage criteria. They 
make it possible to empirically evaluate the levels of 
quality assurance implies by the coverage criteria. In 
practice, when the proposed test generation methods are 
applied to an XACML policy, the tester needs to define 
the oracle value (i.e., expected response) of each test 
input in order to determine if the test passes or fails.   

Because it is easy to implement the measurement of coverage 
criteria, this paper focuses on automated test generation for the 
coverage criteria and empirical evaluation of their effectiveness.  

4  COVERAGE-BASED TEST GENERATION 
The coverage-based test generators produce access requests from 
a given policy set or policy to satisfy a coverage criterion. They 
first collect the constraints on attributes according to the 
criterion as described in Section 3. Then they feed each 
constraint to the Z3-str constraint solver, and convert the result 
into an access request if the constraint is solved. Z3-str [19] is an 
extension to Z3 [20], an efficient SMT (Satisfiability Modulo 
Theories) Solver freely available from Microsoft Research. SMT 
generalizes boolean satisfiability (SAT) by adding equality 
reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, 
and other useful first-order theories. Z3-str treats strings as a 
primitive type with common string operations. 

MC/DC 

Decision 
Coverage 

(DC) 

Rule  
Coverage (RC) 

Rule Pair 
Coverage (PC) 

Permit/Deny Rule Pair 
Coverage (PD-PC) 

? 

Non-error 
(NE-) MC/DC 

Non-error  
Decision 

Coverage (NE-
DC) 

subsume

subsume subsume

subsume

subsume
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The test generator for rule coverage aims to generate a test to 
cover each rule. It first composes the constraint for each rule in 
each policy of the given policy set and then uses Z3-str to 
generate an access request for the constraint. The algorithms are 
given below. The constraint for covering a rule includes policy 
set target, policy reachability condition, policy target, rule 
reachability condition, rule target and rule condition. Obtaining 
the reachability condition of each policy within the policy set 
and obtaining the reachability condition of each rule within a 
policy are described separately in Algorithms 2 and 3. Policy 
reachability depends on the policy combining algorithm in the 
policy set and rule reachability depends on the rule combining 
algorithm in each policy. They are reflected by the conditional 
statements in Algorithms 2 and 3, respectively. 

 
Algorithm 1. generateTestsForRuleCoverage(PS) 
Function: Generate tests for rule coverage 
Input: Policy set PS= < pst, pca, [P1, P2,…, Pm]> 
Output: A set of access requests Q 
1 Q   
2 for each policy Pi = <pti, rcai, [R1, R2,…, Rn]> in PS, do 
3   constraint  pst 
4   constraint  constraint  policyReachability(PS, Pi) 
5   constraint  constraint  pti 
6   for each rule Rj =<rtj, rcj, rej> in Pi, do 
7          ruleConstraint  constraint  ruleReachability(Pi,Rj) 
8          ruleConstraint  ruleConstraint  (rtj  rcj) 
9          Q  Q∪ {Z3-request(ruleConstraint)} 

 
Algorithm 2. policyReachability(PS, Pi) 
Function: Generate policy reachability constraint 
Input: Policy set PS= < pst, pca, [P1, P2,…, Pm]> 
          Policy Pi = <pti, rcai, [R1, R2,…, Rn]> 
Output: constraint  
1 constraint  “” 
2 for k=1 to i-1, do 
3     if Pk’s target ptk is not empty 
4            constraint  constraint   (ptk) 
5    else  
6           if pca = Deny-overrides or Permit-unless-deny
7                 rules  all deny rules in Pk 
8          else if pca = Permit-overrides or Deny-unless-permit
9                 rules  all permit rules in Pk 
10          else if pca = First-applicable 
11                 rules  all rules in Pk 
12          for each rule Rs =<rts, rcs, res> in rules, do
13                 constraint  constraint   (rts  rcs)

 
Algorithm 3. ruleReachability(Pi, Rj) 
Function: Generate rule reachability constraint 
Input: Policy Pi = <pti, rcai, [R1, R2,…, Rn]>  
          Rule Rj =<rtj, rcj, rej> in Pi 
Output: constraint 
1 constraint  “” 
2 if rcai = Deny-overrides or Permit-unless-deny 
3          rules  all deny rules before Rj in Pi (s<j) 
4 else if rcai=Permit-overrides or Deny-unless-permit  
5          rules  all permit rules before Rj in Pi (s<j) 
6 else if rcai = First-applicable 

7          rules  all rules before Rj in Pi (s<j) 
8 for each rule Rs =<rts, rcs, res> in rules 
9                 constraint  constraint   (rts  rcs) 

 
To deal with MC/DC and decision coverage, we use a truth 

table to manage its coverage status for each decision expression 
(e.g., policy set target, policy target, rule target, and rule 
condition). Each entry consists of three parts: a truth value for 
each of the basic conditions that comprise the decision 
expression, truth value of the decision expression (TRUE, FALSE, 
or ERROR), and whether the entry is covered by some existing 
test (TRUE or FALSE). Table 1 shows a sample MC/DC truth 
table for decision expression resource-id=Liquor  resource-id= 
Medicine. The four entries are corresponding the four expected 
MC/DC tests discussed in Section 3.3. Entry 0 represents that 
resource-id=Liquor is True and resource-id= Medicine is False. In 
this case, the decision expression resource-id=Liquor  resource-
id= Medicine evaluates to True. “Covered” is False because no 
existing test has covered this entry. Entries 1-3 can represent 
tests for decision coverage. Let conditions (constraint, i) represent 
the conjunction of the basic conditions in the i-th entry. 
Consider entry 0 of Table 1. conditions (resource-id=Liquor  
resource-id= Medicine, 0) means (resource-id=Liquor)  
(resource-id=Medicine). Let decision(constraint, i) represent the 
decision in the i-th entry and covered(constraint, i) represent 
whether or not the i-th entry is covered by existing tests. For 
convenience, the truth table of an empty decision expression 
(e.g., policy set target, policy target, rule target, rule condition) 
has one entry, where conditions(constraint, 0) and 
decision(constraint, 0) are both True. 

Table 1: MC/DC Truth Table for resource-id=Liquor  
resource-id= Medicine 

Basic Conditions Decision Covered 
resource-id 
=Liquor 

resource-id 
= Medicine

resource-id=Liquor  
resource-id= Medicine

TRUE FALSE TRUE FALSE 
FALSE TRUE TRUE FALSE 
FALSE FALSE FALSE FALSE 
  ERROR FALSE 

 
When dealing with a decision expression for test generation 

purposes, we check each entry of its MC/DC truth table. If an 
entry is already covered by the existing tests, no new test is 
needed for the entry. If it is not covered by any existing test and 
the truth value of the decision expression is TRUE, the conditions 
in this entry will be carried to the next decision expression (e.g., if 
the current expression is rule target, the next is rule condition). If 
it is not covered by any existing test and the truth value of the 
decision expression is FALSE or ERROR, a new test will be 
generated according to the entry’s conditions together with all 
the constraints for reaching this decision expression.   

Algorithm 4 below describes how to generate MC/DC tests 
for a policy set. Lines 2-7 initialize MC/DC truth tables. Then we 
deal with four levels of MC/DC truth tables for pst (policy set 
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target), pti (policy target of each policy), rtj (rule target of each 
rule), and rcj (for rule condition of each rule). pti is reachable 
only when pst is true (line 13). rtj is reachable only when pst and 
pti are true (line 23). rcj is reachable when if pst, pti, and rtj are 
true (line 32). Therefore, at each level, we explore the next level 
only when the decision of the current entry is true. If the 
decision of current entry is false and it is not yet covered, we use 
Z3-str to generate a request: lines 9-10 for pst, lines 16-18 for pti, 

lines 26-28 for rtj, line 35 for rcj. If the decision of the current 
entry is error and is not yet covered, we generate an error 
request (lines 11-12 for pst, lines 19-21 for pti, lines 29-21 for rtj, 
line 37 for rcj). After a request is generated, we update the 
coverage information in all MC/DC truth tables. Note that 
generation of a normal or error request also involves policy 
reachability constraint (Algorithm 2) and/or rule reachability 
constraint (Algorithm 3). 

 
Algorithm 4. generateTestsForMC/DC(PS) 
Function: Generate tests for MC/DC  
Input: Policy set PS= < pst, pca, [P1, P2,…, Pm]> 
Output: A set of access requests Q 
Steps:  
1 Q   
2 create MC/DC truth table for pst   
3 for each policy Pi = <pti, rcai, [R1, R2,…, Rn]> in PS, do 
4     create MC/DC truth table for pti   
5     for each rule Rj =( rtj, rcj, rej) in Pi do 
6          create MC/DC truth table for rtj  
7          create MC/DC truth table for rcj 
8 for each entry u of pst’s truth table 
9     if decision(pst, u) = FALSE  
10          Q   Q∪ {Z3-request(conditions(pst, u))} 
11     else if decision(pst, u) = ERROR 
2          Q   Q∪ {error-request(_, pst)} 
13     else if decision(pst, u) = TRUE 
14         for each Pi = <pti, rcai, [R1, R2,…, Rn]>, do 
15            for each entry v of pti’s truth table 
16              if decision(pti, v)=FALSE & covered(pti, v)=FALSE 
17                       q   Z3-request(conditions(pst, u)   policyReachability(PS,Pi)  conditions(pti, v)) 
18                       add q to Q and update truth tables 
19              else if decision(pti, v)=ERROR & covered(pti, v)=FALSE 
20                       q error-request(conditions(pst, u)  policyReachability(PS,Pi), pti) 
21                       add q to Q and update truth tables 
23              else if decision(pti, v) = TRUE 
24                  for each rule Rj =<rtj, rcj, rej>, do 
25                     for each entry w of rtj’s truth table, do 
26                        if decision(rtj,w)=FALSE & covered(rtj,w)=FALSE 
27                               q   Z3-request(conditions(pst, u)  policyReachability(PS,Pi)  

                                      ruleReachability(Pi, Rj) conditions(pti, v) conditions(rtj, w)) 
28                               add q to Q and update truth tables 
29                        if decision(rtj,w)=ERROR & covered(rtj,w)=FALSE 
30                               q error-request(conditions(pst, u)   policyReachability(PS,Pi)  

                                       ruleReachability(Pi, Rj)  conditions(pti, v), pti) 
31                               add q to Q and update truth tables 
32                        else if decision(rtj,w)=TRUE 
33                               for each entry z of rcj’s truth table such that covered(rcj, z)=FALSE, do 
34                                  if decision(rcj,z)!=ERROR 
35                                           qZ3-request(conditions(pst,u)  policyReachability(PS,Pi)  

                                             ruleReachability(Pi, Rj)  conditions(pti, v)   conditions(rtj, w)   conditions(rcj, z)) 
36                                  else // decision(rcj, z) = ERROR  
37                                            qerror-request(conditions(pst,u) policyReachability(PSi,P)   

                                           ruleReachability(Pi, Rj)conditions(pti,v) conditions(rtj,w), rcj) 
38                                  add q to Q and update tables 

The test generation algorithm for decision coverage is a 
special case of Algorithm 4. Specifically, the MC/DC truth table in 
Algorithm 4 is replaced with the decision table. Consider resource-
id=Liquor  resource-id= Medicine whose MC/DC table is shown 

in Table 1. Its decision table has two columns as in Table 1: 
Decision and Covered. It has only one decision entry for TRUE, 
FALSE, and ERROR. 
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5  EMPIRICAL STUDIES 
We have implemented our approach in a Balana-based tool. It 
has facilitated conducting empirical studies for evaluating 
scalability and cost-effectiveness of the coverage-based test 
generation methods. This section presents experiment setup and 
results and discusses threats to validity. 

5.1 Experiment Setup 
Our experiments use a total of seven cases studies (nine 
XACML3.0 policies) with different levels of complexity. As 
shown in Table 2, the number of rules ranges from a dozen to 
1,280. Kmarket is the demonstration application of Balana with 
three individual policies and a total of 12 rules. All other policies 
are from the literature. 

Table 2: Subject Policies 

 
# Policy  #Rules 

#Mutants 
(M14) 

# Mutants 
(M8) 

1 Kmarket [15] 12 88 67 
2 fedora2 12 94 58 
3 conf [21]  15 107 64 
4 itrust3 64 515 259 
5 itrust5 [5]  320 2,563 1,283 
6 itrust10 [5]  640 5,123 2,563 
7 itrust20 [5]  1,280 10,243 5,123 

 
Our approach to the evaluation of testing effectiveness is 

mutation analysis of subject policies. Mutation analysis is a 
widely applied technique for evaluating testing methods. The 
main hypotheses underlying mutation analysis [22] are: (a) the 
mutants are based on actual fault models and are representative 
of real faults, (b) developers produce programs (policies) that are 
close to being correct, (c) tests sufficient to detect simple faults 
(i.e., in mutants) are also capable of detecting complex faults. 
Recent experiments have confirmed that mutants are indeed 
similar to real faults for the purpose of evaluating testing 
techniques [23]. As discussed below, these hypothesis are valid 
for mutation analysis of XACML policies in this paper. 

We generated mutants of each policy by using all the 
mutation operators in Table 3. Each mutant is a variant of the 
given policy with one fault injected by a mutation operator. The 
mutants generated by the mutation operators in Table 3 
represent a great variety of faults in XACML policies. Each 
mutation operator may generate a number of mutants for a 
given policy. For example, given a policy with n rules, CRE 
(Change Rule Effect) creates n mutants because it creates a 
mutant by changing the effect of each rule. We use M14 and M8 
to denote the set of all 14 mutation operators and the set of the 
first 8 mutation operators, respectively. M8 represents the set of 
mutation operators commonly used by the majority of the 
existing work on XACML policy testing. It is equivalent to the 11 
mutation operators in [14] because the mutation operators in 

                                                                 
2 http://www.fedora.info 
3 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start 

Table 3 are more coarse-grained. For instance, CRC (Change 
Rule/Policy Combining Algorithm. applies to both rule 
combining algorithm and policy combining algorithm. It 
represents two traditional mutation operators in [14]. M14 is 
based on the mutation operators in the XACML 2.0 mutant 
generator, XACMUT [24]. It does not include ANR (Add New 
Rule), RUF (RemoveUnique-nessFunction), AUF (AddUniqueness 
Function), CNOF (Change-N-OF-Function), and CLF (Change 
LogicalFunction). This paper evaluates the fault detection 
capabilities of the coverage-based test generation methods with 
both M14 and M8. Table 3 includes the numbers of non-
equivalent mutants of each policy created by M14 and M8, 
respectively. It excludes those mutants that are equivalent to 
their original policy. As proven in [25], for example, the rule 
combining algorithms Permit-overrides and Deny-overrides 
make no difference with respect to a policy with permit-only (or 
deny-only) rules.   

Table 3: Mutation Operators of XACML Policies 

 
# 

 
Fault Type 

Mutation Operator 
Name Mutation 

1 Incorrect policy 
/policy set target  

PTT* set Policy/set Target True 
2 PTF set Policy/set Target False 
3 Incorrect rule/ 

policy combining 
algorithm 

CRC Change Rule/Policy 
Combining algorithm 

4 Incorrect rule 
effect CRE Change Rule Effect 

5 Incorrect rule 
target 

RTT set Rule Target True 
6 RTF set Rule Target False 
7 Incorrect rule 

condition 
RCT set Rule Condition True 

8 RCF set Rule Condition False 
9 ANF Add Not Function in condition
10 

RNF 
Remove Not Function in 
condition 

11 Incorrect rule 
ordering 

FPR First Permit Rules 
12 FDR First Deny Rules 
13 Missing rule RER REmove a Rule 
14 Missing target 

element 
RPTE 

Remove Parallel Target 
Element 

 
Our experiments use the same protocol for each subject 

policy. First, we generate a test suite by each of the coverage-
based test generation method. Second, we run each test suite 
against the given policy and record the actual response of each 
test. It will be used as the oracle value of this test when the 
policy mutants are tested. Third, we generate mutants of the 
policy using all the mutation operators in Table 3. Fourth, we 
run the test suite of each test generation method against each 
mutant. Since mutants represent the faults that likely occur in 
XACML policies, mutation score is considered the main indicator 
of the fault-detection capability. 

5.2 Results 
We present the experiment results from three perspectives: time 
performance of test generation, fault detection capability (i.e., 
effectiveness), and cost-effectiveness. 
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5.2.1  Time performance of test generation. Table 4 shows the 
number of tests generated by each test generation method for 
each subject policy. Typically, the test suite for decision 
coverage has more tests than that for rule coverage, whereas the 
MC/DC test suite may have many more tests than those of rule 
coverage and decision coverage. It depends on the complexity of 
policy/rule targets and rule conditions. For itrustX, pair coverage 
and permit/deny pair coverage are not applicable because the 
rules are all mutually exclusive. 

Table 4: Number of Generated Tests 

Subject  RC DC 
NE-DC MC/

DC  
NE- 

MC/DC  
PC PD-

PC 
Kmarket 12 32 19 33 20 15 9 
fedora 12 27 18 33 24 25 13 
Conf 15 18 16 27 25 14 14 
itrust 64 66 65 197 196 N/A N/A 
itrust5 320 322 321 983 982 N/A N/A 
itrust10 640 642 641 1,965 1,964 N/A N/A 
itrust20 1,280 1,282 1,281 3,929 3,928 N/A N/A 

 

 

Figure 3: Test generation time. 

Given a policy, the test generation time of a testing method is 
related to the total number of tests generated, which depends on 
the number and complexity of rules in the policy. Figure 3 shows 
the test generation time of each testing method with respect to 
the number of rules in all subject policies. The test generation 
was performed on a 64bit Ubuntu laptop (Inter Core i5-2410 
@2.3 GHz, 3.8GB memory). Using a series of policies with 
similar rule structures (i.e., itrust, itrust5, itrust10, and itrust20) 
provides a good measurement of the scalability of test 
generation. Because MC/DC entails a much larger test suite than 
decision coverage and rule coverage, it also consumes more time 
for test generation. Nevertheless, the test generation time of 
each method is approximately linear to the number of rules. It is 
satisfactory even for the largest policy (i.e., itust20 with 1,280 
rules). From the time performance perspective, all the test 
generation methods are applicable to large policies. 

5.2.2  Fault detection capabilities. Table 5 shows the mutation 
scores of the coverage-based testing methods with respect to all 
subject policies. The mutation scores range from 50% to 63.6% for 

the rule coverage tests, from 62.5% to 96.6% for the decision 
coverage tests, and from 97.01% to 100% for the MC/DC tests, 
58.2% to 70.3% for all rule pairs tests, and 43.1% to 70.3% for all 
PD-pairs tests. The results demonstrate that the rule coverage 
tests are far from adequate for high assurance of XACML 
policies because they cannot reveal many faults, and that the 
MC/DC tests are the most capable and provide high assurance of 
XACML policies. Further analysis of the mutant-killing results 
indicates that the rule coverage tests did not kill any of the 
mutants created by PTT, RTT, RCT or RPTE, and some of the 
mutants created CRC, FPR, and FDR. The decision coverage tests 
did not kill all of the mutants created by RTT, FPR, FDR, and 
RPTE. The MC/DC tests did not kill all of the mutants created 
RTT, FPR and FDR. Different from the rule coverage and 
decision coverage tests, they killed all RPTE mutants. The error 
tests for MC/DC and decision coverage killed some CRC and 
RPTE mutants. 

Table 5: Mutation Scores (%) with M14 

Subject  RC DC 
NE-
DC  

MC/DC  NE-MC 
/DC  

PC 
PD-PC

Kmarket 63.6 96.6 89.8 97.7 90.9 63.6 63.6 
fedora 56.4 94.7 90.4 97.9 97.9 56.4 47.9 
conf 55.1 86.9 72 100 98.1 55.1 55.1 
itrust 49.9 62.9 62.7 100 100 N/A N/A 
itrust5 50 62.6 62.5 100 100 N/A N/A 
itrust10 50 62.5 62.5 100 100 N/A N/A 
itrust20 50 62.5 62.5 100 100 N/A N/A 
Average 50.1 63.0 62.9 99.98 99.94 57.9 54.9 

Table 6: Mutation Scores (%) with M8 

Subject  RC DC NE-
DC  

MC/
DC  

NE- 
MC/DC 

PC PD-
PC 

Kmarket 58.2 97.01 88.1 97.01 88.1 58.2 58.2 
fedora 56.9 100 100 100 100 56.9 43.1 
conf 70.3 100 96.9 100 96.9 70.3 70.3 
itrust 74.5 100 100 100 100 N/A N/A 
itrust5 74.9 100 100 100 100 N/A N/A 
itrust10 75 100 100 100 100 N/A N/A 
itrust20 75 100 100 100 100 N/A N/A 
Average 74.68 99.98 99.89 99.98 99.89 61.9 57.7 

 
Table 6 shows the mutation scores using M8. The mutation 

scores of the rule coverage tests are similar to those in Table 5. 
However, the decision coverage tests and the MC/DC tests have 
the same high mutation scores. The decision coverage tests are 
highly capable of killing M8 mutants, i.e., detecting the types of 
faults represented by all mutation operators in M8. Both the 
decision coverage tests and the MC/DC tests have higher 
mutation scores. For the three policies (i.e., fedora, conference, 
itrust) that are commonly used by the related work and this 
paper, the decision coverage tests and the MC/DC tests have 
killed all the mutants. They have outperformed the existing 
testing methods as described in the related work section. 
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Table 7: MKPT scores  

Subject  RC DC 
NE-
DC  

MC/
DC  

NE- 
MC/DC 

PC 
PD- PC 

Kmarket 4.67 2.66 4.16 2.61 4.00 3.73 6.22 
Fedora 4.42 3.30 4.72 2.79 3.83 2.12 3.46 
Conf 3.93 5.17 4.81 3.96 4.20 4.21 4.21 
itrust 4.02 4.91 4.97 2.61 2.63 N/A N/A 
itrust5 4.00 4.98 4.99 2.61 2.61 N/A N/A 
itrust10 4.00 4.99 5.00 2.61 2.61 N/A N/A 
itrust20 4.00 5.00 5.00 2.61 2.61 N/A N/A 
Average 4.01 4.94 4.99 2.61 2.62 3.11 4.44 

 

Figure 4: Cost-effectiveness of testing methods. 

5.2.3 Cost-effectiveness. While mutation score is a good 
indicator of the fault detection capability of a testing method, it 
does not account for the testing cost. Ideally, we expect to find 
all potential faults in a given policy so as to achieve high 
assurance. In practice, this may be infeasible due to limited 
resources available (e.g., time and budget). Thus we need to take 
testing cost into consideration. Here we use the total number of 
tests created by a testing method as the main cost factor of 
testing because it often reflects the total test generation time and 
test execution time. We consider the average number of Mutants 
Killed Per Test (MKPT) as the indicator of cost-effectiveness. 
Table 7 shows MKPT scores for all coverage-based test 
generation methods. Figure 4 compares MKPT scores with 
mutation scores. While MC/DC is the most capable testing 
method in terms of mutation scores, it is not the most cost-
effective. Although rule coverage is the least capable, it is more 
cost-effective than MC/DC. Among all the testing methods, 
decision coverage is the most cost-effective. The analysis of cost-
effectiveness leads to the following observations: (1) when 
testing resources (e.g., time and budget) are very limited in the 
evolving process of policy development and validation, decision 
coverage (or even rule coverage) is a better choice than MC/DC. 
The tests for decision coverage (or rule coverage) should be 
performed first. (2) As the testing process progresses, it gets 
more and more expensive to find additional faults because more 
and more tests need to be created and executed. Nevertheless, 
before an XACML policy is deployed, a MC/DC-like test suite is 
high desirable to ensure correct enforcement of access control. 

 
 

6  RELATED WORK 
Martin et al. [13] defined several coverage measurements for 
XACML1.0/2.0 policies, such as policy hit percentage, rule hit 
percentage, and condition hit percentage. They used coverage 
information to reduce test suites produced by existing test 
generation methods. In comparison, this paper presents test 
criteria and methods for generating tests to satisfy the criteria. 
Decision coverage and MC/DC consider error tests for targets 
and conditions.  

Cirg [11] generates access requests from counterexamples 
produced by Margrave [21] through the change-impact analysis 
of two synthesized versions. The difference of the two versions 
of a policy targets a test coverage goal, such as rule coverage or 
condition coverage. Because request generation from change-
impact analysis may result in a large number of requests, Cirg 
reduces the number of tests by selecting tests based on policy 
structural coverage. The mutation scores of the testing methods 
in Cirg ranged from 30% to 60% in the case studies (except 100% 
for a trivial policy). Targen [12] derives access requests to satisfy 
all the possible combinations of truth values of the attribute id-
value pairs found in a given policy. The mutation scores of 
Targen ranged from 75% to 79% for different case studies [7]. 

Access requests generated by Cirg and Targen typically use a 
limited number of subject, resource, action, and environment 
attributes. Generally, a request could use any combination of at-
tributes. Because XACML requests are encoded in XML, they 
must be conforming to a specific XML Schema called the Context 
Schema. Bertolino et al., have developed the X-CREATE frame-
work with multiple test generation algorithms by considering 
the structures of the Context Schema [9]. These algorithms can 
generate requests that use more than one subject, resource, 
action, or environment attribute. The mutation scores of the 
testing methods in X-CREATE ranged from 75% to 96% for 
several small policies. Bertolino et al., have also developed other 
test selection strategies, such as Simple Combinatorial and 
Incremental XPT [7]. The mutation scores ranged from 3% to 
100%, whereas the mutation scores of the Incremental XPT 
strategy ranged from 55% to 100%. Bertolino et al., [8] proposed 
an approach to select tests from a given large test suite based on 
the rule coverage criterion. It selects tests to match each rule 
target set, which is the union of the target of the rule and all 
enclosing policy and policy sets targets. The mutation scores of 
this approach ranged from 62% to 98%. Our paper proposes 
several additional criteria. Our empirical studies show that 
decision coverage and MC/DC are more capable. Li et al., [10] 
have developed XPTester, which used a symbolic execution 
technique to generate requests from XACML policies. They con-
vert the policy under test into semantically equivalent C Code 
Representation (CCR) and symbolically execute CCR to create 
test inputs and translate the test inputs to access requests. This 
approach has the same fault detection capability as the 
Preliminary XPT algorithm in the X-CREATE framework, but it 
produces smaller test suites. The mutation scores of XPTester 
ranged from 37% to 93% in the case studies.  
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This paper is different from the above work on test 
generation from XACML policies [6]-[14]. First, this paper 
targets XACML 3.0, whereas the above work all deals with 
earlier versions of XACML (i.e., 2.0 or 1.0). Second, this paper 
aims at stronger coverage criteria, i.e., decision coverage and 
MC/DC, whereas the existing work is only concerned with rule 
coverage. As discussed before, a test suite for rule coverage can 
be very weak at fault detection. In addition to mutation scores, 
this paper also provides an analysis of cost-effectiveness using 
average number of mutants killed per test.  

Safarzadeh et al. have proposed a model-based approach for 
testing the implementation of access control in a system, where 
system functional model and access control policy are specified 
by extended finite state machines and XACML, respectively. 
This approach derives conditions from rules in the policy and 
the functionality and applies MC/DC to the conditions for test 
generation. Our approach does not rely on functional models.  

7 CONCLUSIONS 
We have described the test coverage criteria for XACML3.0 
policies and efficient methods for generating tests to satisfy each 
of the coverage criteria. We have also presented the empirical 
studies for evaluating the scalability, fault detection capabilities, 
and cost-effectiveness of the coverage-based test generation 
methods. The results show that the coverage-based tests, 
especially MC/DC tests, can achieve high assurance of access 
control enforcement.  

The empirical studies also indicate that some mutants may 
not be killed by a given coverage-based test suite. It is highly 
desirable to conduct a theoretical analysis on why they are not 
killed. One approach is to formalize the fault detection 
conditions of these mutants which must be satisfied by the tests 
in order to kill them. It is also interesting to investigate whether 
the coverage-based test suites can be reduced while maintaining 
the same level of fault detection capability. Our future work will 
also exploit the proposed coverage criteria to select tests from 
large test suites generated by other testing methods. For 
example, combinational test generation for XACML policies may 
produce a large number of tests. Not all of them make 
contributions to the fault detection. The coverage criteria can be 
used to select tests in order to improve cost-effectiveness. 
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