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ABSTRACT

Specifying and verifying the temporal properties of UML-based
systems can be challenging. Although there exist some extensions
of OCL to support the specification of temporal properties in UML-
based notations, most of the approaches depend on using non-UML
formal formalisms such as LTL, CTL, and CTL* while transforming
the under-development UML models into non-UML model checking
frameworks for verification. This approach introduces complexities
and relies on techniques and tools that are not within the UML spec-
trum. In this paper, we show how TOCL (one OCL extension for
temporal properties specification) can be transformed into OCL for
verification purposes. Towards this end, we created a formal EBNF
grammar for TOCL, based on which a parser and a MOF metamodel
were generated for the language. Additionally, to facilitate the anal-
ysis of the TOCL properties, we formally defined transformation
rules from TOCL metamodel to OCL metamodel using QVT. Finally,
we validated the implementations of the transformation rules using
USE.
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1 INTRODUCTION

For Model-driven Engineering (MDE) approaches to succeed, soft-
ware designers must integrate the development process with prac-
tical techniques to improve the quality of models. If a model has
unresolved design faults, they are propagated to the code where
they can be more difficult to uncover and more expensive to re-
move. One approach to uncovering design errors is to formally
specify and analyze the temporal properties that a system has to
satisfy. Temporal properties are useful in capturing a broad range
of relevant system properties and requirements [18]. Software de-
signers can use temporal logic formalisms, (e.g., Linear Temporal
Logic (LTL) [18] and Computation Tree Logic (CTL) [8]) to formally
specify properties.

Although significant research appears in specifying and analyz-
ing properties, there is not an effective and efficient UML-based
framework that specifies and analyzes temporal properties. Most
of the current approaches depend on using non-UML formal for-
malisms such as LTL, CTL, and CTL* for specifying properties while
transforming the under-development UML models into non-UML
model checking frameworks for verification. This approach intro-
duces complexities and relies on techniques and tools that are not
within the MDE spectrum.

Figure 1 depicts the analysis approach that represents the con-
text of the research described in this paper [2, 3]. The approach
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exclusively uses UML-based notations, technique, and tools to ana-
lyze temporal properties. On the front-end, a UML designer creates
a UML class model for a software application and specifies some
temporal properties in TOCL (Figure 1 left). The designer then uses
the approach to analyze the system’s behavior for violation of the
properties. The first step (Figure 1 top) is to ‘unfold’ the behavior
of a class diagram by transforming it into a Snapshot Transition
Model (STM) [20]. An STM is a class model that statically represents
the behavior of a system in terms of states and transitions. As an
STM is an ordinary class diagram, it can not only model different
scenarios of system execution but also can be constrained by nor-
mal OCL expressions. The second step of the process translates a
TOCL temporal property to an OCL expression interpreted on an
STM (Figure 1 middle). The TOCL properties are translated into
OCL query expressions and constraints, which traverse the state-
transition chains, searching for any state that violates a specified
property. Given (i) a class model representing the behavior and
(if) an OCL expression constraining this behavior, we can do the
analysis using a UML static-analysis tool, which is the third step
of the approach (Figure 1 bottom-right). The approach uses the
USE Model Validator [16] to perform the analysis. If the analysis
finds a state where the system violates a given property, the process
produces a counterexample demonstrating that the system does not
uphold the respective property. We can then return this counterex-
ample to the designer as a sequence diagram or as a sequence of
state-transition (Figure 1 bottom). Given this counterexample, the
designer can examine the situation and revise and improve their
design.

The research presented in this paper aims to revise and enhance
the transformation from TOCL to OCL (step 2 in Figure 1 of the
approach) of the original work presented in [2, 3]. In particular,
the original transformation had the following drawbacks. First, the
transformation was not formally defined, but rather was based on
a collection of templates (Dwyers’ et al. patterns [11]) that can
be used to specify temporal properties in TOCL [3]. Even though
the property specification patterns are expressive to specify most
temporal properties, there are many new types of properties that
can not be specified. The second drawback of the original work is
that it has not been implemented.

In this paper, we aim to address these drawbacks. Towards this
aim, we formally define and implement general transformation
between TOCL and OCL by completing the following activities:

(1) We formally define an EBNF grammar for TOCL, based on
which we created a parser for TOCL.

(2) We extended the metamodel of OCL with the required ele-
ment in TOCL to generate a metamodel for TOCL.

(3) We formally defined a set of transformation rules between
both languages in QVTO.

(4) We implemented the transformation rules.

This paper is structured as follows. After giving and overview
of the analysis approach in this introduction, Section 2 details the
main contributions of this paper. In particular, we discuss how we
defined and created an EBNF grammar and created a parser for
TOCL, generated the TOCL metamodel, defined the transformation
rules, and implemented them. The validation of the transformation
rules is provided in Section 3. The related work is discussed and
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Figure 2: TOCL to OCL Transformation Methodology.

compared to our approach in Section 4 Section 5 concludes with an
overview of the progress made and future work yet to be done.

2 TOCL TO OCL TRANSFORMATION

Figure 2 depicts the transformation methodology. The definition
of the transformation requires a source and target language. The
figure shows that we defined the transformation between the TOCL
metamodel (MM), the source language, and the OCL MM, the target
language. We formally specified the transformation rules in QVTO.
To implement the transformation, we needed an EBNF grammar for
TOCL. However, the initial syntax for TOCL was not defined using
EBNF format [21]. To facilitate parser generation, we, therefore,
created an EBNF grammar for TOCL following the specifications
of the original syntax and considering the attribute-grammar static
semantics of TOCL. We then used the ANTLR4 parser generator
to create a TOCL parser from this grammar. To create the TOCL
MM, we used the created EBNF syntax of TOCL and a text-to-
model transformation algorithm described in [5] to generate the
language’s corresponding MM. Finally, we implemented these rules
using the generated TOCL parser. In this section, we discuss how
we generated the TOCL MM, defined the QVTO transformation
rules, and provide implementations of these rules.

2.1 Creating TOCL EBNF Grammar and Parser

We created the EBNF grammar for TOCL by extending the OCL 2.4
grammar (i.e., concrete syntax) and fixing some existing ambiguities.
In this process, we also created a new parser for OCL 2.4. The
grammar that was used to generate the resulting OCL parser heavily
draws from the OCL grammar used by the UML-based Specification
Environment (USE). Recall that the analysis approach uses USE in
the back-end; therefore, when creating our OCL and TOCL parsers,
we emulate its parsing methodology while fixing the ambiguities
and defining the grammar in the ANTLR4 format. The finalized
ANTLR4 OCL 2.4 grammar was then used as a base for the TOCL
grammar.

The original syntax of TOCL in [21] was defined using math-
ematical notations as opposed to EBNF. We adapted the original
syntax by interpreting the mathematical notation while taking into
account the intended semantics of the expressions. We also applied
an attribute grammar in the form of Java actions to implement the
boolean type constraint. The impact of this attribute grammar is
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limited as an accompanying object model is not available until the
analysis stage.

Listing 1 shows a partial EBNF grammar for TOCL that is used
to generate the TOCL parser. In general, each TOCL operator has
a corresponding production rule associated with it. Exceptions to
this are the until, since, and before operators. This is because these
operators are always preceded by either an always or sometime
expression, and are therefore treated as specialized alternatives of
those expressions. We also defined the @next operator which has
been added as an alternative in the operation call production. It is
worth noting that we use binaryOperationExp in our production
rules because it is the topmost expression in our grammar with
alternatives that allow for any OCL expression to be used as an
upheld expression for a TOCL operator expression; provided this
expression evaluates to a boolean value. Additionally, all the gram-
mar rules are annotated with their corresponding production in
the original TOCL syntax.
toclExpression[Environment env]:

| alwaysExp[$env]
sometimeExp[$env]

|
| previousExp[$env]

| alwaysPastExp[$env]
|

|

nextExp[$env]

sometimePastExp[$env]
nextOperationCallExp[$env]

)

nextExp[Environment env]: NEXT e=binaryOperationExp[$env]

{
if ($e.ctx != null && $e.ast != null) {
if (!$e.ast.getType().equals("Boolean")) {
System.out.println("Warning: 'Next' operator
applied to non-boolean expression");
}
}
};

alwaysExp[Environment env]:ALWAYS el=binaryOperationExp
[$env] (op=(SINCE | UNTIL) e2=binaryOperationExp[$env])?

|

if ($el.ctx != null && $el.ast != null) {
if (!$el.ast.getType().equals("Boolean")) {
System.out.println("Warning: 'Always'
operator applied to non-boolean expression");
}
if ($e2.ctx != null && $e2.ast != null) {
if (!$e2.ast.getType().equals("Boolean")) {
System.out.println("Warning: " + $op.text
+ " operator applied to non-boolean expression");

}

Listing 1: Partial EBNF grammar for TOCL

Based on the created EBN, we created a parser for TOCL using
ANTLR4. As we discuss later, we utilize the ANTLR4 parser to
facilitate the implementation of the transformation rules between
TOCL and OCL.

2.2 Creating TOCL Metamodel

TOCL includes a set of temporal operators that are based on Linear
Temporal Logic (LTL). As TOCL is an extension on OCL, the TOCL
MM adds temporal logic constructs to the OCL MM. There exist
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several algorithms to create an abstract syntax model (i.e., Meta-
model) from the concrete syntax of a language (i.e, EBNF). Many
of the algorithms aim to achieve a bidirectional transformation
between instances of the abstract and concrete syntax. They do
this, for example, by employing naming conventions that retain
information about the order of properties in the concrete syntax [4].
As our aim is only to transform TOCL to OCL, there is no need for
these extra features. We decided to follow a fairly straightforward
approach proposed by Anastasakis [5], In the following, we present
the steps of the algorithm and apply them to create the TOCL MM.

e Step 1. The non-terminal symbols of a production
rule are represented as MOF classes. To apply this step,
we create a meta class for each of the 12 TOCL operator ex-
pressions, as well as one class for the @next alternative for
an operation call. Non-terminal symbols for the operator
expressions all correspond to the binaryOperation produc-
tion. We created this production in the EBNF to remove
left-recursive ambiguity in the OCL syntax, and to clearly
define the precedence between OCL operators. However,
the original definition of the TOCL syntax states that TOCL
operators can be used on any expression so long as it is of
type Boolean. Therefore, we set the abstract form of binary-
Operation to be an OclExpression, which has already been
defined in the OCL MM, and add an OCL invariant that
states OCL expressions associated with TOCL expressions
may only be boolean expressions.

e Step 2. If a terminal symbol is an identifier, it will be
represented as a MOF class and an id attribute will be
added to the class. No identifier symbols are present in
the EBNF syntax, therefore no additional MOF classes are
created in this step.

e Step 3. The optional terminal symbols of a rule are
transformed to boolean attributes of the MOF class to
which the non-terminal related to the terminal was
transformed. There are no optional terminals in the TOCL
syntax. However, because there is already an isPre attribute
defined in the OCL metaclass FeatureCallExp that the TO-
CLOperationCallExp class inherits from, we also define
isNext as a Boolean attribute for TOCLOperationCallExp.
In this way we represent both alternatives for the toclOp-
CallExp production rule.

o Step 4. The left hand side of a production rule with
alternatives is transformed to an abstract MOF class.
A number of concrete classes that extend the abstract
class are then introduced, to represent each of the al-
ternative choices. For this rule, a TOCLExpression class is
introduced as the parent class for all the alternative classes
created in Step 1 of the algorithm

o Step 5. If the right hand side [of a production rule]
does not have any alternative rules or only terminals,
an association is generated between the class repre-
senting the left hand side of the rule and the class(es)
representing the elements of the right hand side. As
discussed in Step 1, the abstract form of the binaryExpres-
sion symbol is the OperationCallExp. Here, we create a
relationship between the operator expression classes and
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this class. The rule states that: The association ends of the
classes representing the left hand side of the rule, are non-
navigable, while the association ends of the classes on the
right hand side are navigable. Multiplicities of the associ-
ation ends depend on the multiplicity of the symbols in
the grammar. Therefore, the type of the relationship estab-
lished between classes is a composition relationship. The
final stipulation of the sule is that: If the multiplicity of
an association end is zero to many or one to many, it is
always represented by an ordered association end. Because
the relationships between the OperationCallExp class and
the TOCL operator classes are strictly one to one, we do
not take further action.

o Step 6. If all the right hand side parts of a rule are
alternatives and each alternative only has terminals
as its elements, the class on the left hand side of the
rule is depicted as an enumeration class and each
alternative terminal is represented as an enumeration
literal.

No such rule exists in the TOCL grammar, therefore no
enumerations are created.

o Step 7.Elements of the concrete syntax (e.g. braces,
parentheses) are not transformed to any element of
the MOF abstract syntax. We do not transform any of
the elements of the concrete syntax.

A diagram of the resulting TOCL MM is shown in Figure 3.

e [H

Class diagram ::

AlwaysLntilExp AlwaysPastExp | | MextExp
N

AlwaysExp OCt Expression KH OperationCallExp
FAN

AlwaysSinceExp

SometimeSinceExp TOCLOperatorexp H > TOCLEXpression
SormetimeExp k\

TOCLOperationCallExp
ishext . Boaolean

‘ SometimeBeforeExp || SometimePastExp ‘ |PrevmusExp ‘
L 1| J b |

M ¢ ¢

Figure 3: The TOCL MOF metamodel.

2.3 QVTO Transformation Rules

Once we have both the TOCL MM and the OCL MM, we can employ
QVTO to formally define the transformation rules between the two
languages. As OCL expressions are usually define on class diagram,
we include the UML class diagram MM as it is necessary to access
UML properties of constructs in OCL MM, i.e, their type. For a
similar reason, we include the STM MM (not shown or described in
this paper) because the translations of TOCL operator expressions
into OCL use constructs defined within a STM.

As an example we explore the QVTO transformation rule for a
next operator, as shown in Listing 2.

Al Lail et al.

1 mapping NextExp::NextExp20CLExpression ()
OperationCallExp {
var getSnapshotCall = new OperationCallExp(getSnapshot
, selfExp.clone(), null);
var getNextCall := new OperationCallExp(getNext,
getSnapshotCall, null);
4 source := getNextCall;
referredOperation := snapSat.oclAsType(EObject);
6 argument := self.upheldExp.oclAsType(OCLExpression);

Listing 2: QVTO rule for the TOCL next operator.

Based on the rule above, to create an OCL translation for the
next expression, we first instantiate a self expression that represents
the self call at the beginning of the expression. Next, we create an
OperationCallExp instance corresponding to the getCurrentSnap-
shot() call. We also set the source of this expression to be the self
expression we defined previously. Then, we create another instance
of OperationCallExp that represents the call to the getNext() op-
eration, and set its source to be the object representing the call to
getCurrentSnapshot(). Finally, we instantiate an OperationCallExp
which represents the sat(P) operation call. We set its source to be
the previously defined representation of the getNext() call, then
return the resulting object.

As can be seen in Listing 2, there exist some OCL query opera-
tions such as getCurrentSnapshot() and getNext(). There operations
are defined in the context of the STM diagram that the OCL ex-
pressions are transformed and evaluated on. The STM MM also
includes constraints and operations that facilitate the specification
and analysis of temporal properties. The operations (called traversal
operations) allow for the traversal of system states. For example,
the getNext() operation returns the next state, and the getPost()
operation returns all succeeding system states. The constraints en-
sure the creation of valid scenarios representing system behavior.
For instance, we define a constraint that prevents cyclic behavior.
There are many other traversal operations and constraints that are
defined in the context of the STM that we do not include here.

Another example of a QVTO rule that defines the transformation
for the always operator is presented in Listing 3.

1 mapping AlwaysExp::AlwaysExp20CLExpression()
IteratorExp {

2 var getSnapshotCall := new OperationCallExp(
getSnapshot, selfExp.clone(), null);

3 var CS := new OCL::Variable(getSnapshotCall);

4 var letl := new LetExp(CS, result);

5 var getPostCS := new OperationCallExp(getPost, new
VariableExp(CS), null);

var includingCS := new OperationCallExp(including,

getPostCS, OrderedSet{new VariableExp(CS)});

7 var sVar := new OCL::Variable(null);

8 result.oclAsType(NamedElement).name := "forAll";

9 iterator := sVar;

10 source := includingCs;
11 body := self.upheldExp.oclAsType(OCLExpression);

Listing 3: QVTO rule for the TOCL always operator.

We formally define QVTO transformation rules to all 12 TOCL
operators in a similar manner.
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No. | TOCL Operator OCL Translation

1 next P self.getCurrentSnapshot().getNext().sat(P)

2 always P let CS:Snapshot = self.getCurrentSnapshot() in CS.getPost()

->including(CS)->forAll(s | s.sat(P))

3 always P since Q let CS:Snapshot = self.getCurrentSnapshot() in let LSQ =
CS.getPre()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(LSQ.isDefined()) then (CS.getPre()->including(CS)

-> LSQ.getPre())->including(LSQ)->forAll(s | s.sat(P)) else
CS.getPre()->forAll(s | s.sat(P)) endif

4 always P until Q let CS:Snapshot = self.getCurrentSnapshot() in let FSQ =
CS.getPost()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(FSQ.isDefined()) then (FSQ.getPre()-CS.getPre())->forAll(s |
s.sat(P) else CS.getPost()->including(CS)->forAll(s | s.sat(P)) endif

5 sometime P let CS:Snapshot = self.getCurrentSnapshot() in CS.getPost()

->including(CS)->exists(s | s.sat(P))

6 sometime P since Q let CS:Snapshot = self.getCurrentSnapshot() in let LSQ =
CS.getPre()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(LSQ.isDefined()) then (CS.getPre()->including(CS) ->
LSQ.getPre())->including(LSQ)->exists(s | s.sat(P)) else
CS.getPre()->exists(s | s.sat(P)) endif

7 sometime P before Q let CS:Snapshot = self.getCurrentSnapshot() in let FSQ =
CS.getPost()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(FSQ.isDefined()) then (FSQ.getPre()-CS.getPre())->exists(s |
s.sat(P)) else CS.getPost()->including(CS)->exists(s | s.sat(P)) endif

8 previous P let CSPrev:Snapshot = self.getCurrentSnapshot().getPrevious() in

CSPrev.isDefined() implies CSPrev.sat(P)

9 alwaysPast P self.getCurrentSnapshot().getPre()->forAll(s | s.sat(P))

10 sometimePast P self.getCurrentSnapshot().getPre()->exists(s | s.sat(P))

11 P.o@next(Ai,...,An) let NT = P.getCurrentSnapshot().nextT
in NT.oclIsTypeOf(w) and (let NT = NT.oclAsType(w)
in NT.transitionContext = P and NT.parameter; = Ay and ... and

NT.parameter, = An

12 P.o@pre(A,...,An) let PT = P.getCurrentSnapshot().beforeT
in PT.ocllsTypeOf(w) and (let PT = PT.oclAsType(m)
in PT.transitionContext = P.getPrevious() and PT.parameter; =

Aj[.getPrevious()] and ... and PT parameter, = Aq[.getPrevious()]

Figure 4: Translation of TOCL operators to OCL.

2.4 Implementation of TOCL to OCL
Transformation

We implemented the transformation as a Java code built on the
TOCL parser we created using ANTLR4 listeners. The listeners
traverse the parse tree of a TOCL expression and produce the cor-
responding OCL expression.

Two reasons encouraged us to do this. First, it is more efficient
to use the existing functionality of the generated parser than it
would be to create external additional code that must communicate
with the parser to perform the transformation. Second, based on
our experience, the integration of the transformation code into an
analysis tool will be significantly more straightforward. As such,
the transformation from TOCL to OCL is implemented overriding
generated listener methods of the ANTLR4 TOCL parser. To use
these rules we walk the parse tree generated by the TOCL parser.

To transform TOCL expressions, we defined translations for
TOCL operators to OCL 4. To create these translations, we utilized
some important query operations. Method getCurrentSnapshot()
gets the snapshot associated with an object in the "current state"
or the state where the expression is being evaluated. The getNext()
and getPrevious() operations when applied to a snapshot get the
snapshot in the next state and previous state, respectively. When
applied to an object, getNext() and getPrevious() get the correspond-
ing object in the next and previous state, respectively. Similarly,
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operations getPre() and getPost() get the collection of all snapshots
before and after a given snapshot in a sequence of states. Addition-
ally, the sat(expr) operation evaluates whether a snapshot satisfies
a given boolean expression expr. For example, the next P operator
gets the current snapshot of an object, then gets the next snapshot,
and finally checks if that next snapshot satisfies expression P. If it
is satisfied, the expression evaluates to true.

Note the use of the sat() operation in the implementations of the
operator in the OCL expressions. The operation can be implemented
as a ‘built-in’ operation in USE and interpreted in Java in the back-
end. A drawback of this approach is that the sat() operation will
not be reusable by other OCL tools. A better approach is to provide
an OCL operation that can be imported and used by any OCL tool.

After defining these translations, we created rules for them using
listeners. These rules take the OCL translation of each TOCL oper-
ator and simply replace the appropriate parts with the children of
the corresponding parse tree node. For instance, when translating
an always expression, we replace P in ‘sat(P)’ with the child at
index 1, which corresponds to the expression to be evaluated. We
do this using the getOCL(ParseTree ctx) operation, which gets the
text associated with node ctx. In addition, we also keep track of the
original TOCL version of the expression in the variable origTOCL.
After the translation, we push both the translated OCL expression
and the original TOCL expression into a stack, which will be popped
at the end of traversing the entire parse tree. Figure 5 shows an
example of the implementation of the the TOCL always expression
using an ANTLRA4 listener.

String origTocl = tokens.getText(ctx);
oclTranslation = "let CS:Snapshot = self.getCurrentSnapshot()
in CS.getPost()->including(CS)->forAll(s | s.sat("+getOCL(ctx.getChild(1))+"))";
stack.push(oclTranslation);
stack.push(origTocl);

Figure 5: ANTLR4 listener implementation of always rule.

Once the listener has visited every node within a tree, it finally
visits the root where it creates the string that is the result of the
OCL translation. Since TOCL is an extension of OCL, many of
the constructs are the same and should be directly mapped in a
translation. Thus, first, we store the token stream in the variable
tokens. The operation getText(ctx) concatenates the lexemes of
the tokens that descend from the node represented by ctx. Next,
we pop every translated OCL expression and the corresponding
original TOCL expression from the aforementioned stack. Then,
we replace every instance of the original TOCL expression with its
equivalent OCL translation using the replace(CharSequence target,
CharSequence replacement) operation. Finally, after replacing the
translated TOCL expressions, we use the setOCL(ParseTree ctx,
String s) operation to set this finished translated OCL to the root of
the parse tree.

3 VALIDATION OF THE TRANSFORMATION
RULES

For our TOCL to OCL translator to be useful, the translations of the

TOCL operators must work as intended. This section demonstrates

that the generated OCL expressions, from TOCL transformation,
are valid constraints in their corresponding STM class diagrams.
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Figure 7: The STM for the SBCS class diagram in Fig. 6
ready : Boolean ready : Boolean
evaporationRate : Real waterLevel : Real
getsteam() getLevel()

Figure 6: The class diagram for SBCS.

This section also puts the TOCL to OCL transformation back into
the context of the analysis approach in Figure 1. To show case
the validity of our transformation, we applied the translation on
the Steam Boiler Control System (SBCS), shown in Figure 6. The
SBCS specification problem Abrial et al. [1] has been used exten-
sively to assess the effectiveness of many software specification
and verification approaches.

By applying the algorithm to produce the STM of the class dia-
gram depicted in Figure 6) (e.g., Step 1 of the analysis approach in
Figure 1), we obtain the diagram in Figure 7.

We manually created an instance of the STM of the SBCS in Fig-
ure 7 to show the correctness of our implementation of the TOCL
to OCL transformation rules and the validity of the obtained OCL
expressions. Note that this figure shows one possible execution of
the system. Using this figure, we evaluated all the TOCL operators
translation. The informal validation of the transformation is done
as follows. First, we create a TOCL temporal property and man-
ually evaluate it based on the figure and indicated the expected
evaluation result. In the second steps, we automatically generate
the corresponding OCL expression using the implementation of our
transformation. Finally, we use USE to evaluate the generated OCL
expression on the provided scenario in Figure 8. We show that the
expected evaluation of the expression matches the result produced
by USE. We follow this procedure for the evaluation of all TOCL
operators.

Next is a unary operator of the format next P that evaluates
whether the expression P is true in the next state. The expressions
in figure 9 are evaluated on the object diagram in fig 8 and produce
the expected result by USE.

Always is a unary operator of the format always P that evalu-
ates whether the expression P is true in all future states including
the present one. In a similar way, the expressions in figure 10 are

evaluated on the object diagram in fig 8 and produce the expected
result by USE.

Always ... since is a binary operator of the format always P since
Q that evaluates whether the expression P is true in all past states,
including the current state, that occur after a state that satisfies
expression Q. If no past state satisfies Q, then P should be true in
all past states. In a similar way, the expressions in figure 11 are
evaluated on the object diagram in fig 8 and produce the expected
result by USE. The first expression is an example of when Q is
defined while the second one is an example of when Q is not defined.

The validation of the correctness of the remaining operators in
Figure 4 is performed in a similar manner.

4 RELATED WORK

Enriching OCL with temporal logic is a research objective that has
been tackled by many researchers who have produced a variety of
approaches. Some approaches, such as the one presented in [19],
extend OCL with temporal operators from logic systems such as
LTL. Others propose a pattern-based specification approach that is
geared towards providing an accessible way for designers to specify
system properties without being highly familiar with temporal
logic systems [10, 15, 17] Previous works have also proposed a
semantic foundation for temporal OCL extensions without defining
a concrete syntax for specific temporal expressions. For instance,
the approach in [7] proposes an extension of OCL based on mu-
calculus that provides semantics that could be used in conjunction
with an appropriate syntax for temporal expressions. Researchers
in [12] present an OCL extension based on CCTL semantics and
define a UML profile for the specification of temporal constraints on
statechart diagrams. In this section, we compare these approaches
to our work.

Temporal properties in OCL are covered in a number of publi-
cations. LTL operators for OCL were defined in [21], but an imple-
mentation was left out. The work presented in [12] focuses on the
integration of time bounds in connection with temporal constructs
and state machines which "enables modelers to specify behavioral
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Figure 8: Scenario: An instance of the STM SBCS in Fig. 7
Expression in TOCL on Expression in OCL on STM of the | Expected Evaluation Expression in TOCL on Expression in OCL on STM of the Expected
SBCS Class Diagram SBCS Result SBCS Class Diagram SBCS Evaluation
N " — Result
next sp2.capacity = 98.0 sp2.getNext().capacity = 98.0 True
- o - always pc2.circulating = false | let CS:Snapshot = True
next sp2.capacity = 100.0 sp2.getNext().capacity = 98.0 False pumpeontroller3.getCurrentSnapshot() in
CS.getPost()->including(CS)->forAll(s |
pe2.atSnapshots(s).circulating= false)
[ ] @ Evaluate OCL expression N
: always pumpl.mode = #off let CS:Snapshot = False
E:;e" ONCL expres§|on:98 . | Bvaluate | pump.getCurrentSnapshot() in
‘5 gethextO capacity = 38 ‘ B CS.getPost()->including(CS)->forAll(s |
Result: rowser pump1.atSnapshots(s).mode=#off)
‘true :Boolean ‘
Clear
+ Bl
[ YeX ) Evaluate OCL expression e0e® Evaluate OCL expression
Enter OCL expression: _ Enter OCL expression: _
— let CS: = pc2.getCuri hot()
bb2.getNext0.capacity = 1000 . in C5.getPost0->including(CS)->ForAll(s | pe2latSnapshot(s).circulating = false) Browser
Result: rowser .
false : Boolean Result: Clear
‘ Clear true : Boolean
4
& . nl
o0 @ Evaluate OCL expression
Flgure 9: Evaluation of next expressions. Enter OCL expression: | Evaluate |
let CS:Snapshot = pumpl.getCurrentSnaps hot()
in CS.getPost0)->including(CS)->forAll(s | pump1.atSnapshot(s).mode = #off) Browser
Result:
. . . " p. false : Boolean Clear
state-oriented real-time constraints". An approach specifying tem- S

poral properties without the need to know LTL or CTL but also
a detailed comparison of different temporal extensions to OCL is
described in [15]. The authors show an implementation on top of
Elipse MDT OCL. In [19] OCL is extended in in simlar way to [21]
to define Linear Temporal OCL (LT-OCL) formulas over states.
An approach that also uses translation to plain UML and OCL
is the filmstrip model [13, 14]. Similar to our snapshot transition
model, UML models enriched with TOCL expressions are translated

Figure 10: Evaluation of always expressions.

into a so-called filmstrip model that is verified by the USE model
finder. The translation is also realized as a USE plugin to hide
the details of the underlying filmstrip model from the modeler.
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[ ] ® Evaluate OCL expression
Enter OCL -
(let CS:Snapshot = wimd2.getC 0
in let PS:Set(Snapshot) = CS.getPre()
in let PSQ:Set(Snapshot) = PS->select(s | wimd2 atSnapshot(s).program.mode = #Normal)
in let PSP:Set(Snapshot) = PS->including(CS)->select(s | wimd2.atSnapshot(s) waterLevel < 39) ~ Evaluate
in if (PSQ->size()>0) then (if (PSP->size(>0)
then (PSQ->exists(s | PSP~(s.getPre()->including(s)) = PS->including(CS)~(s.getPre()->including(s)))) else false endif) Browser
else (PSP = PS->including(CS)) endif)
I Clear
Result:
[true Boolean Close
S
e0e® Evaluate OCL expression
Enter OCL expression:
(let C: = wimd2.getCurr
in let PS:Set(Snapshot) = CS.getPre()
in let PSQ:Set(Snapshot) = PS->select(s | wimd2.atSnapshot(s).program.mode = #Degraded) | Evaluate
in let PSP:Set(Snapshot) = PS->including(CS)->select(s | wimd2.atSnapshot(s) waterLevel < 45)
in if (PSQ->size()>0) then (if (PSP->size()>0) Browser
then (PSQ->exists(s | PSP-(s.getPre()->including(s)) = PS->including(CS)-(s.getPre()->including(s))) else false endif)
else (PSP = PS->including(CS)) endif)
Clear
Result:
[true : Boolean Close
[ ] [ ) Evaluate OCL expression
Enter OCL expression:
(let Cs: t = wimd2.getCurrentS 0
in let PS:Set(Snapshot) = CS.getPre()
in let PSQ:Set(Snapshot) = PS->select(s | wimd2.atSnapshot(s).program.mode = #Degraded) | Evaluate |
in let PSP:Set(Snapshot) = PS->including(CS)->select(s | wimd2.atSnapshot(s).waterLevel < 39)
in if (PSQ->size()>0) then (if (PSP->size()>0) Browser
then (PSQ: 1 PSP-(s.g > = PS->including(CS)-(s.getPre()->including(s)))) else false endif)
else (PSP = PS->including(CS)) endif)| Clear

Result:
[false : Boolean Close

Figure 11: Evaluation of always ... since expressions.

Compared to [14] the work presented here supports more temporal
operators.

Work that covers verification of temporal properties using UML
and OCL extensions, in contrast to the aforementioned one and our
approach, is described in [6, 9, 17]. In [6] a tool chain is presented
that the authors named the MADES approach. It combines several
well-known technologies, like a subset of the UML, the MARTE
profile and a verification tool to be able to verify embedded sys-
tems. [9] add a temporal extension to OCL based on process states.
These temporal constraints are afterwards translated to Petri nets
to be verified. ProMoBox[17] is a framework to support verifying
temporal properties in the context of domain specific modeling.
The authors state that their generic language can be integrated into
domain specific modeling languages to support temporal properties.

5 CONCLUSION

When software designers generate code from their software models,
any errors follow into the result, except it will be more expensive
to fix. The analysis approach that was discussed aims to specify
and verify temporal properties in UML-base notations, techniques,
and tools.

The contributions laid out in this paper address the second step
of our class diagram analysis method. We created TOCL and OCL
grammars that include all the rules that define their syntax. Using
ANTLR, we generated lexers and parsers for these grammars that
could create parse trees out of expressions. Additionally, we created
a TOCL metamodel by extending the OCL metamodel with TOCL
constructs and defined rules that translate TOCL metamodel com-
ponents to OCL. Finally, we created a listener-based TOCL to OCL
translator that uses the parse trees created by the TOCL parser to
create the translation.

Creating a way of translating TOCL to OCL will allow us to
analyze UML class diagrams based on the lifetime of a system by
allowing software developers to define temporal properties more
easily using TOCL. Furthermore, the creation of the TOCL parser
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and TOCL metamodel will help advance the Model-Driven Engi-
neering field by encouraging and providing the use of temporal
logic in systems.

Now that we have created a way to transform UML class dia-
grams to Snapshot Transition Models, to facilitate their analysis,
and to translate TOCL expressions to OCL, we plan to focus on
the analysis of class diagrams in our future work. The UML-based
Specification Environment has a model validator we plan to use to
conduct our analyses. Additionally, we will investigate how to opti-
mize this analysis, such as by manipulating the parameters of the
analysis. Afterward, we will work on creating a sequence diagram
that displays errors found in the analysis to users. Eventually, we
would like to package our work into a tool for software designers
to use to improve their models.
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