23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44

Transformation of TOCL Temporal Properties into OCL

Mustafa Al Lail
mustafa.allail@tamiu.edu
Texas A&M International University
Laredo, Texas, USA

Lars Hamann
lars.hamann@haw-hamburg.de
Hamburg Univ. of Applied Sciences
Hamburg, Germany

ABSTRACT

Specifying and verifying the temporal properties of UML-based
systems can be challenging. Although there exist some extensions
of OCL to support the specification of temporal properties in UML-
based notations, most of the approaches depend on using non-UML
formal formalisms such as LTL, CTL, and CTL* while transforming
the under-development UML models into non-UML model checking
frameworks for verification. This approach introduces complexities
and relies on techniques and tools that are not within the UML spec-
trum. In this paper, we show how TOCL (one OCL extension for
temporal properties specification) can be transformed into OCL for
verification purposes. Towards this end, we created a formal EBNF
grammar for TOCL, based on which a parser and a MOF metamodel
were generated for the language. Additionally, to facilitate the anal-
ysis of the TOCL properties, we formally defined transformation
rules from TOCL metamodel to OCL metamodel using QVT. Finally,
we validated the implementations of the transformation rules using
USE.

CCS CONCEPTS

« Software and its engineering — Unified Modeling Language
(UML); System modeling languages.

KEYWORDS

Temporal propeties,TOCL, OCL,Transformation, UML

ACM Reference Format:

Mustafa Al Lail, Antonio Rosales, Hector Cardenas, Lars Hamann, and Al-
fredo Perez. 2022. Transformation of TOCL Temporal Properties into OCL.

In Submission to OCL Workshop’22, October 23-25, 2022, Montreal, CA. ACM,
New York, NY, USA, 9 pages. https://doi.org/XXXXXXX XXXXXXX

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Antonio Rosales*

Hector Cardenas"
antoniorosales@dusty.tamiu.edu
hector_cardenas@dusty.tamiu.edu
Texas A&M International University
Laredo, Texas, USA

Alfredo Perez
alfredoperez@unomaha.edu
University of Nebraska at Omaha
Omaha, Nebraska, USA

1 INTRODUCTION

For Model-driven Engineering (MDE) approaches to succeed, soft-
ware designers must integrate the development process with prac-
tical techniques to improve the quality of models. If a model has
unresolved design faults, they are propagated to the code where
they can be more difficult to uncover and more expensive to re-
move. One approach to uncovering design errors is to formally
specify and analyze the temporal properties that a system has to
satisfy. Temporal properties are useful in capturing a broad range
of relevant system properties and requirements [18]. Software de-
signers can use temporal logic formalisms, (e.g., Linear Temporal
Logic (LTL) [18] and Computation Tree Logic (CTL) [8]) to formally
specify properties.

Although significant research appears in specifying and analyz-
ing properties, there is not an effective and efficient UML-based
framework that specifies and analyzes temporal properties. Most
of the current approaches depend on using non-UML formal for-
malisms such as LTL, CTL, and CTL* for specifying properties while
transforming the under-development UML models into non-UML
model checking frameworks for verification. This approach intro-
duces complexities and relies on techniques and tools that are not
within the MDE spectrum.

Figure 1 depicts the analysis approach that represents the con-
text of the research described in this paper [2, 3]. The approach

Back-end

Front-end
Snapshot Transition
Application ; Model (STM) —state
Design Class transition representation
Model (ADCM)

of behavior

Software A
designer specified in

Q

Temporal v
. | Property in | tStepZ&‘
ToCL il

Sequence Step4:

Diagram Extracting

Figure 1: An Overview of the Analysis Approach.

interpreted on

OCLProperty

Step3: Analysis

USE Model
Validator

Sequence of
Snapshot Transition —
Counterexample

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

99

100
101
102
103
104
105
106
107
108
109
110

111

116

https://orcid.org/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

exclusively uses UML-based notations, technique, and tools to ana-
lyze temporal properties. On the front-end, a UML designer creates
a UML class model for a software application and specifies some
temporal properties in TOCL (Figure 1 left). The designer then uses
the approach to analyze the system’s behavior for violation of the
properties. The first step (Figure 1 top) is to ‘unfold’ the behavior
of a class diagram by transforming it into a Snapshot Transition
Model (STM) [20]. An STM is a class model that statically represents
the behavior of a system in terms of states and transitions. As an
STM is an ordinary class diagram, it can not only model different
scenarios of system execution but also can be constrained by nor-
mal OCL expressions. The second step of the process translates a
TOCL temporal property to an OCL expression interpreted on an
STM (Figure 1 middle). The TOCL properties are translated into
OCL query expressions and constraints, which traverse the state-
transition chains, searching for any state that violates a specified
property. Given (i) a class model representing the behavior and
(if) an OCL expression constraining this behavior, we can do the
analysis using a UML static-analysis tool, which is the third step
of the approach (Figure 1 bottom-right). The approach uses the
USE Model Validator [16] to perform the analysis. If the analysis
finds a state where the system violates a given property, the process
produces a counterexample demonstrating that the system does not
uphold the respective property. We can then return this counterex-
ample to the designer as a sequence diagram or as a sequence of
state-transition (Figure 1 bottom). Given this counterexample, the
designer can examine the situation and revise and improve their
design.

The research presented in this paper aims to revise and enhance
the transformation from TOCL to OCL (step 2 in Figure 1 of the
approach) of the original work presented in [2, 3]. In particular,
the original transformation had the following drawbacks. First, the
transformation was not formally defined, but rather was based on
a collection of templates (Dwyers’ et al. patterns [11]) that can
be used to specify temporal properties in TOCL [3]. Even though
the property specification patterns are expressive to specify most
temporal properties, there are many new types of properties that
can not be specified. The second drawback of the original work is
that it has not been implemented.

In this paper, we aim to address these drawbacks. Towards this
aim, we formally define and implement general transformation
between TOCL and OCL by completing the following activities:

(1) We formally define an EBNF grammar for TOCL, based on
which we created a parser for TOCL.

(2) We extended the metamodel of OCL with the required ele-
ment in TOCL to generate a metamodel for TOCL.

(3) We formally defined a set of transformation rules between
both languages in QVTO.

(4) We implemented the transformation rules.

This paper is structured as follows. After giving and overview
of the analysis approach in this introduction, Section 2 details the
main contributions of this paper. In particular, we discuss how we
defined and created an EBNF grammar and created a parser for
TOCL, generated the TOCL metamodel, defined the transformation
rules, and implemented them. The validation of the transformation
rules is provided in Section 3. The related work is discussed and

Al Lail et al.

QVTO

TOCL ocL

Metamodel Metamodel
Transformation
Rules
Conforms Conforms
to Implementation to
TOoCL ocL
Property Property

Figure 2: TOCL to OCL Transformation Methodology.

compared to our approach in Section 4 Section 5 concludes with an
overview of the progress made and future work yet to be done.

2 TOCL TO OCL TRANSFORMATION

Figure 2 depicts the transformation methodology. The definition
of the transformation requires a source and target language. The
figure shows that we defined the transformation between the TOCL
metamodel (MM), the source language, and the OCL MM, the target
language. We formally specified the transformation rules in QVTO.
To implement the transformation, we needed an EBNF grammar for
TOCL. However, the initial syntax for TOCL was not defined using
EBNF format [21]. To facilitate parser generation, we, therefore,
created an EBNF grammar for TOCL following the specifications
of the original syntax and considering the attribute-grammar static
semantics of TOCL. We then used the ANTLR4 parser generator
to create a TOCL parser from this grammar. To create the TOCL
MM, we used the created EBNF syntax of TOCL and a text-to-
model transformation algorithm described in [5] to generate the
language’s corresponding MM. Finally, we implemented these rules
using the generated TOCL parser. In this section, we discuss how
we generated the TOCL MM, defined the QVTO transformation
rules, and provide implementations of these rules.

2.1 Creating TOCL EBNF Grammar and Parser

We created the EBNF grammar for TOCL by extending the OCL 2.4
grammar (i.e., concrete syntax) and fixing some existing ambiguities.
In this process, we also created a new parser for OCL 2.4. The
grammar that was used to generate the resulting OCL parser heavily
draws from the OCL grammar used by the UML-based Specification
Environment (USE). Recall that the analysis approach uses USE in
the back-end; therefore, when creating our OCL and TOCL parsers,
we emulate its parsing methodology while fixing the ambiguities
and defining the grammar in the ANTLR4 format. The finalized
ANTLR4 OCL 2.4 grammar was then used as a base for the TOCL
grammar.

The original syntax of TOCL in [21] was defined using math-
ematical notations as opposed to EBNF. We adapted the original
syntax by interpreting the mathematical notation while taking into
account the intended semantics of the expressions. We also applied
an attribute grammar in the form of Java actions to implement the
boolean type constraint. The impact of this attribute grammar is

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Transformation of TOCL Temporal Properties into OCL

limited as an accompanying object model is not available until the
analysis stage.

Listing 1 shows a partial EBNF grammar for TOCL that is used
to generate the TOCL parser. In general, each TOCL operator has
a corresponding production rule associated with it. Exceptions to
this are the until, since, and before operators. This is because these
operators are always preceded by either an always or sometime
expression, and are therefore treated as specialized alternatives of
those expressions. We also defined the @next operator which has
been added as an alternative in the operation call production. It is
worth noting that we use binaryOperationExp in our production
rules because it is the topmost expression in our grammar with
alternatives that allow for any OCL expression to be used as an
upheld expression for a TOCL operator expression; provided this
expression evaluates to a boolean value. Additionally, all the gram-
mar rules are annotated with their corresponding production in
the original TOCL syntax.
toclExpression[Environment env]:

| alwaysExp[$env]
sometimeExp[$env]

|
| previousExp[$env]

| alwaysPastExp[$env]
|

|

nextExp[$env]

sometimePastExp[$env]
nextOperationCallExp[$env]

)

nextExp[Environment env]: NEXT e=binaryOperationExp[$env]

{
if ($e.ctx != null && $e.ast != null) {
if (!$e.ast.getType().equals("Boolean")) {
System.out.println("Warning: 'Next' operator
applied to non-boolean expression");
}
}
};

alwaysExp[Environment env]:ALWAYS el=binaryOperationExp
[$env] (op=(SINCE | UNTIL) e2=binaryOperationExp[$env])?

|

if ($el.ctx != null && $el.ast != null) {
if (!$el.ast.getType().equals("Boolean")) {
System.out.println("Warning: 'Always'
operator applied to non-boolean expression");
}
if ($e2.ctx != null && $e2.ast != null) {
if (!$e2.ast.getType().equals("Boolean")) {
System.out.println("Warning: " + $op.text
+ " operator applied to non-boolean expression");

}

Listing 1: Partial EBNF grammar for TOCL

Based on the created EBN, we created a parser for TOCL using
ANTLR4. As we discuss later, we utilize the ANTLR4 parser to
facilitate the implementation of the transformation rules between
TOCL and OCL.

2.2 Creating TOCL Metamodel

TOCL includes a set of temporal operators that are based on Linear
Temporal Logic (LTL). As TOCL is an extension on OCL, the TOCL
MM adds temporal logic constructs to the OCL MM. There exist

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

several algorithms to create an abstract syntax model (i.e., Meta-
model) from the concrete syntax of a language (i.e, EBNF). Many
of the algorithms aim to achieve a bidirectional transformation
between instances of the abstract and concrete syntax. They do
this, for example, by employing naming conventions that retain
information about the order of properties in the concrete syntax [4].
As our aim is only to transform TOCL to OCL, there is no need for
these extra features. We decided to follow a fairly straightforward
approach proposed by Anastasakis [5], In the following, we present
the steps of the algorithm and apply them to create the TOCL MM.

e Step 1. The non-terminal symbols of a production
rule are represented as MOF classes. To apply this step,
we create a meta class for each of the 12 TOCL operator ex-
pressions, as well as one class for the @next alternative for
an operation call. Non-terminal symbols for the operator
expressions all correspond to the binaryOperation produc-
tion. We created this production in the EBNF to remove
left-recursive ambiguity in the OCL syntax, and to clearly
define the precedence between OCL operators. However,
the original definition of the TOCL syntax states that TOCL
operators can be used on any expression so long as it is of
type Boolean. Therefore, we set the abstract form of binary-
Operation to be an OclExpression, which has already been
defined in the OCL MM, and add an OCL invariant that
states OCL expressions associated with TOCL expressions
may only be boolean expressions.

e Step 2. If a terminal symbol is an identifier, it will be
represented as a MOF class and an id attribute will be
added to the class. No identifier symbols are present in
the EBNF syntax, therefore no additional MOF classes are
created in this step.

e Step 3. The optional terminal symbols of a rule are
transformed to boolean attributes of the MOF class to
which the non-terminal related to the terminal was
transformed. There are no optional terminals in the TOCL
syntax. However, because there is already an isPre attribute
defined in the OCL metaclass FeatureCallExp that the TO-
CLOperationCallExp class inherits from, we also define
isNext as a Boolean attribute for TOCLOperationCallExp.
In this way we represent both alternatives for the toclOp-
CallExp production rule.

o Step 4. The left hand side of a production rule with
alternatives is transformed to an abstract MOF class.
A number of concrete classes that extend the abstract
class are then introduced, to represent each of the al-
ternative choices. For this rule, a TOCLExpression class is
introduced as the parent class for all the alternative classes
created in Step 1 of the algorithm

o Step 5. If the right hand side [of a production rule]
does not have any alternative rules or only terminals,
an association is generated between the class repre-
senting the left hand side of the rule and the class(es)
representing the elements of the right hand side. As
discussed in Step 1, the abstract form of the binaryExpres-
sion symbol is the OperationCallExp. Here, we create a
relationship between the operator expression classes and

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

this class. The rule states that: The association ends of the
classes representing the left hand side of the rule, are non-
navigable, while the association ends of the classes on the
right hand side are navigable. Multiplicities of the associ-
ation ends depend on the multiplicity of the symbols in
the grammar. Therefore, the type of the relationship estab-
lished between classes is a composition relationship. The
final stipulation of the sule is that: If the multiplicity of
an association end is zero to many or one to many, it is
always represented by an ordered association end. Because
the relationships between the OperationCallExp class and
the TOCL operator classes are strictly one to one, we do
not take further action.

o Step 6. If all the right hand side parts of a rule are
alternatives and each alternative only has terminals
as its elements, the class on the left hand side of the
rule is depicted as an enumeration class and each
alternative terminal is represented as an enumeration
literal.

No such rule exists in the TOCL grammar, therefore no
enumerations are created.

o Step 7.Elements of the concrete syntax (e.g. braces,
parentheses) are not transformed to any element of
the MOF abstract syntax. We do not transform any of
the elements of the concrete syntax.

A diagram of the resulting TOCL MM is shown in Figure 3.

e [H

Class diagram ::

AlwaysLntilExp AlwaysPastExp | | MextExp
N

AlwaysExp OCt Expression KH OperationCallExp
FAN

AlwaysSinceExp

SometimeSinceExp TOCLOperatorexp H > TOCLEXpression
SormetimeExp k\

TOCLOperationCallExp
ishext . Boaolean

‘ SometimeBeforeExp || SometimePastExp ‘ |PrevmusExp ‘
L 1| J b |

M ¢ ¢

Figure 3: The TOCL MOF metamodel.

2.3 QVTO Transformation Rules

Once we have both the TOCL MM and the OCL MM, we can employ
QVTO to formally define the transformation rules between the two
languages. As OCL expressions are usually define on class diagram,
we include the UML class diagram MM as it is necessary to access
UML properties of constructs in OCL MM, i.e, their type. For a
similar reason, we include the STM MM (not shown or described in
this paper) because the translations of TOCL operator expressions
into OCL use constructs defined within a STM.

As an example we explore the QVTO transformation rule for a
next operator, as shown in Listing 2.

Al Lail et al.

1 mapping NextExp::NextExp20CLExpression ()
OperationCallExp {
var getSnapshotCall = new OperationCallExp(getSnapshot
, selfExp.clone(), null);
var getNextCall := new OperationCallExp(getNext,
getSnapshotCall, null);
4 source := getNextCall;
referredOperation := snapSat.oclAsType(EObject);
6 argument := self.upheldExp.oclAsType(OCLExpression);

Listing 2: QVTO rule for the TOCL next operator.

Based on the rule above, to create an OCL translation for the
next expression, we first instantiate a self expression that represents
the self call at the beginning of the expression. Next, we create an
OperationCallExp instance corresponding to the getCurrentSnap-
shot() call. We also set the source of this expression to be the self
expression we defined previously. Then, we create another instance
of OperationCallExp that represents the call to the getNext() op-
eration, and set its source to be the object representing the call to
getCurrentSnapshot(). Finally, we instantiate an OperationCallExp
which represents the sat(P) operation call. We set its source to be
the previously defined representation of the getNext() call, then
return the resulting object.

As can be seen in Listing 2, there exist some OCL query opera-
tions such as getCurrentSnapshot() and getNext(). There operations
are defined in the context of the STM diagram that the OCL ex-
pressions are transformed and evaluated on. The STM MM also
includes constraints and operations that facilitate the specification
and analysis of temporal properties. The operations (called traversal
operations) allow for the traversal of system states. For example,
the getNext() operation returns the next state, and the getPost()
operation returns all succeeding system states. The constraints en-
sure the creation of valid scenarios representing system behavior.
For instance, we define a constraint that prevents cyclic behavior.
There are many other traversal operations and constraints that are
defined in the context of the STM that we do not include here.

Another example of a QVTO rule that defines the transformation
for the always operator is presented in Listing 3.

1 mapping AlwaysExp::AlwaysExp20CLExpression()
IteratorExp {

2 var getSnapshotCall := new OperationCallExp(
getSnapshot, selfExp.clone(), null);

3 var CS := new OCL::Variable(getSnapshotCall);

4 var letl := new LetExp(CS, result);

5 var getPostCS := new OperationCallExp(getPost, new
VariableExp(CS), null);

var includingCS := new OperationCallExp(including,

getPostCS, OrderedSet{new VariableExp(CS)});

7 var sVar := new OCL::Variable(null);

8 result.oclAsType(NamedElement).name := "forAll";

9 iterator := sVar;

10 source := includingCs;
11 body := self.upheldExp.oclAsType(OCLExpression);

Listing 3: QVTO rule for the TOCL always operator.

We formally define QVTO transformation rules to all 12 TOCL
operators in a similar manner.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461

463

464

465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

Transformation of TOCL Temporal Properties into OCL

No. | TOCL Operator OCL Translation

1 next P self.getCurrentSnapshot().getNext().sat(P)

2 always P let CS:Snapshot = self.getCurrentSnapshot() in CS.getPost()

->including(CS)->forAll(s | s.sat(P))

3 always P since Q let CS:Snapshot = self.getCurrentSnapshot() in let LSQ =
CS.getPre()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(LSQ.isDefined()) then (CS.getPre()->including(CS)

-> LSQ.getPre())->including(LSQ)->forAll(s | s.sat(P)) else
CS.getPre()->forAll(s | s.sat(P)) endif

4 always P until Q let CS:Snapshot = self.getCurrentSnapshot() in let FSQ =
CS.getPost()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(FSQ.isDefined()) then (FSQ.getPre()-CS.getPre())->forAll(s |
s.sat(P) else CS.getPost()->including(CS)->forAll(s | s.sat(P)) endif

5 sometime P let CS:Snapshot = self.getCurrentSnapshot() in CS.getPost()

->including(CS)->exists(s | s.sat(P))

6 sometime P since Q let CS:Snapshot = self.getCurrentSnapshot() in let LSQ =
CS.getPre()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(LSQ.isDefined()) then (CS.getPre()->including(CS) ->
LSQ.getPre())->including(LSQ)->exists(s | s.sat(P)) else
CS.getPre()->exists(s | s.sat(P)) endif

7 sometime P before Q let CS:Snapshot = self.getCurrentSnapshot() in let FSQ =
CS.getPost()->select(s | s.sat(Q))->asOrderedSet()->first() in if
(FSQ.isDefined()) then (FSQ.getPre()-CS.getPre())->exists(s |
s.sat(P)) else CS.getPost()->including(CS)->exists(s | s.sat(P)) endif

8 previous P let CSPrev:Snapshot = self.getCurrentSnapshot().getPrevious() in

CSPrev.isDefined() implies CSPrev.sat(P)

9 alwaysPast P self.getCurrentSnapshot().getPre()->forAll(s | s.sat(P))

10 sometimePast P self.getCurrentSnapshot().getPre()->exists(s | s.sat(P))

11 P.o@next(Ai,...,An) let NT = P.getCurrentSnapshot().nextT
in NT.oclIsTypeOf(w) and (let NT = NT.oclAsType(w)
in NT.transitionContext = P and NT.parameter; = Ay and ... and

NT.parameter, = An

12 P.o@pre(A,...,An) let PT = P.getCurrentSnapshot().beforeT
in PT.ocllsTypeOf(w) and (let PT = PT.oclAsType(m)
in PT.transitionContext = P.getPrevious() and PT.parameter; =

Aj[.getPrevious()] and ... and PT parameter, = Aq[.getPrevious()]

Figure 4: Translation of TOCL operators to OCL.

2.4 Implementation of TOCL to OCL
Transformation

We implemented the transformation as a Java code built on the
TOCL parser we created using ANTLR4 listeners. The listeners
traverse the parse tree of a TOCL expression and produce the cor-
responding OCL expression.

Two reasons encouraged us to do this. First, it is more efficient
to use the existing functionality of the generated parser than it
would be to create external additional code that must communicate
with the parser to perform the transformation. Second, based on
our experience, the integration of the transformation code into an
analysis tool will be significantly more straightforward. As such,
the transformation from TOCL to OCL is implemented overriding
generated listener methods of the ANTLR4 TOCL parser. To use
these rules we walk the parse tree generated by the TOCL parser.

To transform TOCL expressions, we defined translations for
TOCL operators to OCL 4. To create these translations, we utilized
some important query operations. Method getCurrentSnapshot()
gets the snapshot associated with an object in the "current state"
or the state where the expression is being evaluated. The getNext()
and getPrevious() operations when applied to a snapshot get the
snapshot in the next state and previous state, respectively. When
applied to an object, getNext() and getPrevious() get the correspond-
ing object in the next and previous state, respectively. Similarly,

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

operations getPre() and getPost() get the collection of all snapshots
before and after a given snapshot in a sequence of states. Addition-
ally, the sat(expr) operation evaluates whether a snapshot satisfies
a given boolean expression expr. For example, the next P operator
gets the current snapshot of an object, then gets the next snapshot,
and finally checks if that next snapshot satisfies expression P. If it
is satisfied, the expression evaluates to true.

Note the use of the sat() operation in the implementations of the
operator in the OCL expressions. The operation can be implemented
as a ‘built-in’ operation in USE and interpreted in Java in the back-
end. A drawback of this approach is that the sat() operation will
not be reusable by other OCL tools. A better approach is to provide
an OCL operation that can be imported and used by any OCL tool.

After defining these translations, we created rules for them using
listeners. These rules take the OCL translation of each TOCL oper-
ator and simply replace the appropriate parts with the children of
the corresponding parse tree node. For instance, when translating
an always expression, we replace P in ‘sat(P)’ with the child at
index 1, which corresponds to the expression to be evaluated. We
do this using the getOCL(ParseTree ctx) operation, which gets the
text associated with node ctx. In addition, we also keep track of the
original TOCL version of the expression in the variable origTOCL.
After the translation, we push both the translated OCL expression
and the original TOCL expression into a stack, which will be popped
at the end of traversing the entire parse tree. Figure 5 shows an
example of the implementation of the the TOCL always expression
using an ANTLRA4 listener.

String origTocl = tokens.getText(ctx);
oclTranslation = "let CS:Snapshot = self.getCurrentSnapshot()
in CS.getPost()->including(CS)->forAll(s | s.sat("+getOCL(ctx.getChild(1))+"))";
stack.push(oclTranslation);
stack.push(origTocl);

Figure 5: ANTLR4 listener implementation of always rule.

Once the listener has visited every node within a tree, it finally
visits the root where it creates the string that is the result of the
OCL translation. Since TOCL is an extension of OCL, many of
the constructs are the same and should be directly mapped in a
translation. Thus, first, we store the token stream in the variable
tokens. The operation getText(ctx) concatenates the lexemes of
the tokens that descend from the node represented by ctx. Next,
we pop every translated OCL expression and the corresponding
original TOCL expression from the aforementioned stack. Then,
we replace every instance of the original TOCL expression with its
equivalent OCL translation using the replace(CharSequence target,
CharSequence replacement) operation. Finally, after replacing the
translated TOCL expressions, we use the setOCL(ParseTree ctx,
String s) operation to set this finished translated OCL to the root of
the parse tree.

3 VALIDATION OF THE TRANSFORMATION
RULES

For our TOCL to OCL translator to be useful, the translations of the

TOCL operators must work as intended. This section demonstrates

that the generated OCL expressions, from TOCL transformation,
are valid constraints in their corresponding STM class diagrams.

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

592

593

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA Al Lail et al.
Class diagram Class diagram e &
=

PumpControlier = napsnota i | erores nextT 0.1
ump Snapshot | { Transition K
ready : Boolean 1V st rexs beforeT 0.1
circulating : Boplean| LEantraller pumpt ready . Boolean pump| -
Pp——— capacity | Real pumpcantraller fy
« » OpenPum FumpControl
valveState r P pump| mode ; State ety Booean |1 punp| e oo
ClosePurnpi) 1 [|reasy capacity” Real
1 [pump circulating : Boolean controfler porapy e
open PG s
" TRC pump [SePeNCIOmEE Iteger transitionContext : SteamBailer]
ciosed program 1 program SteamBoiler elebl: V7wt | e
1 open
i ready : Boolean Josed SteamBoiler [conraiPragram_startoperation ||
«enumeration» ControlProgram hy aees controlpragram |1 program PCYF = e fransiionContext - ControlPrograr
Mode mode : Mode EaFlaE\ty IR “E”u;/?s;:tm”” ot ;D;VD‘WDWEW caparty Real P Controller_OpenPi
minimalNormal : Real mode Node minmaNormal - Real
MNarmal ready : Boolean) Narmal ready : Boolean maximalNormal - Real
Initialization failureDetected : Boolean program maximaltlormal : Real ‘[’)“E“ar‘:s:;'” |- | faurepetectea - Bostean progam | maimumincrease : Real | S bD
Degraded wimndF ailure : Boolean maximumlncrease Rﬁf\ Regm W"“;FFE‘”“'E BEDE"‘EBH T spl | madmumDecrease : Real Uansm;cmm ;WFCDWZHE
: smoaiure - Booean ALt Real [ivanstionContext - PumpCaniralie]
Rescue smdFailure : Boolean f maximumbecrease | Real EmergencyStop pumpEaier Boslean madmallimit: Real
minimalLirnit : Real «enumeration» pumpControllerFailure : BooleanP "M, | vaivecpen : valvestate
EMETHESABYETT) [PUmSPEEr - ETEEn State snapshotOhjectid : Integer 2| snapsnotosjectis Integer
1 sh | SN) 0
<enumerations | PUmRControllerFailure - Booles] maximallimit - Real = program |) ; ‘Sh
StartOperation() valveOpen : valveState ot st 1 smd Ty 1 | vimd
State P 1 5h) SteamMeasurementDevice WaterLevelMeasurementDevice
el program 1 program Qpenvalve() L. [ready Boolean ready - Boolean L]
1sp steammeasurementdevice | evaporationRate | Real waterlevel : Real waterlevelmeasurementdevice
off snapshotOhjectid : Integer snapshotObjectid : Integer
1
smd 1 smd wimnd™, 1 1 wimd
SteamMeasurementDevice waterLevelMeasurementDevice
Figure 7: The STM for the SBCS class diagram in Fig. 6
ready : Boolean ready : Boolean
evaporationRate : Real waterLevel : Real
getsteam() getLevel()

Figure 6: The class diagram for SBCS.

This section also puts the TOCL to OCL transformation back into
the context of the analysis approach in Figure 1. To show case
the validity of our transformation, we applied the translation on
the Steam Boiler Control System (SBCS), shown in Figure 6. The
SBCS specification problem Abrial et al. [1] has been used exten-
sively to assess the effectiveness of many software specification
and verification approaches.

By applying the algorithm to produce the STM of the class dia-
gram depicted in Figure 6) (e.g., Step 1 of the analysis approach in
Figure 1), we obtain the diagram in Figure 7.

We manually created an instance of the STM of the SBCS in Fig-
ure 7 to show the correctness of our implementation of the TOCL
to OCL transformation rules and the validity of the obtained OCL
expressions. Note that this figure shows one possible execution of
the system. Using this figure, we evaluated all the TOCL operators
translation. The informal validation of the transformation is done
as follows. First, we create a TOCL temporal property and man-
ually evaluate it based on the figure and indicated the expected
evaluation result. In the second steps, we automatically generate
the corresponding OCL expression using the implementation of our
transformation. Finally, we use USE to evaluate the generated OCL
expression on the provided scenario in Figure 8. We show that the
expected evaluation of the expression matches the result produced
by USE. We follow this procedure for the evaluation of all TOCL
operators.

Next is a unary operator of the format next P that evaluates
whether the expression P is true in the next state. The expressions
in figure 9 are evaluated on the object diagram in fig 8 and produce
the expected result by USE.

Always is a unary operator of the format always P that evalu-
ates whether the expression P is true in all future states including
the present one. In a similar way, the expressions in figure 10 are

evaluated on the object diagram in fig 8 and produce the expected
result by USE.

Always ... since is a binary operator of the format always P since
Q that evaluates whether the expression P is true in all past states,
including the current state, that occur after a state that satisfies
expression Q. If no past state satisfies Q, then P should be true in
all past states. In a similar way, the expressions in figure 11 are
evaluated on the object diagram in fig 8 and produce the expected
result by USE. The first expression is an example of when Q is
defined while the second one is an example of when Q is not defined.

The validation of the correctness of the remaining operators in
Figure 4 is performed in a similar manner.

4 RELATED WORK

Enriching OCL with temporal logic is a research objective that has
been tackled by many researchers who have produced a variety of
approaches. Some approaches, such as the one presented in [19],
extend OCL with temporal operators from logic systems such as
LTL. Others propose a pattern-based specification approach that is
geared towards providing an accessible way for designers to specify
system properties without being highly familiar with temporal
logic systems [10, 15, 17] Previous works have also proposed a
semantic foundation for temporal OCL extensions without defining
a concrete syntax for specific temporal expressions. For instance,
the approach in [7] proposes an extension of OCL based on mu-
calculus that provides semantics that could be used in conjunction
with an appropriate syntax for temporal expressions. Researchers
in [12] present an OCL extension based on CCTL semantics and
define a UML profile for the specification of temporal constraints on
statechart diagrams. In this section, we compare these approaches
to our work.

Temporal properties in OCL are covered in a number of publi-
cations. LTL operators for OCL were defined in [21], but an imple-
mentation was left out. The work presented in [12] focuses on the
integration of time bounds in connection with temporal constructs
and state machines which "enables modelers to specify behavioral

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659

660

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

Transformation of TOCL Temporal Properties into OCL

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

transitionContext=pc1

00 2 Object diagram
| cpd:ControlProgram | pump1:Pump pump2:Pump cp3:ControlProgram sh1:SteamBoiler
ready=true modk nitialization ready=true di y D r y
capacity=98.5 ready=false |_| capacity=100.0 capacity=99.0 || ready=true capacity=99.5
minimalNormal=100.0 failureD ue] f mode=#off | failureD; d=fal ini mal=100.0
i =96.5 || wimdF fal Objectld=6 Objectld=6 | | wimdFail H i mal=96.5
.5 | | smdFailu . ’ smdFailure=true maximumincrease=100.0
i 0| | pump |_pe2:PumpControlier H ;s Failer=true maximumDecrease=99.0
minimalLimit=100.0 pumpControllerFailure=true | | ready=false ready=true pumpControllerFailure=false || minimalLimit=99.5
i imit=97.5 snapshotObjectld=1 cire ing=f circulating=false snapshotObjectid=1 maximalLimit=97.0
valveOpen=#open snapshotObjectld=10 Objectld=10 valveOpen=#closed
snapshotObjectld=3 » " % " snapshotObjectld=3
| smd1:SteamMeasurementDevice | | sma2:SteanMeasuienentDevice | T
wimd1:WaterL evelMeasurementDevice ready=false ready=false wimd2:Waterl evelMeasurementDevice
[evaporationRate=67.0 evaporationRate=67.5 ready=false
x:g[:liag . snapshotObjectld=5 snapshotObjectld=5 e er ey 2anlo
snapshotObjectld=8 snapshotObjectld=8

transitionContext=pc3

ready=false smd4:SteamMeasurementDevice | smd3:SteamMeasurementDevice | ready=false
waterLevel=20.5 ready=true ready=false waterLevel=20.0
snapshotObjectld=8 evaporationRate=99.5 evaporationRate=100.0 snapshotObjectld=8
L snapshotObjectld=5 snapshotObjectld=5
| shd:SteamBoiler | T - = b sba:SteamBoiler
e ped-PumpGontraller ’wmm{ pod:PumpController Feodl
capacity=98.0 | cot:ControlProgram W eady=false transitionContext=cp1 dy=fal cp2:Control pacity=98.5
ini mal=98.0 mal i i i i itializati ini mal=100.0
maximalNormal=96.5 ready=true snapshotObjectld=10 snapshotObjectld=10 ready=true maximalNormal=98.5
maximumincrease=100.0 || failureDetected=true T ot failureDs n 100.0
i .5 || wimdFai | pumpS:Pump | wimdFailure=true maximumDecrease=100.0
minimalLimit=100.0 smdFailure=true ready=false ready=false | smdFailure=true minimalLimit=100.0
maximalLimit=100.0 pumpFailer=true capacity=100.0 Bac] 5 pumpFailer=true maximalLimit=96.5
valveO| pumpC ilure=true de=# mode=#on pumpControllerFailure=true || valveOpen=#open
bjectld Objectid=1 ji Objectld=1 f
Figure 8: Scenario: An instance of the STM SBCS in Fig. 7
Expression in TOCL on Expression in OCL on STM of the | Expected Evaluation Expression in TOCL on Expression in OCL on STM of the Expected
SBCS Class Diagram SBCS Result SBCS Class Diagram SBCS Evaluation
N " — Result
next sp2.capacity = 98.0 sp2.getNext().capacity = 98.0 True
- o - always pc2.circulating = false | let CS:Snapshot = True
next sp2.capacity = 100.0 sp2.getNext().capacity = 98.0 False pumpeontroller3.getCurrentSnapshot() in
CS.getPost()->including(CS)->forAll(s |
pe2.atSnapshots(s).circulating= false)
[] @ Evaluate OCL expression N
: always pumpl.mode = #off let CS:Snapshot = False
E:;e" ONCL expres§|on:98 . | Bvaluate | pump.getCurrentSnapshot() in
‘5 gethextO capacity = 38 ‘ B CS.getPost()->including(CS)->forAll(s |
Result: rowser pump1.atSnapshots(s).mode=#off)
‘true :Boolean ‘
Clear
+ Bl
[YeX) Evaluate OCL expression e0e® Evaluate OCL expression
Enter OCL expression: _ Enter OCL expression: _
— let CS: = pc2.getCuri hot()
bb2.getNext0.capacity = 1000 . in C5.getPost0->including(CS)->ForAll(s | pe2latSnapshot(s).circulating = false) Browser
Result: rowser .
false : Boolean Result: Clear
‘ Clear true : Boolean
4
& . nl
o0 @ Evaluate OCL expression
Flgure 9: Evaluation of next expressions. Enter OCL expression: | Evaluate |
let CS:Snapshot = pumpl.getCurrentSnaps hot()
in CS.getPost0)->including(CS)->forAll(s | pump1.atSnapshot(s).mode = #off) Browser
Result:
. . . " p. false : Boolean Clear
state-oriented real-time constraints". An approach specifying tem- S

poral properties without the need to know LTL or CTL but also
a detailed comparison of different temporal extensions to OCL is
described in [15]. The authors show an implementation on top of
Elipse MDT OCL. In [19] OCL is extended in in simlar way to [21]
to define Linear Temporal OCL (LT-OCL) formulas over states.
An approach that also uses translation to plain UML and OCL
is the filmstrip model [13, 14]. Similar to our snapshot transition
model, UML models enriched with TOCL expressions are translated

Figure 10: Evaluation of always expressions.

into a so-called filmstrip model that is verified by the USE model
finder. The translation is also realized as a USE plugin to hide
the details of the underlying filmstrip model from the modeler.

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

[] ® Evaluate OCL expression
Enter OCL -
(let CS:Snapshot = wimd2.getC 0
in let PS:Set(Snapshot) = CS.getPre()
in let PSQ:Set(Snapshot) = PS->select(s | wimd2 atSnapshot(s).program.mode = #Normal)
in let PSP:Set(Snapshot) = PS->including(CS)->select(s | wimd2.atSnapshot(s) waterLevel < 39) ~ Evaluate
in if (PSQ->size()>0) then (if (PSP->size(>0)
then (PSQ->exists(s | PSP~(s.getPre()->including(s)) = PS->including(CS)~(s.getPre()->including(s)))) else false endif) Browser
else (PSP = PS->including(CS)) endif)
I Clear
Result:
[true Boolean Close
S
e0e® Evaluate OCL expression
Enter OCL expression:
(let C: = wimd2.getCurr
in let PS:Set(Snapshot) = CS.getPre()
in let PSQ:Set(Snapshot) = PS->select(s | wimd2.atSnapshot(s).program.mode = #Degraded) | Evaluate
in let PSP:Set(Snapshot) = PS->including(CS)->select(s | wimd2.atSnapshot(s) waterLevel < 45)
in if (PSQ->size()>0) then (if (PSP->size()>0) Browser
then (PSQ->exists(s | PSP-(s.getPre()->including(s)) = PS->including(CS)-(s.getPre()->including(s))) else false endif)
else (PSP = PS->including(CS)) endif)
Clear
Result:
[true : Boolean Close
[] [) Evaluate OCL expression
Enter OCL expression:
(let Cs: t = wimd2.getCurrentS 0
in let PS:Set(Snapshot) = CS.getPre()
in let PSQ:Set(Snapshot) = PS->select(s | wimd2.atSnapshot(s).program.mode = #Degraded) | Evaluate |
in let PSP:Set(Snapshot) = PS->including(CS)->select(s | wimd2.atSnapshot(s).waterLevel < 39)
in if (PSQ->size()>0) then (if (PSP->size()>0) Browser
then (PSQ: 1 PSP-(s.g > = PS->including(CS)-(s.getPre()->including(s)))) else false endif)
else (PSP = PS->including(CS)) endif)| Clear

Result:
[false : Boolean Close

Figure 11: Evaluation of always ... since expressions.

Compared to [14] the work presented here supports more temporal
operators.

Work that covers verification of temporal properties using UML
and OCL extensions, in contrast to the aforementioned one and our
approach, is described in [6, 9, 17]. In [6] a tool chain is presented
that the authors named the MADES approach. It combines several
well-known technologies, like a subset of the UML, the MARTE
profile and a verification tool to be able to verify embedded sys-
tems. [9] add a temporal extension to OCL based on process states.
These temporal constraints are afterwards translated to Petri nets
to be verified. ProMoBox[17] is a framework to support verifying
temporal properties in the context of domain specific modeling.
The authors state that their generic language can be integrated into
domain specific modeling languages to support temporal properties.

5 CONCLUSION

When software designers generate code from their software models,
any errors follow into the result, except it will be more expensive
to fix. The analysis approach that was discussed aims to specify
and verify temporal properties in UML-base notations, techniques,
and tools.

The contributions laid out in this paper address the second step
of our class diagram analysis method. We created TOCL and OCL
grammars that include all the rules that define their syntax. Using
ANTLR, we generated lexers and parsers for these grammars that
could create parse trees out of expressions. Additionally, we created
a TOCL metamodel by extending the OCL metamodel with TOCL
constructs and defined rules that translate TOCL metamodel com-
ponents to OCL. Finally, we created a listener-based TOCL to OCL
translator that uses the parse trees created by the TOCL parser to
create the translation.

Creating a way of translating TOCL to OCL will allow us to
analyze UML class diagrams based on the lifetime of a system by
allowing software developers to define temporal properties more
easily using TOCL. Furthermore, the creation of the TOCL parser

Al Lail et al.

and TOCL metamodel will help advance the Model-Driven Engi-
neering field by encouraging and providing the use of temporal
logic in systems.

Now that we have created a way to transform UML class dia-
grams to Snapshot Transition Models, to facilitate their analysis,
and to translate TOCL expressions to OCL, we plan to focus on
the analysis of class diagrams in our future work. The UML-based
Specification Environment has a model validator we plan to use to
conduct our analyses. Additionally, we will investigate how to opti-
mize this analysis, such as by manipulating the parameters of the
analysis. Afterward, we will work on creating a sequence diagram
that displays errors found in the analysis to users. Eventually, we
would like to package our work into a tool for software designers
to use to improve their models.

ACKNOWLEDGMENTS

This work was partially supported by NSF under grant award
1950416.

REFERENCES

[1] Jean-Raymond Abrial, Egon Bérger, and Hans Langmaack (Eds.). 1996. Formal
Methods for Industrial Applications, Specifying and Programming the Steam Boiler
Control (the book grow out of a Dagstuhl Seminar, June 1995). Lecture Notes in
Computer Science, Vol. 1165. Springer. https://doi.org/10.1007/BFb0027227

[2] Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray. 2013.

An Approach to Analyzing Temporal Properties in UML Class Models. In Pro-

ceedings of the 10th International Workshop on Model Driven Engineering, Ver-

ification and Validation MoDeVVa 2013, co-located with 16th International Con-

ference on Model Driven Engineering Languages and Systems (MoDELS 2013),

Miami, Florida, USA, October 1st, 2013 (CEUR Workshop Proceedings, Vol. 1069),

Frédéric Boulanger, Michalis Famelis, and Daniel Ratiu (Eds.). CEUR-WS.org,

77-86. http://ceur-ws.org/Vol-1069/11-paper.pdf

Mustafa Al-Lail, Ramadan Abdunabi, Robert B. France, and Indrakshi Ray. 2013.

Rigorous Analysis of Temporal Access Control Properties in Mobile Systems. In

2013 18th International Conference on Engineering of Complex Computer Systems,

Singapore, July 17-19, 2013. IEEE Computer Society, 246-251. https://doi.org/10.

1109/ICECCS.2013.43

[4] Marcus Alanen, Ivan Porres, Turku Centre, and Computer Science. 2003. A
Relation Between Context-Free Grammars and Meta Object Facility Metamodels.
Technical Report.

[5] Kyriakos Anastasakis. 2009. A Model Driven Approach for the Automated Analysis
of UML Class Diagrams. Ph.D. Dissertation. School of Computer Science.

[6] Luciano Baresi, Gundula Blohm, Dimitrios S. Kolovos, Nicholas Drivalos Ma-

tragkas, Alfredo Motta, Richard F. Paige, Alek Radjenovic, and Matteo Rossi.

2015. Formal verification and validation of embedded systems: the UML-

based MADES approach. Softw. Syst. Model. 14, 1 (2015), 343-363. https:

//doi.org/10.1007/s10270-013-0330-z

Julian C. Bradfield, Juliana Kiister Filipe, and Perdita Stevens. 2002. Enriching

OCL Using Observational Mu-Calculus. In Fundamental Approaches to Software

Engineering, 5th International Conference, FASE 2002, held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble,

France, April 8-12, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2306),

Ralf-Detlef Kutsche and Herbert Weber (Eds.). Springer, 203-217. https://doi.

0rg/10.1007/3-540-45923-5_14

[8] Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of

Synchronization Skeletons Using Branching-Time Temporal Logic. In Log-

ics of Programs, Workshop, Yorktown Heights, New York, USA, May 1981 (Lec-

ture Notes in Computer Science, Vol. 131), Dexter Kozen (Ed.). Springer, 52-71.

https://doi.org/10.1007/BFb0025774

Benoit Combemale, Xavier Crégut, Pierre-Loic Garoche, Xavier Thirioux, and

Francois Vernadat. 2007. A Property-Driven Approach to Formal Verification of

Process Models. In Enterprise Information Systems, 9th International Conference,

ICEIS 2007, Funchal, Madeira, Portugal, June 12-16, 2007, Revised Selected Papers

(Lecture Notes in Business Information Processing, Vol. 12), Joaquim Filipe, José

Cordeiro, and Jorge Cardoso (Eds.). Springer, 286-300. https://doi.org/10.1007/

978-3-540-88710-2_23

Frédéric Dadeau, Elizabeta Fourneret, and Abir Bouchelaghem. 2019. Temporal

property patterns for model-based testing from UML/OCL. Softw. Syst. Model.

18, 2 (2019), 865-888. https://doi.org/10.1007/s10270-017-0635-4

—_
A

3

[

[10

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

https://doi.org/10.1007/BFb0027227
http://ceur-ws.org/Vol-1069/11-paper.pdf
https://doi.org/10.1109/ICECCS.2013.43
https://doi.org/10.1109/ICECCS.2013.43
https://doi.org/10.1007/s10270-013-0330-z
https://doi.org/10.1007/s10270-013-0330-z
https://doi.org/10.1007/3-540-45923-5_14
https://doi.org/10.1007/3-540-45923-5_14
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-540-88710-2_23
https://doi.org/10.1007/978-3-540-88710-2_23
https://doi.org/10.1007/s10270-017-0635-4

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Transformation of TOCL Temporal Properties into OCL

[11]

[12]

[13]

[14]

[15]

(16]

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
Property Specifications for Finite-State Verification. In Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA,
May 16-22, 1999, Barry W. Boehm, David Garlan, and Jeff Kramer (Eds.). ACM,
411-420. https://doi.org/10.1145/302405.302672

Stephan Flake and Wolfgang Miiller. 2003. Formal semantics of static and tem-
poral state-oriented OCL constraints. Softw. Syst. Model. 2, 3 (2003), 164-186.
https://doi.org/10.1007/s10270-003-0026-x

Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and Robert B.
France. 2014. From Application Models to Filmstrip Models: An Approach to
Automatic Validation of Model Dynamics. In Modellierung 2014, 19.-21. Mirz
2014, Wien, Osterreich (LNI, Vol. P-225), Hans-Georg Fill, Dimitris Karagiannis,
and Ulrich Reimer (Eds.). GI, 273-288. https://dl.gi.de/20.500.12116/17056
Frank Hilken and Martin Gogolla. 2016. Verifying Linear Temporal Logic
Properties in UML/OCL Class Diagrams Using Filmstripping. In 2016 Euromi-
cro Conference on Digital System Design, DSD 2016, Limassol, Cyprus, August
31 - September 2, 2016, Paris Kitsos (Ed.). IEEE Computer Society, 708-713.
https://doi.org/10.1109/DSD.2016.42

Bilal Kanso and Safouan Taha. 2012. Temporal Constraint Support for OCL. In
Software Language Engineering, 5th International Conference, SLE 2012, Dresden,
Germany, September 26-28, 2012, Revised Selected Papers (Lecture Notes in Com-
puter Science, Vol. 7745), Krzysztof Czarnecki and Gérel Hedin (Eds.). Springer,
83-103. https://doi.org/10.1007/978-3-642-36089-3_6

Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. 2011. Extensive Vali-
dation of OCL Models by Integrating SAT Solving into USE. In Objects, Mod-
els, Components, Patterns - 49th International Conference, TOOLS 2011, Zurich,
Switzerland, June 28-30, 2011. Proceedings (Lecture Notes in Computer Science,
Vol. 6705), Judith Bishop and Antonio Vallecillo (Eds.). Springer, 290-306. https:

[17]

(18]

=
2

[20]

[21]

Submission to OCL WS’22, October 23-25, 2022, Montreal, CA

//doi.org/10.1007/978-3-642-21952-8_21

Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe,
and Manuel Wimmer. 2014. ProMoBox: A Framework for Generating Domain-
Specific Property Languages. In Software Language Engineering - 7th International
Conference, SLE 2014, Visteras, Sweden, September 15-16, 2014. Proceedings (Lecture
Notes in Computer Science, Vol. 8706), Benoit Combemale, David J. Pearce, Olivier
Barais, and Jurgen J. Vinju (Eds.). Springer, 1-20. https://doi.org/10.1007/978-3-
319-11245-9_1

Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. IEEE Computer Society, 46-57. https://doi.org/10.1109/SFCS.
1977.32

Michael Soden and Hajo Eichler. 2009. Temporal Extensions of OCL Revisited. In
Model Driven Architecture - Foundations and Applications, 5th European Conference,
ECMDA-FA 2009, Enschede, The Netherlands, June 23-26, 2009. Proceedings (Lecture
Notes in Computer Science, Vol. 5562), Richard F. Paige, Alan Hartman, and Arend
Rensink (Eds.). Springer, 190-205. https://doi.org/10.1007/978-3-642-02674-4_14
Lijun Yu, Robert B. France, and Indrakshi Ray. 2008. Scenario-Based Static
Analysis of UML Class Models. In Model Driven Engineering Languages and
Systems, 11th International Conference, MoDELS 2008, Toulouse, France, September
28 - October 3, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5301),
Krzysztof Czarnecki, lleana Ober, Jean-Michel Bruel, Axel Uhl, and Markus
Volter (Eds.). Springer, 234-248. https://doi.org/10.1007/978-3-540-87875-9_17
Paul Ziemann and Martin Gogolla. 2003. OCL Extended with Temporal Logic. In
Perspectives of Systems Informatics, 5th International Andrei Ershov Memorial Con-
ference, PSI 2003, Akademgorodok, Novosibirsk, Russia, July 9-12, 2003, Revised Pa-
pers (Lecture Notes in Computer Science, Vol. 2890), Manfred Broy and Alexandre V.
Zamulin (Eds.). Springer, 351-357. https://doi.org/10.1007/978-3-540-39866-0_35

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/s10270-003-0026-x
https://dl.gi.de/20.500.12116/17056
https://doi.org/10.1109/DSD.2016.42
https://doi.org/10.1007/978-3-642-36089-3_6
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-642-21952-8_21
https://doi.org/10.1007/978-3-319-11245-9_1
https://doi.org/10.1007/978-3-319-11245-9_1
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-02674-4_14
https://doi.org/10.1007/978-3-540-87875-9_17
https://doi.org/10.1007/978-3-540-39866-0_35

	Abstract
	1 Introduction
	2 TOCL to OCL Transformation
	2.1 Creating TOCL EBNF Grammar and Parser
	2.2 Creating TOCL Metamodel
	2.3 QVTO Transformation Rules
	2.4 Implementation of TOCL to OCL Transformation

	3 Validation of The Transformation Rules
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

