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Abstract
1. �Each year, the National Ecological Observatory Network's (NEON) Airborne 

Observation Platform (AOP) collects high-resolution hyperspectral imagery, discrete 
and waveform lidar, and digital photography at a subset of 81 terrestrial and aquatic 
research sites throughout the United States. These open remote sensing data, to-
gether with NEON in situ sensor measurements and field observations, enable re-
searchers to characterize ecological processes at multiple spatial and temporal scales.

2. �Here we describe the sampling design for the AOP that aims to meet the diverse 
research needs of the ecological science community within the operational con-
straints affecting airborne data collection. Our spatial sampling protocol captures 
NEON instrumented systems, field plots and environmental gradients around each 
site while considering the context of airspace restrictions and remote sensing in-
strument capabilities. We use time series of moderate resolution imaging spectro-
radiometer (MODIS) satellite and PhenoCam near-surface observations to define 
temporal sampling windows based on vegetation peak foliar greenness. We devel-
oped a probabilistic model based on MODIS reflectance imagery and Monte Carlo 
simulation to estimate sampling durations for cloud-free data collection at each site.

3. �Agreement in the estimated phenophase transition dates between MODIS Enhanced 
Vegetation Index and PhenoCam Green Chromatic Coordinate varied by vegetation 
class. Results from both sensors show that some vegetation classes have relatively 
consistent interannual peak greenness start- and end-dates, while others experience 
high year-to-year variability in green-up and senescence. In addition to phenological 
variability among sites, certain vegetation forms demonstrate distinct, asynchronous 
responses to climate, resulting in non-overlapping peak greenness periods within a 
single site. Results from flight campaigns showed that the cloud-likelihood model un-
derestimated actual cloud conditions by 13%–26%, depending on the probability used.

4. �Where interannual or intra-site phenology is highly variable or clouds are a per-
sistent problem, it becomes challenging to schedule domain deployments so that 
all sites are flown in cloud-free conditions while their vegetation communities are 
in peak greenness. Despite limitations, application of cloud and peak greenness 
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1  |  INTRODUC TION

The National Ecological Observatory Network (NEON) is a 30-year 
continental-scale ecological research facility sponsored by the 
National Science Foundation designed to collect and share scien-
tific data that characterize and quantify how the nation's terrestrial 
and aquatic ecosystems are changing (Keller et al., 2008). The net-
work includes 81 field sites (47 terrestrial and 34 aquatic) located 
in a range of representative ecosystems across the United States. 
The Observatory is composed of five measurement subsystems: the 
Terrestrial Instrument System (TIS), Terrestrial Observation System 
(TOS), Aquatic Instrument System (AIS), Aquatic Observation 
System (AOS) and Airborne Observation Platform (AOP) (Thorpe 
et al., 2016). At each field site, these subsystems collect a suite of 
highly calibrated and integrated in situ sensor measurements, field 
observations and airborne remote sensing data (Barnett, Adler, et al., 
2019; Barnett, Duffy, et al., 2019; Elmendorf et al., 2016; Hinckley 
et al., 2016; Hoekman et al., 2017; Parker & Utz, 2022).

Operating three aircraft-mounted payloads similar to the 
Carnegie Airborne Observatory Airborne Taxonomic Mapping 
System (Asner et al.,  2012), the NEON AOP acquires highly cali-
brated, co-registered sub-metre to metre-scale hyperspectral im-
agery, discrete and waveform lidar, and digital photography that 
complement NEON in situ observations for mapping vegetation 
states, structure and processes at regional scales around NEON field 
sites (Chadwick et al., 2020; Kampe, Asner, et al., 2010; Schaepman 
et al., 2009; Schimel et al., 2011). Covering landscapes that extend 
beyond the bounds of in situ field sampling, AOP remote sensing in-
struments acquire high spatial (<1 m) and spectral resolution (5 nm) 
data on upland watershed areas, diverse vegetation communities, 
natural and human disturbances and land management practices 
that may impact ecological processes within field sampling areas 
(Kampe, Johnson, et al., 2010). Remote sensing data collected by the 
AOP are used to generate 28 data products, many linked to TOS 
and AOS protocols and data products publicly available through 
the NEON data portal (data.neons​cience.org) that support research 
from local to global scales (Nagy et al., 2021).

AOP remote sensing data have contributed to more than 78 
peer-reviewed publications covering a wide range of ecological ap-
plications, including explorations into the relationships between 
vegetation structure and heterogeneity, plant foliar traits and pro-
cesses such as carbon assimilation and habitat diversity (Chadwick 
et al.,  2020; Kamoske et al.,  2021; Marconi et al.,  2021; Wang 

et al., 2020); improved forest inventories, tree-crown delineation and 
species identification (Ayrey & Hayes,  2018; Dalponte et al.,  2019; 
Fricker et al., 2019; McMahon, 2019; Sumsion et al., 2019; Weinstein 
et al., 2021; Zou et al., 2019); refinements in canopy height modelling 
and biomass estimation (Khati et al., 2020; Liu et al., 2021); methods 
for measuring biodiversity (Carrasco et al., 2019; Kamoske et al., 2022; 
Scholl et al., 2021; Schweiger & Laliberté, 2022); geology and critical 
zone mapping (Brogan et al., 2019; Hermes et al., 2020; Wainwright 
et al.,  2022); socio-environmental systems research (Ordway 
et al., 2021); and new remote sensing methods (Babadi et al., 2019; 
MacLean, 2017; Queally et al., 2021) among others (a complete list is 
available at neon.dimen​sions.ai/disco​ver/publi​cation).

This paper describes the spatial and temporal sampling design 
for the AOP that aims to provide standardized, high-quality re-
mote sensing data capable of meeting the diverse range of research 
needs of the ecological science community, within the operational 
and environmental requirements and constraints affecting airborne 
data collection. We explore how airborne spatial sampling areas are 
delineated to capture landscape heterogeneity around NEON field 
sites and describe how temporal sampling windows are developed 
through historical analyses of vegetation phenology and cloud-cover 
to maximize the likelihood of acquiring high-quality data during the 
peak vegetation growth period (‘peak greenness’) at each site and 
in coordination with NEON field sampling teams. We detail how 
flight and instrument parameters configured to comply with federal 
aviation restrictions and safety standards may lead to trade-offs in 
data quality, and examine the accuracy of the models used to define 
temporal sampling windows and suggest ways these models could 
be improved. Finally, we review some of the approaches that might 
benefit users working with AOP data acquired under sub-optimal 
atmospheric conditions or marginal phenological windows.

Many of the processes described here build on the airborne plan-
ning methods in Kampe, Asner, et al.  (2010) and Kampe, Johnson, 
et al.  (2010) and were used to develop the planning approach in 
Chadwick et al.  (2020); these methods have evolved in response to 
lessons learned during the Observatory construction and initial opera-
tions phases and through feedback from external scientists serving on 
NEON Technical Working Groups (TWGs). We recognize that a single 
sampling design cannot meet the needs of all research applications, but 
we hope this paper can serve as a community resource that enables 
a greater appreciation of the compromises and trade-offs inherent in 
airborne data collection and a better understanding of AOP data qual-
ity as it relates to data acquisition, while prompting recommendations 

models to airborne sampling results in significant improvements to AOP data qual-
ity. Although most applicable to airborne sampling with hyperspectral and lidar 
instruments in piloted aircraft, these methods may be a valuable resource to de-
ployment of Unmanned Aerial Vehicles for ecological research.

K E Y W O R D S
airborne remote sensing, cloud prediction, ecological sampling, phenology
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for sampling design improvements and algorithmic enhancements by 
researchers employing NEON data in their work.

2  |  MATERIAL S AND METHODS

2.1  |  AOP instrumentation

Each of NEON AOP's remote sensing payloads currently consist of 
a NEON imaging spectrometer (NIS), an Optech Gemini, Optech 
Galaxy PRIME or Riegl Q780 small-footprint waveform-recording 
lidar, and a PhaseOne high-resolution digital camera. The NIS is a 
high fidelity visible-to-shortwave infrared spectrometer based on 
the next generation Airborne Visible Infrared Imaging Spectrometer 
(AVIRISng) designed to collect measurements of sunlight reflected 
from the Earth's surface in 426 spectral channels covering a range 
of wavelengths from 380 to 2,510 nm (Chapman et al., 2019). Since 
every chemically unique substance has a unique reflectance spec-
trum, the NIS can be used to identify plant species and traits, map 
vegetation health, detect disease or invasive species, and map 
drought and its impacts (Green et al., 1998; Ustin et al., 2004). The 
lidar is an active sensor that emits up to one million laser pulses per 
second at 1,064 nm and is used to map the ground surface, vegeta-
tion height and the vertical structure of leaves and branches within 
the canopy. The digital camera complements the other instruments 
by providing co-registered, high-resolution Red Green Blue (RGB) 
photographs of land cover, including roads, impervious surfaces and 
buildings. A precision global positioning system receiver and inertial 
measurement unit are incorporated for accurate recording of pay-
load positioning and orientation during science data collection. Each 
payload is highly integrated, with the instruments mounted in a com-
mon, rigid frame installed in a DeHavilland DHC-6 Twin Otter, an 
aircraft selected for its relatively low survey speeds of 85–110 knots 
and ability to accommodate the AOP payload weight and volume 
(Figure 1).

NEON operates two payloads for the acquisition of science-
quality data at NEON sites, and a third ‘assignable asset’ pay-
load dedicated to surveys at locations specified by non-NEON 

researchers or to supplemental collections at NEON sites. The an-
nual flight campaign season begins with instrument calibration in the 
AOP laboratory, followed by a series of calibration flights to collect 
baseline data for instrument alignment and performance verification 
(NEON, 2022a). After calibration flights, the payloads are deployed 
for science surveys across the NEON network. A typical flight cam-
paign runs from March through October when each payload is de-
ployed to a pre-determined set of domains, typically surveying all 
sites within each domain before moving to the next (information on 
AOP scheduling can be found at www.neons​cience.org/data-colle​
ction/​fligh​t-sched​ules-coverage). Upon completion of science sur-
veys, the payloads return to headquarters for a final set of calibra-
tion flights before de-installation from the aircraft. The instruments 
then undergo maintenance and laboratory calibration before return-
ing to service in the next season's flight campaign.

2.2  |  AOP flight parameters

The flight parameters for science surveys are largely determined by 
the need to produce metre-scale spectroscopy measurements for 
mapping individual overstory plants, achieve sufficient pulse density 
of discrete and waveform lidar returns for measuring vertical struc-
ture and the ground surface beneath dense canopies, balanced by 
the need for wide-area coverage around each site (requirements are 
not currently determined by camera specifications) (Table 1).

Nominal flight altitude is 1,000 m above-ground level (AGL). 
Minimum flight altitude is driven by the spectrometer contiguous 
sampling limits and lidar eye-safety requirements. At a planned air-
craft speed of 50 m/s and a NIS sampling rate of 100 Hz, the along-
track spacing between pixel centres on the ground is 0.5 m. With 
a fixed Instantaneous field of view (FOV) of 1 mrad, the minimum 
flight altitude producing a pixel of 0.5 m is 500 m AGL; flying lower 
would create data gaps in the along-track flight direction at nomi-
nal flight speed. A second requirement driving minimum flight alti-
tudes is eye-safety. Each of the AOP lidars is a Class 3B or Class 4 
laser producing infrared light, which presents a potential eye-safety 
hazard to ground observers. For eye-safety purposes, it is assumed 

F I G U R E  1  Top left—Twin Otter aircraft 
preparing for calibration flights; bottom 
left—Airborne Observation Platform 
payload installed in aircraft (instrument 
racks not shown); right—spectrometer, 
lidar and camera sensors viewed from 
below

http://www.neonscience.org/data-collection/flight-schedules-coverage
http://www.neonscience.org/data-collection/flight-schedules-coverage
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that a person on the ground may be viewing the aircraft during 
data collection using aided viewing equipment such as binoculars, 
and the aircraft must be above the extended nominal ocular hazard 
distance (eNOHD) to prevent injury (International Electrotechnical 
Commission, 2014). The eNOHD range depends on the laser pulse 
repetition rate (PRR) (number of pulses per second), the laser beam 
divergence (which drives the number of photons per m2) and the 
laser power setting. In most laser configurations, the eNOHD of 
AOP lidars equals or exceeds the 500 m minimum AGL established 
by spectrometer sampling requirements, which further limits mini-
mum flight altitude. Since low-to-medium laser power settings must 
be used to ensure eye-safety compliance, this can negatively affect 
canopy penetration and ground returns, and may require a reduced 
PRR, leading to lower pulse densities.

To provide wall-to-wall coverage over NEON flight boxes, flight 
lines are oriented in a north–south direction—regardless of terrain 
conditions—to reduce the contributions of view angle and sun-
sensor geometries to bi-directional distribution function (BRDF) 
phenomena (nonlinear artefacts) in the imagery and provide consis-
tency in flight line orientation between annual collections. North–
south flight line orientation can result in large variations in flight line 
AGLs in the presence of variable terrain. The highest elevation along 
a flight line drives the altitude of the aircraft over mean sea level 
(MSL), which can produce larger than desired mean AGLs over the 
course of a line. We are currently experimenting with variable MSL 
flight lines that maintain relatively constant AGLs along the flight 
track at sites with highly variable terrain elevations. The lidar FOV is 
configured at a full scan angle of 37° to ensure complete lidar cover-
age beyond the spectrometer FOV of 34°. Usable overlap between 
adjacent lidar swaths is set at 37% to eliminate gaps between ad-
jacent spectrometer swaths in the presence of terrain variation or 
significant turbulence.

2.3  |  Determination of spatial sampling boundaries 
for the AOP

Up-scaling of both in situ and airborne measurements requires 
an airborne sampling design that (a) covers the ‘area-of-influence’ 

associated with the TIS cumulative eddy covariance flux tower in-
strumentation, TOS field observations and co-located AIS/AOS 
measurements; (b) captures landscape environmental representa-
tiveness and heterogeneity around field sites; and (c) is sensitive to 
temporal system variation (e.g. phenology). The criteria used in the 
protocol delineating airborne survey boundaries over each site re-
sult in datasets with adequate spatial extent to support the scaling 
of NEON field data to regional scales (Keller et al.,  2008; Thorpe 
et al., 2016).

The airborne spatial sampling design process for terrestrial sites 
is as follows: A 10  km × 10  km minimum airborne sampling area 
(‘flight box’) is delineated over each terrestrial site, centred on the 
NEON tower and repositioned as necessary to capture the TOS sam-
pling boundary and 90% cumulative eddy covariance flux and con-
centration footprints (‘tower airshed’) in their entirety. Since airflow 
will occasionally interact with vegetation of interest located outside 
of the tower airshed, a minimum 2  km distance is maintained be-
tween the tower and the edge of the flight box (Figure 2).

The horizontal placement of the 10 km × 10 km flight box may be 
visually adjusted to capture gradients in land cover, precipitation and 
temperature, elevation, and vegetation change adjacent to the TOS 
boundary that potentially influence field observations (Figure 3). For 
sites with TOS boundaries exceeding the minimum 10 km × 10 km 
sampling area, the flight box is expanded to cover the entire TOS 
boundary. This core sampling area becomes the Priority 1 flight 
box for data collection. (All flight boxes can be downloaded in ESRI 
shapefile or KMZ formats at www.neons​cience.org/data-sampl​es/
data/spati​al-data-maps.)

At certain sites, it may be necessary to expand airborne sam-
pling to capture ecologically relevant areas outside the Priority 1 
flight box (e.g. watershed extents for collocated aquatic sites or TOS 
boundaries). This expanded sampling area becomes the Priority 2 
flight box. Assigning a lower flight collection priority to these areas 
improves flight operations efficiency in the event poor weather con-
ditions prevent complete spatial coverage of a site during the annual 
flight campaign.

For terrestrial sites located in proximity to one another (DCFS 
& WOOD, KONZ & KONA, STEI & TREE) (see Table S1 for full site 
names), the 10 km × 10 km minimum area flight boxes are joined to 
create a single Priority 1 flight box that adheres to the airborne sam-
pling criteria described above. For the 13 non-collocated aquatic 
sites (i.e. those not included within the survey areas of terrestrial 
sites), flight boxes are delineated to capture the entire watershed 
boundary upstream of aquatic instrumentation. Flight boxes for wa-
tersheds are truncated where surveys would exceed a single collec-
tion day in optimal weather conditions (ARIK, BLUE and SYCA), and 
may cover less than the 10 km × 10 km minimum size threshold for 
terrestrial sites. Finally, flight boxes for all sites may be modified in 
the future to accommodate ecosystem changes such as major dis-
turbance events.

AOP flight parameters or spatial sampling boundaries at NEON 
sites may be impacted by Federal Aviation Administration (FAA) lim-
its on flight activities over sensitive infrastructure and environmental 

TA B L E  1  Sampling requirements related to data product 
generation

The Airborne Observation Platform (AOP) instrument ground 
sample distance must be planned to be 2 m or less

The AOP Imaging instrument sampling of the survey areas must be 
planned as contiguous or overlapping

AOP aerial data collection should be conducted at solar elevation 
angles of 40° or greater

AOP flight lines collected with <10% cloud-cover over the area of 
collect will be considered acceptable

AOP must plan aerial surveys of National Ecological Observatory 
Network terrestrial sites within 90% of the site's peak greenness

Source: Kampe, Asner, et al. (2010) and Kampe, Johnson, et al. (2010)

http://www.neonscience.org/data-samples/data/spatial-data-maps
http://www.neonscience.org/data-samples/data/spatial-data-maps
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areas, both for safety and noise abatement reasons. Certain NEON 
sites are located within or adjacent to national parks (GRSM, RMNP, 
YELL) and wilderness areas (BART, MLBS, SCBI, SRER, TEAK) where 

the FAA requests that aircraft maintain a minimum altitude of 610 m 
(2,000 ft) AGL or greater (FAA Advisory Circular, 2004). This limits 
the minimum altitude AOP can fly over high-elevation areas, either 

F I G U R E  2  Priority 1 and 2 flight boxes 
for Harvard Forest

F I G U R E  3  Environmental gradients 
used to optimize locations of Airborne 
Observation Platform flight boxes include 
(a) PRISM temperature and (b) PRISM 
precipitation (Di Luzio et al., 2008), (c) 
National Land Cover Database land cover 
(Homer et al., 2015) and forest change 
(Hansen et al., 2013), and (d) National 
Ecological Observatory Network-derived 
watershed boundaries
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during data collection or while making turns between flight lines, 
which can result in flight lines exceeding the nominal mean 1,000 m 
AGL, reducing the spatial resolution of the Level 0 remote sensing 
data.

Additional airspace restrictions impacting AOP flight box design 
include Military Operations Areas (MOAs) and Restricted Areas 
established to separate hazardous and non-hazardous military ac-
tivities from civilian air traffic. Sites effected by these restrictions 
include JORN, located adjacent to the White Sands Missile Range in 
New Mexico; DEJU, near the Buffalo Restricted Airspace and MOA 
in Alaska, and LAJA, within the airspace of a tethered aerostat radar 
system operated by U.S. Customs and Border Protection in Puerto 
Rico. Therefore, flight lines from JORN and DEJU do not cover the 
entire watershed extent, and from LAJA do not capture the entire 
TOS sampling area and deviate from a north–south orientation.

2.4  |  Determination of temporal sampling windows 
for the AOP

The original NEON design called for annual surveys at all terrestrial 
sites. Reflecting budgetary limitations, surveys at NEON terrestrial 
sites are currently attempted a minimum of three of every 5 years 
during their peak greenness periods, except for those located in D20 
(Hawaii) and D04 (Puerto Rico) which are surveyed at 5-year intervals 
due to high deployment costs. Each year canopy foliar chemistry sam-
pling occurs at a rotating subset of 9–11 sites; these sites are always 
included in the annual flight campaign schedule. At all sites flown, cer-
tain field collection activities that link directly to AOP data products 
(e.g. canopy foliar chemistry sampling, aquatic water quality sampling) 
are scheduled to align with airborne surveys (Thorpe et al., 2016).

Three important constraints on the daily and seasonal tempo-
ral sampling windows of NEON airborne data collection are (a) the 
timing of acceptable solar elevation angles, (b) the cloud conditions 
present or anticipated during sampling and (c) the phenological state 
of dominant vegetation at each site. Scheduling of daily flights and 
seasonal campaign deployments requires accurate models of each 
of these factors; post-flight assessment of their state during data 
acquisition can help the end-user better understand data quality. (All 
data and processing code are available for download—see Musinsky 
et al., 2021.)

2.5  |  Solar elevation angles

Most airborne mapping projects operating optical sensors are flown 
while solar angles exceed 30–45° to maximize surface-reflected 
solar radiance and minimize shadowing from topography and veg-
etation (Honkavaara et al.,  2012; Pepe et al.,  2018). AOP surveys 
most sites during daylight hours when solar angles exceed 40°; ac-
ceptable solar angles are relaxed to 35° at grassland and agricultural 
sites characterized by flat terrain and low vegetation, maintaining 
minimal shadowing in the imagery despite the lower solar elevation 

angle. At the northern latitude sites of Alaska, 35° solar angles are 
used by default due to limited 40° flight windows during summer 
months. Except for solar angle timings, no time-of-day constraints 
(e.g. avoiding solar noon during aquatic site surveys to minimize sun 
glint) are included in the sampling protocol.

2.6  |  Cloud-cover

Changes to illumination conditions from clouds and aerosols greatly 
influence the quality of data produced by the spectrometer. To re-
duce the impact of atmospheric-induced degradation to the spec-
troscopy, AOP attempts to survey when cloud-cover represents less 
than 10% of sky coverage. Since many NEON sites are in regions 
where clouds are persistent during peak greenness periods, more 
days must be allocated to deployments to these sites to increase the 
likelihood of encountering cloud-free conditions.

Starting with the 2019 flight campaign, AOP implemented a 
probabilistic model to estimate the number of days required to 
collect cloud-free data given the number of flight hours needed to 
survey a site during acceptable solar angles. To better understand 
cloud patterns and trends at each site throughout the year, we cal-
culated daily cloud-cover percentages for each Priority 1 flight box 
from a 16-year time series (2002–2017) of daily moderate resolution 
imaging spectroradiometer (MODIS) 1,000 m surface reflectance 
data (MOD09GA/MYD09GA Collection 6 from the Terra and Aqua 
satellites, whose overpass times are roughly concurrent with AOP 
morning and afternoon flights), using the reflectance data state QA 
band, where QA bits 0–1: Cloud State in the State_1km Bitmask are 
set to bit values of 1–3 (i.e. ‘cloudy’, ‘mixed’ and ‘not set’) (Roger 
et al., 2020). The total number of days per month per year where 
cloud-cover represented less than 10% of the Priority 1 flight box for 
each site during at the time of daily MODIS overpass was then calcu-
lated, and from this the mean percentage of cloud-free days (<10% 
cloud-cover) per month (Table 2). Domain 20 was not included in the 
analyses since the flights are performed by an outside contractor.

To better utilize these cloud-free fractions as part of flight cam-
paign scheduling, we developed a Monte Carlo simulation to deter-
mine the probabilities that flight deployments of specific durations 
would result in cloud-free data acquisitions during the months of the 
year coinciding with each site's peak greenness period. The Monte 
Carlo simulation draws from the probability density for a binomial 
distribution as follows:

where n is the number of trials (10,000 in this case), p is the probability 
of success (0.5, 0.625, 0.8, 0.9) of acquiring cloud-free data and N is the 
minimum number of flight-days required to complete the survey of a 
site based on the flight box area. We calculated the probability shown in 
Equation 1 for an increasing number of flight-days until our desired prob-
ability of success was reached. The associated cloud-free flight-day val-
ues per probability-of-success level were stored in probability-of-success 

(1)P(N) =
(

n

N

)

pN(1−p)
n−N

,
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TA B L E  2  Percent of days per month with <10% cloud-cover within each Airborne Observation Platform Priority 1 flight box (16-year 
mean)

Domain Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

01 HARV 0.21 0.17 0.22 0.29 0.22 0.21 0.27 0.29 0.35 0.22 0.26 0.16

01 BART 0.02 0.05 0.14 0.20 0.20 0.16 0.09 0.16 0.32 0.26 0.21 0.05

02 SCBI 0.18 0.21 0.25 0.30 0.22 0.18 0.17 0.18 0.26 0.31 0.32 0.21

02 SERC 0.25 0.28 0.30 0.36 0.28 0.24 0.25 0.28 0.32 0.35 0.38 0.25

02 BLAN 0.23 0.26 0.31 0.31 0.28 0.25 0.22 0.24 0.30 0.32 0.33 0.23

03 OSBS 0.38 0.39 0.36 0.28 0.22 0.07 0.05 0.06 0.10 0.26 0.40 0.35

03 DSNY 0.37 0.32 0.29 0.24 0.20 0.06 0.05 0.04 0.06 0.20 0.34 0.33

03 JERC 0.40 0.37 0.38 0.41 0.33 0.19 0.15 0.13 0.27 0.43 0.51 0.36

04 GUAN 0.17 0.15 0.07 0.05 0.04 0.05 0.06 0.05 0.11 0.14 0.16 0.17

04 LAJA 0.28 0.22 0.12 0.07 0.03 0.03 0.05 0.06 0.09 0.12 0.21 0.31

05 STEI/TREE 0.06 0.21 0.26 0.29 0.25 0.20 0.23 0.23 0.33 0.25 0.16 0.03

05 UNDE 0.02 0.04 0.11 0.19 0.21 0.22 0.18 0.20 0.30 0.19 0.11 0.01

05 STEI-CHEQ 0.05 0.12 0.25 0.30 0.25 0.23 0.24 0.26 0.34 0.26 0.20 0.04

06 KONZ/KONA 0.33 0.35 0.33 0.34 0.33 0.40 0.40 0.42 0.48 0.48 0.43 0.30

06 UKFS 0.36 0.35 0.31 0.32 0.32 0.36 0.38 0.39 0.46 0.45 0.39 0.33

07 ORNL 0.25 0.22 0.29 0.31 0.23 0.21 0.14 0.23 0.37 0.37 0.37 0.25

07 GRSM 0.19 0.18 0.17 0.24 0.14 0.07 0.04 0.05 0.14 0.31 0.35 0.22

07 MLBS 0.10 0.08 0.20 0.25 0.14 0.10 0.06 0.06 0.19 0.29 0.28 0.11

08 TALL 0.37 0.31 0.34 0.37 0.28 0.18 0.13 0.23 0.36 0.47 0.45 0.31

08 DELA 0.37 0.32 0.34 0.36 0.30 0.18 0.11 0.25 0.34 0.46 0.44 0.32

08 LENO 0.39 0.32 0.35 0.35 0.28 0.18 0.12 0.22 0.31 0.47 0.48 0.30

09 WOOD/
DCFS

0.25 0.20 0.17 0.29 0.30 0.28 0.39 0.39 0.43 0.33 0.22 0.14

09 NOGP 0.24 0.29 0.25 0.32 0.34 0.33 0.46 0.46 0.49 0.34 0.30 0.19

10 CPER 0.31 0.31 0.40 0.34 0.32 0.53 0.53 0.54 0.57 0.49 0.45 0.30

10 STER 0.27 0.31 0.35 0.38 0.42 0.58 0.63 0.60 0.61 0.52 0.40 0.27

10 RMNP 0.02 0.03 0.11 0.13 0.14 0.29 0.22 0.23 0.34 0.35 0.16 0.04

11 CLBJ 0.47 0.45 0.41 0.41 0.36 0.37 0.44 0.45 0.44 0.51 0.52 0.43

11 OAES 0.53 0.47 0.45 0.46 0.42 0.44 0.52 0.49 0.54 0.52 0.57 0.46

12 YELL 0.03 0.09 0.11 0.08 0.10 0.26 0.46 0.40 0.43 0.20 0.05 0.02

13 NIWO 0.00 0.00 0.00 0.00 0.06 0.07 0.06 0.12 0.18 0.06 0.00 0.00

13 MOAB 0.42 0.42 0.54 0.48 0.52 0.71 0.60 0.55 0.61 0.62 0.58 0.39

14 SRER 0.60 0.57 0.67 0.76 0.79 0.78 0.41 0.43 0.55 0.71 0.68 0.56

14 JORN 0.62 0.66 0.66 0.71 0.73 0.77 0.57 0.61 0.59 0.69 0.70 0.56

15 ONAQ 0.20 0.17 0.16 0.20 0.32 0.53 0.49 0.47 0.53 0.44 0.30 0.18

16 WREF 0.07 0.13 0.09 0.14 0.19 0.27 0.59 0.53 0.45 0.29 0.12 0.07

16 ABBY 0.11 0.16 0.09 0.13 0.17 0.23 0.48 0.43 0.39 0.26 0.14 0.09

17 SJER 0.36 0.42 0.50 0.55 0.71 0.86 0.91 0.90 0.87 0.77 0.56 0.37

17 SOAP 0.43 0.37 0.37 0.35 0.54 0.77 0.83 0.85 0.79 0.65 0.50 0.37

17 TEAK 0.22 0.19 0.15 0.16 0.28 0.58 0.67 0.70 0.64 0.60 0.42 0.17

18 TOOL 0.31 0.36 0.31 0.40 0.40 0.37 0.28 0.23 0.21 0.26 0.27 0.11

18 BARR 0.08 0.11 0.07 0.18 0.19 0.16 0.26 0.13 0.04 0.01 0.11 0.00

19 BONA 0.22 0.16 0.45 0.40 0.24 0.21 0.14 0.19 0.26 0.13 0.12 0.25

19 DEJU 0.10 0.21 0.43 0.25 0.25 0.23 0.20 0.20 0.22 0.18 0.12 0.10

19 HEAL 0.13 0.20 0.26 0.26 0.24 0.14 0.13 0.19 0.19 0.17 0.12 0.15
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tables (Table 3; Tables S2–S4) for cross-reference with the cloud-free days 
per month table, enabling calculations of total flight-days required during 
deployment in a given month. For example, based on historical MODIS 
data, an average of 28% of days in the month of May have less than 10% 
cloud-cover at TALL and it takes 1 day to survey the site under cloud-free 
conditions; therefore, rounding the percentage of cloud-free days up to 
30%, Table 3 indicates that a total of seven flight-days should be sched-
uled if planning to fly TALL in May to ensure a 90% probability of success-
fully acquiring cloud-free data over the entire Priority 1 flight box.

For sites where field-based canopy foliar chemistry sampling coin-
cident with AOP surveys is planned, we set cloud-free collection prob-
abilities to 80% or 90%, while sites without foliar sampling are set to 
50% or 62.5% probability. When the required flight-days per site are 
added to estimates for the required transit days between domains, no-
fly days due to pilot rotation, spectrometer cooling days and aircraft 
maintenance days, the application of this approach results in a series of 
flight deployment windows for all sites selected to be flown (note that 
the required collections days for each site in a domain are additive to 
determine the total length of a collection period in a domain). The flight 
deployment windows are assembled into an optimized flight campaign 
schedule that maximizes the likelihood of cloud-free data collection 
during the peak greenness windows of each NEON site (Table S5).

2.7  |  Phenology

Due to budget constraints and limited payload capacity, AOP only 
samples each site included in the seasonal flight schedule a maximum 

of once per year during the height of the growing season. To ensure 
remote sensing observations control for changes in vegetation due 
to natural phenological variations across multiple years, the initial 
NEON design specified that AOP sampling was to be limited to the 
period when the overstory of dominant vegetation at a site is at 
>90% peak photosynthetic capacity (Kampe, Johnson, et al., 2010; 
Schimel, 2013).

To delineate the peak greenness periods of different vegeta-
tion types at each site, we used Google Earth Engine (GEE) to pro-
duce time series of Enhanced Vegetation Index (EVI) calculated 
from MODIS imagery for land cover classes as defined by the 2011 
USGS National Land Cover Database (NLCD), a dataset derived 
from 30 m Landsat data (Homer et al., 2015; Huete et al., 2002). For 
each major land cover class exceeding 20% of the total area of each 
NEON terrestrial site, we extracted Area-of-Interest (AOI) masks 
from the NLCD basemap, cropped to each site's Priority 1 flight box 
and TOS boundary, and resampled to 125 m using a majority filter 
so that the resolution of the input NLCD vegetation classes more 
closely matched the resolution of MODIS EVI data while reducing 
processing errors in GEE. An 18-year EVI time series (2003–2020) 
for each land cover AOI was extracted from 16-day EVI compos-
ites of 250 m MOD13Q1 (Terra) and MYD13Q1 (Aqua) Collection 
6 using only those pixels tagged with Detailed QA Bitmask bit-01 
equal to 00 (i.e. ‘VI produced with good quality’) (Didan et al., 2015; 
Huete, 1999). The mean EVI value of the AOI for each 8-day incre-
ment was then calculated, resulting in a maximum of 46 observations 
per year at 8-day intervals. These were smoothed using a LOESS lo-
cally weighted regression algorithm with a smoothing span of 0.25, 

p n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

0.05 46 77 None None None None None None None

0.10 22 38 51 66 79 91 None None None

0.15 15 26 34 43 52 59 69 77 85

0.20 11 19 25 32 39 44 51 56 64

0.25 8 15 20 25 30 35 40 45 50

0.30 7 12 16 21 25 29 33 37 41

0.35 6 10 14 18 21 25 28 32 35

0.40 5 9 12 15 18 22 24 27 30

0.45 4 8 11 13 16 19 21 24 27

0.50 4 7 9 12 14 17 19 21 24

0.55 3 6 8 11 13 15 17 19 21

0.60 3 5 7 9 11 13 15 17 19

0.65 3 5 7 9 10 12 14 16 17

0.70 2 4 6 8 9 11 13 14 16

0.75 2 4 6 7 9 10 12 13 15

0.80 2 3 5 6 8 9 11 12 13

0.85 2 3 5 6 7 9 10 11 12

0.90 1 3 4 5 7 8 9 10 11

0.95 1 2 4 5 6 7 8 9 10

1.00 1 2 3 4 5 6 7 8 9

TA B L E  3  Probability-of-success table—
number of days required (survey days plus 
weather contingency) to achieve 90% 
probability of cloud-free data collection 
when minimum number of days to survey 
a site equals (n) and percent of monthly 
cloud-free days equals (p). (see Tables S2–
S4 for 80%, 62.5% and 50% probabilities)
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a non-parametric approach that reduces noise by estimating a local 
regression at each point in the time series (Klosterman et al., 2014). 
The resulting datasets were used to produce both annual and 18-
year mean EVI phenology curves for dominant vegetation classes at 
each site; these analyses are updated on a yearly basis.

Before finalizing peak greenness windows for each site (de-
scribed below), we verified the 90% end-of-spring (EOS) and start-
of-fall (SOF) phenophase transition thresholds for each NLCD class 
by visually inspecting available top-of-tower PhenoCam images 
from 2016 to 2020 from the National Phenology Network (NPN)—
which include those collected from PhenoCams mounted on NEON 
towers—corresponding to the annual 90% MODIS EVI EOS and SOF 
dates at each site (Figure  S1) (construction of NEON towers was 
completed in phases so PhenoCam data are not available for five 
complete years at all sites). Based on the size and colour of spring 
foliar growth, the images confirmed that 90% was an appropriate 
threshold to use for start-of-peak greenness (EOS) for all vegetation 

classes. In contrast, inspection of PhenoCam images showed that 
the threshold that best represented end-of-peak greenness (SOF) 
varied among vegetation class: 90% for grasslands, shrublands, ag-
riculture and tundra, and 80% for deciduous broadleaf forest, ever-
green forest, mixed forest and woody wetlands.

We determined peak greenness windows for each vegetation 
class by identifying EOS and SOF dates corresponding to 90% of the 
amplitude from start-of-spring (SOS) to the maximum value of the 
mean phenology curve in the 18-year mean EVI phenology curve 
(Figure 4). For this analysis, we assumed SOS to be the day of year 
when the largest rate of change of the slope occurred during the 
beginning of the green-up phase, calculated as the maximum value 
of the second derivative of the pre-peak phenological curve. We ob-
tained the 90% value representing EOS by multiplying the amplitude 
(maximum value minus SOS value) by 0.9 and used the FORECAST 
linear regression function in Excel to determine the specific day-of-
year (DOY) this 90% value was reached along the rising (pre-peak) 

F I G U R E  4  2003–2020 mean phenology and peak greenness window for deciduous broadleaf forest at Harvard Forest. Start-of-spring 
(SOS) calculated as the point of largest rate in change of slope (maximum value of the second derivative of the slope); end-of-spring 
calculated as 90% of the amplitude between SOS and the maximum mean Enhanced Vegetation Index (EVI) value; start-of-fall calculated as 
either 90% or 80% of the amplitude between SOS and the maximum mean EVI value, depending on vegetation type
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slope of the mean phenology curve, interpolated between the DOYs 
associated with the sequential 8-day MOD13Q1 and MYD13Q1 
DOY intervals.

Although most sites display a single phenological peak, certain 
sites are characterized by multiple phenological peaks. For these 
‘bi-modal’ sites, we select the highest peak in the long-term mean 
for AOP data collection. At managed sites with more than one phe-
nological peak (e.g. agricultural sites where multiple crop plantings 
occur), we estimated peak greenness windows for each phenological 
peak. Multiple deployments to these domains in a given year might 
be required if the none of the peak greenness periods of the agricul-
tural sites aligned with the peak greenness periods of other sites in 
the same domain.

2.7.1  |  Validation of MODIS EVI phenology

PhenoCam images can be used to create a Green Chromatic 
Coordinate (GCC) index that is analogous to EVI in its ability to meas-
ure seasonal phenological greenness patterns (Richardson, Hufkens, 
Milliman, & Frolking, 2018). To better understand the accuracy of 
MODIS EVI data as a planning tool, we compared the mean MODIS 
EVI EOS/SOF phenophase transition dates to the EOS/SOF transi-
tion dates extracted from PhenoCam GCC time series for match-
ing NLCD cover classes. Since NLCD uses a different land cover 
classification scheme than the NPN, NLCD cover classes were first 
translated to NPN vegetation types (Table S1) (Richardson, Hufkens, 
Milliman, Aubrecht, et al.,  2018). phenocamr PhenoCam process-
ing software was used to download the top-of-tower 3-day sum-
mary product for each site from 2016 to 2020, iteratively smooth 
and interpolate the data and flag outliers, and extract the 90% 
EOS and 90%/80% SOF phenophase transition dates for each year 

based on the target NPN vegetation types (Hufkens et al.,  2018; 
Seyednasrollah et al., 2019) (Figure 5).

3  |  RESULTS

3.1  |  Cloud-free data collection

To understand how well the cloud-free probabilities model per-
formed in practice, we evaluated the success the AOP flight op-
erations teams had in acquiring cloud-free data with deployments 
scheduled at the different probability thresholds. AOP defines a suc-
cessful collection when 80% or more of the flight lines in a Priority 
1 flight box are flown under <10% cloud-cover. Results from the 
2019, 2020 and 2021 flight campaigns scheduled based on mod-
elled probabilities of cloud-free data collection showed the model 
overestimated the likelihood—and underestimated the number of 
days required—of surveying NEON sites in cloud-free conditions by 
13%–26% based on the actual number of flight lines AOP was able 
to collect (Figure 6).

3.2  |  Peak greenness windows

3.2.1  |  Spatial and temporal variability

Certain vegetation classes exhibit relatively consistent interannual 
peak greenness start- and end-dates, while others experience high 
year-to-year variability in green-up and senescence (Figure 7). The 
90% EOS dates for deciduous broadleaf and evergreen needle for-
ests were relatively consistent and predictable year-to-year in the 
EVI data, most likely because green-up and senescence are linked 

F I G U R E  5  Example of 90% end-of-
spring and 80% start-of-fall phenophase 
transition dates produced by phenocamr 
for deciduous broadleaf forest at Harvard 
Forest
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to broad-scale seasonal changes in temperature and precipitation 
rather than short-term climate events. Grasslands were highly vari-
able and less predictable, with green-up principally driven by rainfall 
and water abundance. Shrublands (including the desert southwest) 
displayed moderate variability, possibly due to the existence of 
precipitation-sensitive plants (e.g. grasses) growing among shrubs 
which cannot be distinguished at the observation scale of MODIS 
but are aggregated in the EVI data. Agricultural sites were variable 
due to management practices that closely track climate. Tundra sites 
in Alaska showed the greatest interannual consistency in pheno-
phase transition dates.

In addition to phenological variability in dominant vegetation 
classes among sites, different vegetation classes at a single site may 
demonstrate distinct, asynchronous responses to seasonal tempera-
ture and precipitation patterns. While in most sites, the phenolog-
ical peaks of dominant vegetation classes did overlap sufficiently 
to plan airborne surveys during the peak greenness periods of sub-
dominant vegetation, at certain sites (e.g. DSNY—Figure 8) the peak 
growth periods for different vegetation classes were asynchronous 
in their timing, and the overlapping peak greenness windows short 
or non-existent.

3.2.2  |  Accuracy of MODIS EVI phenology

Pairwise correlations between the >90% peak greenness start-
 (EOS) and end-dates (SOF) of mean MODIS EVI and mean 
PhenoCam GCC for 2016–2020 show that agreement was signifi-
cantly greater for EOS than SOF and varied by vegetation class for 
both EOS and SOF (Figure 9). Although their sample sizes were small, 
shrub/scrub and tundra showed the closest agreement in both EOS 
and SOF. Grassland and deciduous broadleaf forest each displayed 
close agreement between EVI and GCC in EOS but not in SOF, while 
agreement was lowest in both EOS and SOF for evergreen needle 
forest.

3.2.3  |  Surveys during actual vs. predicted peak 
greenness windows

During annual flight campaigns from 2016 to 2020, a total of 148 site 
surveys were collected, of which 116 surveys were scheduled within 
predicted peak greenness as determined by the 18-year mean EOS and 
SOF dates for the sites plus/minus the associated confidence intervals. 
The remaining 32 surveys were scheduled outside of peak greenness 
due to limited payload capacity (Table S6). Of the 116 surveys collected 
during predicted peak greenness, 85 surveys (73%) occurred during the 
actual peak greenness window for the respective year as determined 
retrospectively from MODIS EVI, while the actual peak greenness 
windows for 31 surveys (27%) varied from the predicted timeframes 
and the sites were collected outside of their actual peak greenness 
windows. Three additional surveys were collected outside of predicted 
peak greenness but inside actual peak greenness for that particular year. 
In terms of vegetation class, grassland was the most difficult to predict, 
accounting for 48% of the ‘missed’ peak greenness windows, followed 
by shrub/scrub (43%), tundra (27%), deciduous broadleaf forest (24%), 
evergreen needle forest (15%) and agriculture (0%) (both evergreen 
broadleaf forest surveys were flown outside of peak greenness).

4  |  DISCUSSION

The AOP sampling design is a novel, data-driven approach towards 
managing the spatial and temporal complexity of the landscapes 
around NEON sites and the operational flight context in which sam-
pling occurs. It represents a unique application of satellite and near-
surface remote sensing and modelling in a framework that seeks to 
balance competing needs and constraints with the goal of optimiz-
ing multi-year data collection at a continental scale. We continually 
seek to improve our sampling strategy to provide high-quality re-
mote sensing data efficiently and consistently over time, and results 
from the past 5 years of operational data collection at both NEON 

F I G U R E  6  Successful collection 
of cloud-free data for deployments 
scheduled at different probability 
thresholds. Real-world results show that 
the modelled thresholds over-estimate the 
likelihood of acquiring cloud-free data and 
therefore under-estimate the number of 
days required to collect cloud-free data 
at a site.
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and non-NEON sites (e.g. Chadwick et al., 2020) give us a baseline 
on which to better understand the strengths and weaknesses in the 
current approach and develop refinements moving forward.

4.1  |  Underestimation of cloud-free days

Although the sample size is limited, application of the cloud-free 
probabilities model showed it underestimated the actual number of 
days required to survey NEON sites in cloud-free conditions. One 
limitation is the lack of accurate thin-cirrus cloud detection. Cirrus 
can detrimentally affect spectral reflectance retrievals, and atmos-
pheric correction algorithms generally perform poorly when cirrus 

clouds are present, so data collected under cirrus are considered 
>10% cloud-cover. However, the existence of thin cirrus layers can be 
difficult to identify in MODIS imagery, leading to optimistic estimates 
in the percentage of cloud-free days per month per site. A second 
error source is the model's reliance on MODIS imagery: cloud-cover 
changes constantly during the day, and since the MOD09GA/
MYD09GA observations are essentially snapshots of cloud condi-
tions at a moment in time they may not be representative of cloud 
conditions throughout a data collection flight. Wildfire smoke—an 
increasing problem throughout much of the country—is also not 
addressed by the cloud forecasting model. During the 2021 flight 
season, for example, wildfires in California and Washington State 
produced enough haze to convert most cloud-free data collection 

F I G U R E  7  Measuring interannual variability: Standard deviations in onset (end-of-spring) of annual peak greenness windows from 18-
year time series of moderate resolution imaging spectroradiometer (MODIS) Enhanced Vegetation Index. AG, agriculture; DB, deciduous 
broadleaf; EB, evergreen broadleaf; EN, evergreen needle; GR, grassland; SH, shrubland; TN, tundra. See Supporting Information for site 
name reference.
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days into sub-optimal or no-fly days. Thus, limited high-quality spec-
trometer data were acquired at the Domain 16 and Domain 17 sites 
despite non-existent cloud-cover. Finally, simulations assume cloud-
cover is an independent random process in both the temporal and 
spatial domains. However, weather patterns are likely to demon-
strate temporal autocorrelation within the AOP collection window 
and spatial autocorrelation for sites within NEON domain boundaries, 
particularly if sites are in proximity or overlapping. To improve the ac-
curacy of the cloud-probabilities model, we are refining cloud-cover 
estimates through finer-scale temporal mapping of cloud-cover using 
GOES 16/17 data to capture diurnal cloud dynamics, and modelling 
temporal and spatial autocorrelation to account for this behaviour.

4.2  |  Uncertainty in Phenophase 
transition thresholds

There are several potential sources of error that contribute to un-
certainty in our analysis of the timing of phenophase transitions. 

First, EVI measurements and their associated DOY within a 16-
day MODIS composite can vary significantly, pixel-to-pixel, due 
to cloud-cover. Where clouds are persistent over the observation 
period of a 16-day composite image, cloud-free EVI observations 
from adjacent pixels may be acquired up to 16 days apart, which 
can bias the phenophase transition calculation—although this 
error may be reduced by using 8-day alternating MOD013Q1/
MYD13Q1 data and averaging EVI across all pixels representing 
a particular vegetation class. Another source of potential error 
is spatial variability in green-up within a single vegetation class 
distributed across a flight box due to factors such as differences 
in elevation, soil moisture, etc. For example, studies have found 
approximately a one-day delay in EOS for every 30 m in elevation 
gain (e.g. White et al., 2014). We did not see such large variability 
in EVI when comparing pixels located in valleys to those on peaks 
in several mountainous sites, but this variability may have been 
reduced in the process of smoothing and averaging time-series 
data. There is also potential bias in our subjective interpretation of 
PhenoCam images to confirm the EOS/SOF transition thresholds 

F I G U R E  8  18-year mean Enhanced Vegetation Index phenology curves and their associated peak greenness windows for woody 
wetlands (green—day-of-year [DOY] 114–216), grasslands (yellow—DOY 163–255) and shrubs (blue—DOY 228–269) at Disney Wilderness 
Preserve
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F I G U R E  9  Pairwise correlations 
between end-of-spring and start-of-
fall phenological transition dates from 
PhenoCam Green Chromatic Coordinate 
(GCC) and moderate resolution imaging 
spectroradiometer (MODIS) Enhanced 
Vegetation Index for deciduous broadleaf, 
evergreen needle, grassland, shrub and 
tundra vegetation classes. PhenoCam 
GCC indices are based on National 
Phenological Network image masks; 
MODIS enhanced vegetation indices are 
based on aggregated National Land Cover 
Database vegetation classes cropped by 
Priority 1 flight boxes.
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that we applied categorically to the different vegetation classes. 
Finally, SOF typically exhibits greater uncertainty than EOS since 
changes to both colour and leaf area happen more gradually during 
fall transitions than spring.

While PhenoCam GCC results mostly corroborate the phe-
nological patterns derived from MODIS, the use of near-surface 
observations as a validation source for satellite phenology obser-
vations is challenging. Disagreement in EOS/SOF between GCC 
and EVI may be due to different vegetation classes represented in 
PhenoCam ROIs than in the cropped NLCD land cover masks used to 
produce mean MODIS EVI values (Richardson, Hufkens, Milliman, & 
Frolking, 2018). NLCD classes are mapped from 30 m Landsat imag-
ery, and separability among individual plants at this resolution is im-
precise; this is exacerbated at the scale of 250 m MODIS data where 
a single EVI pixel can aggregate the phenological characteristics of 
spatially adjacent vegetation classes.

To improve the accuracy of peak greenness windows, we hope to 
explore other techniques for identifying phenophase transitions that 
may be more accurate than calculating a predetermined percent of 
the amplitude from SOS to maximum EVI or GCC. Zhang et al. (2018) 
employed the vegetation contrast index (VCI) which has greater dy-
namic range than GCC and is more sensitive to the amount of foliage 
present, while Donnelly et al.  (2022) analysed site-specific pheno-
metrics from NEON field observations with a new R package phe-
nesse, generating Weibull-parameterized estimates as part of their 
comparative study of in situ and remote sensing phenology. The 
sigmoid-based curve-fitting and pruned exact linear time change-
point detection analysis employed by phenocamr might also prove 
superior; however, we tested these latter methods with MODIS EVI 
data in this study but ultimately did not adopt them due to repeated 
processing failures.

Uncertainty in EOS/SOF does impact the accuracy of deploy-
ment schedules. To minimize this impact, we have employed EOS/
SOF confidence intervals (in days) for sites with long peak greenness 
periods, scheduling deployment start dates at least one-half the EOS 
confidence interval later than the mean peak greenness start-date 
and ending the deployment at least one-half the SOF confidence 
interval earlier than the peak greenness end-date. However, apply-
ing this to sites with short peak greenness periods can result in ex-
cessively narrow deployment windows, and certain sites (e.g. CPER) 
would have no dates to fly at all. While campaign schedules are pre-
pared months in advance, AOP fortunately has some flexibility in 
the actual timing of surveys within domain deployment windows and 
uses real-time visual interpretation of PhenoCam images and GCC 
time series published by the NPN (pheno​cam.nau.edu) to make day-
to-day decisions on whether a site is within peak greenness before 
executing a collection.

4.3  |  Asynchronous plant phenology

Various studies have shown that different plant species at a site 
may exhibit different growth cycles (Donnelly et al.,  2022; Pau 

et al., 2010). At sites where highly asynchronous phenology occurs 
among plant communities, AOP attempts surveys during the over-
laps in peak greenness periods among vegetation classes. If that is 
not possible due to a lack of significant overlap, we survey during the 
mean peak greenness period of the dominant vegetation class found 
within the TOS boundary (e.g. deciduous broadleaf/woody wetlands 
in DSNY or tundra in NIWO).

A key assumption by NEON is that remote sensing data are 
comparable across years irrespective of the AOP collection dates 
if they are acquired above the EOS/SOF peak greenness thresh-
olds. Depending on the science question, data for plant species in 
a state of early green-up or senescence and outside of their opti-
mal sampling period may also be suitable for analysis. However, 
certain techniques, such as the retrieval of plant functional traits 
with hyperspectral data using radiative transfer model inversions 
or partial least squares, are affected by phenology across the peak 
growing season (Chlus et al., 2020; Schiefer et al., 2021), and data 
acquired outside of peak greenness may not meet the quality stan-
dards required for such analyses. Although data processing options 
may be limited for directly addressing this issue, because of opera-
tional constraints AOP frequently surveys sites in slightly different 
timeframes each year, and when combined with the natural interan-
nual variability in vegetation phenology, plant communities that are 
phenologically marginal in a given year may be in peak greenness 
during another year's flight. For applications where data from shoul-
der seasons are problematic, researchers are encouraged to explore 
the historical time series of data at a site using PhenoCams, satellite 
vegetation indices or the R Shiny tool described below to verify that 
a target vegetation class of interest was in peak greenness during 
AOP flights.

4.4  |  Sub-optimal data, sampling and data 
processing improvements

To ensure efficient data collection, after deploying to a domain AOP 
will typically wait for <10% cloud-cover before attempting sur-
veys at a site. If weather forecasts indicate sub-optimal conditions 
through the end of the scheduled deployment, AOP will attempt a 
collection under >10% clouds to ensure complete flight box cover-
age with all instruments (lidar and camera data are unaffected by 
overhead clouds) and if sky conditions improve before scheduled 
transit to the next scheduled domain, AOP will make a second at-
tempt to collect cloud-free data.

Only the highest quality data acquired during annual surveys at a 
site are published through the data portal, but this can include flight 
lines acquired under <10% and >10% cloud conditions, or a mix of both 
in the same dataset. Due to their impact to data quality, both weather 
conditions and phenological conditions during data acquisition are 
communicated in a variety of ways. During flights, airborne sensor op-
erators record an estimate of total cloud-cover in three categories: (a) 
0%–10% cloud-cover, (b) 10%–50% cloud-cover and (c) >50% cloud-
cover, labelled as Green, Yellow and Red, respectively. The observed 

https://phenocam.nau.edu/
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weather classifications are stored in the HDF5 flight line files as attri-
butes and converted into a weather quality image that represent dif-
ferent weather conditions among pixels in the mosaic tiles. Weather 
information is also communicated through a series of Google Earth 
KML files that depict each flight line coloured by the observed weather 
conditions. A table summarizing the flight lines acquired each day with 
the associated observed weather conditions is included in the L2 
QAQC documents provided with data product downloads. Finally, we 
have developed PhenoFlight, an online R Shiny app that enables inter-
active exploration of the phenology and cloud-cover conditions during 
AOP data acquisition each year at each site (see Figure S2 for URL).

To improve cloud-free data collections while maximizing the 
number of sites flown each year, AOP is exploring application of a 
hybrid campaign model that combines fixed-schedule domain de-
ployments to certain domains with ‘hub-and-spoke’ deployments 
to other domains where one domain serves as the base for deploy-
ments to its neighbours, taking advantage of short-term weather 
forecasts and the appearance of fair-weather windows in nearby 
domains to acquire cloud-free data outside of the scheduled deploy-
ment windows. We have also developed several GEE-based GOES 
cloud tracking tools (Figure S3) and a network of sky-facing cameras 
at NEON sites to assist with real-time monitoring of cloud condi-
tions, further increasing the likelihood of cloud-free data collection.

As part of continuing efforts to improve data quality, we are plan-
ning to incorporate a BRDF correction algorithm into the processing 
pipeline producing L1 surface reflectance data, such as FlexBRDF 
(Queally et al., 2021). Although they are spatially limited relative to 
the AOP flight box footprint, we are exploring wider use of field spec-
tral measurements (reflectance tarps and ASD spectroradiometer) 
and use of the Aeronet surface validation network—which includes 
the Cimel sun photometers mounted on NEON towers that measure 
direct solar irradiance and sky radiance—that provide inputs on aero-
sol transmission and scattering properties to the ATCOR atmospheric 
correction model employed by AOP (Wang et al.,  2009). Further 
testing of processing techniques such as empirical line correction to 
improve hyperspectral surface reflectance products under varying 
cloud conditions may also be evaluated (Arroyo-Mora et al., 2021). 
More suitable for large-area surveys such as those performed by AOP 
is the potential integration of upward- and downward-looking solar 
spectral irradiance monitors on the aircraft similar to those developed 
and tested with AOP by the University of Colorado Boulder (Wright 
et al., 2021). These permit simultaneous irradiance measurements 
coincident with data collection during flight and allow for improved 
modelling and correction of the entire atmospheric column in both 
cloud-free and cloudy conditions. The ability to produce high-quality 
spectroscopy under cloud-cover would greatly increase the efficiency 
of flight operations, enabling more sites to be flown in a given year.

5  |  CONCLUSIONS

Airborne remote sensing campaigns supporting a continental scale, 
site-based observatory such as NEON require detailed investigations 

into ecological conditions at local sites, consideration of the spatial 
and temporal extent of other sampling activities, an understand-
ing of seasonal phenological patterns in vegetation and weather, 
and adherence to the resolution and accuracy requirements of data 
products. Optimizing each of these factors results in trade-offs that 
impact the flight parameters and sampling windows of NEON's AOP. 
Despite careful planning, unpredictable environmental disturbances 
(wildfires, droughts) and longer term changes due to an altering cli-
mate pose challenges to meeting all requirements. Since sampling 
optimizations are an ongoing process, we welcome feedback and 
contributions from the ecological and remote sensing science com-
munities to improve this design, and encourage participation in the 
NEON TWGs that relate to the AOP (NEON, 2022b).

Although the survey footprints are typically much smaller, the 
spatial and temporal sampling approaches described here could be 
useful for planning Unmanned Aerial Vehicle (UAV) surveys aiming 
to study ecological dynamics in terrestrial environments. Projects 
utilizing UAVs with high-end payloads such as hyperspectral sensors 
are subject to the same constraints as AOP and may therefore ben-
efit from the tools and code shared here that enable more precise 
pre-deployment planning, particularly when resources are limited. 
Additional criteria, such as surveys in periods of low wind and waves, 
or changes to payload instrument capabilities, might be necessary 
for improved airborne remote sensing of aquatic environments.
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