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Abstract

Macroecology research seeks to understand ecological phenomena with causes

and consequences that accumulate, interact, and emerge across scales spanning

several orders of magnitude. Broad-extent, fine-grain information (i.e., high spatial

resolution data over large areas) is needed to adequately capture these cross-scale

phenomena, but these data have historically been costly to acquire and process.

Unoccupied aerial systems (UAS or drones carrying a sensor payload) and the

National Ecological Observatory Network (NEON) make the broad-extent,

fine-grain observational domain more accessible to researchers by lowering costs

and reducing the need for highly specialized equipment. Integration of these tools

can further democratize macroecological research, as their strengths and weak-

nesses are complementary. However, using these tools for macroecology can be

challenging because mental models are lacking, thus requiring large up-front

investments in time, energy, and creativity to become proficient. This challenge

inspired a working group of UAS-using academic ecologists, NEON professionals,

imaging scientists, remote sensing specialists, and aeronautical engineers at the

2019 NEON Science Summit in Boulder, Colorado, to synthesize current knowl-

edge on how to use UAS with NEON in a mental model for an intended audience

of ecologists new to these tools. Specifically, we provide (1) a collection of core prin-

ciples for collecting high-quality UAS data for NEON integration and (2) a case

study illustrating a sample workflow for processing UAS data intomeaningful eco-

logical information and integrating it with NEON data collected on the ground—
with the Terrestrial Observation System—and remotely—from the Airborne

Observation Platform.With this mental model, we advance the democratization of

macroecology by making a key observational domain—the broad-extent,

fine-grain domain—more accessible via NEON/UAS integration.
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INTRODUCTION

Macroecology is the study of spatially extensive systems
whose biological, geophysical, and social components
interact dynamically both within and across spatiotempo-
ral scales (Heffernan et al., 2014). Macroecology, in its
explicit consideration of scale, extends from a rich history
of basic ecological research seeking to explain patterns in
nature (Levin, 1992; Turner, 1989). At the same time,
macroecology is highly relevant to applied ecology, as the
broader spatial extents studied reflect the scale at which
many societally relevant challenges, and perhaps their
solutions, arise (Heffernan et al., 2014; LaRue et al.,
2021). The causes and consequences of phenomena
under investigation in macroecology can span many spa-
tial scales, which motivates a characteristic feature of the
data to be brought to bear: They must often be simulta-
neously fine in grain (i.e., spatial resolution) and broad in
extent (i.e., area covered) (Beck et al., 2012).

Ecologists typically face a data collection trade-off
between grain and extent that constrains the observational
domain of their research (Ernest, 2018; Estes et al., 2018).
Indeed, the spatial and temporal observational domains of
most ecology research are narrow (Estes et al., 2018). The
grain/extent trade-off can sometimes be overcome, but at
a high cost. For example, the Global Airborne Observatory
collects high spatial and spectral resolution data at broad
extents (Asner et al., 2007, 2012), but the price of data
acquisition and processing tallies in the millions of US
dollars (USD), even though the per-area cost is low (Asner
et al., 2013). As another example, the US Forest Service
Forest Inventory and Analysis program maintains a regu-
lar network of over 350,000 fine-grain field plots regularly
spaced over the entire forested area of the United States
(over 9.1 million km2; approximately 1 plot every
2400 ha) at an annual cost of tens of millions of dollars
(Alvarez, 2020; Gillespie, 1999). Most science studies
have relatively modest budgets and are conducted by just
a few individuals (Heidorn, 2008). The modal award size
from the National Science Foundation’s (NSF) Division
of Environmental Biology was about 200,000 USD
between 2005 and 2010 (Hampton et al., 2013). While the
fine-grain, broad-extent observational domain is invalu-
able for macroecology, it can be inaccessible to ecologists
with resource or funding limitations.

Macroecology can be democratized when barriers to
research participation are reduced (Guston, 2004), such as
by lowering the cost of, or innovating past limitations to,
access to relevant scales of observation. Removing these
barriers improves science because the rate, direction, and
quality of science are, in part, shaped by the available
research inputs (Nagaraj et al., 2020). For instance, the
cost of imagery from the archive of Landsat Earth

observation imagery was reduced in 1995 and restrictions
on sharing were relaxed, which dramatically increased the
quantity, quality, and diversity of Landsat-enabled science
(Nagaraj et al., 2020). The same archive became freely
available in 2008 with concomitant benefits to projects
that rely on Landsat observations (e.g., Picotte
et al., 2020). The changing accessibility of Landsat data
is noteworthy for macroecology, as the archive provides
consistent global-extent, relatively fine-grain (30 m)
imagery since 1984. Particularly when integrated with
other tools whose purpose is to broaden research partic-
ipation (such as the free, planetary-scale geographic
information system “for everyone,” Google Earth
Engine; Gorelick et al., 2017), Landsat imagery has led
to breakthrough science that is “globally consistent and
locally relevant” such as the first global map of forest
cover changes over a decade-long period at a relatively
fine scale (Hansen et al., 2013). Thus, democratized
research stimulates revolutionary science.

In its democratic aim, the National Ecological
Observatory Network (NEON) is revolutionary (Balch
et al., 2020; NSF, 2013). NEON is a continental-scale obser-
vation facility in the United States comprising 81 sites
within 20 ecoclimatically distinct domains and an opera-
tional lifespan on the order of decades (Keller et al., 2008;
Schimel, 2013). NEON is designed to collect rigorous,
consistent, long-term, and open access data to better
understand how US ecosystems are changing, using a com-
bination of field measurements obtained by trained person-
nel, ground- and aquatic-based automated sensors, and
plane-based instruments that collect both active
and passive remotely sensed data (Kampe et al., 2010;
NSF, 2013). NEON observations span spatial scales, from
measurements of individual organisms within small field
plots to 10-cm resolution red–green–blue (RGB) imagery,
1-m imaging spectroscopy, and lidar (light detection and
ranging) point clouds across hundreds of square kilome-
ters, with measurements replicated across sites that span
the continental extent of NEON (Keller et al., 2008;
Musinsky et al., 2022). A stated goal of NEON is to democ-
ratize access to ecological research, particularly at broad
extents (NSF, 2013)—its promise is continental-scale ecol-
ogy for everyone. NEON pairs publicly available data with
a strong outreach and education effort to help realize this
promise. In this way, NEON broadens access to
macroecology by reducing barriers to entry, particularly
cost, fieldwork requirements, and technical expertise (Nagy
et al., 2021). An “instrument” such as NEON collecting
standardized data at such scales leads to inevitable
trade-offs—in the specific times, locations, and type of data
that are sampled. While the NEON data are on their own
sufficient for advancing ecology, part of what makes
NEON revolutionary is its foresight in facilitating

2 of 26 KOONTZ ET AL.



connections to other ecological data. In this way, the fun-
damental limitations of NEON can be overcome with brid-
ges to more targeted ecological studies.

UAS can also revolutionize ecology (Anderson &
Gaston, 2013). UAS, comprising a vehicle and a payload,
are increasingly being used to collect high spatial resolu-
tion information over relatively large spatial extents for
ecological science applications (Wyngaard et al., 2019).
The vehicle is also known as a “drone” or a “UAV” stand-
ing for “unoccupied aerial vehicle,” “unhumanned aerial
vehicle,” “uncrewed aerial vehicle,” or “unmanned aerial
vehicle,” though we support phasing out the gendered
language of this last expansion (Joyce et al., 2021). The
payload is the instrumentation carried by the vehicle
beyond what is critical for flight operations, and gives
the UAS its scientific value. Importantly, it is not the
vehicle itself that enables ecological studies at heretofore
inaccessible scales, but rather the vehicle’s ability to posi-
tion a data collecting payload (i.e., a sensor) in a repeat-
able, efficient, hard-to-reach manner. For example, one
use case for UAS is structure-from-motion (SfM) photo-
grammetry, which generates a three-dimensional model
of an area of interest using two-dimensional images from
multiple overlapping viewing angles (Westoby et al., 2012).
The minimum requirement for SfM photogrammetry is
two-dimensional imagery, which can be captured from the
ground using a handheld sensor (e.g., a digital camera) to
great effect for some applications (Piermattei et al., 2019).
A UAS-based camera can capture imagery from higher up
in, or above, the canopy, which allows for measurement of
higher vegetation strata (Kuželka & Surový, 2018), includ-
ing total height for above-canopy applications. UAS-based
SfM photogrammetry also increases the extent that can be
covered with surveys (Jackson et al., 2020) because aerial
transects are unimpeded by varied terrain and vegetation
encountered on ground transects. Unimpeded aerial tran-
sects are also more reliably repeated than ground surveys
that require navigating through vegetation and are likely to
be less impactful to that vegetation. UAS provide an avenue
to flexibly and affordably fill spatiotemporal gaps in data
collected by traditional means—they can be deployed more
frequently and capture finer grain data than airplane- and
satellite-based platforms, and can cover greater extents than
ground surveys.

UAS and NEON complement each other. Each can be
a key tool for macroecology research, but their integra-
tion offers an opportunity to alleviate some of their fun-
damental constraints in a similar way as an integration of
NEON with other Earth-observing networks (Balch
et al., 2020; Nagy et al., 2021). NEON data derive from
“state-of-the-science” instrumentation with thorough
documentation and are standardized at a continental
scale. NEON data collection is not only preplanned,

which makes the resulting data somewhat predictable,
but also rigid in space, time, and type. On the contrary,
UAS operations are nimble and customizable, but the
resulting data are relatively under-validated with data
standards that are ad hoc, idiosyncratic, and lacking in
consistency, which makes interoperability of those data
across projects a challenge (Wyngaard et al., 2019).
Realization of the benefits of UAS–NEON integration by
ecologists is dually challenged by the relative novelty of
these tools (Nagy et al., 2021; Wyngaard et al., 2019), as well
as by a community gap in the data science skills needed to
navigate their associated workflows (Balch et al., 2020;
Hampton et al., 2017; Nagy et al., 2021). Not knowing
where to start with two new tools is a daunting proposition,
and unstructured efforts to gain practical proficiency for
research often come at the expense of doing research itself
(Olah & Carter, 2017). Reducing these barriers to profi-
ciency therefore has tremendous research value.

Mental models help novices become experienced prac-
titioners by providing a contextual framework for new
knowledge (Knapp & D’Avanzo, 2010). A lack of a synthe-
sized contextual framework for the practical use of UAS
for ecology research, particularly for NEON integration,
challenges the adoption of these tools and hampers their
ability to democratize macroecology (Assmann et al., 2019;
Wyngaard et al., 2019). We assembled a working group of
participants at the 2019 NEON Science Summit in
Boulder, Colorado, with a goal to synthesize current prac-
tical knowledge and provide a sample workflow to guide
ecologists with a mental model for using UAS and inte-
grating with NEON. In this work, we aim to lower the bar-
rier to entry for using UAS and NEON to do ecology.
Specifically, we focus on optical data collected by each tool
over terrestrial sites and provide (1) a collection of what
we consider to be the 10 core principles for integrating
UAS with NEON (science requirements, vehicle, payload,
environment, flight planning, rules/regulations, radiomet-
ric calibration, georeferencing, data management, and
data processing) and (2) an illustration of these principles
with a real-world, well-documented workflow that pro-
cesses UAS data into meaningful ecological information,
then integrates it with NEON Airborne Observation
Platform (AOP) and Terrestrial Observation System (TOS)
data at the NEON Niwot Ridge (NIWO) site.

CORE PRINCIPLES FOR UAS/NEON
INTEGRATION

Science requirements

We support and extend one of Assmann et al.’s (2019)
themes regarding research use of UAS in order to
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highlight the first core principle for integrating UAS with
NEON: knowing what the science requirements are for
the data to be collected and what data collection efforts
are “good enough” to meet those requirements. Using
NEON to advance ecology is a type of data-driven discov-
ery, in which the high-quality, but rote, data collection
occurs before the science questions are generated
(Lindenmayer & Likens, 2018). UAS data collection can
be more flexible and responsive, which makes it more
suitable for discovery driven by particular questions
posed ahead of time. Integration of UAS and NEON
could therefore be considered a hybrid between data- and
question-driven discovery, where there is a dynamic
between creative use of the existing NEON data, genera-
tion of new specific questions, and augmentation of the
existing NEON data with UAS data collection to help
answer those questions. During this process, a clear sci-
ence question helps guide the data collection/collation
needs, which can minimize the amount of researcher
energy spent on developing tools and workflows that
ultimately prove to be superfluous (Mahood et al., 2022).

Vehicle

The vehicle in a UAS is the flying machine that holds the
payload. One key distinction between vehicle types is
whether rotor systems or fixed wings are used for lift (the
upward force that keeps the vehicle in the air). Rotocopter
vehicles (also known as “multicopters,” “multirotors,”
“quadcopters,” “hexacopters,” or “octocopters” depending
on the number of rotor systems) consist of a body and
(usually) four to eight rotary systems that provide both lift
and thrust (horizontal motion). These types of vehicles are
characterized as “vertical takeoff and landing” (VTOL).
Fixed-wing aircraft use wings for lift and use rotor systems
only for thrust. Hybrid vehicles use rotor systems for lift
during ascent and descent but fixed wings for lift during
the flight, and are sometimes referred to as VTOL
fixed-wing systems to highlight this combination of fea-
tures. The structure and size of the vehicle determine its
functionality in the field, and thus, a project’s objectives
can often help constrain the choices available. Rotocopter
platforms are more maneuverable, often less expensive,
easier to fly, and more transportable, and have a higher
payload capacity relative to fixed-wing aircraft. For these
reasons, rotocopters are often preferred by ecologists. On
the contrary, fixed-wing aircraft have longer flight times
with better battery usage and thus can cover larger areas
more efficiently than rotocopters. For example, covering the
full extent of a given AOP footprint (147.6 � 107.2 km2 for
core and relocatable sites) may be most efficiently
conducted with a fixed-wing or hybrid vehicle. They are

also more stable in adverse conditions (e.g., high winds)
and have a safer recovery from motor power loss. VTOL
fixed-wing systems can combine the efficiency of a fixed
wing with the small takeoff/landing footprint of a
rotocopter. A summary of the advantages and disadvantages
of these vehicle types is found in Table 1.

A flat surface clear of obstructions (e.g., on dirt rather
than grass, away from forest canopy) is ideal for UAS
takeoffs and landings. VTOL systems require a smaller
takeoff and landing footprint, which may be satisfied
with only a small canopy gap, compared with vehicles
that use fixed wings for lift, which require a “runway” for
takeoff. Locating a suitable takeoff area may be challeng-
ing at some NEON field sites (e.g., NIWO, with dense
canopy cover) and easy at others (e.g., San Joaquin
Experimental Range, with an open woodland ecotype).
Takeoffs and landings from a clean, stable, flat surface
(e.g., plywood and car floor mat) will prevent dirt from
obstructing or scratching the sensor lens and will make
for a more controlled ascent/descent.

With any platform, vehicle endurance limitations and
the mission goals will determine how many flights are
required to complete data collection. In many cases, it
will be necessary to use several batteries to keep the vehi-
cle flying for the duration of a field day. Even if only one
flight is needed to collect data, extra batteries are still
valuable to have on hand in case the first flight does
not go as planned and follow-up flights are required.
Batteries from many vehicle manufacturers (e.g., Da-Jiang
Innovations [DJI]) will automatically discharge after a
period of nonuse as a safety feature, so it is good practice to
wait to charge all batteries until near the time they will be
used in order to ensure that they will be at their peak
capacity when they are needed (e.g., do not charge them
until the night before you need them). An energy source to
charge batteries in the field, like a solar charger or
gasoline-powered generator, may also be necessary for very
long missions or multiple days of data collection. As a
guideline, you can determine how many batteries your por-
table energy source can charge by determining its energy
capacity in watt-hours (Wh), multiplying by 90% (making
the calculation such that you leave 10% of the energy
source’s capacity rather than fully draining it), then divid-
ing by the capacity of a single UAS battery in Wh and
rounding down to the nearest whole number to account
for any unpredictable inefficiencies. For instance, a Goal
Zero Yeti 1400 battery (used successfully by some authors)
can be charged with solar panels and stores 1400 Wh of
energy, which results in 1260 Wh of usable energy if it
were to be drained to 10% capacity. Each battery of the DJI
Phantom 4 Pro aircraft (a common choice for mapping)
stores 89.2 Wh of energy, so the Yeti 1400 should be able to
charge about 14 batteries before it needs to be recharged
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itself (1260/89.2 = 14.13, which is 14 when rounded down).
If an efficient 1-gallon (3.79-liter) gasoline-powered genera-
tor can produce 6000 Wh of energy, that results in
5400 Wh of usable energy, which is equivalent to charging
about 60 batteries for the DJI Phantom 4 Pro.

Payload

The payload is the equipment carried by the UAS that
collects data and combines with the vehicle to constitute
the system (the “S” in “UAS”). In fact, despite the
spotlight often being on the drone vehicle, the payload
component is at least as important, since the main pur-
pose of the vehicle is merely to position the payload
where it needs to be in order to capture appropriate data.

For ecologists interested in optical data, the payload may
be a simple camera or a more specialized remote sensing
sensor sensitive to particular wavelengths of electromag-
netic radiation. The scientific questions will dictate the
data requirements, which will in turn drive the payload
decision. Typically, the selection of a sensor represents a
trade-off between spatial resolution (the size of pixels in
the imagery at a set altitude), spectral resolution (the
number of distinct portions of the electromagnetic spec-
trum that the sensor can detect), spectral extent (how
much of the electromagnetic spectrum the sensor can
detect), and cost. For example, while imaging spectros-
copy provides high spectral resolution and extent that
may allow measurement of specific chemical compounds
in vegetation (e.g., foliar nitrogen; Knyazikhin
et al., 2013), a multispectral instrument with fewer

TAB L E 1 Summary of vehicle and payload considerations for unoccupied aerial system-enabled ecology.

Consideration Options Advantages Disadvantages References

Vehicle Rotocopter Ease of takeoff and
landing

Shorter flight time (�20 min) Anderson and Gaston
(2013), Goodbody
et al. (2017), P�adua
et al. (2017)

Hover capability …

Maneuverability …

Affordable …

Fixed wing Longer flight time (2+ h) Higher minimum flight speed to
keep it aloft (affecting
overlap, image quality)

…

Covers large spatial extent Complex takeoff/landing …

More stable in wind …

Vertical takeoff and
landing fixed-wing
hybrid

Simpler takeoff/landing Newer technology …

Longer flight time Expensive …

Payload Red–green–blue camera Small size Limited spectral extent to visible
wavelengths

P�adua et al. (2017),
Adão et al. (2017)

Affordable Spectrally overlapping, imprecise
spectral information

…

Fine spatial resolution …

Multispectral sensor Small size Limited spectral sampling
typically in visible and
infrared wavelengths

…

More precise spectral
information

More complex data acquisition
and post-processing

…

Hyperspectral/imaging
spectrometer

High spectral resolution Heavy …

High spectral extent Expensive …

Very complex data acquisition
and post-processing

…

Note: “…” indicates the content is repeated from the cell above.

ECOSPHERE 5 of 26



spectral channels (Koontz et al., 2021) or even an RGB
camera (Scholl et al., 2020) may be more than sufficient for
classifying vegetation to species. Similarly, sensors with
high spatial resolution can capture fine detail in their imag-
ery butmay reduce the ability tomeasure a variable of inter-
est, such as individual trees, as post-processing steps can be
negatively affected by the movement of those fine details in
the wind (Young et al., 2022). Hyperspectral instruments
and high-resolution cameras are relatively expensive in
terms of purchase cost, post-processing time, and data stor-
age requirements, but simple RGB and multispectral cam-
eras can be affordably bought off the shelf, so it is worth
considering whether they would suffice for the scientific
question of interest. A summary of the advantages and dis-
advantages of these different payload types for collecting
optical data can be found in Table 1.

It is also important to consider how the payload will
be integrated with the vehicle, which generally requires
considering the combination of the vehicle and payload
simultaneously. In some cases, the payload can operate
entirely independently from the vehicle, and integration
only requires a means of physically attaching the compo-
nents together. In other cases, the payload relies both on
power and on electronic signaling from the vehicle in
order to capture data, and integration may require more
specialized electrical and mechanical engineering exper-
tise. It is generally advisable to use a prebuilt integration
kit or an already-integrated sensor/vehicle system if the
payload meets the science requirements (or nearly so).

Environment

The environment of the UAS mission can affect both the
equipment performance and the data collection such that
the intended operational conditions must be considered
during vehicle/payload selection and flight planning.
Foremost, the vehicle and the payload must be capable of
functioning in the desired environment. UAS flights at high
elevations or in cold weather will drain the battery faster
than at sea level, and some popular vehicles will not allow
takeoff if the temperature is too cold (or hot). While some
vehicles are designed to withstand light precipitation and
dust, many would be damaged under such flight conditions.
Heavy winds can push the UAS off course or require the
UAS to work harder to maintain its course, which drains
the battery faster and reduces endurance. Variable terrain
within the survey area may also affect vehicle endurance,
as more energy is required to ascend and descend while
also traversing along flight transects in the horizontal plane.
Managing the temperature of the mission critical electronics
is just as important as that of the vehicle’s batteries during
UAS operations. The vehicle remote controller and any
other peripherals such as a tablet computer are susceptible

to battery drain in extreme temperatures, and cold tempera-
ture can cause the vehicle and/or sensor to malfunction.
The NEON field sites exhibit a wide range of conditions
that can impact UAS operations. For instance, the mean
annual temperature for NEON AOP sites ranges from
�12�C at the Utqiaġvik site in Alaska to 25�C at Lajas
Experimental Station in Puerto Rico (NEON Field Site
Metadata; https://www.neonscience.org/sites/default/files/
NEON_Field_Site_Metadata_20210226_0.csv; accessed
16 March 2021). Expectations of unfavorable environmen-
tal conditions may be enough to dictate what equipment
should comprise the UAS. For example, high-wind condi-
tions at NIWO may warrant a fixed-wing platform; how-
ever, the dense forest would make takeoff and landing
much easier with a rotocopter. In some cases, steps can be
taken to mitigate the unfavorable environmental condi-
tions, such as keeping equipment out of direct sunlight to
prevent overheating (to the point of adding sun umbrellas
or shade tarps to the required equipment list) and storing
batteries in a dry cooler when not in use in order to
insulate them against temperature extremes.

Environmental conditions may also impact data
collection on automated flights, particularly for optical
data. Ideal conditions for optical data collection are
evenly lit with either complete cloud cover or clear skies.
If flying takes place under clear sky conditions, then the
sun should be high in the sky, so it does not cast long
shadows—ideally within a couple of hours of solar noon
(i.e., 10:00 AM and 2:00 PM for standard time, and
11:00 AM to 3:00 PM for regions that observe daylight
saving time) (Assmann et al., 2019). Note that some SfM
software guidelines specifically suggest not flying near
solar noon, as this can create particularly bright areas
within each image that challenges the SfM algorithms
(MapsMadeEasy; https://www.mapsmadeeasy.com/data_
collection; accessed 19 November 2021).

Prior to flights, it is important to ensure that the
weather will be favorable for data collection. A handheld
instrument for measuring temperature, relative humidity,
and wind speed may also aid in the reporting of flight
conditions, though note that the wind speed at flight alti-
tude may be different than what is measured on the
ground. In many cases, taking a picture of the sky and a
screenshot of the weather forecast from a reputable
source (e.g., the National Oceanic and Atmospheric
Administration) is a convenient and sufficient way to
ensure later reporting on flight conditions. In fact, the
NEON AOP does exactly this for their daily flight reports.

Flight planning

One of the key benefits of UAS operations is the ability to
program missions to be automatically followed by the
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vehicle’s onboard flight software. For optical data col-
lection such as that required for SfM photogrammetry,
the mission typically involves aerial transects with
images captured at regular time or distance intervals so
that objects in a scene are imaged from many viewing
angles (often in excess of 100; Figure 1). Successful
flight planning requires consideration of the flight
parameters, flight planning software, and operational
routine.

The flight parameters are crucial determinants of
whether or not the SfM photogrammetry will successfully
create a digital model of the survey area. Flight parame-
ters are typically described in terms of the front and side
overlap of the resulting imagery, as well as the sensor
angle. The front overlap is a function of flight speed,
flight altitude, frequency of image capture, and the verti-
cal field of view of the sensor, while the side overlap is a
function of flight altitude, horizontal field of view of the
sensor, and distance between transects. Overlap in excess
of 80% for both front and side overlap (Dandois et al., 2015)
and even as high as 95% front overlap (Frey et al., 2018;

Torres-S�anchez et al., 2018) is required for successful photo-
grammetric reconstructions of more complex vegetation
(such as denser forests) using commonly available
processing software. Lower overlap may be sufficient for
two-dimensional mapping quality, though the processed
product may not penetrate deeply into canopy gaps
(Dandois et al., 2015), and image artifacts such as
“leaning” objects, which were only imaged from an
oblique angle, are more prevalent. Additional overlap
can be achieved by augmenting parallel transects with
a second set of parallel transects rotated 90� to the first
(a crosshatch pattern; Figure 1). Additional viewing
angles can be achieved by tilting the sensor off nadir in
order to capture oblique imagery, which can aid in
scene reconstruction (Cunliffe et al., 2016; James &
Robson, 2014). Published work exists that determines
optimal flight parameters for creating digital represen-
tations of specific survey areas (Dandois & Ellis, 2013;
Díaz et al., 2020; Frey et al., 2018; Nesbit &
Hugenholtz, 2019; Ni et al., 2018; Swayze et al., 2021;
Torres-S�anchez et al., 2018; Young et al., 2022), but it
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F I GURE 1 Black points depict the unoccupied aerial system position for each photograph captured during the flight. Red points in the

“X” formation at the center are the high-precision geolocations of the National Ecological Observatory Network vegetation plot monuments.

The background color represents the approximate number of photographs captured over each point in the surveyed area based on idealized

image footprints projected on the ground surrounding the geolocation of each photograph point (i.e., the black points). Each part of the

survey area needs to be imaged a large number of times (likely more than 100 for denser vegetation), which means that some areas at the

edges of the flown area will not have coverage suitable for structure-from-motion data processing. The flight area should therefore be larger

than the area of interest to ensure sufficient data coverage.
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still may require some trial and error to optimize
parameters for a new study area or system.

Flight planning is typically achieved using specialized
software, sometimes run on a separate device such as a
tablet computer. Most flight software allows for setting
the altitude and the desired forward and side overlap for
a given aircraft and sensor. Two other important software
features that may routinely be relevant for ecology are
terrain following and Internet-free operations. Terrain
following enables the vehicle to ascend and descend to
match topographic changes within the area of interest,
such that approximately the same altitude above ground
level (AGL) is maintained throughout all aerial transects.
This serves two key functions: It ensures the safety of the
vehicle, and it maintains approximately the same ground
sampling distance for imagery, which aids in processing.
Some missions are most easily created once in the field in
order to incorporate better information on the area of
interest, takeoff/landing locations, and visibility through-
out the flight. An ability for the software to function
offline and to cache background map imagery can be
critical for realworld UAS use. The flight software is
resource-intensive and generally requires a computer or
tablet with relatively high computing power. We have
experienced flight software freezing mid-flight due to
computing resource overload when using tablets that were
not up to the task, which can create a hazardous situation.
It is likely worth investing in a device with faster processors
and/or more random access memory (RAM). Finally, some
flight software packages provide additional functionality if
the tablet has geolocation services—an ability to determine
its location on the Earth by connecting with satellite net-
works. For instance, the flight software may display the tab-
let’s location on the background map during the flight or
even update the “home point” location for the UAS during
the mission as the pilot moves around. The home point is
the location to which the UAS returns and lands after a
mission is completed, a battery is depleted, or the pilot trig-
gers a manual “return to home” command. An updating
home point might allow the pilot to traverse the landscape
to stay closer to the UAS, thereby better maintaining a
visual line of sight or allowing the UAS to collect
more data per flight since the travel distance to the land-
ing point is minimized (during which time data typically
are not collected). Not all tablets have geolocation ser-
vices; as of this writing, the Cellular+Wi-Fi version of
the Apple iPad Pro has geolocation services, but the
Wi-Fi-only version does not.

A final consideration for successful flight planning is
to create a routine for consistently executing missions.
Consistent repetition of routine steps prior to, during,
and after a flight ensures that all components of the UAS
work as intended in concert with each other, and

checklists facilitate this consistency (Degani &
Wiener, 1993). We highly recommend developing and
using some kind of checklist for UAS operations
(Appendix S1)—there is good reason they are part of stan-
dard operations for a range of aviators from pilots of small
private aircraft to NEON AOP to NASA astronauts! Some
applications (such as Kittyhawk; https://kittyhawk.io/)
allow for automatic logging of checklist run-throughs,
which further reduces barriers to their use.

Regulations

In the United States, research use of UAS must comply
with legal regulations that govern flight operations. These
restrictions have historically been cited as a hurdle to the
adoption of UAS for research use (Vincent et al., 2015).
There are currently three main legal frameworks
governing UAS operations within the United States:
permissions/regulations for a specific organization (e.g., a
university) granted under a Certificate of Authorization
(COA) from the Federal Aviation Administration (FAA),
regulations for commercial operations (described in
Title 14 of the Code of Federal Regulations Part 107 and
colloquially referred to as “Part 107 rules”), and regula-
tions for recreational operations (described in Chapter 448
of Title 49, US Code, Section 44809, and colloquially
referred to as “Recreational Flyer rules”). COAs are gener-
ally labor-intensive to set up and maintain, as they require
ongoing coordination with the FAA, but they can allow
for operations not typically permitted under other
regulatory frameworks. The commercial and recreational
operational rules apply to individuals, rather than organi-
zations, and have progressively become more clearly
defined and permissive. For instance, a recent amendment
to the Part 107 regulations clarified that the use of UAS by
an institution of higher education for research or educa-
tion purposes is considered “recreational use” and is sub-
ject to recreational operational rules rather than
commercial operational rules. These rules applying to indi-
viduals allow for myriad opportunities to use UAS to col-
lect ecological data without the complex organizational
overhead required for a COA. However, the rules within
each of these categories are still liable to change, and UAS
pilots are responsible for staying aware of any updates.

UAS pilots in the United States must obtain some
kind of credentials to operate UAS for research use.
Researchers flying under a COA would obtain credentials
according to the rules specific to their organization.
Flying under Part 107 rules requires a “remote pilot cer-
tificate” from the FAA, which can be obtained by passing
an initial knowledge examination, and expires after
2 years. Flying under Recreational Flyer rules requires a
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TRUST certificate from the FAA, which can be obtained
by completing a recreational UAS safety test that does not
expire. Unlike permissions granted under a COA, the
Part 107 and TRUST credentials stay with the pilot and are
transferable if the pilot changes organizations (e.g., a gradu-
ate student cannot operate a UAS for research under a
university’s COA after they graduate, but they would still
retain their ability to operate with their FAA-granted
credentials).

In general, there are some legal limits to the kinds of
UAS flight operations allowed under any regulatory
framework. UAS pilots are responsible for ensuring that
their equipment and flight plan are in compliance with
whichever regulatory framework they are operating
under. As with pilot credentials, researchers operating
under a COA would need to comply with the flight oper-
ational rules specific to their organization. Two of the
most relevant flight restrictions for ecologists operating
under both Part 107 and Recreational Flyer rules are as
follows: (1) the UAS must be within visual line of sight of
the pilot in command (or within a visual line of sight of
another crew member acting as a “visual observer” as
long as that observer has direct communication with the
pilot in command) and (2) the UAS must fly no higher
than 400 ft (122 m) AGL. Part 107 rules do constrain
operations in other specific ways, which may also apply
to flights under Recreational Flyer rules that prohibit
unsafe operations. For instance, UAS cannot fly faster
than 87 knots (161 km/h); UAS must be at least 500 ft
(152 m) below clouds and 2000 ft (609 m) horizontally
from clouds. However, high-quality optical data collec-
tion usually requires UAS operations to be well within
these limits. Additional authorizations are needed to fly
in “controlled” airspace (i.e., class B/C/D/E airspace, typ-
ically near airports), to fly a UAS above 55 lbs (24.9 kg),
and to fly a UAS beyond the line of sight. Some of these
authorizations are relatively easy to obtain (e.g., many
requests to fly in controlled airspace below 400 ft [122 m]
AGL can be automatically granted in near real time using
the Low Altitude Authorization and Notification
Capability), while others are nearly impossible (at the
time of this writing) and are likely beyond the reach of
an ecological data collection campaign (e.g., beyond
visual line-of-sight flights). Finally, the drone itself may
need to be marked and registered with the FAA. The
FAA website is usually the best source of the most
up-to-date information about the rules that might govern
UAS research flights (https://www.faa.gov/uas/; accessed
11 March 2022).

It is important to connect with the appropriate land
manager before flying on public land to obtain appropri-
ate site access if necessary, to check for temporary clo-
sures (e.g., bird nesting), and to be a good neighbor.

Because NEON does not own the land on which they
operate, flying NEON sites will require contacting and
obtaining permission from the site host; contact informa-
tion is available on the NEON webpage for each site, and
NEON staff may also help facilitate those connections.
Additional non-NEON research is allowed at some but not
all sites. If permission is obtained, it is important not to dis-
turb any existing research being conducted at those sites, to
maintain a 20-m buffer around any NEON-distributed plot,
and to completely avoid the area of the tower airshed
(which is also delineated on the NEON webpage for each
site; e.g., https://www.neonscience.org/data-samples/data/
spatial-data-maps). Clear communication with concerned
parties of UAS flights for research, even if there is every
legal right to fly at a particular location, is important for
building community credibility and longevity for UAS as a
tool for ecologists. Finally, as with flight planning, it is
best practice to develop a routine and a checklist
(see Appendix S1) for determining whether UAS flights are
allowed in the intended survey area under the relevant
regulatory framework.

Radiometric calibration

Optical data from UAS-mounted sensors must be radio-
metrically calibrated in order to convert otherwise arbi-
trary image pixel values into meaningful, standardized
units such as reflectance. Applying image preprocessing
steps (e.g., correcting for camera artifacts such as
vignetting and dark noise) and subsequent radiometric
calibration allows UAS data to be comparable with
high-quality scientific data products derived from the
NEON AOP. The empirical line method (ELM) has
proved to be a simple and accurate UAS radiometric cali-
bration option (Wang & Myint, 2015). ELM requires the
placement of at least two materials such as calibrated
reflectance panels with known reflectance in the scene,
which are imaged while the sensor is in flight.
These images containing the calibrated reflectance panels
are then used to translate image pixel values to reflec-
tance for each spectral band for the whole survey area.
For some sensors, particularly low-cost multispectral sen-
sors designed for agriculture, a downwelling light sensor
(DLS also known as sunshine sensor) also records data
about the illumination levels at the exact moment that
each image is captured. This information is often incorpo-
rated into the SfM processing to partially correct for vary-
ing light conditions throughout the flight. Importantly, the
DLS can help account for varying illumination from image
to image, but it does not allow for conversion of the image
pixel values into a standardized unit of reflectance the way
that calibrated reflectance panels can.
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NEON implements a complex algorithm to convert its
imaging spectrometer data to units of reflectance
(Karpowicz & Kampe, 2015) that is founded on a similar
principle as ELM. A series of vicarious calibration flights
are conducted with the NEON AOP before and after every
field season (Leisso et al., 2014). They fly over two large
tarps with 48% (medium gray) and 3% (black) reflectance,
collect ground-based reflectance measurements of these
tarps with an analytical spectral device, and use these data
to verify the radiometric calibration of the NEON AOP
imaging spectrometer (https://www.neonscience.org/data-
collection/imaging-spectrometer). The reflectance of these
tarps is meant to represent the upper and lower bounds of
reflectance typically seen in nature. NEON’s algorithm
also compensates for the scattering and absorption of light
as it travels through the atmosphere (e.g., haze, water
vapor) on its optical path to the AOP.

Using three panels with varying gray levels will allow
for the most flexibility in calibration methodology for
UAS image data. Ideally, panels should be large enough
to be imaged during flight and contain an area of
10 � 10 pixels (Wang & Myint, 2015). Panels should be
matte (as opposed to shiny or glossy) with a smooth, hori-
zontal surface (Smith & Milton, 1999). Panel colors
should be shades of black (near 0% reflectance) and gray,
ideally covering the range of reflectance for the subject of
interest. White (near 100% reflectance) panels are not
recommended because they can saturate and cause other
issues (Cao et al., 2019). For plant surveys, we recommend
a medium gray, dark gray, and black target because vege-
tation tends to be about 50% average reflectance or
medium gray. Calibrated reflectance panels often come
with the sensor to be integrated with the vehicle, but they
can also be purchased separately or made at home. Care
must be taken with homemade panels because, even
though they may appear a particular shade to the human
eye (visible spectrum), they may not be a similar reflec-
tance across all wavelengths observed by a multispectral
or hyperspectral sensor. Many studies have identified
promising materials for homemade panels: plywood cov-
ered with matte paint (Rosas et al., 2020), gray linoleum,
and black fine-weave cotton fabric (Cao et al., 2019).

Researchers have vastly different constraints for their
budget, environmental conditions in the field, and equip-
ment availability, so “good enough” may be more realisti-
cally attainable than the “ideal” radiometric calibration
practices described above. If in-flight panel photographs
are not possible or if only a small panel is available (as is
often the case with panels that come with a sensor), pho-
tographs of the panel can be captured either before or
after flight. Many off-the-shelf multispectral sensors only
come with one small calibration panel, but having one
panel is better than none even though this may limit the

data calibration possibilities in the future. Further, popu-
lar commercial SfM software packages such as Agisoft
Metashape and Pix4D may only accommodate one panel,
so correcting UAS imagery with a single panel may be
the only practical option. When only a single calibration
panel is used, choosing a gray panel (rather than a white
or black one) helps to avoid crushing or clipping in
under/overexposed images.

Regardless of panel cost, color, or material, it is criti-
cal to clean, remeasure, recalibrate, and/or replace them
over time to ensure the most accurate reflectance calibra-
tion possible. This is especially important when fieldwork
involves exposing panels to harsh environmental condi-
tions with dirt, dust, sand, sun, and any other types of
physical damage or degradation. Illustrating this point,
Scholl and Ku (2021) remeasured a calibrated reflectance
panel after 3 years of fieldwork using a handheld ASD
(ASD Inc., a Malvern Panalytical Company, Longmont,
CO, USA) FieldSpec 4 spectrometer. Figure 2 depicts the
manufacturer-provided panel reflectance spectrum from
the time of purchase in 2017 (MicaSense) compared with
the reflectance spectrum measured 3 years later with
the handheld ASD. The reflectance of the panel has
decreased by as much as 10% due to the presence of dirt
and dust, especially in the shorter wavelengths. The man-
ufacturer advises against cleaning this make and model
of the calibration panel as it would force debris further
into the pores of the panel material, though newer panels
from this manufacturer can be cleaned (see https://support.
micasense.com/hc/en-us/articles/
360005163934-Calibrated-Reflectance-Panel-
Care-Instructions). In general, it is key to ensure that the
panel reflectance data being used for radiometric cali-
bration accurately represent the panel’s actual reflec-
tance, either using the manufacturer-provided
reflectance data for new/clean panels or using updated
reflectance measurements on a panel that cannot be
restored to its initial conditions.

Georeferencing

It is important to consider how the geographic positions
of objects within the UAS survey are used to answer the
research question. Those positions can range from being
globally accurate with precise correspondence to a loca-
tion on the Earth (e.g., the tree is located at these coordi-
nates, �5 cm) to being relatively accurate with the spatial
relationships and real-world distances between objects in
the scene preserved but perhaps all frame-shifted by
some amount compared with reality (e.g., the first tree is
5 m away from the second tree, but all the trees are
shifted 10 m compared with their true on-the-ground
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coordinates). In fact, it is possible for the SfM photogram-
metry process to reconstruct three-dimensional models
and orthomosaics of the area of interest solely using
visual cues in individual images without any geolocation
data at all, resulting in a relative accuracy between
objects in the scene but no ability to make real-world
measurements (e.g., the distance between the two trees is
5% of the width of the surveyed area). In order to infer
units from these relative distances (e.g., to get the dis-
tance in meters), some measure of scale in the imagery is
required. Geolocating the SfM photogrammetry products
in real-world space requires external information about
the geolocation of each input image, such as from the
Global Navigation Satellite System (GNSS). Note that
GNSS is the generic term for the network of satellites that
offer global coverage of geospatial position, of which the
US-owned GPS (Global Positioning System) is a part.
Most popular off-the-shelf vehicles and/or optical pay-
loads have a basic GNSS antenna and receiver with an

accuracy of <10 m, and the optical data collected will be
automatically geotagged in the image metadata. The
automatic integration of these metadata in the most pop-
ular SfM photogrammetry software means that the sec-
ond scenario described above—relative spatial accuracy,
but with SfM products frame-shifted by some amount
similar in magnitude to the GNSS receiver accuracy—is
achievable with no extra steps by the user. If greater
accuracy is required than what is provided by the built-in
GNSS receiver, however, then additional steps are
required.

Ground control points (GCPs), real-time kinematic
(RTK) corrections, and post-processed kinematic (PPK)
corrections are three solutions to accurately georeference
images collected by the UAS. GCPs are markers laid out
on the ground with known geolocations that are visible
in the UAS data and are used to tie the UAS imagery to
real-world coordinates during the SfM processing step.
The GCP approach can only be as precise as the tool used
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F I GURE 2 (a) Reflectance of a calibrated reflectance panel as a function of wavelength. The black solid line corresponds to the

manufacturer-provided reflectance spectrum representing the panel’s reflectance at the time of purchase. The blue dashed line corresponds

to remeasurements of the panel’s reflectance spectrum in 2020 with a handheld spectrometer, after 3 years of field use. The MicaSense

RedEdge 3 spectral band ranges (blue, green, red, red edge, and near infrared) are depicted as vertical bars of color. The panel reflectance

decreased between 2017 and 2020, with this decrease being more pronounced toward the shorter wavelengths. (b) A photograph of the

calibrated reflectance panel measured in (a), taken in 2020 after 3 years of field use. The change in reflectance between 2017 and 2020 is

likely the result of accumulated dust and sand from the field, as seen partially wiped away on the lower right corner of the panel’s plastic
case. The difference between the manufacturer-reported panel reflectance and the actual reflectance after heavy use demonstrates the

necessity to clean, remeasure, or replace calibration panels when performing radiometric calibration.
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to measure the geolocations of the GCPs in the field. To
improve upon the geolocation accuracy already in place
using image metadata geotags from the basic GNSS
receiver that is likely onboard the UAS, a high-precision
GNSS receiver must be used to mark the geolocations of
the GPS. A high-precision GNSS may be prohibitively
expensive, but could potentially be borrowed or rented
from geodetic services (e.g., nonprofit UNAVCO allows
the equipment to be borrowed for NSF-funded projects
for free). Ideally, GCPs will be placed near edges or ran-
domly throughout the mission area, but the density of
GCPs is typically more important, with Santana et al.
(2021) finding that 10 GCPs in their 2-ha area of interest
were needed for sub-7 cm precision (but using as few as
four GCPs still produced 16 cm precision at all flight
heights and GCP spatial distributions). Zimmerman et al.
(2020) found that it was optimal to place GCPs in the cor-
ners of the study site, as well as at low and high eleva-
tions within the study site. GCPs must be visible from the
sensor, so it is best to place them in bright and open
areas. Finding suitable locations in heavily forested areas
with closed canopies can be challenging; therefore, it
may be beneficial to expand survey areas to include

suitable areas for GCPs if none can be found within the
area of scientific interest. Examples of effective GCPs are
fabric swaths placed in an X, bright-colored bucket lids,
or checkered mats (Figure 3). GCPs with more conspicu-
ous, precise points make for more precise geolocating
because that specific point can be more easily matched
between the field- and UAS-measured data. For instance,
trying to identify the exact center of a bright-colored
bucket lid from aerial imagery might allow for 10 cm of
mismatch with the exact point measured on the ground,
the intersection of two 5-cm-wide pieces of cloth might
allow for 5 cm of mismatch, and the crisp intersection of
the white and black triangles might only allow for 1 cm
of mismatch (Figure 3). Because the field measurements
of GCP locations can be a slow step, it might be advanta-
geous to install permanent monuments at desirable GCP
locations, measure their precise locations once, and then
reuse those same points during future data collection
(e.g., if not the conspicuous marker itself, perhaps a more
discrete piece of rebar that can have the actual GCP draped
over the top of it just prior to new data collection).
Preexisting permanent (or semi-permanent) points may
also be used if they can be readily measured on the ground

F I GURE 3 Aerial red–green–blue (RBG) photograph captured using a Da-Jiang Innovations (DJI) Phantom 4 Pro on 23 January 2020

at 120 m of altitude above ground level. The photograph depicts three ground control points (GCPs) each of two different types in the center

of the image: 1-m-long spray-painted orange cotton drop cloth in an “X” pattern and 1 � 1 m2 of cotton drop cloth spray-painted with black

triangles. The GCPs are progressively more conspicuous under the canopy, in the shrub field, and on the dirt road. The size of the area

covered by the main photograph is approximately 180 m wide � 120 m high.
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and are visible from the air. For example, NEON TOS plots
have permanent markers that have been georeferenced
with high precision (approximately 0.3 m) that can be used
as GCPs if they are visible to the UAS (Figure 1).

RTK and PPK corrections augment the accuracy of a
UAS’s built-in GNSS receiver by correcting the noise
inherent in the instrument using additional equipment
and processing steps without the need for laying out
GCPs and determining their locations. This can result in
massive time savings, particularly when surveying large
areas. For instance, Gillan et al. (2021) was able to survey
and process data covering over 190 ha of rangeland in
approximately 30 days versus an estimated 141 days
using a conventional UAS workflow, with an estimated
47 days saved just from using an RTK system versus
GCPs. Even with RTK and PPK corrections, it is still con-
sidered good practice to lay out some GCPs at precisely
known locations, then quantify geolocation error in the
final SfM products by measuring the difference between
the field- and UAS-measured GCP locations.

Data management

Image data collected from a UAS can quickly become
“big data,” and being intentional about data management
will ease friction points at every step in the science
workflow, from data collection to manuscript writing
(Figure 4). Having a ballpark idea of the total anticipated
data storage requirements will help guide data storage
hardware purchases such as Secure Digital memory cards
(SD cards), external hard drives, internal hard drives,
network-attached storage (NAS), third-party cloud stor-
age allotments, or university/organization-provided cloud
storage allotments. Given the desired flight plan, the
number of survey areas, and the payload (as determined
by what meets the science requirements), it should be
possible to estimate the amount of data that will be col-
lected per flight, per survey area, and in total for the
whole project. It is best practice to adhere as closely as
possible to the “3-2-1 backup rule,” where three copies of
the data exist with a local, accessible copy on two

DATA COLLECTION

Transfer data from memory card to alternative storage in the field

Storage options:
∙ SD card, personal workstation, external hard drive

Recommendation: Visually check your data on a laptop while still in the field

SHORT-TERM STORAGE

This is working storage used while processing data

If available, place data where multiple users can access its storage

Consider how to share data internally with collaborators

Storage options:
∙ Local (e.g., personal workstation, external hard drive)
∙ In-house network (e.g., network attached storage, lab cluster) 
∙ Research computing active storage
∙ External cloud active storage (e.g., CyVerse, Amazon S3)

Recommendation: Use the 3-2-1 backup rule

DATA PROCESSING

Server options:
∙ Local (e.g., in-house network, local workstation)
∙ Research computing (e.g., high performance computing server)
∙ External cloud computing (e.g., CyVerse, AWS, Azure, Agisoft 

cloud)
Recommendation: Create code locally and test on a subset of data, 
then send to research or cloud computing to process entire dataset

LONG-TERM STORAGE

Consider what data levels to store

Catalogue data with established metadata and file-naming 
conventions, as this is the authoritative copy

Document data provenance

Storage options:
∙ Research computing archive storage
∙ External cloud archive storage (see Public-facing)

Recommendation: After returning from field, immediately store L0 data 
in long -term storage

PUBLIC-FACING

Create DOI anchor to public-facing archive

Consider what data level products to make available with publication

Storage options:
∙ Public archive (e.g., Open Science Framework, DataOne, CyVerse, 

NASA Distributed Active Archive Centers, Open Topography, 
Amazon Glacier)

Recommendation: Some public-facing storage lasts as long as its 
funding, so it is recommended to have an alternative long-term storage 
option in addition

F I GURE 4 Planning a data management pipeline is a large up-front investment but can save time and money in the long run, making

it well worth prioritizing. Considering the storage, backup, and sharing needs of the datasets you anticipate collecting and processing ensure

data persistency and availability. This data pipeline describes options and includes recommendations. There are trade-offs at each decision

point, so it is important to understand your data needs and budget. For example, building your own data management system may be more

affordable and tailored to your needs, but rented external storage systems may back up your data automatically and maintain the system and

hardware requirements for you.
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different devices (e.g., a local computer and an external
hard drive) and one copy off-site (e.g., a cloud backup
service) (Ruggiero & Heckathorn, 2012).

UAS optical data are typically collected on SD cards
inserted in the sensor, so it is important to have enough
SD cards prior to flights to accommodate the data being
collected in the field. Formatting the SD cards
(i.e., erasing all data on them) prior to a new flight is a
good practice that ensures the full capacity of each SD
card is available for new data collection (provided that
the old data are safely transferred/managed to another
medium—see below). Swapping out the SD card after
each flight for an empty one is advisable, so that the only
copy of freshly collected imagery data is not lost in the
event of a UAS mishap on the next flight. Frequently
transferring data from the SD cards to both a laptop hard
drive and an external hard drive in the field satisfies the
backup rule on having data stored on “two different
devices.” Storing those two devices in different locations
while in the field (e.g., in two different vehicles, or in the
trunk and under the car seat) might prevent some types
of data loss (e.g., theft of one of the devices). Once those
data are transferred to other devices, it is safe to delete
the images on the SD cards in order to reuse them. It is
recommended to perform quality assurance (QA) checks on
the images while it is still possible to recollect data. This
could mean viewing the images on a laptop on-site, or
while still on location near the field study site. Check the
data for obvious artifacts such as over- or under-exposure in
images, that the number of images expected was collected,
that file sizes appear consistent and reasonable, and
that necessary metadata was captured with each image
(e.g., the geolocation). Generally, a full QA assessment
cannot be performed in the field due to time and compu-
tation limitations, but the field QA should be sufficient to
ensure the images can be processed into desired products.
Some NEON sites (e.g., NIWO) have a field house that
may be accessed, with permission, for laptop-friendly
workspaces and/or charging options.

Once the data collection is completed, data manage-
ment can be broken into a quick access phase-- when
data need to be readily available (Figure 4, short-term
storage), and a slower access phase-- which concerns the
longer term storage of both data and metadata (Figure 4,
long-term storage). During the quick access phase, the
data should be as “close” to the workstation doing the
SfM processing as possible—ideally on a fast internal
hard drive (e.g., a solid-state drive) on the same computer
as the SfM software. Having a good long-term storage
solution for the imagery (and derived data products) is
important for the slower access phase, and having a copy
of those data off-site will satisfy the 3-2-1 backup rule.
Some universities/organizations might already have

storage infrastructure capable of accommodating vast
data volumes and off-site backups (e.g., research comput-
ing storage). If university/organization storage infrastruc-
ture is not available, data storage-specific computing
hardware (e.g., NAS) can be paired with third-party cloud
storage (e.g., CyVerse) to meet long-term data manage-
ment needs. In this case, using slower speed but lower
cost spinning hard disks instead of solid-state drives is a
good option for the local data backup because data vol-
ume (i.e., the ability to back up data for many projects)
can be prioritized over data access speed in slower access
phase. For such high volumes of data, establishing “data
levels” that characterize how derived each new processed
product is makes them easier to navigate and work with
(Wyngaard et al., 2019). Typically, Level 0 represents raw
data (the original images from the sensor in the case of
optical data) and higher levels are derived from lower
levels (e.g., figure 4 in Koontz et al., 2021 shows data
levels for optical data collected for a forest ecology
project).

For public-facing storage, we suggest publishing all
data product levels to a long-term data repository with
a digital object identifier in the open science spirit of
broadening access to research (Figure 4, public-facing).
Ideally, this includes the original raw images taken
from UAS missions, which may be processed in the
future to even higher quality products given the rapid
advances in the SfM photogrammetry software. This
can prove costly with particularly high data volumes,
but it may be possible to rely on university/organization
cyberinfrastructure resources, or other options that
cater specifically to researchers aiming to practice open
science principles (e.g., CyVerse and Open Science
Framework).

Data processing

One common approach for processing UAS-derived
imagery such that it can be integrated with other data
sources (e.g., NEON) is SfM photogrammetry, which con-
verts the original images into data products such as a
two-dimensional orthomosaic and a three-dimensional
point cloud. Many software applications are available for
SfM photogrammetry that produce results of similar
quality (Forsmoo et al., 2019), and many have steep dis-
counts for research or educational use (e.g., Agisoft
Metashape and Pix4DMapper). Some free, open-source
options are also available (e.g., OpenDroneMap) and are
steadily improving. SfM photogrammetry can be
CPU- (central processing unit), RAM-, disk drive-, and
GPU- (graphics processing unit) intensive, so a worksta-
tion that balances these hardware components is ideal.
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Higher end gaming desktops are often sufficiently power-
ful workstations for processing images locally, but
cloud-processing options also exist (e.g., university
high-performance computing resources, add-on capabilities
of the specific SfM software purchased, and CyVerse—see
Swetnam et al., 2018). Even if most of the processing takes
place in the cloud, it can still be beneficial to have a rela-
tively powerful local machine in order to readily view and
manipulate the resulting data products.

SfM workflows require myriad decisions about
processing parameters, all of which might affect the qual-
ity of the resulting data products. An excellent SfM guide
has been published by the US Geological Survey (USGS)
for the Agisoft Metashape software (Over et al., 2021),
and some researchers have experimented with various
SfM processing parameter combinations to empirically
determine optimal parameter sets for particular use cases
(Tinkham & Swayze, 2021; Young et al., 2022) though
some trial and error may still be required for new study
systems. Some software packages allow for automating
the SfM processing using coding scripts, which then serve
as the transparent and reproducible record of the
workflow. Other software workflows are based on a
point-and-click graphical user interface (GUI), which
requires the user to take note of the processing steps. It
will eliminate some friction points with resulting SfM
products (particularly the three-dimensional point cloud)
to work in a coordinate reference system that measures
local distances in true units of distance (e.g., the distance
measured in meters with the Universal Transverse
Mercator coordinate reference system rather than a longi-
tude/latitude coordinate reference system). In any case, it
is important to be consistent with the coordinate refer-
ence system for each of your data products (e.g., GNSS
positions of GCPs, GNSS locations of UAS camera).
When working with optical data, it may be necessary to
“spectrally resample” the high spectral resolution
NEON AOP in order to match the sensor payload of the
UAS, whose spectral resolution is likely coarser and not
aligned with that of the NEON instrument (Figure 5).
Finally, calculating derived spectral indices such as the
normalized difference vegetation index (NDVI; Rouse
et al., 1973) from the original reflectance channels can
help with data harmonization across multiple sensors by
reducing some of their individual reflectance inaccuracies
(Cao et al., 2019).

After the SfM workflow is completed, there are many
options for further processing the resulting data products
(e.g., orthomosaics and point clouds) such that they can be
integrated with NEON. Many free, open-source software
tools exist for working with geospatial data products pro-
duced by UAS and NEON including QGIS (https://qgis.
org/en/site/) for visualization and GUI-based

manipulation of raster and vector data types,
CloudCompare (https://www.danielgm.net/cc/) for visual-
ization and GUI-based manipulation of point clouds, and a
suite of packages (https://cran.r-project.org/web/views/
Spatial.html) for the R programming language (R Core
Team, 2021). Several packages have also been developed
specifically for working with NEON data, including
neonUtilities (Lunch et al., 2021), neonhs (Joseph &
Wasser, 2021), geoNEON (National Ecological Observatory
Network, 2020), and NeonTreeEvaluation (Weinstein
et al., 2021). A recent review by Atkins et al. (2022)
describes the ecosystem of R packages available for working
with forestry data, many of which are relevant for the types
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F I GURE 5 (a) Relative spectral response of the MicaSense

RedEdge 3 camera in five distinct spectral bands based on the

quantum efficiency of the image sensor per wavelength and the

bandpass filter transmission per wavelength. The dashed vertical

lines in (a) demarcate the spectral extent of panel (b). (b) Relative

spectral responses for two channels of the MicaSense RedEdge

3 camera plotted with the relative spectral responses for

20 channels of the National Ecological Observatory Network

Airborne Observation Platform (NEON AOP) imaging

spectrometer. Several channels of the NEON AOP instrument

comprise each of the MicaSense RedEdge 3 channels, so the

reflectance data from the NEON AOP are resampled (weighted, in

effect) such that they can be used as though the NEON instrument

exhibited the same spectral sensitivity as the MicaSense RedEdge

3 instrument.
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of geospatial data produced by UAS and NEON. More gen-
erally, working with these kinds of high-resolution
geospatial data, which are often classically “big,” can benefit
from following the few simple rules recently outlined by
Mahood et al. (2022).

CASE STUDY

Science requirements

Forest inventories describe the geolocation and physical
attributes of individual trees, and provide critical infor-
mation for management decision-making and advancing
ecological theory (Young et al., 2022). Remote sensing
approaches to creating forest inventories can cover more
area than field-based methods at a lower cost per area,
and recent approaches still allow for the characterization
of individual trees (Weinstein et al., 2019). The NEON
TOS collects field-based forest inventory data (the “Woody
Plant Vegetation Structure” data product; DP1.10098.001)
and remote sensing data in their AOP that have been used
to generate forest inventory data (Weinstein et al., 2020).
The field-based data are restricted to 20 � 20 m field plots,
while the AOP data cover dozens of square kilometers but
at moderately coarse resolution (10 cm for RGB imagery,
1 m for imaging spectrometer data, and 1 m for lidar data).
UAS have the capacity to fill in missing scales of observa-
tion for creating forest inventories by capturing a broader
spatial extent than field-based NEON data but at a finer
spatial resolution than NEON AOP data. With this as a
motivation, here we present a case study where we collect
and process UAS data coincident with a NEON TOS plot
to create a forest inventory. We then benchmark that for-
est inventory against the NEON TOS field data and
describe how to extract individual tree-scale spectral
information that is comparable to that collected by the
NEON AOP. We use the previous section’s “core princi-
ples” as a framework for describing our workflow, and
provide all data and code to further aid our mental
model building.

Vehicle

Our vehicle was a DJI Matrice 100 rotocopter with four
propellers and a proven track record of safe, predictable
flights. The vertical takeoffs and landings of the
rotocopter-style drone allowed us to operate the vehicle
from a clearing as small as the width of the dirt access
road to the site. We used a piece of plywood laid on the
ground as a flat, stable takeoff platform that would also
help to minimize the amount of dust kicked up by the

rotor wash during takeoff and landing. The Matrice
100 has a relatively high lift capacity that allows for a
payload to be integrated and is heavier than many con-
sumer rotocopters, which makes it both more stable in
windy conditions and more challenging to transport
beyond a road. We charged all vehicle batteries the night
prior to the flight.

Payload

We captured imagery using two co-mounted sensors: a
gimbal-stabilized DJI Zenmuse X3 RGB camera and a
MicaSense RedEdge 3 sensor, which is sensitive to elec-
tromagnetic radiation in five distinct spectral channels
across the visible and near-infrared wavelengths. The DJI
Zenmuse X3 camera has a focal length of 3.6 mm, a sen-
sor width of 6.17 mm, and a sensor height of 4.55 mm.
The MicaSense RedEdge 3 sensor has a focal length of
5.5 mm, a sensor width of 4.8 mm, and a sensor height of
3.6 mm. We used a fixed mount and a prebuilt integra-
tion kit for the MicaSense RedEdge 3 made by the sensor
manufacturer to integrate with our vehicle. This particu-
lar mount is angled such that the sensor faces approxi-
mately downward when the aircraft is tilted forward in
flight, and the integration kit allows the sensor to share
power with the vehicle batteries. The RedEdge 3 sensor’s
image capture mechanism operates independently from
the flight planning app or the vehicle’s flight computer,
though deeper integration with specific vehicles is possible
with newer versions of the sensor. Prior to flight, we
connected to the RedEdge 3 sensor with a laptop via its
built-in Wi-Fi to verify that the sensor’s onboard GNSS
receiver was functioning properly and to initiate image
capture. We set the RedEdge 3 sensor to capture images
at a rate of 1 image/s. We set the DJI Zenmuse X3 cam-
era to capture images at a rate of 0.5 images/s. Using the
quantum efficiency and filter bandpass sensitivity of an
average RedEdge 3 sensor provided by MicaSense, we
estimated the relative spectral response of the instru-
ment, which characterizes how the sensor captures light
across the electromagnetic spectrum (Figure 5). We pro-
vide the relative spectral response data in a format that
makes it interoperable with the hsdar package (Lehnert
et al., 2019).

Environment

Our data collection took place on a single day under
mostly sunny, light wind conditions on 9 October 2019
starting at 2:00 PM Mountain Daylight Time. We ide-
ally would have flown closer to solar noon to minimize
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shadows in the imagery, particularly this late in
the year.

Flight planning

We used the Map Pilot for DJI application on a 2017
Wi-Fi+Cellular-equipped, 10.5-inch (26.7 cm) Apple iPad
Pro for planning the flight. Map Pilot is a reliable,
full-featured flight planning application that allows us to
set flight parameters such as forward overlap, side over-
lap, and sensor angle. We flew at an altitude of 100 m,
and set the forward overlap to 95% and side overlap to
80% (based on the built-in DJI RGB camera, the
Zenmuse X3). We used a zero-degree sensor angle
(i.e., downward/nadir facing) and added a perpendicular
set of aerial transects to create a crosshatch flight pat-
tern (Figure 1). We opted to plan flights with particu-
larly high overlap so that we had the option to remove
photographs at different intervals prior to SfM
processing in order to test how various photograph densi-
ties affected our UAS-derived forest inventory benchmark
against NEON TOS field data. The Map Pilot software
determines flight parameters such as flight speed and dis-
tance between aerial transects based on the user-desired
front/side overlap, as well as the field of view and image
capture rate of the built-in DJI camera. We calculated
these flight parameters as follows:

xground,x3 ¼ avehicle
xsensor,x3
f sensor,x3

,

yground,x3 ¼ avehicle
ysensor,x3
f sensor,x3

,

tvehicle ¼ 1�oside,x3ð Þ xground,x3
� �

,

svehicle ¼ 1�ofront,x3ð Þðyground,x3Þ simaging,x3
� �

,

where xground,x3 is the horizontal dimension of the
Zenmuse X3 sensor’s ground footprint in meters,
yground,x3 is the vertical dimension of the Zenmuse X3 sen-
sor’s ground footprint in meters, avehicle is the vehicle’s
altitude during image capture in meters, xsensor,x3 is the
width of the Zenmuse X3 sensor in millimeters, ysensor,x3
is the height of the Zenmuse X3 sensor in millimeters,
f sensor,x3 is the focal length of the Zenmuse X3 sensor,
tvehicle is the transect spacing between aerial transects of
the vehicle in meters, oside,x3 is the planned side overlap
of the Zenmuse X3 imagery as a fraction, ofront,x3 is the
planned front overlap of the Zenmuse X3 imagery as a
fraction, svehicle is the speed of the vehicle in meters per
second, and simaging,x3 is the planned imaging speed (i.e.,
photo capture rate) of the Zenmuse X3 sensor in images
per second.

Because the MicaSense RedEdge 3 has a different
optical geometry than the Zenmuse X3 camera, we can
use the flight parameters calculated above to determine
the actual overlap of the imagery from the MicaSense
RedEdge 3:

xground,RE3 ¼ avehicle
xsensor,RE3
f sensor,RE3

,

yground,RE3 ¼ avehicle
ysensor,RE3
f sensor,RE3

,

oside,RE3 ¼ 1� tvehicle
xground,RE3

,

ofront,RE3 ¼ 1� svehicle
simaging,RE3
� �ðyground,RE3Þ

,

where xground,RE3 is the horizontal dimension of the
MicaSense RedEdge 3 sensor’s ground footprint in milli-
meters, yground,RE3 is the vertical dimension of the
RedEdge 3 sensor’s ground footprint in meters, xsensor,RE3
is the width of the RedEdge 3 sensor in millimeters,
ysensor,RE3 is the height of the RedEdge 3 sensor in milli-
meters, f sensor,RE3 is the focal length of the RedEdge 3
sensor, oside,RE3 is the calculated side overlap of the
RedEdge 3 imagery as a fraction, ofront,RE3 is the calcu-
lated front overlap of the RedEdge 3 imagery as a
fraction, and simaging,RE3 is the planned imaging speed
(i.e., photo capture rate) of the RedEdge 3 sensor in
images per second.

Using the front and side overlap, we can estimate the
approximate number of images captured of each point
within the survey area for the Zenmuse X3 sensor, px3,
and the MicaSense RedEdge 3 sensor, pRE3, as:

px3 ¼
1

1�oside,x3ð Þ 1�ofront,x3ð Þ ,

pRE3 ¼
1

1�oside,RE3ð Þ 1�ofront,RE3ð Þ :

The code for these calculations can be found at https://
github.com/mikoontz/neon-drone-workflow/blob/
master/workflow/02_preprocess-drone-data/03_drone_
L0_image-overlap-calculator.R.

Our aerial transects were 17.14 m apart, our vehicle
flew at 3.16 m/s, the side overlap of the RedEdge
3 imagery was 80.4%, and the front overlap of the
RedEdge 3 imagery was 95.2%. The estimated number
of photographs per point in the survey area was 200 for
the Zenmuse X3 camera and 105.5 for the MicaSense
RedEdge 3 sensor. The crosshatch flight plan effectively
doubles the expected number of photographs per point
to 400 for the X3 camera and 211.0 for the RedEdge 3
(Figure 1).
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Regulations

We obtained permission to access the NIWO NEON
site from the site host, the University of Colorado
Boulder Mountain Research Station, and NEON itself.
We flew under the FAA Part 107 rules for commercial
drone operations with a current remote pilot certifi-
cate, and ensured that the airspace was free for operat-
ing the UAS.

Radiometric calibration

The MicaSense RedEdge 3 multispectral camera comes
with a small gray-calibrated reflectance panel that
reflects approximately 60% of light across the entire spec-
tral extent captured by the sensor. We held the UAS over
the panel and captured an image of the calibration panel
prior to flight ensuring our shadow did not cover the
panel. The RedEdge 3 also integrates a DLS, which faces
upward and measures illumination at the same time as
the downward-facing image capture. We included the
calibration panel photographs in the SfM processing
workflow and also enabled the image-to-image correc-
tions from the DLS. When loading the calibration panel
photographs into the SfM software, we set the “known
reflectance” of the panel in each of the five spectral chan-
nels to be those that we measured for this particular
panel (Figure 2), rather than those provided by the
manufacturer.

Georeferencing

We laid out orange cloth Xs over the nine permanent
markers within the NIWO_017 field site (red points in
Figure 1). Five of these points were visible from the air.
These GCPs were located within the center of the flight
area, without any geolocation representation at the edges,
which was not ideal (Santana et al., 2021; Zimmerman
et al., 2020).

Data management

For data collection, we recorded each flight’s imagery on
a separate 32 gigabyte SD card rated at >90 MB/s write
speed that we formatted prior to the flight. For multiday
trips or if SD cards need to be reused, we transfer imagery
from the SD cards to at least one portable solid-state hard
drive (Samsung T series). Upon returning from the field,
we transferred images from the SD cards (or portable

solid-state hard drive, as the case may be) to two loca-
tions: (1) the solid-state hard drive on a local desktop
gaming computer for short-term storage and processing,
and (2) a NAS device with six spinning disk hard drives
in a RAID array for long-term storage. Both the
short-term storage (local desktop) and long-term storage
(NAS) solutions are backed up to the cloud using a
third-party backup client (Backblaze) at a cost of �5.00
USD per terabyte per month. We use the same data levels
as Koontz et al. (2021), except we did not process our data
to Level 4. To allow for future data collection to integrate
easily into this project, we compartmentalized each data
product to a folder for the specific flight date (9 October
2019), which was housed in a folder for the specific flight
location (NIWO_017). We used the Open Science
Framework for public-facing storage (https://doi.org/10.
17605/OSF.IO/ENBWU).

Data processing

We used a local desktop computer (Alienware Aurora R7
with an Intel Core i7-8700k 3.70-GHz hexacore processor
and 64 gigabyte of RAM) for data processing. We followed
the USGS workflow to process our rawMicaSense RedEdge
3 imagery into a digital surface model, an orthomosaic, and
a dense point cloud using Agisoft Metashape version 1.6.1
(Over et al., 2021). We noted each step in the SfM process,
as well as the parameter choices we made, in a .txt file
(https://github.com/mikoontz/neon-drone-workflow/blob/
master/workflow/03_structure-from-motion-of-drone-data
/01_drone_agisoft-metashape-processing-steps.txt). We
created a script to allow readers to download cropped ver-
sions of these SfM products that are relatively small in size
in order to follow along with our post-SfM processing steps
(https://github.com/mikoontz/neon-drone-workflow/blob/
master/workflow/04_get-processed-example-drone-data/
01_get-example-cropped-L1-and-L2-data.R). We used R
for all post-SfM steps, particularly the sf package for work-
ing with vector data (Pebesma, 2018) and the terra package
(Hijmans, 2021a) for working with raster data. The terra
package is intended to be a replacement for the raster
package (Hijmans, 2021b), but some other R packages
have not yet migrated their codebase to use terra.
In these cases, we coerce terra objects to be raster objects
in order to preserve the interoperability of the various
packages.

We classified the dense point cloud into “ground” and
“nonground” points using a cloth simulation filter algo-
rithm (Zhang et al., 2016) implemented in the lidR (Roussel
et al., 2020; Roussel & Auty, 2021) package. Using the
ground points, we interpolated a digital terrain model
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(DTM) representing the height of the ground (without the
vegetation). We subtracted this DTM from the SfM-derived
digital surface model (DSM) to create a canopy height
model (CHM) representing the height of the vegetation in
the survey area.

To integrate our UAS data with NEON TOS field
data, we used the CHM to detect and segment individual
tree crowns. We used a variable window filter to detect
individual trees, which searches for all of the maximum
heights in a CHM within a circle of variable radius
defined by the height of each pixel in that CHM in turn
(Popescu & Wynne, 2004). That is, pixels in the CHM
representing taller vegetation will have a broader search
radius within which the location of the maximum
height is determined. We used the ForestTools package
to implement this algorithm and used the optimal
tree detection parameter set determined by Young et al.
(2022) for a structurally complex mixed-conifer forest,
with a variable search window defined using the follow-
ing function:

r¼ 0:04x,

where r is the radius of the variable search window and x
is the canopy height of the focal pixel.

Using the detected trees, we implemented a
marker-controlled watershed segmentation algorithm
using the ForestTools package to segment individual tree
crowns (Plowright & Roussel, 2021). For each tree crown,
we created a new geometry representing its bounding box
(i.e., the smallest rectangle that fully contains the irregularly
shaped crown polygon) in order to compare UAS-derived
crown segments with those derived using deep learning
approaches (Weinstein et al., 2019). We benchmarked our
tree detection using the NeonTreeEvaluation package
(Weinstein et al., 2021) to compare our tree detections with
the NEON TOS field-collected tree locations and with
previously annotated crown bounding boxes derived from
NEON AOP imagery (Weinstein et al., 2021). The stem
locations of the trees in the NEON TOS sites can be deter-
mined using a combination of the neonUtilities package
(Lunch et al., 2021) to download the geoNEON package
(National Ecological Observatory Network, 2020), but they
are also directly available in the NeonTreeEvaluation
package. Within the NIWO_017 plot, we detected 60% of
the field-measured stems (i.e., a recall score of 0.6).
Comparison with the annotated crowns using the compute_
precision_recall() function in the NeonTreeEvaluation
package also provides precision scores (a measure of the
false-positive tree detection rate), which can be combined
with the recall scores (a measure of the true-positive tree
detection rate) in an integrated measure of predictive
ability called the F-score:

p¼Treference\TUAS

TUAS
,

r¼Treference\TUAS

Treference

F¼ 2�p� r
pþ r

,

,

where p is the precision, r is the recall, F is the F-score,
Treference is the number of reference trees (e.g., those iden-
tified in a field survey), TUAS is the number of trees
detected by the UAS, and Treference\TUAS is the number
of reference trees that were correctly detected by the
drone (i.e., the true-positive detections).

For our comparison, we set the threshold argument
of the compute_precision_recall() function to 0.1 such
that a predicted tree was considered correctly
predicted if the intersection of its bounding box with
an annotated crown’s bounding box divided by the
area of the union of those bounding boxes is greater
than 0.1. Our UAS-derived map of detected trees had a
recall rate of 0.788 and a precision rate of 0.276,
resulting in an F-score of 0.409. For comparison, the
DeepForest algorithm’s predictions for the locations of
trees at NIWO_017 (Weinstein et al., 2021) had a recall
rate of 0.861, a precision rate of 0.798, and an F-score
of 0.828. The poorer performance of the UAS-derived
tree detection approach suggests that a different com-
bination of flight parameters, SfM photogrammetry
parameters, or tree detection algorithm/parameters
might be better suited to the subalpine forest at NIWO
(Young et al., 2022).

To integrate our UAS data with NEON AOP reflec-
tance data, we calculated NDVI from each sensor.
We used the neonUtilities package to download the
NEON AOP imaging spectrometer data (data product
DP3.30006.001) that covers the NIWO_017 site from
2019, using the easting and northing of the centroid of
the NIWO_017 plot and a 20-m buffer as arguments
to the byTileAOP() function (Lunch et al., 2021). We used
the neonhs (Joseph & Wasser, 2021) package to convert
the raw NEON AOP data product into a raster object
more readily manipulatable in R. Because the imaging
spectrometer spectral response overlaps with, but does
not perfectly align with, the spectral response of the
MicaSense RedEdge 3 sensor, we spectrally resampled
the NEON AOP data to match the spectral resolution of
the MicaSense RedEdge 3 sensor using the hsdar package
(Lehnert et al., 2019) and the relative spectral response
that we derived (Figure 5). We used the UAS-derived
orthomosaic and the spectrally resampled NEON AOP
orthomosaic to calculate NDVI. Figure 6 shows the com-
parison between NDVI as captured by the NEON AOP
flight in August and our UAS-derived NDVI from our
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flight in October. We used the exactextractr package to
extract the mean and standard deviation of NDVI derived
from the UAS, as well as the spectrally resampled NEON
AOP for each segmented tree crown (Baston, 2021). Figure 7
shows the comparison between NDVI derived from the
NEON AOP and the UAS at an individual tree scale.

DISCUSSION

Macroecology will benefit from a “macroscope” to enable
the study of broad-extent phenomena across multiple
scales of biological, geophysical, and social processes
(Beck et al., 2012; Dornelas et al., 2019; Lawton, 1996). The
ideal macroscope comprises a nested array of tools that
provide full coverage of spatial and temporal observational
domains. In their complementarity, the value of multiple
observational tools in concert is more than the sum of the
parts (Dornelas et al., 2019). Pairing UAS with NEON par-
tially completes the constellation of Earth-observing tools
that contribute to the macroscope, and combines the flexi-
bility of UAS with the high quality and consistency of
NEON. In this work, we aid the adoption of these tools
among macroecologists by providing a mental model—a
contextual framework—and some practical considerations
for their integration.

Challenges

Challenges remain for integrating UAS with NEON, but
they are surmountable. Some of these challenges are fun-
damentally associated with “big,” cross-scale data.
Integrating data across scales brings a host of potential
pitfalls that could pollute inference if care is not taken to
avoid them (Zipkin et al., 2021). Big data in ecology are
relatively new (Farley et al., 2018), and approaches to
UAS-derived big data are fairly ad hoc across researchers
(Wyngaard et al., 2019). Maintaining supportive commu-
nities of practice, such as the High Latitude Drone
Ecology Network (https://arcticdrones.org/), can help
overcome some of these idiosyncratic approaches. In the
same vein, NEON provides an aspirational target for UAS
educational resources, which are critical to ensuring that
would-be NEON/UAS users have the environmental data
science skills necessary to turn their data into inference
(Hampton et al., 2017).

The proliferation of reasonably low-cost, off-the-shelf,
drone-ready sensors (many designed for precision agri-
culture use) creates a need for validation of whether
those instruments produce “science-grade” data (which
itself is a relative term, depending on what the specific
science requirements are for a given project). This valida-
tion may be achieved via direct comparison of the

F I GURE 6 Normalized difference vegetation index (NDVI) image over NIWO_017 plot (a) derived from the National Ecological

Observatory Network Airborne Observation Platform (NEON AOP) spectral imager using data collected in August 2019 (data collection

flights over Niwot Ridge NEON site on 14, 15, 19, and 26 August 2019) and (b) derived from the MicaSense RedEdge 3 camera using data

collected on 9 October 2019. The NEON AOP data were first spectrally resampled into the equivalent red and near-infrared bands of the

MicaSense RedEdge 3 camera based on the relative spectral response of the RedEdge 3 instrument. The higher spatial resolution of the

drone-derived data in (b) is apparent when compared to NEON AOP-derived data in (a). Note that the difference in NDVI between the

images may derive from three main sources: phenological differences in the vegetation, differences in the flight conditions such as time of

day and cloud cover, or differences in instrumentation.
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low-cost sensors with “state-of-the-science” instruments
using coincident flights (e.g., Fawcett et al., 2020). Clear
documentation of data provenance including sensor char-
acteristics, data acquisition methods (e.g., flight pattern),
and data acquisition conditions (e.g., time of day, cloud
cover) will enable more rigorous data integration across
instruments. Thus, integrating UAS operations with NEON
can help anchor the community to the common currency
of NEON data types, organization, and collection protocols,
which will enhance the interoperability of UAS data.

Cyberinfrastructure for managing and processing UAS
data is not yet built in a way that encourages consistency
between projects or researchers. In this way, NEON again
provides an aspirational example for how purpose-built
cyberinfrastructure can facilitate macroecology. In fact,
the foundational resources for building a valuable archi-
tecture for UAS data may already be represented in other
NSF-sponsored projects (e.g., CyVerse, OpenTopography,
and Open Science Framework). UAS-enabled research
would benefit greatly from data storage solutions and
streamlined analysis pipelines that are intentionally built
to support a wide variety of users and use cases.

Critically, “accessibility” and “democratization” of
macroecology encompass a broad, multifaceted notion of
availability for and usability by anyone, and obstacles to
accessibility extend beyond those we sought to remedy
here. That is, our work to increase access to the elusive
broad-extent/fine-grain observational domain with a
mental model and an open workflow is an important but
incomplete effort toward accessible macroecology.
Illustrating this point, the reduced cost of Landsat images
brought more researchers into the user base from lower
resourced institutions and underrepresented parts of the
world to do more topically diverse science (Nagaraj
et al., 2020), but some barriers to access still exist (Miller
et al., 2016). For instance, three quarters of users are
men, and 65% of users are academic researchers (Miller
et al., 2016). The Landsat archive was undeniably made
more accessible to the collective benefit of science and soci-
ety (Miller, 2016; Nagaraj et al., 2020), but even broader
access (and therefore greater value; Miller, 2016) is possi-
ble. Greater accessibility of UAS and NEON as tools for
macroecology will similarly require their user communities
to be self-reflective and proactive about identifying and
eliminating barriers to entry (Nagy et al., 2021).

Future directions

We conclude with a set of research themes that are well
suited for UAS/NEON integration with example ecology
applications, which we hope provides a vision to be
built upon:

1. Filling in spatial scales missed by NEON data collection
(e.g., collecting data on a similar vegetation type of a
NEON site but outside of NEON’s direct footprint, cap-
turing data at spatial resolutions finer than 10 cm in
order to measure post-disturbance vegetation recovery);

2. Filling in temporal scales missed by NEON data col-
lection (e.g., capturing data in a year when a NEON
site is skipped by the AOP, capturing data at a site
multiple times per year to understand how snowpack
changes throughout the year, tracking individual
plant phenology through time and linking to
PhenoCam data, and understanding temporal trends
in biodiversity);

3. Opportunistic data collection (e.g., capturing data
immediately after a disturbance event to measure its
severity);

4. Connecting NEON data to other Earth-observing sys-
tems using UAS data as a bridge (e.g., spectrally
unmixing Landsat pixels to determine relative species
compositions by matching UAS spectral measure-
ments to NEON TOS field measurements; and coordi-
nating NEON data collection with UAS and other
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The nonlinear model fit highlights how, at the individual tree scale,

spectral responses vary differently throughout the year, which might

prove useful for future work (e.g., classifying trees to species based

on how variable their spectral response is throughout the year).
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data collection to expand the utility of NEON products
(e.g., Chadwick et al., 2020; Wang et al., 2020));

5. Supplementing NEON data using sensors that are not
part of the NEON suite of sensors (e.g., thermal data
to compare thermal regulation of different plant spe-
cies, and measuring water stress in different trees
across gradients of topoclimate);

6. Validating lower cost, off-the-shelf payloads against
the state-of-the-science NEON data collection
(e.g., determining how well a multispectral imager
designed for agriculture captures surface reflectance,
and determining how well an algorithm detects the
trees in a NEON vegetation structure plot);

7. Replacing high-cost NEON AOP flights with lower
cost alternatives (e.g., if the drone-derived data are
“good enough” compared with the AOP, can we
reduce the operational costs of the AOP?); and

8. Using NEON data as a common currency for validat-
ing new methods (e.g., the case study we showed
here, comparing a deep learning/orthomosaic-based
approach and a variable window filter/CHM
approach to detecting individual trees measured by
the NEON TOS).

UAS can help ecologists harness the NEON data revo-
lution with their complementary approach to measuring
the understudied broad-extent/fine-grain observational
domain. NEON’s long-term, consistent, high-quality,
continental-extent measurements enable data-driven dis-
covery that is enhanced with new opportunities to
explore cross-scale questions when paired with the rela-
tively affordable, flexible measurements of UAS. We hope
that by providing a mental model for data collection and
integration, we remove some of the friction points associ-
ated with these tools and make them more accessible.
Further democratizing macroecology will require com-
munity support for an open science ethos, which might
include: low-cost cyberinfrastructure, open observatories,
data networks, well-documented workflows, open educa-
tion resources that increase data skills, and more inclusive
practices that create opportunities for researchers across
a diversity of career stages and institutions to participate
in and contribute to “big data” macroecology. We envi-
sion NEON as an anchor for UAS-enabled ecology, with
future research efforts that embrace the spirit of democ-
ratization and strive to broaden participation in this
emerging discipline.
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