1896

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

DiNNO: Distributed Neural Network Optimization
for Multi-Robot Collaborative Learning

Javier Yu", Joseph A. Vincent

Abstract—We present DiNNO, a distributed algorithm that en-
ables a group of robots to collaboratively optimize a deep neural
network model while communicating over a mesh network. Each
robot only has access to its own data and maintains its own version
of the neural network, but eventually learns a model that is as
good as if it had been trained on all the data centrally. No robot
sends raw data over the wireless network, preserving data privacy
and ensuring efficient use of wireless bandwidth. At each iteration,
each robot approximately optimizes an augmented Lagrangian
function, then communicates the resulting weights to its neighbors,
updates dual variables, and repeats. Eventually, all robots’ local
model weights reach a consensus. For convex objective functions,
this consensus is a global optimum. Unlike many existing methods
we test our algorithm on robotics-related, deep learning tasks with
nontrivial model architectures. We compare DiNNO to two bench-
mark distributed deep learning algorithms in (i) an MNIST image
classification task, (ii) a multi-robot implicit mapping task, and
(iii) a multi-robot reinforcement learning task. In these experiments
we show that DINNO performs well when faced with nonconvex
deep learning objectives, time-varying communication graphs, and
streaming data. In all experiments our method outperforms base-
lines, and was able to achieve validation loss equivalent to centrally
trained models. See msl.stanford.edu/projects/dist_nn_train for
videos and code.

Index Terms—Deep learning methods, distributed robot systems,
multi-robot systems.

I. INTRODUCTION

GROUP of collaborating robots has the ability to explore,
A interact with, and experience their environment as a col-
lective much faster than a single robot acting alone. This ability
to rapidly gather a large volume and variety of data makes
multi-robot systems especially well suited for tasks that involve
training deep neural networks using data gathered by the robots.
Inacloudrobotics scenario, one can imagine thousands of robots
networked over a cloud server, able to collectively gather and
process vast volumes of data for a common task (e.g. manip-
ulation, autonomous driving, or human behavior prediction).

Manuscript received September 9, 2021; accepted January 3, 2022. Date of
publication January 13, 2022; date of current version January 21, 2022. This
letter was recommended for publication by Associate Editor G. A. Sartoretti
and Editor M.-A. Hsieh upon evaluation of the reviewers’ comments. The work
of Javier Yu was supported by NSF Graduate Research Fellowship and the work
of Joseph A. Vincent was supported by Dwight D. Eisenhower Transportation
Fellowship. This work was supported in part by NASA ULI under Grant
80ONSSC20MO0163, and in part by NSF NRI under Grants 1925030 and 1830402.
(Corresponding author: Javier Yu.)

The authors are with the Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305 USA (e-mail: javieryu @stanford.edu;
josephav @stanford.edu; schwager@stanford.edu).

Digital Object Identifier 10.1109/LRA.2022.3142402

, and Mac Schwager

, Member, IEEE

In a mesh network scenario, one can similarly imagine a team
of robots collaborating to map an environment, learn a control
policy, or learn to visually recognize threats in the environment.
A central unsolved problem in collaborative robotics, therefore,
is how to train neural network models on the robots through
local communication such that each robot benefits from the data
collected by the entire multi-robot system.

To solve this problem, we propose Distributed Neural Net-
work Optimization (DiNNO), an algorithm built on the alternat-
ing direction method of multipliers (ADMM) [1]. We demon-
strate the effectiveness of DINNO on experiments which require
optimizing nonconvex deep learning loss functions which may
be subject to time-varying communication graphs and streaming
data. In addition, unlike similar approaches, DiNNO is shown
to match centralized performance on difficult, multi-robot deep
learning tasks while integrating easily with standard tools and
optimizers such as PyTorch [2] and Adam [3]. Using DiNNO,
robots alternate between local optimization of an objective func-
tion, and communication of intermediate model weights over the
wireless network. The robots eventually reach a consensus on
their model weights, with each robot learning a neural network
thatis as good as if it had been trained centrally with the data from
all robots, as illustrated graphically in Fig. 1. DINNO inherits
the strong convergence properties of ADMM—for convex ob-
jective functions we prove that all robots obtain globally optimal
parameters. However, neural network training is rarely convex.
Using standard deep learning tools within DINNO we retrieve
state-of-the-art deep learning performance, but in a distributed,
multi-robot implementation. Finally, DINNO operates by shar-
ing model weights over the communication network, not raw
data. Therefore, robots using DINNO preserve the privacy and
integrity of their own local data set. This is crucial in scenarios
where user data or observations of humans are involved, or when
robot manufacturers must preserve the privacy of their own data
sets.

A naive approach to solving the multi-robot deep learning
problem is to use a mesh network routing protocol to aggregate
the data gathered by all of the robots in the system to a single
“leader” robot which then optimizes a deep neural network
model, and sends a copy of that trained model back to all of
the other robots in the system. We refer to this approach as a
“centralized” solution, and it has a number of distinct drawbacks.
First, depending on the size of the gathered data, algebraic
connectivity of the communication graph, bandwidth of the
communication links, and efficiency of the routing protocol, it
can take a significant amount of time to aggregate the gathered

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5552-8780
https://orcid.org/0000-0002-2270-7395
https://orcid.org/0000-0002-7871-3663
msl.stanford.edu/projects/dist_nn_train
mailto:javieryu@stanford.edu
mailto:josephav@stanford.edu
mailto:schwager@stanford.edu

YU et al.: DISTRIBUTED NEURAL NETWORK OPTIMIZATION FOR MULTI-ROBOT COLLABORATIVE LEARNING

ATAN

. &
-~ PO Ko

AT g
$i%ic oy DiNNO
L]

Centralized 3% 7
Training VA

Fig.1. DiNNO allows robots to cooperatively optimize local copies of a neural
network model without explicitly sharing data. In this figure (representative of
Section V-B), three robots use DINNO to cooperatively optimize a building
occupancy map represented as a neural network. Each robot only sees part of
the building, collecting a local lidar data set (colored cylinders). The robots
communicate over a wireless network (dashed lines) to cooperatively optimize
their local neural network copies. The resulting model is as good as if it were
trained centrally with all data at once.

data at the leader node. A centralized approach is not robust to
failure of the leader node, and in some applications it may not
be possible to transmit data due to privacy considerations, for
instance, due to the European Union General Data Protection
Regulation article 46 [4]. DINNO overcomes all of these limita-
tions by enabling leaderless distributed neural network training
through local communication among the robots.

The paper is organized as follows. We give related work in
Section II and introduce the distributed collaborative learning
problem in Section III. In Section IV we derive DiNNO start-
ing from a well-known variant of ADMM called Consensus
ADMM. In Section V we present three example robotic deep
learning tasks that showcase our method.

II. RELATED WORK

Learning has been used to address a variety of problems
for multi-robot systems and is only increasing in popularity.
A deep learned controller is used to model multi-quadrotor
interactions in [5], and is shown to considerably outperform
traditional non-linear controllers. Reinforcement learning can
also be a useful tool in multi-robot contexts for real-time and
uncertainty aware collision avoidance [6] and communication
resilient collaborative learning [7]. The collective training meth-
ods in [8] and [9] demonstrate how experience aggregation from
multiple robots can speed up policy optimization. While not
deep learning, Gaussian processes are another popular learning
tool that has been used for various regression tasks with data
collected online by multi-robot systems [10]-[12]. These works
all showcase applicability of collaborative learning models for
multi-robot systems, but in general, aside from [11], [12], do
not provide a distributed framework from which to perform this
learning.

Research on distributed deep learning for robotics tasks in-
cludes [13], [14]. The authors of [13] apply distributed gra-
dient descent to multi-agent reinforcement learning (MARL)
problems, and largely focus on the theoretical implications of

1897

these distributed training algorithms when the learned functions
are linear. However, their experiments with nonlinear function
approximation are limited to small neural networks. In [14], a
novel federated learning framework is introduced which allows
for distributed learning. In this framework, a global model
is stored in shared-memory between all robots and updated
based on averaging locally learned models after training epochs
through a network flooding procedure.

The problem of training neural networks in a distributed way
using data aggregated from individual robots can be viewed as
a specific instantiation of a distributed optimization problem.
Distributed optimization is the study of algorithms for solving
optimization problems where a sum of individual objective
functions, which correspond in this case to the individual robots,
is optimized using local computation and message passing. This
formulation was first proposed in [15], and has been of renewed
interest since the seminal work [16] which presented distributed
subgradient descent for convex distributed optimization prob-
lems. Subsequent research has focused on improving conver-
gence rates [17] and extending the analysis to a broader range of
problems including time-varying communication graphs [18]
and streaming convex objectives [19]. An overview of the
broader distributed optimization literature is given in the surveys
of [20]-[22].

Some works in the distributed optimization literature address
general nonconvex distributed optimization objectives and even
consider simple distributed neural network training problems as
examples. In [23], the distributed subgradient descent algorithm
is extended to distributed stochastic gradient descent (DSGD),
and uses training of a CIFAR-10 classification model as a
benchmark problem. The Choco-SGD algorithm for distributed
deep learning [24] is another algorithm similar to DSGD with
the variations that it uses a gossip mechanism for consensus,
and incorporates a quantization step for reducing communica-
tion bandwidth. One approach to improving convergence rates
is to introduce an auxiliary variable that estimates the global
gradient. Several works make use of this mechanism, and extend
it to the domain of nonconvex optimization with stochastic
gradients [25]-[27]. We refer to these methods as distributed
stochastic gradient tracking (DSGT) methods.

Compared to DSGD and DiNNO, the gradient tracking meth-
ods of [25]-[27] communicate twice as many parameters at each
round (primal variable and gradient estimate). We believe a
distinct advantage of DINNO over [14], [23]-[27] is that DINNO
uses a primal-dual method to achieve consensus. The other ap-
proaches utilize parameter averaging to ensure consensus which,
as noted in [28], can lead slow convergence when robots have
different data distributions. Our primal-dual consensus approach
is more robust to differences in local data. In our experiments (V)
we compare against DSGD and DSGT and show that DINNO
outperforms both methods.

The edge consensus learning algorithm proposed in [28] is
similar to our approach in that it is derived from ADMM, but
instead of addressing the nonconvex primal update directly it
uses a linearization similar to that proposed in [29], which
results in a gradient descent like update. While still technically a
primal-dual method, the update equations do not include a local

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

1898

optimization procedure, and are more similar to primal domain
methods like DSGD and DSGT (see [29], Remark 1). A number
of other nonconvex distributed optimization methods are dis-
cussed in the survey [30]. Compared to DINNO, [28] allows for
asynchronous updates, but does not consider multi-robot deep
learning tasks and we believe DiNNO is simpler to implement.
Our proposed algorithm for distributed deep learning, DiINNO,
demonstrates superior performance compared to DSGD and
DSGT benchmarks on multi-robot deep learning tasks such as
neural implicit mapping and deep multi-agent reinforcement
learning.

III. PROBLEM FORMULATION

We consider deep learning problems where portions of a data
set, D, are collected by N robots that operate in a connected
communication graph G = (V,&). Let D; be the portion of
local data that belongs to robot 7 € VV where the union of all
the local data sets, D;, is the joint data set, D. In some cases D;
can represent access to a time-varying data set gathered from a
private data-stream (as in Section V-B).

The model we would like to optimize has the form y =
f(x; 0). Specifically we consider f to be a deep neural network
that implements a continuous function f(x) : R™ — R™ to give
a map from inputs x € R™ to outputs y € R™. The neural net-
work is parameterized by model weights # € R? where d is the
number of parameters. We make no special assumptions about
the architecture (e.g. feed-forward, convolutional, residual, etc.).
We can then formalize our distributed learning optimization
problem as

> U6; D) (1)

icV

minimize
OcR4
where () is the objective function (loss function) which is gen-
erally nonconvex and often nonsmooth (due to ReLLU activation).
Common deep learning tasks such as classification, regression,
and unsupervised learning have different objective functions and
a distributed deep learning optimizer should be general enough
to achieve good performance across all of these problems.
Suppose that the decision variable, 6, is separated such that
each robot maintains their own instance of it, §; € R%. This
yields the equivalent optimization problem

mlenelﬁn;ze Zﬁ(&i; D;) (2a)
S%
subjectto 0; =6; V(i,j) € E. (2b)

This optimization problem is amenable to a distributed solution
in which robots minimize local objective functions, and take
additional steps to come to agreement (consensus) on the value
of the decision variable. Replacing the data defined loss func-
tions in (2) with arbitrary objective functions yields the general
formulation of a distributed optimization problem.

IV. DISTRIBUTED TRAINING

A standard method for solving convex distributed optimiza-
tion problems is the consensus alternating direction method

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

of multipliers (CADMM) [31]. CADMM is an ADMM-based
optimization method where compute nodes (robots) alternate
between updating their primal and dual variables and com-
municating with neighboring nodes. To achieve a distributed
primal-dual update, CADMM introduces auxiliary primal vari-
ables (i.e. 0; = z;; and 0; = z;; instead of 0; = 6;). CADMM
works by first optimizing the auxiliary primal variables, followed
by the original primal variables, then the dual variables, as in
the original formulation of ADMM [1]. Implementations of
CADMM then perform minimization with respect to the primal
variables and gradient ascent with respect to the dual on an
augmented Lagrangian that is fully distributed among the robots:

Lo= D t0)+p 0+ 5> 16—zl @

iey JEN;

where p; represents the dual variable that enforces agreement
between node 7 and its communication neighbors, and N; is
the set of indices for neighboring nodes of i. The parameter
p that weights the quadratic terms in £, is also the step size
in the gradient ascent of the dual variable. Furthermore, the
algorithm can be simplified by noting that the auxiliary primal
variable update can be performed implicitly (z;; = 3(6; + 6;)).
Initializing the dual variables at zero then yields the following
distributed update equations for CADMM:

pitt=pf+p) (0F - 0F) (4a)
JeN;
ok + g% ||
08 1= argmin £(6;D;) + 0 pit + pz 0— —->L
o JEN; 2 2
(4b)

Typically, the primal variables are initialized uniformly to an ini-
tial guess 9? = Binitia1- This derivation of CADMM is addressed
in much finer detail in [32].

In CADMM, the objective function for the primal update (4b)
is composed of three terms: a neural network loss on the robot’s
local data, a linear term from the dual variable, and a regular-
ization term. It is obvious that applying CADMM directly to the
neural network training problem results in intractable primal
updates due to the neural network loss component. The key
insight, which we use in our algorithm DiNNO, is that this primal
optimization can be performed approximately, stopping well
before convergence to a local optimum. Formally, we propose
replacing the exact minimization of the primal update, (4b), with
an approximate solution found by taking a small number of steps,
B (typically between 2 and 10), of a stochastic first order method
(SFO) on the entire primal objective function.

Our proposed algorithm is shown in Algorithm 1 with the
approximate primal update performed in lines 12 - 16. Further-
more, in Algorithm 1 we let k represent the current communi-
cation round and 7 represent the current step taken by a SFO
in this communication round. We replace the current primal
iterate with ¢ in order to avoid including two iteration count
super scripts, and let G (475 p, ", 0%, {0;C }ien,, D;) represent

the step taken by a SFO on the objective in the primal update.

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DISTRIBUTED NEURAL NETWORK OPTIMIZATION FOR MULTI-ROBOT COLLABORATIVE LEARNING

Algorithm 1 Distributed Neural Network Optimization
(DINNO)
1: Require: ((-), Oinitiat, G, D, p

2: foricVdo >Initialize the iterates
3 pd=0 >Dual variable
4. 9? = Oinitial >Primal variable
5: end for
7: for k< Oto K do >>Main optimization
loop
8: Communicate: send 0¥ to neighbors G
9: fori €V do >>In parallel
10: pEtt = pk 4 pzjeM_(Hf —0%)
11: Y0 = oF
12: for 7 < 0to Bdo > Approximate
primal
13: YT =T + G p, pf T 08 {08} jen . Di)
14: end for
15: OFtl = B t>Update primal
16: end for
17: end for

19: return {0X},cy

To be clear, G computes a stochastic gradient over D; not a
gradient on the full local data set.

In some of our experiments we found it beneficial to also
add a “scheduled” increase (Algorithm 1, line 9) for the penalty
parameter p in similar fashion to the learning rate schedules
used in deep learning. For notational simplicity, we overload
the variable p to also mean this schedule of parameter values,
and make explicit note of all cases where one is used. Although
generally we leave this term constant, it can be useful to gradu-
ally increase it when faster consensus is desired. This schedule
can be provided to robots prior to optimization, and does not
compromise the distributed nature of DiNNO.

An added benefit of DINNO is that it pairs well with existing
deep learning libraries because the approximate primal mini-
mization can be performed with minimal changes to the typical
training loops used to optimize individual neural networks. We
find that this is beneficial because automatic differentiation and
state-of-the-art neural network optimizers, like Adam, can be
used to perform the approximate primal update, and practitioner
knowledge from experience training individual neural networks
is transferable.

A. Convergence Properties

Corollary 1 (Convex Optimality of Algorithm 1): Let each lo-
cal objective function (6, D;) be strongly convex and L-smooth.
Furthermore, let

2
6’“+9’€
0 —

1 T, k+1
G =2V | 10.D) +6"p; +p;
J

2

and suppose the number of gradient steps B — co. Then Al-
gorithm 1 converges to the unique global solution with linear
convergence rate.

1899

Proof: Given strongly convex and L-smooth local objectives,
the primal update (Algorithm 1 line 13) converges to the global
solution with a linear convergence rate as shown in [33]. Given
globally optimal primal updates and the stated assumptions,
Algorithm 1 is a special case of the decentralized ADMM
algorithm studied in [34] where it was shown to have linear
convergence to the global solution.]

Clearly, in deep learning problems global solutions and linear
convergence are not ensured due to neural networks creating
nonconvex, and often nonsmooth, objective functions, making
general convergence results extremely challenging to prove.
Moreover, in distributed deep learning problems it is impractical
to take exact gradients and perform many stochastic gradient
steps (B) to solve each subproblem to a high degree of accuracy.
However, it is known that inexact primal updates converge to the
global solution under convexity assumptions [32]. Though the
form of our inexact primal update is slightly different, we also
observe, even when using stochastic gradients and few descent
steps for each subproblem, Algorithm 1 converges to solutions
similar in quality to those from centralized optimization.

B. Baseline Algorithms

In Section V we show that DINNO is an extremely effec-
tive method for distributed training of neural network mod-
els. We compare DiNNO against two other commonly refer-
enced stochastic first order distributed optimization methods:
DSGD [23] and DSGT [26]. Like DiNNO, both methods have
each robot maintain a local copy of the optimization variable
(neural network weights), and use message passing and locally
computed stochastic gradients to collaboratively optimize the
neural network. DSGD uses the update

sz] J - ek) (5)

JjeV

k+1 _
91'

where w;; is an element of a doubly stochastic matrix 17 that has
a sparsity pattern matching that of the graph Laplacian of G, o*
is a decaying step size, and g(6F) is a stochastic (or mini-batch)
gradient of £(0%; D;). While (5) may not at first appear to be a
distributed algorithm, the sparsity pattern of W means that each
node only needs 0;“ from its immediate neighbors to compute its
update step.

The updates for DSGT are similar to those of DSGD, but an
additional auxiliary variable is added to estimate the gradient of
the joint loss,

05t = "wi (0% — ayf) (6)
Jjey

k+1 Zwl]y] +g(0k+l) (eic) (7
Jey

It is important to note that for DSGT the message size sent at
each communication round is double that of both DSGD and
DiNNO which only send #¥. For DSGT and DSGD we use
the Metropolis-Hastings weights as WW. Alternative benchmark
algorithms include [24], [25], [27], [28], [30] but, in general,
they share many core characteristics with the proposed baselines
DSGT and DSGD.

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

1900

C. Data Distributions

The way in which local data is partitioned between the robots
strongly influences the convergence rate of distributed optimiza-
tion. In classification tasks, for example, problems where each
robot has access to a subset of examples from all classes are
easier to solve with distributed optimization than problems in
which each robot only has access to labelled data for a single
class. We refer to these two data distributions as homogenous
and heterogenous respectively. In homogeneous classification
a robot which optimizes directly on its local data set without
communication may be able to achieve a relatively high classifi-
cation accuracy. A robot in the heterogeneous case is unlikely to
achieve a high accuracy on any class other than what it observed.

D. Limitations and Future Work

One limitation of DINNO is that the current formulation
does not allow for asynchronous updates. However, introducing
additional dual variables to the DINNO formulation, as in [28],
would enable asynchronous updates at the cost of added com-
munication complexity. Though DiNNO is robust to most robot
failures, like deletion, it can be vulnerable to repeated package
drops and adversarial attacks because asymmetric communi-
cation between robots can result in steady state error in the
solution. There is a substantial literature on resilient consensus
algorithms [35], and extending these strategies to DiNNO is
an interesting direction for further research. In applications,
like computer vision, where data collected by robots has a
large memory footprint DiNNO is more communication efficient
than centralized methods. When the local data is small and
the communication graph is highly connected flooding schemes
that transmit all data to a leader node can sometimes require
less communication than DiINNO. However, flooding schemes
have numerous points of failure, and lack the privacy benefits of
DiNNO. One method for reducing the communication overhead
of DiNNO is message quantization, as in [24], which is another
avenue for future research.

V. EXPERIMENTS

In the following three examples we demonstrate that DINNO
can be applied to a wide range of multi-robot learning appli-
cations, and demonstrates a substantial improvement against
baseline distributed optimization algorithms. In each example
we compare with two other common distributed optimization
methods: DSGD and DSGT. We implement DiNNO, DSGD, and
DSGT in a general framework such that for each experiment the
optimization algorithm is unchanged, but a different objective
function and data set are provided. Hyperparameter values are
reported in Section VI.

A. MNIST Classification

To clearly illustrate the potential for Algorithm 1 to train a
shared neural network from disparate data observers, we first
consider the well known MNIST classification problem [36].
Here a neural network learns to classify images of handwritten
digits. We train a model composed of a convolutional layer with

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Cycle, Fiedler = 0.4

31_0 .. 1.0 e e s s
e
308 0.8
<
c0.61 | S e Centralized 0.6 it ud i W
s |||y Individual v m
D04 DINNO 0.4
o —
>0.2 DSGT 0.2
a i DSGD W g
0.0 0.0
0 500 1000 1500 2000 0 500 1000 1500 2000
Communication Round Communication Round
Fig. 2. Each plot shows the Top-1 accuracy of the neural network models on

the validation set of the MNIST problem. For each algorithm we evaluate the
local neural networks stored by each robot on the validation set. Solid lines show
the average validation accuracy across all robots at the current communication
round, and filled areas are upper and lower bounded by the best and worst
performing robots for each particular algorithm. The Fiedler value indicates the
connectivity of the graph.

DINNO Scaling N DINNO Scaling Fiedler

<~

o

§ 1200 1200 === 50%

: o

o 1000 5o, | 1000 2(7’;’
w i ‘o 4 <
-<g3 800 90% 800

2 600 97% 600

g 4001 A e | 400

£ 200 200

S L e e e e = R]
o 0 0

20 40 60 80 100 0.5 1.0 15 2.0
Number of Robots Fiedler Value
Fig. 3. These plots show the number of communication rounds required by

DiNNO for the average validation accuracy to reach a specific threshold on the
distributed MNIST problem as both number of robots (left) and the Fiedler value
of the communication graph (right) are increased. When the number of robots is
increased (Fiedler valueis 1 &£ 0.01) DiNNO consistently reaches 90% accuracy
in less than 400 communication rounds, but requires more time to converge to
high accuracy (97%) as the network grows. Increasing the Fiedler value, but
holding the number of robots constant at 20, we see that DINNO is slower to
converge when the Fiedler value is low (low connectivity), but speeds up when
the Fiedler value increases.

three 5x5 filters followed by 2 linear layers of width 576, 64
with ReLU activation and a log-softmax output layer. We use
the negative log-likelihood loss function. Each robot only has
access to labelled digits from a single class.

In Fig. 2 we show the average, worst, and best Top-1 accu-
racy for each method on the distributed MNIST classification
problem with 10 robots on two different communication graphs
(complete and cycle). Also included is the centralized result
(98.5% validation accuracy), and the individual results, which
as expected have ~ 10% validation accuracy. While DSGT
quickly trains to good accuracy in these problems, DiNNO
achieves much better final accuracy as training progresses with
lower variance in later iterations. DSGD has relatively poor
performance with high variance.

To understand how DINNO scales to larger networks of
robots and its performance under different network connectivity
we repeated the distributed MNIST training under a range of
conditions, and show the results in Fig. 3. To vary network size
we generate geometric graphs with a target number of robots and
a communication radius that yields a graph with a Fiedler value
(algebraic connectivity) of 1 £ 0.01. The data is sorted by label
and divided evenly amongst robots so each robot has examples
from at most two classes (heterogeneous data). We then train
using DiNNO, and record the communication rounds required to
reach certain accuracy thresholds. The rounds required to reach

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DISTRIBUTED NEURAL NETWORK OPTIMIZATION FOR MULTI-ROBOT COLLABORATIVE LEARNING

50% and 90% accuracy remain roughly constant across network
sizes, but more rounds are required to reach 97% accuracy when
networks are large. We believe this is because as each robot has
progressively less local data, fine tuning of weights becomes
more difficult. Notably, even with 100 robots and a local data set
of only 600 images DiNNO converges to an accuracy matching
that of centralized training.

We use a similar approach to test how DiNNO performs
with a range of different Fiedler values. For this test we fix the
network size at 20 robots, and again generate geometric graphs
with communication radius chosen to obtain desired Fiedler
values. The data is divided as before, and we train using DiNNO.
Predictably, DiNNO is slower to converge when the connectivity
is low, but speeds up as the connectivity increases. Fiedler values
larger than 1 have little increase in performance suggesting that
consensus no longer is a limiting factor in the convergence rate.

B. Neural Implicit Mapping

In robotics there is growing interest in using neural networks
to represent functions which implicitly define the geometry of an
environment [37], [38]. In their basic form, implicit density field
networks take as input an (x, y, z) spatial coordinate and output
a single density value between 0 and 1. Such networks are able
to represent complicated 3D scenes in a single memory-efficient
function. In this example we use DINNO to learn the density field
of a two dimensional environment where data collection and
computation is distributed across multiple robots. The robots
also have access to a global coordinate frame which enables
cooperative mapping, but a future line of research would be to
implement this same pipeline in conjunction with a distributed
pose optimization algorithm.

The environment we seek to map is a 2D building floorplan
environment from the CubiCasaSK data set [39]. This data set
does not include the scale of the floorplans, thus we treat each
pixel as one unit. Seven robots are deployed, and each robot
gathers data from the environment by collecting lidar scans as
it traverses a closed loop, precomputed trajectory. To simulate
data streaming the robots update their local networks at regular
intervals from data sets of their last 400 collected lidar scans (one
trajectory has 3000-4000 scans). Fig. 4(a) shows the ground truth
environment with seven robot paths and one lidar scan. There
is some overlap in the locations traversed by each robot, but
many locations, especially at the borders, are only viewed by
one robot.

We train a feedforward network with four hidden layers of
size 256, 64, 64,64 where the first hidden layer has sinusoidal
activation, the remaining hidden layers have ReLLU activation,
and the output layer has sigmoid activation to restrict our density
estimates to (0,1). The sinusoidal activations are common in
implicit mapping [40]. We use binary cross entropy loss between
the sampled and predicted density.

The validation set is composed of novel lidar scans from
uniformly sampled locations across the entire map, and this
ensures that the validation data reflects loss only on areas where
the robots have can gather data (not inside walls). For the
communication graph, we use a geometric graph based on the

1901

=+ Centralized
DiNNO

—— DSGT

—— DSGD

—200 7.5
-400

-600

[1000 2000 3000 4000
Communication Round

-800
~1000 -500 0 500 1000

(@ (b)

Fig. 4. (a) Ground truth map. Highlighted is a single robot’s trajectory and a
single lidar scan is shown with high (gold) and low (blue) density points. (b)
Average validation loss versus communication iteration for the neural implicit
mapping experiment with maximum and minimum values plotted in a lighter
shade (DSGD and DSGT have high agreement throughout so these bounds are
not visible). Both baseline algorithms DSGT and DSGD appear to consistently
converge to a poor quality minima while DINNO (ours) converges to a model
with validation loss matching that of the centralized solution. Though DSGT
and DSGD appear to converge to a similar local minimum, Fig. 5 shows that the
reconstructions are different.

positions of the robots, where the radius is set to 1500 units. The
motion of the robots results in a time-varying graph which we
observe is always connected.

Fig. 4(b) shows the validation loss for our method as well as
DSGD and DSGT. DiNNO best minimizes the validation loss,
once again approaching the performance of centralized training
whereas DSGD and DSGT train less effectively, converging to
poor quality solutions. Fig. 5 shows the map learned by each
method, and maps from individual robots training on only their
local data. As suggested by Fig. 4(b), when using DiNNO robots
are able to provide a faithful reconstruction of the ground truth
environment whereas with DSGD and DSGT robots converge
to incoherent maps.

To verify the performances of DSGT and DSGD we reran this
experiment several times, and both methods always converged
to poor performing local minima. Additionally, we emphasize
that the implementation for these two methods is unchanged
between this experiment and Section V-A where both methods
learn acceptable classifiers. We speculate that this is a chal-
lenging problem where only a small amount of suboptimality is
allowable to achieve a useful representation. DSGT and DSGD
may be unable to either fine tune their weights, escape poor local
minima, or handle streaming data.

C. Multi-Agent Reinforcement Learning

For the final example we use DiNNO for distributed learning
of a decentralized policy applied to a standard continuous state
and action, multi-robot, predator-prey problem that was first
introduced in [41]. MARL is known to be an especially hard
learning task due to the inherent nonstationarity of the environ-
ment. That is, the environment changes during learning because
other agents also have evolving policies. For more background
on deep MARL see [42] and [43].

In our learning environment three robots must work
together to pursue a faster evader robot in the presence
of fixed obstacles, as shown in Fig. 6(a). Implemented in
PettingZoo [44], the environment operates according to the

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

1902

Fig. 5.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Robot 5, Ind.

Robot 6, Ind. Robot 7, Ind.

The left most plot shows the ground truth density map, and moving right the next three plots are the reconstructions from the neural implicit maps found

by the three tested distributed algorithms. Here DiNNO is the only method that is able to learn a coherent map. The reconstructions were produced by querying
the optimized (and agreed upon) networks on a grid mesh of points on the map. The last three plots show reconstructions produced from three of the seven robots
when communication is not used (training exclusively on local data with Adam for 10 epochs). Since these robots do not have information from other areas on the
map, they are only able to reconstruct regions which those robots have traversed. Though visually the individually learned maps appear betarned by DSGT and
DSGD, they actually have a higher validation loss compared to DSGT and DSGD.

600

15
— Centralized
10] [® © 500 DINNO
o IV
o3 [) & 4001 _ pseD o
“ @ ® i " “
2
0s & 200
[] i
10 . 8 100
$
s & 2 o0
kL
20 is -io <03 00 @ 1o s _1000.0 02 04 06 08 1.‘0
Timestep le7
(@ (b)

Fig. 6. (a) A decentralized policy rollout in the predator-prey environment.
Pursuers (red), using policies learned with DINNO applied to PPO, attempt to
capture a faster evader (green) in the presence of obstacles (black). (b) Episodic
reward (averaged across 10 episodes per network update) vs environment time
steps (summed across all episodes) for DINNO, DSGD, DSGT, and centralized.
Shown results are averaged across 5 training runs to show training robustness.
DiNNO is the only algorithm to achieve good performance, matching centralized
performance after 10 million time steps.

Actor Environment Cycle Game model in which pursuers
make observations, act, and receive rewards sequentially
before the environment as a whole is updated. The pursuers
have actions ¢ = [none, right, left, up, down]
€ A C R® and observations o =[self vel, self pos,
other_pursuers_rel_pos, evader_rel_pos,
evader_rel_vel] € O C R'2. Actions are clipped to
be on the interval [0,1]. The evader obeys a heuristic policy,
moving opposite the nearest pursuer. To prevent unfair evasion,
the evader cannot propel itself outside a square of radius 1.2.
The reward function penalizes pursuing robots based on their
distance from the evader and pursuers receive a positive reward
for tagging the evader.

To solve this problem we extend the PPO actor-critic algo-
rithm [45] with DINNO to train a shared, decentralized policy.
At consensus the robots all converge to the same policy in
accordance with a parameter sharing approach which has been
shown to be effective for MARL problems [42], [46]. Typically
the policies for parameter sharing are trained by some centralized
compute node that aggregates the experiences of each of the
robots. Applying DiNNO to PPO results in a relatively unex-
plored paradigm for MARL where both training and execution
are distributed.

In this example the actor and critic networks are feedforward
ReLU networks with 3 hidden layers of 64 neurons each. The
robots communicate through a fully connected graph and update
their policies using individually collected data every 10 episodes.
Results from this experiment are shown in Fig. 6(b). For each

algorithm we show the mean (over 5 runs) of the average episodic
reward achieved by the multi-robot predator team as training
progresses.

DiNNO achieves the same average episodic reward as a policy
trained using PPO with aggregated data from all three robots.
DSGD seems unable to learn a policy that results in positive
episodic reward and though DSGT learns a policy with positive
episodic reward, it is far inferior to DINNO’s.

VI. CONCLUSION

We present the DINNO algorithm that enables high perfor-
mance distributed training of deep neural networks for multi-
robot teams with streaming data and time-varying commu-
nication graphs. We showcase DiNNO’s versatility on three
diverse multi-robot learning tasks. Compared to existing dis-
tributed learning methods our algorithm consistently achieves
better validation performance and converges to performance of
centrally trained models. Directions for future work include
learning neural implicit density functions from real 3D depth
data and exploring the capabilities of DINNO for more com-
plex distributed reinforcement learning tasks. Links to our code
and a video visualizing the experiments can be found here:
msl.stanford.edu/projects/dist_nn_train.

A. Hyperparameters

MNIST: Hyperparameters used across all four graphs were
the same. DINNO uses B = 2, py = 0.5 increasing 0.3% per
communication round, and Adam as its primal optimizer with
a log learning rate schedule (5e-3 - 5e-4) for the primal update.
DSGT uses a =5e-3. DSGD uses a decaying stepsize follow-
ing ot = o*(1 — pa®) where a® =5e-3 and p =le-3. All
methods use batch size 64.

Implicit Mapping: DINNO uses B = 5, p® = 0.1 increasing
0.3% per communication round, batch size of 1e5, and Adam
with a log learning rate schedule of (le-3 - le-4). DSGT uses
a = le-3, and a batch size of 2e5. DSGD uses o' = le-3,
1 = le-3, and a batch size of 2e5.

Multi-agent Reinforcement Learning: For each algorithm we
use the following hyperparameters: 200 steps per episode, 2e3
steps between actor/critic network updates, reward discount
factor v = 0.99, and PPO clipping parameter 0.2. We allow each
algorithm 5 gradient steps (B = 5) per batch of data to update
actor and critic networks. The actor learning rates for DINNO,
DSGD, and DSGT are 3e-4, le-3, and le-2, respectively. Only

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

msl.stanford.edu/projects/dist_nn_train

YU et al.: DISTRIBUTED NEURAL NETWORK OPTIMIZATION FOR MULTI-ROBOT COLLABORATIVE LEARNING

DSGT has a separate critic learning rate, le-5, due to exploding
gradients otherwise. For DINNO we set a constant p = 1.

[1]

[2]

[3]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Boston,
MA, USA: Now Publishers Inc, 2011.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019,
pp- 8024-8035.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

B. Custers, A. M. Sears, F. Dechesne, 1. Georgieva, T. Tani, and S. Van
der Hof, EU Personal Data Protection in Policy and Practice. Berlin,
Germany: Springer, Mar. 2019.

G. Shi, W. Honig, X. Shi, Y. Yue, and S.-J. Chung, “Neural-
swarm2: Planning and control of heterogeneous multirotor swarms
using learned interactions,” [EEE Trans. Robot., pp. 1-17, 2021,
doi: 10.1109/TR0O.2021.3098436.

Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized
non-communicating multiagent collision avoidance with deep rein-
forcement learning,” in Proc. IEEE Int. Conf. Robot. Autom., 2017,
pp. 285-292.

K. Corder, M. M. Vindiola, and K. Decker, “Decentralized multi-agent
actor-critic with generative inference,” 2019, arXiv:1910.03058.

A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Collective
robot reinforcement learning with distributed asynchronous guided policy
search,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 79-86.
G. Sartoretti, Y. Wu, W. Paivine, T. S. Kumar, S. Koenig, and H. Choset,
“Distributed reinforcement learning for multi-robot decentralized collec-
tive construction,” in Proc. Distrib. Auton. Robot. Syst., 2019, pp. 35-49.
W. Luo and K. Sycara, “Adaptive sampling and online learning in multi-
robot sensor coverage with mixture of gaussian processes,” in Proc. IEEE
Int. Conf. Robot. Autom., 2018, pp. 6359-6364.

G. Habibi and J. P. How, “Human trajectory prediction using similarity-
based multi-model fusion,” IEEE Robot. Automat. Lett., vol. 6, no. 2,
pp. 715-722, Apr. 2021.

W. Luo, C. Nam, G. Kantor, and K. Sycara, “Distributed environmental
modeling and adaptive sampling for multi-robot sensor coverage,” in Proc.
18th Int. Conf. Auton. Agents MultiAgent Syst., 2019, pp. 1488-1496.

K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. 35th
Int. Conf. Mach. Learn., 2018, pp. 5872-5881.

N. Majcherczyk, N. Srishankar, and C. Pinciroli, “Flow-FL: Data-driven
federated learning for spatio-temporal predictions in multi-robot systems,”
IEEE Int. Conf. Robot. Automat., pp. 88368842, 2021.

J. N. Tsitsiklis, “Problems in decentralized decision making and compu-
tation,” Massachusetts Inst. Tech Cambridge Lab for Inf. and Decis. Syst.,
Tech. Rep., 1984.

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control,vol. 54,no. 1, pp. 48-61,
Jan. 2009.

W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944-966, 2015.

A. Nedic¢ and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601-615,
Mar. 2015.

S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed convex
optimization on dynamic networks,” IEEE Trans. Autom. Control, vol. 61,
no. 11, pp. 3545-3550, Nov. 2016.

T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of distributed
optimization methods for multi-robot systems,” 2021, arXiv:2103.12840.
A. Nedi¢, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. IEEE, vol. 106, no. 5, pp. 953-976, May 2018.

T. Yang et al., “A survey of distributed optimization,” Annu. Rev. Control,
vol. 47, pp. 278-305, 2019.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case study
for decentralized parallel stochastic gradient descent,” in Proc. 31st Int.
Conf. Neural Inf. Process. Syst., 2017, pp. 5336-5346.

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

1903

A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in Proc. Int. Conf.
Learn. Representations, 2020.

P. D. Lorenzo and S. Scardapane, “Parallel and distributed training of
neural networks via successive convex approximation,” in Proc. IEEE 26th
Int. Workshop Mach. Learn. Signal Process., 2016, pp. 1-6.

S. Pu and A. Nedi¢, “Distributed stochastic gradient tracking methods,”
Math. Program., vol. 187, no. 1, pp. 409-457, 2021.

S.Lu, X. Zhang, H. Sun, and M. Hong, “GNSD: A gradient-tracking based
nonconvex stochastic algorithm for decentralized optimization,” in Proc.
IEEE Data Sci. Workshop, 2019, pp. 315-321.

K. Niwa, N. Harada, G. Zhang, and W. B. Kleijn, “Edge-consensus
learning: Deep learning on P2P networks with nonhomogeneous data,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 668-678.

Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
vol. 63, no. 15, pp. 4051-4064, Aug. 2015.

T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang, and S. Lu, “Distributed
learning in the nonconvex world: From batch data to streaming and
beyond,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 26-38, May 2020.
G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5262-5276,
Oct. 2010.

T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimiza-
tion via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482497, Jan. 2015.

H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-tojasiewicz condition,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2016,
pp. 795-811.

W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of
the ADMM in decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 62, no. 7, pp. 1750-1761, Apr. 2014.

D. Saldana, A. Prorok, S. Sundaram, M. F. Campos, and V. Kumar,
“Resilient consensus for time-varying networks of dynamic agents,” in
Proc. Amer. Control Conf., 2017, pp. 252-258.

Y. LeCun, “The mnist database of handwritten digits,” 1998. [Online].
Available: http://yann. lecun. com/exdb/mnist/

B. Mildenhall, P.P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NERF: Representing scenes as neural radiance fields for view
synthesis,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 405-421.

E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit mapping and
positioning in real-time,” in Proc. IEEE/CVF Int. Conf. Comput. Vision,
Oct. 2021, pp. 6229-6238.

A. Kalervo, J. Ylioinas, M. Hiikio, A. Karhu, and J. Kannala, “Cubi-
Casa5K: A dataset and an improved multi-task model for floorplan image
analysis,” in Proc. Scand. Conf. Image Anal., 2019, pp. 28-40.

M. Tancik et al., “Fourier features let networks learn high frequency
functions in low dimensional domains,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2020.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6382-6393.

J. K. Terry, N. Grammel, A. Hari, L. Santos, and B. Black, “Revisiting
parameter sharing in multi-agent deep reinforcement learning,” 2020,
arXiv:2005.13625.

G. Papoudakis, F. Christianos, L. Schifer, and S. V. Albrecht, “Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative
tasks,” in Proc. 35th Conf. Neural Inf. Process. Syst. Datasets Benchmarks
Track, 2021, https://github.com/uoe-agents/epymarl.

J. K. Terry et al., “PettingZoo: Gym for multi-agent reinforcement learn-
ing,” 2020, arXiv:2009.14471.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Proc. Int. Conf. Auton.
Agents Multiagent Syst., 2017, pp. 66-83.

Authorized licensed use limited to: Stanford University. Downloaded on October 21,2022 at 18:45:18 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TRO.2021.3098436
http://yann.%20ignorespaces%20lecun.%20ignorespaces%20com/exdb/mnist/
https://github.com/uoe-agents/epymarl

