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Abstract. To assess which ecosystems are most vulnerable it is necessary to compare the resilience of complex
interaction networks in a meaningful way. A fundamental problem for the comparative analysis of
ecological stability is that the organisms in ecological networks operate on different time scales. A
conventional solution to this problem has been to assume the intraspecific interaction strengths in the
dynamical system (and diagonal elements in the community matrix) have the same value, ignoring
the time scale differences, and therefore disregarding vital ecological information. In this paper, we
consider two methods that have previously been developed to deal with community matrices arising
from populations with widely different time scales and which contain differing self-regulation terms
(diagonal entries). One approach considers the critical self-regulation in a system by proportionally
adjusting the diagonal entries until the tipping point is found. The other is a scaling procedure
that translates the intraspecific information on the diagonal on to the off-diagonal entries. We show
the relation between the leading eigenvalue of the latter, and the numerical diagonal parameter of
the former, which in many ecologically relevant networks is exact. In addition, we show for 3 \times 3
scaled competitive systems how the feedback determines whether the leading eigenvalue is real-
or complex-valued, which is important for knowing when the scaling procedure remains ecologically
sensible. While arising from an ecological setting, this work has wider implications in network theory
and linear algebra.
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1. Introduction. The development of ecological food web theory in the 20th century
grew from the diagrammatic relationships between species elaborated by Elton [4] and the
information-theoretic approach put forward by MacArthur [19]. MacArthur's work drew on
Lindeman's [17] efficiency of trophic energy transfer and Odum's [30] criterion that increasing
the channels that energy has in rising to higher trophic levels provides stability to a system. In
so doing, MacArthur solidified the widely held view that increased diversity leads to increased
stability [5], [11]. Following Levins' [15] construction of the community matrix based on
Lotka--Volterra [18] equations at equilibrium, Gardner and Ashby [6], subsequently extended
analytically by May [21], [22], [23], upended this assumption and set in train the complexity-
stability debate [24]. But Gardner and Ashby's [6] and May's [22] inverse relationship result
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MATRIX SCALING AND TIPPING POINTS 1091

was arrived at through the removal of ecologically relevant energy transfer [17] and flow
direction [30] information. This information is vital to the structure of an ecosystem, thus
leaving their complexity begets instability result as an artifact of their structural choices and
insistence on the significance of the pairwise interactions alone [2], [14], [32], [35], [8], [26],
[27], [12].

However, within May's approach was the first analytic statement of the stabilizing role of
self-regulation [22], [23], [7]. Yet long before May [19], [5], [11], [20] the stabilizing role of self-
regulation was well understood (and see [2], [14], [35]). Still, in his analyses, May assumed that
these terms could be normalized, and a uniform value was set for all the diagonal elements
of his community matrices [22] just as, previously, Gardner and Ashby had set the self-
regulation terms to uniformly random values within a small range [6]. But it has been argued
that normalization in the way proposed by Gardner and Ashby or May is not possible when
the components within a network operate on different time scales [8], [13]. When considered
with more ecological relevance, the question often came down to the proportion of species
requiring a uniformly applied self-regulation for the system to be stable [35]. Incorporation
of varied, observation-based intraspecific terms came with de Ruiter, Neutel, and Moore [3],
who derived upper limits for each population from nonpredatory loss rates [10]. In addition
to these empirically derived rates, this study also incorporated, following Gardner and Ashby
[6] and Yodzis [35], a discrete, proportional variable which was uniformly multiplied by the
differing intraspecific values. This variable provided an assessment of how the stability changes
as the proportion of the species' intraspecific interaction terms, which might operate on very
different time scales from each other, was altered. Neutel, Heesterbeek, and de Ruiter [25]
introduced the concept of critical self-regulation, using this same variable as a continuous
control parameter, adjusted freely to find the proportional amount of the empirically derived
terms on the diagonal needed to arrive at the tipping point between stability and instability
of the system. This proportional amount, or critical self-regulation, can be seen as a stability
measure: if it is less than one, the system is stable; if it is more than one, it is unstable. Critical
self-regulation not only informs one about the vulnerability of the current system, but it also
allows one to make comparisons across systems. Those systems that need relatively more
self-regulatory input are more fragile than those that require less. In this sense, it is a metric
much like the more generally recognized real part of the leading (maximal real part) eigenvalue
that determines the stability in systems theory.

Neutel and Thorne [27] equated this numerical multiplier at the critical value, indicating
the tipping point of the system, with the leading eigenvalue of a matrix obtained by scaling
the off-diagonal interaction strengths by the self-regulating terms, followed by a linear shift.
This scaling operation not only enabled the stability of disparate food webs to be compared,
but it also simplified their feedback structure, which made it possible to correlate the stability
in terms of the strength of key feedbacks.

In this paper, we analyze the relation between the two stability metrics, showing that the
leading eigenvalue of a scaled matrix, when placed back as the diagonal multiplier, is either
equal to the critical value that makes the original system stable or produces a subcritical
zero. For mathematical closure, it is necessary to consider multipliers that are complex, yet
this raises difficulties for ecological interpretation. In attempting to understand when scaled
matrices have leading complex-valued eigenvalues, we compare the simplest matrix forms,
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1092 THORNE, FORGOSTON, BILLINGS, AND NEUTEL

that of mutualistic and competitive systems. Through this comparison, we are able to show
that when a 3 \times 3 competitive system has a leading eigenvalue that is complex, it is due to
an increase in negative feedback.

2. Scaling a community matrix by its diagonal elements can preserve essential stability
information. Community matrices are made up of interaction strengths, representing the size
of the effects of species on each other's dynamics near equilibrium, and are traditionally based
on linearizations of sets of growth equations of ecological populations [15].

The classic predator-prey food web model uses growth equations of the Lotka--Volterra
type [18] where the off-diagonal entries are the effects of one trophic group on another: the
feeding rates relative to predator population size (negative effects) and growth rates relative
to prey population size (positive effects). The diagonal entries are the intraspecific losses of
a given group relative to the population size [31]. All the entries have the dimension ``per
time."" Appendix A details the mathematical construction of a community matrix.

In general, community matrices can be constructed depicting many different relations
among the groups. These systems can include predator-prey, mutualistic, commensalistic,
competitive, and amensalistic, as well as any number of purely synthetic and random con-
structions, as was first explored by Gardner and Ashby [6].

Neutel, Heesterbeek, and de Ruiter [25] introduced a continuous, positive, real-valued
variable s that was uniformly multiplied by the self-regulation terms on the diagonal from
populations with widely differing time scales in empirically observed food webs. This variable
enabled one to find the proportion of the upper-bound self-regulation required to be altered
in the system (the critical self-regulation, s\ast ) to find the stability tipping point, which could
then be used to compare the vulnerability of different systems. An example of this approach
can be seen with the following small 3\times 3 predator-prey community matrix:

(2.1) \bfitA =

\left[   - a b c
 - d  - e f
 - g  - h  - k

\right]  ,

where the lower diagonal entries are negative or zero, the upper diagonal entries are positive
or zero, and the diagonal entries are negative. Then, multiplying the diagonal elements of \bfitA 
by a variable s leads to the matrix

(2.2) \bfitA s =

\left[   - sa b c
 - d  - se f
 - g  - h  - sk

\right]  .

The variable s is then continuously shifted from 0 to a point designated as s\ast at which the real
part of the resulting maximal, or leading, eigenvalue (the eigenvalue with the largest real part)
of \bfitA s is just zero (or as close as possible within numerical precision). Any further increase in
s should result in all eigenvalues having negative real parts.

Neutel and Thorne [27] subsequently applied a scaling method in which each row of the
community matrix is divided by the absolute value of its diagonal entry and then the entire
matrix translated by adding the identity matrix so that the diagonal entries all become zero.
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MATRIX SCALING AND TIPPING POINTS 1093

Using the same example as above, we start with

\=\bfitA =

\left[   - 1 b/a c/a
 - d/e  - 1 f/e
 - g/k  - h/k  - 1

\right]  ,

which after adding the identity matrix \bfitI to \=\bfitA , effecting a linear shift, results in the matrix

(2.3) \=\bfitA 0 =

\left[  0 b/a c/a
 - d/e 0 f/e
 - g/k  - h/k 0

\right]  .

In many cases, the resulting leading eigenvalue of such a scaled matrix is very close to, and
sometimes exactly the same as, the critical self-regulation s\ast of \bfitA s. If the leading eigenvalue of
\=\bfitA 0 is real-valued with no imaginary part, then the relation to s\ast can be exact. However, if the
leading eigenvalue of \=\bfitA 0 consists of a complex pair, then we need to redefine the real-valued
s in (2.2) to be a complex-valued variable, which we shall call \sigma . But allowing the diagonal
variable to be complex-valued is a significant shift. While enabling mathematical closure, it
opens up difficulties for ecological interpretation. We return to this issue in section 3.

With \sigma \in C, (2.2) now becomes

(2.4) \bfitA \sigma =

\left[   - \sigma a b c
 - d  - \sigma e f
 - g  - h  - \sigma k

\right]  .

That is, the leading eigenvalue of (2.3), when placed back as \sigma in (2.4), often results in (2.4)
having a leading eigenvalue of zero. To understand this statement more clearly, we first state
a simple condition on the original matrix \bfitA .

Let \bfitA be an n\times n matrix comprised of elements aij with the condition that the diagonal
elements are all negative, aii < 0. Even this condition may be relaxed, but ecological relevance
to date has dictated that the diagonal elements are all negative.

To determine the relationship between the self-regulation term \sigma and the leading eigenvalue
of the scaled matrix \=\bfitA 0, we rewrite the two matrices in terms of the original community matrix
\bfitA as

(2.5) \bfitA \sigma = \bfitA  - (1 - \sigma ) \cdot diag(\bfitA )

and

(2.6) \=\bfitA 0 =  - (diag(\bfitA )) - 1\bfitA + \bfitI ,

where the role of the variable \sigma has been described, \bfitI is the n\times n identity matrix, diag(\bfitA ) is
the matrix of diagonal elements aii of \bfitA , and the superscript  - 1 denotes the inverse matrix
operation.

We are interested in determining the values of \sigma such that \bfitA \sigma has a zero eigenvalue. The
criterion for this is given by

det(\bfitA \sigma  - (0)\bfitI ) = 0,
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1094 THORNE, FORGOSTON, BILLINGS, AND NEUTEL

which can be rewritten using (2.5) as

(2.7) det(\bfitA  - (1 - \sigma ) \cdot diag(\bfitA )) = 0.

We now consider \=\bfitA 0. Let \lambda be an eigenvalue of \=\bfitA 0 so that

det( \=\bfitA 0  - \lambda \bfitI ) = 0.

Using (2.6), this can be rewritten as

det(( - (diag(\bfitA )) - 1\bfitA + \bfitI ) - \lambda \bfitI ) = 0.

Multiplying both sides by det( - diag(\bfitA )) and using properties of determinants, one has

det( - diag(\bfitA )( - (diag(\bfitA )) - 1\bfitA + \bfitI  - \lambda \bfitI )) = 0,

which can be simplified to

(2.8) det(\bfitA  - (1 - \lambda ) \cdot diag(\bfitA )) = 0.

While the relation between (2.7) and (2.8) assures us that there is a zero eigenvalue of \bfitA \sigma 

when \sigma = \lambda \mathrm{m}\mathrm{a}\mathrm{x} of \=\bfitA 0 (\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)), it is not necessarily the leading eigenvalue of \bfitA \sigma . Rather,
it may be submaximal (i.e., \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) > 0). If the leading eigenvalue of \bfitA \sigma is zero when
\sigma = \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0), then for convenience we designate \sigma as \sigma \ast , analogous to s\ast . In the majority of
observed cases using empirical or ecologically considered community matrices, \sigma \ast = \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)

and is therefore the tipping point of \bfitA \sigma .
The images in Figure 1 depict the \sigma landscape of a 22-species Antarctic predator-prey

food web, SIRS1 (described in [27], [28], but without the last detrital row and column), and
a number of randomized predator-prey variants of SIRS1 (where the nonzero elements of the
matrices are assigned random values while keeping their sign intact). The coloring shows for
a given value of \sigma (\in C) in \bfitA \sigma how many eigenvalues with positive real part would result.
The black areas indicate the regions of stability, where the real part of all the eigenvalues
would be negative (or zero if on the boundary). In the darker blue region bounding the black,
there would be one positive (real part) eigenvalue, in the lighter blue there would be two
positive eigenvalues, and so on. The yellow asterisks (if \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) = \sigma \ast ) or red asterisks (if
\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) \not = \sigma \ast ) in each figure indicate where \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) lies in the landscape. In Figure (1a), the
empirical Antarctic web has a real-valued leading eigenvalue when scaled and \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) = \sigma \ast ,
and so the yellow asterisk is therefore shown on the real axis just at the boundary between
the black, stable region and the region where there would be one positive eigenvalue.

Figures (1b), (1d), and (1e) also depict the \sigma landscape for community matrices where
\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) = \sigma \ast . Note that Figure (1b) shows a small island of stability to the left in a
larger unstable region. Figures (1c) and (1f) show a real-valued and complex-valued case,
respectively, where \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) \not = \sigma \ast . In both cases, the \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) values can be seen to lie within
the region of instability, indicating that for these values of \sigma , there are one (1f) or more (two
in (1c)) eigenvalues with positive real part.
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MATRIX SCALING AND TIPPING POINTS 1095

a)
b)

c) d)

e) f)

Figure 1. In all subfigures, the coloring indicates the number of eigenvalues with positive real part in the
spectrum of \bfitA \sigma as \sigma is varied. The black region has none and is therefore the region of stability for \bfitA \sigma . Red is
six or more. The boundary between the black and the darker blue regions (indicating one eigenvalue with positive
real part) are tipping points where a \sigma produces a leading eigenvalue with real part zero. When \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)

= \sigma \ast ,
then \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)

lies on this boundary and is shown as a yellow asterisk (or two if complex). If \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)
\not = \sigma \ast ,

then \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)
(and its complement if complex) is shown as a red asterisk. (a) A 22-species Antarctic food web,

SIRS1, whose leading scaled eigenvalue is real-valued and \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)
= \sigma \ast . All other examples are predator-prey

randomized variants of SIRS1. (b) An example for which \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)
= \sigma \ast , yet which has a small stable island

(the small black region between the two blue regions centered along the x axis) in the region of instability. (c)
An example of a real-valued \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)

\not = \sigma \ast , with \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)
far to the left of the stable region. (d) and (e) Two

examples with complex-valued \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)
= \sigma \ast . (f) An example with a complex-valued \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0)

\not = \sigma \ast pair which
lies in the region of instability.

3. The relation between paired mutualistic and competitive scaled community matri-
ces highlights the role of feedback in determining the field of the leading eigenvalue. In
order for the leading eigenvalue of a scaled matrix to be used as \sigma in \bfitA \sigma and to make sense
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1096 THORNE, FORGOSTON, BILLINGS, AND NEUTEL

in an ecological setting, it is ideal for \sigma to be real-valued. This is not to say, however, that a
complex \sigma is any less likely to result in a tipping point of \bfitA \sigma through the scaling relation or
that one could not approximate \sigma as a real value. But there is no clear interpretation for a
complex \sigma .

For understanding just when a community matrix has a real- rather than a complex-valued
leading eigenvalue after scaling, it is useful to compare mutualistic and competitive systems,
the two structurally simpler matrix forms. Scaled mutualistic matrices are assured, by the
Perron--Frobenius theorem, to have a leading real-valued eigenvalue (even unscaled mutualistic
matrices with negative diagonal elements have real leading eigenvalues, as shown in Appendix
B). Competitive systems, however, do not in general have real-valued leading eigenvalues.
Rather, like predator-prey systems (and more complicated sign structured matrices), the
leading eigenvalue can be real or complex (see Appendix C for a combinatorial argument of
the potential number of real to complex leading eigenvalues for competitive systems). The
relevance of comparing paired, or companion, scaled mutualistic (\bfitM ) and competitive (\bfitC )
matrices (one formed by reversing the sign of the elements of the other) rests on the relation
of their eigenvalue ordering, which in turn can help to understand how matrix structure
determines when there is a complex-valued leading eigenvalue. This is best explored through
the characteristic polynomial, p(x). For a scaled mutualistic system,

p\bfitM (x) =
n\sum 

i=0

aix
n - i,

where the eigenvalues (\lambda \bfitM i), or roots, are the negative of those from its companion competitive
system, p\bfitC (x),

\{ \lambda \bfitM 1 , . . . , \lambda \bfitM n\} =  - \{ \lambda \bfitC 1 , . . . , \lambda \bfitC n\} ,

so that

| max\{ \lambda \bfitM 1 , . . . , \lambda \bfitM n\} | = | min\{ \lambda \bfitC 1 , . . . , \lambda \bfitC n\} | .

Therefore,
p\bfitM (\lambda Mi) = 0 \Leftarrow \Rightarrow p\bfitC ( - \lambda Mi) = 0

=\Rightarrow p\bfitM (\lambda Mi) = p\bfitC ( - \lambda Mi),

where the coefficients for all the odd powers between p\bfitM and p\bfitC differ solely by sign.
The discriminant of a polynomial allows us to determine whether there is a complex root.

Therefore, considering the general characteristic polynomial for a 3 \times 3 matrix,

a0x
3 + a1x

2 + a2x+ a3 = 0,

then the discriminant of the characteristic polynomial for a scaled matrix (where a0 = 1 and
a1 = 0) is given as

(3.1) \Delta =  - 4a32  - 27a23.
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MATRIX SCALING AND TIPPING POINTS 1097

Whether there exists a complex-valued eigenvalue pair is determined by whether \Delta < 0. The
sign of the discriminant is determined by the values of the respective coefficients a2 and a3,
which reflect the form of the underlying matrix.

The general, scaled, 3\times 3 matrices of mutualistic, competitive, and predator-prey (brought
in for completion for the remaining discussion) systems are

Mutualistic Competitive Predator-Prey\left[  0 b c
d 0 e
f g 0

\right]  \left[  0  - b  - c
 - d 0  - e
 - f  - g 0

\right]  \left[  0 b c
 - d 0 e
 - f  - g 0

\right]  
As described more fully in Appendix C, an eigenvalue ordering such as (r, c, c) consists of a
real-valued eigenvalue (r), and then a complex conjugate pair (c, c), with the ordering based
on the smallest eigenvalue located on the left (in numeric terms) and the largest eigenvalue
on the right. As shown below (along with the possible eigenvalue orderings and coefficient
signs), the mutualistic and competitive matrices result in the same form of the discriminant,
even while differing in their sign of coefficient a3 (see Figure 2).

Mutualistic:
(c, c, r)
(r, r, r)

,
a2 < 0, a3 < 0,\Delta > 0, or\Delta < 0

\Delta = 4(eg + cf + bd)3  - 27(bef + cdg)2,

Competitive:
(r, c, c)
(r, r, r)

,
a2 < 0, a3 > 0,\Delta > 0, or\Delta < 0

\Delta = 4(eg + cf + bd)3  - 27(bef + cdg)2,

Predator-Prey:
(r, c, c)
(c, c, r)

,
a2 > 0,\Delta < 0

\Delta =  - 4(eg + cf + bd)3  - 27(cdg  - bef)2.

As can be seen above and in Figure 2, the predator-prey 3\times 3 systems can have a complex
conjugate pair in two possible positions, and therefore no assurance that a complex-valued
eigenvalue is leading. Mutualistic systems can of course only have a real-valued leading ei-
genvalue. But with the 3\times 3 (and no higher n) scaled competitive matrix we can be assured
that when there is a complex-valued eigenvalue, it is leading. In this specific case, the ratio of
the values of the a2 and a3 coefficients in the discriminant determines when there is a leading
complex-valued eigenvalue:

(3.2)
4(eg + cf + bd)3

27(bef + cdg)2

\Biggl\{ 
> 1 : all eigenvalues are real-valued,

< 1 : leading eigenvalue is complex-valued.

The feedback in a system is found by multiplying the matrix entries that make up a cir-
cuit, and these in turn, through their summation of each feedback level, or circuit size, are
represented by the coefficients of the characteristic polynomial [1], [16], [27]. The coefficients
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1098 THORNE, FORGOSTON, BILLINGS, AND NEUTEL

Figure 2. The regions for the eigenvalue signatures (the eigenvalue orderings as described in
Appendix C) depending on the sign of the respective coefficients (a2 and a3) of the different forms
(mutualistic/competitive/predator-prey) for general, scaled 3 \times 3 community matrices. The red curve indi-
cates where the discriminant given by (3.1) is zero. In the region to the left of the red curve, the discriminant
is positive and there are three real eigenvalues.

of a2 and a3 in (3.2) not only reflect different sized circuits, but since they come from a com-
petitive system, the underlying feedback inherent in each coefficient differs fully as well. Thus,
greater positive feedback (a2, the numerator in (3.2)) results in real-valued leading eigenval-
ues, while increasing the negative feedback (a3, the denominator in (3.2)) will eventually lead
to complex-leading eigenvalues.

4. Conclusion. Empirical food web models must contain self-damping terms, which may
represent widely different time scales, to be ecologically relevant. Once these are included,
in order to compare differing community matrices, a normalization of the diagonal terms is
needed. A matrix scaling technique outlined in Neutel and Thorne [27] translates the self-
damping terms on the diagonal into the interspecific off-diagonal terms, followed by a linear
shift. In most cases, the resulting leading eigenvalue of the scaled matrix, when applied as the
diagonal multiplying factor in the original unscaled matrix, brings the system to a stability
tipping point. We have now explored this relation between the leading eigenvalue of the scaled
matrix and the diagonal multiplying factor of the original matrix.

The applicability of the scaling method has been contested. Smith et al. [34] argued that
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the wide range of time scales of the differing species prevented the technique from being valid.
This can now be disregarded due to the relation between (2.7) and (2.8). Haydon [8] argued
that dividing each row by its diagonal term (see, e.g., [33]) will not preserve the dynamics in
any way [13]. But there is no expectation that the scaled matrices have the same dynamics
as the unscaled matrices, only that they carry valuable information on the original matrices.

For mathematical closure, it is necessary to allow the diagonal variable \sigma to be complex-
valued. Yet to be ecologically sensible, it is ideal for \sigma , and therefore the leading eigenvalue
of the scaled matrix, to be real-valued. That is, \sigma = s, the real-valued s as in the original
numerical formulation of the problem. In mutualistic matrices, this will always be the case. We
have shown that in small 3\times 3 scaled competitive systems, the field of the leading eigenvalue
(i.e., \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) \in R or \lambda \mathrm{m}\mathrm{a}\mathrm{x}(\=\mathrm{A}0) \in C) is determined by whether the system is driven by positive
or negative feedback. Resolving to what extent, if any, the field of the leading eigenvalue is
determined by the feedback for systems in general remains an interesting problem.

Since the scaling method can be applied to all square matrices with negative diagonal
terms, such a technique should find relevance beyond the scope of ecological theory.

Appendix A. Construction of a community matrix. While the use of the term commu-
nity matrix stems from Levins [15], it has been used since to mean a wide range of differing
constructions [29]. We describe here one widely used approach.

We begin with the governing equations. Everything that follows can easily be generalized
to any number of species, but as an example, consider a Lotka--Volterra system of equations
for three species,

\.x1 =b1x1 + c11x
2
1 + c12x1x2 + c13x1x3 = F1(x1, x2, x3) = x1G1(x1, x2, x3),

\.x2 =b2x2 + c21x2x1 + c22x
2
2 + c23x2x3 = F2(x1, x2, x3) = x2G2(x1, x2, x3),

\.x3 =b3x3 + c31x3x1 + c32x3x2 + c33x
2
3 = F3(x1, x2, x3) = x3G3(x1, x2, x3),

where the xi represent the population density of each species, bi the birth/death rates, cii \leq 
0 the self-regulation rates, and cij (i \not = j) the predation rates. The cij (i \not = j) can be
positive or negative (or zero) depending on whether the system is mutualistic, predator-prey,
or competitive.

The equilibrium or steady states of this Lotka--Volterra system are found by setting the
right-hand side of all the governing equations equal to zero (Fi = 0). This three-species system
possesses eight possible steady states: a coexistence equilibrium, (x1 \not = 0, x2 \not = 0, x3 \not = 0),
where all three species coexist; three different equilibria, where one species is extinct, e.g.,
(x1 \not = 0, x2 \not = 0, x3 = 0); three equilibria where two of the species are extinct, e.g., (x1 \not =
0, x2 = 0, x3 = 0); and finally, an equilibrium where all the species are extinct, (x1 = 0, x2 =
0, x3 = 0). Generally, the equilibrium of interest, and which we show below, is where all the
species coexist, designated (x\ast 1, x

\ast 
2, x

\ast 
3).

We then approximate the governing equations using the Jacobian, \bfscrJ , to linearize the
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system, where

\bfscrJ =

\left[        
\partial F1
\partial x1

\partial F1
\partial x2

\partial F1
\partial x3

\partial F2
\partial x1

\partial F2
\partial x2

\partial F2
\partial x3

\partial F3
\partial x1

\partial F3
\partial x2

\partial F3
\partial x3

\right]        .

The community matrix, \bfscrJ \ast , is the Jacobian evaluated at a steady state, i.e., \bfscrJ \ast = \bfscrJ | (x\ast 
1,x

\ast 
2,x

\ast 
3)
.

For the three-species example where the coexistence equilibrium means that Fi = 0 and xi \not = 0,
and therefore Gi = 0 for all i, the community matrix is

\bfscrJ \ast =

\left[        
c11x

\ast 
1 c12x

\ast 
1 c13x

\ast 
1

c21x
\ast 
2 c22x

\ast 
2 c23x

\ast 
2

c31x
\ast 
3 c32x

\ast 
3 c33x

\ast 
3

\right]        .

In section 2, equation (2.1) is \bfscrJ \ast for a predator-prey system.

Appendix B. In mutualistic systems the leading eigenvalue is always real-valued.
Mutualistic systems are represented by square matrices with positive off-diagonal elements
and negative or zero diagonal elements. If all the diagonal elements are zero, such as after the
scaling process, then one may apply the Perron--Frobenius theorem, which ensures that for
nonnegative matrices, the leading eigenvalue is real-valued, and is in fact the spectral radius
of the matrix [9]. If the diagonal elements are negative, we need to prove an extension to the
Perron--Frobenius theorem.

Theorem. Matrices of mutualistic systems with negative diagonal elements have leading
eigenvalues that are real-valued.

Proof. The Perron--Frobenius theorem states that for any positive or nonnegative matrix
\bfitA there exists a unique, real-valued eigenvalue \lambda max, its size equalling the spectral radius of
\bfitA , such that all the other eigenvalues \phi j (possibly complex) are smaller in modulus than \lambda max

(| \phi j | < \lambda max).
From a mutualistic matrix with negative diagonal elements \bfitA , we form a new matrix as

follows: choose an \alpha (real) so that the new matrix \bfitA + \alpha \bfitI is nonnegative. By the Perron--
Frobenius theorem, this new matrix \bfitA + \alpha \bfitI has a unique, real-valued leading eigenvalue,
\lambda \delta .

We know from the standard eigenvalue-eigenvector equation that

(\bfitA + \alpha \bfitI )\bfitx = \lambda \delta \bfitx ,

which can be rewritten as

\bfitA \bfitx = (\lambda \delta  - \alpha )\bfitx = \lambda \gamma \bfitx ,
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where \lambda \gamma = \lambda \delta  - \alpha is real-valued and is an eigenvalue of \bfitA .
To prove that \lambda \gamma is leading, we need to show that all the other eigenvalues \{ \phi 1, . . . , \phi n - 1\} 

of \bfitA have real part less than \lambda \gamma (Re(\phi i) < \lambda \gamma ). Since \phi i is an eigenvalue of \bfitA , \phi i + \alpha is an
eigenvalue of \bfitA + \alpha \bfitI . By the Perron--Frobenius theorem, we know that

| \phi i + \alpha | < \lambda \delta = \lambda \gamma + \alpha .

By the triangle inequality, and the fact that \alpha is real and positive,

| \phi i + \alpha | \leq | \phi i| + | \alpha | = | \phi i| + \alpha < \lambda \gamma + \alpha =\Rightarrow | \phi i| < \lambda \gamma .

Since Re(\phi i) \leq | \phi i| , then Re(\phi i) < \lambda \gamma .

Appendix C. Combinatorial argument for the field of the leading eigenvalue in scaled
competitive systems. Below we provide a combinatorial argument for the number of pos-
sible arrangements that result in either leading real- or complex-valued eigenvalues in scaled
competitive systems. By Perron--Frobenius, the leading eigenvalue of a scaled mutualistic sys-
tem is always real-valued. Therefore, the minimal eigenvalue in a scaled competitive system
is real-valued, as described in section 3. Consider an ordered set of eigenvalues associated
with an n \times n scaled competitive matrix. Since we know that the minimal eigenvalue must
be real-valued, there remain n  - 1 eigenvalues which can either be a single real value, or a
complex value that must lie adjacent to its complement.

For example, given a 6\times 6 competitive matrix, we have eight possibilities for the ordering
of the eigenvalues. With c denoting a single complex-valued eigenvalue, and r denoting a real-
valued eigenvalue, then the possible combinations are (rrcccc), (rccrcc), (rccccr), (rrrrcc),
(rrrccr), (rrccrr), (rccrrr), and (rrrrrr). Here, the ordering is based on the smallest eigen-
value (which we know is real-valued) located on the left and the largest (real part) eigenvalue
on the right. This means that three of the possibilities have a complex-valued leading eigen-
value, while the remaining five possibilities have a real-valued leading eigenvalue.

Considering the possibilities from the smallest 2\times 2 matrices, we know that there must be
at least one real-valued eigenvalue, and therefore there can be no complex-valued eigenvalue.
We can denote this as (0:1), where the first value denotes the total number of possibilities where
there is a complex-valued leading eigenvalue and the second value denotes the total number of
possibilities where there is a real-valued leading eigenvalue. There are two possibilities for 3\times 3
matrices: \{ (rcc), (rrr)\} , so that the total number of complex- and real-valued possibilities is
given as (1:1). 4 \times 4 matrices have one complex to two real possibilities, (1:2), and 5 \times 5
matrices have (2:3). We saw above that 6 \times 6 matrices are (3:5), and continuing to 7 \times 7
matrices, which are (5:8), we get the beginning of a recurrent sequence: \{ (0 : 1), (1 : 1),
(1 : 2), (2 : 3), (3 : 5), (5 : 8), . . . \} , each part of which should be familiar as the beginning of
the Fibonacci numbers.

To generalize the above, we need to construct a combinatoric argument for the two forms
(real- and complex-valued leading eigenvalue orderings). We start by placing the real-valued,
minimal eigenvalue in the left-most position for all of the n \times n orderings, leaving n  - 1
positions free. When we consider each of the eigenvalue orderings containing a complex
conjugate pair, we may reduce the number of spaces needed to be considered by 1. For ex-
ample, in the n = 6 case, once one positions the real-valued left-most position, there areD
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five possible openings to place an eigenvalue. But if one positions a complex-valued eigen-
value, then there are only four possible openings where a conjugate pair (c, c) can be placed:
\{ (r, r, r, r, c, c), (r, r, r, c, c, r), (r, r, c, c, r, r), (r, c, c, r, r, r)\} . So for an n \times n matrix, there are
n - 1 - 1 places where one complex pair may be placed. Likewise, there are n - 1 - 2 positions
where two complex pairs may be placed, n  - 1  - 3 positions where three complex pairs may
be placed, and so on. Finally, there is one possible eigenvalue ordering for the situation where
all the eigenvalues are real, which may be added at the end. Therefore, the total number of
possible eigenvalue orderings for all n\times n matrices is given by

(C.1) p =

n - 1 - j\geq j\sum 
j=1

\biggl( 
n - 1 - j

j

\biggr) 
+ 1.

The number of cases where the leading eigenvalue is complex-valued is similarly argued.
The simplest case would see all the positions containing real-valued eigenvalues, except for
a leading complex conjugate pair, (r, r, . . . , r, c, c), found in all eigenvalue sets where n \geq 3
and added accordingly after the combinatorial sum. The remaining number of positions to
be considered in an ordering after eliminating the left-most real-valued eigenvalue and the
right-most complex conjugate pair is therefore n  - 1  - 2. Following the argument as before
we can now construct a function in which we successively add complex pairs and count their
possible positions. For an additional complex pair (in addition to the leading pair), there will
be n  - 1  - 2  - 1 openings, and with two other sets of complex conjugate pairs there will be
n - 1 - 2 - 2 openings, and so on. The number of orderings in which the leading eigenvalue
is complex is

(C.2) q =

\left\{     
n = 2 : 0,

n \geq 3 :
n - 3 - j\geq j\sum 

j=1

\bigl( 
n - 3 - j

j

\bigr) 
+ 1.

Therefore, the recurrent sequence of complex-valued to real-valued leading eigenvalues is
(q : p  - q) for a given n and where the successive set for n + 1 is (p  - q : p). Of course,
this states nothing about the weighted likelihood for a given ordering.

Supplementary materials. The supplementary file containing the various community
matrices depicted in Figure 1 are found in the accompanying file M135548 01.zip ([local/web
7.00KB]).

Acknowledgments. Thanks to Mervyn Freeman, Nick Watkins, Todd Parsons, Christo-
pher Hughes, and Jon Pitchford for various discussions on the scaling problem. Thanks also
to the two anonymous reviewers. This study is part of the British Antarctic Survey Polar
Science for Planet Earth Programme.

REFERENCES

[1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, UK, 1974.
[2] D. De Angelis, Stability and connectance in food web models, Ecology, 56 (1975), pp. 238--243.

D
ow

nl
oa

de
d 

06
/1

6/
21

 to
 1

73
.5

4.
1.

20
7.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

M135548_01.zip
http://epubs.siam.org/doi/suppl/10.1137/20M1355483/suppl_file/M135548_01.zip


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATRIX SCALING AND TIPPING POINTS 1103

[3] P. de Ruiter, A.-M. Neutel, and J. Moore, Energetics, patterns of interaction strengths, and stability
in real ecosystems, Science, 269 (1995), pp. 1257--1260.

[4] C. Elton, Animal Ecology, Oxford University Press, Oxford, UK, 1927.
[5] C. Elton, The Ecology of Invasions by Animals and Plants, Methuen, London, 1958.
[6] M. Gardner and W. Ashby, Connectance of large dynamic (cybernetic) systems: Critical values for

stability, Nature, 228 (1970), 784.
[7] G. Gellner and K. McCann, Consistent role of weak and strong interactions in high- and low-diversity

trophic food webs, Nat. Commun., 7 (2016), 11180.
[8] D. Haydon, Pivotal assumptions determining the relationship between stability and complexity: An ana-

lytical synthesis of the stability-complexity debate, Am. Nat., 144 (1994), pp. 14--29.
[9] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 2012.

[10] H. Hunt, D. Coleman, E. Ingham, R. Ingham, E. Elliott, J. Moore, S. Rose, C. Reid, and
C. Morley, The detrital food web in a shortgrass prairie, Biol. Fertil. Soils, 3 (1987), pp. 57--68.

[11] G. Hutchison, Homage to Santa Rosalia, or why are there so many kinds of animals?, Am. Nat., 93
(1959), pp. 145--159.

[12] C. Jacquet, C. Moritz, L. Morissette, P. Legagneux, F. Massol, P. Archambault, and
D. Gravel, No complexity--stability relationship in empirical ecosystems, Nat. Commun., 7 (2016),
12573.

[13] A. James, M. Plank, A. Rossberg, J. Beecham, M. Emmerson, and J. Pitchford, Constructing
random matrices to represent real ecosystems, Am. Nat., 185 (2015), pp. 680--692.

[14] L. Lawlor, A comment on randomly constructed model ecosystems, Am. Nat., 112 (1978), pp. 445--447.
[15] R. Levins, Evolution in Changing Environments, Princeton University Press, Princeton, NJ, 1968.
[16] R. Levins, Discussion paper: The qualitative analysis of partially specified systems, Ann. N. Y. Acad.

Sci., 231 (1974), pp. 123--138.
[17] R. Lindeman, The trophic-dynamic aspect of ecology, Ecology, 23 (1942), pp. 399--418.
[18] A. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1925.
[19] R. MacArthur, Fluctuations of animal populations, and a measure of community stability, Ecology, 36

(1955), pp. 533--536.
[20] D. Martin, Self-regulation in living systems: Symposium at Ottawa, Nature, 183 (1959), 370.
[21] R. May, Stability in multispecies community models, Math. Biosci., 12 (1971), pp. 59--79.
[22] R. May, Will a large complex system be stable?, Nature, 238 (1972), pp. 413--414.
[23] R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973.
[24] K. McCann, The diversity-stability debate, Nature, 405 (2000), pp. 228--233.
[25] A.-M. Neutel, J. Heesterbeek, and P. de Ruiter, Stability in real food webs: Weak links in long

loops, Science, 296 (2002), pp. 1120--1123.
[26] A.-M. Neutel, J. Heesterbeek, J. Van de Koppel, G. Hoenderboom, A. Vos, C. Kaldeway,

F. Berendse, and P. De Ruiter, Reconciling complexity with stability in naturally assembling food
webs, Nature, 449 (2007), pp. 599--602.

[27] A.-M. Neutel and M. Thorne, Interaction strengths in balanced carbon cycles and the absence of a
relation between ecosystem complexity and stability, Ecol. Lett., 17 (2014), pp. 651--661.

[28] A.-M. Neutel and M. Thorne, Antarctic Food Webs - Jacobian Matrices, Polar Data Centre, British
Antarctic Survey, Natural Environment Research Council, Cambridge, UK, https://doi.org/10.5285/
1d1e4253-552a-421e-9bdc-20d70f683cc5, 2016.

[29] M. Novak, J. D. Yeakel, A. E. Noble, D. F. Doak, M. Emmerson, J. A. Estes, U. Jacob, M. T.
Tinker, and J. T. Wootton, Characterizing species interactions to understand press perturbations:
What is the community matrix?, Annu. Rev. Ecol. Evol. Syst., 47 (2016), pp. 409--432.

[30] E. Odum, Fundamentals of Ecology, Saunders, Philadelphia, PA, 1953.
[31] S. Pimm, Food Webs, Chapman \& Hall, London, 1982.
[32] S. Pimm and J. Lawton, On feeding on more than one trophic level, Nature, 275 (1978), pp. 542--544.
[33] R. Seifert and F. Seifert, A community matrix analysis of Heliconia insect communities, Am. Nat.,

110 (1976), pp. 461--483.
[34] M. Smith, E. Sander, G. Barab\'as, and S. Allesina, Stability and feedback levels in food web models,

Ecol. Lett., 18 (2015), pp. 593--595.
[35] P. Yodzis, The stability of real ecosystems, Nature, 289 (1981), pp. 674--676.

D
ow

nl
oa

de
d 

06
/1

6/
21

 to
 1

73
.5

4.
1.

20
7.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.5285/1d1e4253-552a-421e-9bdc-20d70f683cc5
https://doi.org/10.5285/1d1e4253-552a-421e-9bdc-20d70f683cc5

	Introduction
	Scaling a community matrix by its diagonal elements can preserve essential stability information
	The relation between paired mutualistic and competitive scaled community matrices highlights the role of feedback in determining the field of the leading eigenvalue
	Conclusion
	Appendix A. Construction of a community matrix
	Appendix B. In mutualistic systems the leading eigenvalue is always real-valued
	Appendix C. Combinatorial argument for the field of the leading eigenvalue in scaled competitive systems
	Supplementary materials
	Acknowledgments

