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Correspondence Observation Platform (AOP) collects high-resolution hyperspectral imagery, discrete
John Musinsky and waveform lidar, and digital photography at a subset of 81 terrestrial and aquatic
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2. Here we describe the sampling design for the AOP that aims to meet the diverse
Handling Editor: Aaron Ellison research needs of the ecological science community within the operational con-
straints affecting airborne data collection. Our spatial sampling protocol captures
NEON instrumented systems, field plots and environmental gradients around each
site while considering the context of airspace restrictions and remote sensing in-
strument capabilities. We use time series of moderate resolution imaging spectro-
radiometer (MODIS) satellite and PhenoCam near-surface observations to define
temporal sampling windows based on vegetation peak foliar greenness. We devel-
oped a probabilistic model based on MODIS reflectance imagery and Monte Carlo
simulation to estimate sampling durations for cloud-free data collection at each site.
3. Agreement in the estimated phenophase transition dates between MODIS Enhanced
Vegetation Index and PhenoCam Green Chromatic Coordinate varied by vegetation
class. Results from both sensors show that some vegetation classes have relatively
consistent interannual peak greenness start- and end-dates, while others experience
high year-to-year variability in green-up and senescence. In addition to phenological
variability among sites, certain vegetation forms demonstrate distinct, asynchronous
responses to climate, resulting in non-overlapping peak greenness periods within a
single site. Results from flight campaigns showed that the cloud-likelihood model un-
derestimated actual cloud conditions by 13%-26%, depending on the probability used.
4. Where interannual or intra-site phenology is highly variable or clouds are a per-
sistent problem, it becomes challenging to schedule domain deployments so that
all sites are flown in cloud-free conditions while their vegetation communities are

in peak greenness. Despite limitations, application of cloud and peak greenness
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1 | INTRODUCTION

The National Ecological Observatory Network (NEON) is a 30-year
continental-scale ecological research facility sponsored by the
National Science Foundation designed to collect and share scien-
tific data that characterize and quantify how the nation's terrestrial
and aquatic ecosystems are changing (Keller et al., 2008). The net-
work includes 81 field sites (47 terrestrial and 34 aquatic) located
in a range of representative ecosystems across the United States.
The Observatory is composed of five measurement subsystems: the
Terrestrial Instrument System (TIS), Terrestrial Observation System
(TOS), Agquatic Instrument System (AlS), Aquatic Observation
System (AOS) and Airborne Observation Platform (AOP) (Thorpe
et al., 2016). At each field site, these subsystems collect a suite of
highly calibrated and integrated in situ sensor measurements, field
observations and airborne remote sensing data (Barnett, Adler, et al.,
2019; Barnett, Duffy, et al., 2019; EImendorf et al., 2016; Hinckley
etal., 2016; Hoekman et al., 2017; Parker & Utz, 2022).

Operating three aircraft-mounted payloads similar to the
Carnegie Airborne Observatory Airborne Taxonomic Mapping
System (Asner et al., 2012), the NEON AOP acquires highly cali-
brated, co-registered sub-metre to metre-scale hyperspectral im-
agery, discrete and waveform lidar, and digital photography that
complement NEON in situ observations for mapping vegetation
states, structure and processes at regional scales around NEON field
sites (Chadwick et al., 2020; Kampe, Asner, et al., 2010; Schaepman
et al., 2009; Schimel et al., 2011). Covering landscapes that extend
beyond the bounds of in situ field sampling, AOP remote sensing in-
struments acquire high spatial (<1 m) and spectral resolution (5 nm)
data on upland watershed areas, diverse vegetation communities,
natural and human disturbances and land management practices
that may impact ecological processes within field sampling areas
(Kampe, Johnson, et al., 2010). Remote sensing data collected by the
AOP are used to generate 28 data products, many linked to TOS
and AOS protocols and data products publicly available through
the NEON data portal (data.neonscience.org) that support research
from local to global scales (Nagy et al., 2021).

AOP remote sensing data have contributed to more than 78
peer-reviewed publications covering a wide range of ecological ap-
plications, including explorations into the relationships between
vegetation structure and heterogeneity, plant foliar traits and pro-
cesses such as carbon assimilation and habitat diversity (Chadwick
et al, 2020; Kamoske et al., 2021; Marconi et al, 2021; Wang

models to airborne sampling results in significant improvements to AOP data qual-
ity. Although most applicable to airborne sampling with hyperspectral and lidar
instruments in piloted aircraft, these methods may be a valuable resource to de-

ployment of Unmanned Aerial Vehicles for ecological research.

airborne remote sensing, cloud prediction, ecological sampling, phenology

et al., 2020); improved forest inventories, tree-crown delineation and
species identification (Ayrey & Hayes, 2018; Dalponte et al., 2019;
Fricker et al., 2019; McMahon, 2019; Sumsion et al., 2019; Weinstein
et al., 2021; Zou et al., 2019); refinements in canopy height modelling
and biomass estimation (Khati et al., 2020; Liu et al., 2021); methods
for measuring biodiversity (Carrasco et al., 2019; Kamoske et al., 2022;
Scholl et al., 2021; Schweiger & Laliberté, 2022); geology and critical
zone mapping (Brogan et al., 2019; Hermes et al., 2020; Wainwright
et al, 2022); socio-environmental systems research (Ordway
et al.,, 2021); and new remote sensing methods (Babadi et al., 2019;
MacLean, 2017; Queally et al., 2021) among others (a complete list is
available at neon.dimensions.ai/discover/publication).

This paper describes the spatial and temporal sampling design
for the AOP that aims to provide standardized, high-quality re-
mote sensing data capable of meeting the diverse range of research
needs of the ecological science community, within the operational
and environmental requirements and constraints affecting airborne
data collection. We explore how airborne spatial sampling areas are
delineated to capture landscape heterogeneity around NEON field
sites and describe how temporal sampling windows are developed
through historical analyses of vegetation phenology and cloud-cover
to maximize the likelihood of acquiring high-quality data during the
peak vegetation growth period (‘peak greenness’) at each site and
in coordination with NEON field sampling teams. We detail how
flight and instrument parameters configured to comply with federal
aviation restrictions and safety standards may lead to trade-offs in
data quality, and examine the accuracy of the models used to define
temporal sampling windows and suggest ways these models could
be improved. Finally, we review some of the approaches that might
benefit users working with AOP data acquired under sub-optimal
atmospheric conditions or marginal phenological windows.

Many of the processes described here build on the airborne plan-
ning methods in Kampe, Asner, et al. (2010) and Kampe, Johnson,
et al. (2010) and were used to develop the planning approach in
Chadwick et al. (2020); these methods have evolved in response to
lessons learned during the Observatory construction and initial opera-
tions phases and through feedback from external scientists serving on
NEON Technical Working Groups (TWGs). We recognize that a single
sampling design cannot meet the needs of all research applications, but
we hope this paper can serve as a community resource that enables
a greater appreciation of the compromises and trade-offs inherent in
airborne data collection and a better understanding of AOP data qual-
ity as it relates to data acquisition, while prompting recommendations
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for sampling design improvements and algorithmic enhancements by

researchers employing NEON data in their work.

2 | MATERIALS AND METHODS

2.1 | AOP instrumentation
Each of NEON AOP's remote sensing payloads currently consist of
a NEON imaging spectrometer (NIS), an Optech Gemini, Optech
Galaxy PRIME or Riegl Q780 small-footprint waveform-recording
lidar, and a PhaseOne high-resolution digital camera. The NIS is a
high fidelity visible-to-shortwave infrared spectrometer based on
the next generation Airborne Visible Infrared Imaging Spectrometer
(AVIRISng) designed to collect measurements of sunlight reflected
from the Earth's surface in 426 spectral channels covering a range
of wavelengths from 380 to 2,510nm (Chapman et al., 2019). Since
every chemically unique substance has a unique reflectance spec-
trum, the NIS can be used to identify plant species and traits, map
vegetation health, detect disease or invasive species, and map
drought and its impacts (Green et al., 1998; Ustin et al., 2004). The
lidar is an active sensor that emits up to one million laser pulses per
second at 1,064 nm and is used to map the ground surface, vegeta-
tion height and the vertical structure of leaves and branches within
the canopy. The digital camera complements the other instruments
by providing co-registered, high-resolution Red Green Blue (RGB)
photographs of land cover, including roads, impervious surfaces and
buildings. A precision global positioning system receiver and inertial
measurement unit are incorporated for accurate recording of pay-
load positioning and orientation during science data collection. Each
payload is highly integrated, with the instruments mounted in a com-
mon, rigid frame installed in a DeHavilland DHC-6 Twin Otter, an
aircraft selected for its relatively low survey speeds of 85-110 knots
and ability to accommodate the AOP payload weight and volume
(Figure 1).

NEON operates two payloads for the acquisition of science-
quality data at NEON sites, and a third ‘assignable asset’ pay-

load dedicated to surveys at locations specified by non-NEON

researchers or to supplemental collections at NEON sites. The an-
nual flight campaign season begins with instrument calibration in the
AOP laboratory, followed by a series of calibration flights to collect
baseline data for instrument alignment and performance verification
(NEON, 2022a). After calibration flights, the payloads are deployed
for science surveys across the NEON network. A typical flight cam-
paign runs from March through October when each payload is de-
ployed to a pre-determined set of domains, typically surveying all
sites within each domain before moving to the next (information on
AOP scheduling can be found at www.neonscience.org/data-colle
ction/flight-schedules-coverage). Upon completion of science sur-
veys, the payloads return to headquarters for a final set of calibra-
tion flights before de-installation from the aircraft. The instruments
then undergo maintenance and laboratory calibration before return-

ing to service in the next season's flight campaign.

2.2 | AOP flight parameters

The flight parameters for science surveys are largely determined by
the need to produce metre-scale spectroscopy measurements for
mapping individual overstory plants, achieve sufficient pulse density
of discrete and waveform lidar returns for measuring vertical struc-
ture and the ground surface beneath dense canopies, balanced by
the need for wide-area coverage around each site (requirements are
not currently determined by camera specifications) (Table 1).
Nominal flight altitude is 1,000m above-ground level (AGL).
Minimum flight altitude is driven by the spectrometer contiguous
sampling limits and lidar eye-safety requirements. At a planned air-
craft speed of 50m/s and a NIS sampling rate of 100Hz, the along-
track spacing between pixel centres on the ground is 0.5 m. With
a fixed Instantaneous field of view (FOV) of 1 mrad, the minimum
flight altitude producing a pixel of 0.5 m is 500m AGL; flying lower
would create data gaps in the along-track flight direction at nomi-
nal flight speed. A second requirement driving minimum flight alti-
tudes is eye-safety. Each of the AOP lidars is a Class 3B or Class 4
laser producing infrared light, which presents a potential eye-safety

hazard to ground observers. For eye-safety purposes, it is assumed

FIGURE 1 Top left—Twin Otter aircraft
preparing for calibration flights; bottom
left—Airborne Observation Platform
payload installed in aircraft (instrument
racks not shown); right—spectrometer,
lidar and camera sensors viewed from
below
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TABLE 1 Sampling requirements related to data product
generation

The Airborne Observation Platform (AOP) instrument ground
sample distance must be planned to be 2 m or less

The AOP Imaging instrument sampling of the survey areas must be
planned as contiguous or overlapping

AOP aerial data collection should be conducted at solar elevation
angles of 40° or greater

AOP flight lines collected with <10% cloud-cover over the area of
collect will be considered acceptable

AOP must plan aerial surveys of National Ecological Observatory

Network terrestrial sites within 90% of the site's peak greenness

Source: Kampe, Asner, et al. (2010) and Kampe, Johnson, et al. (2010)

that a person on the ground may be viewing the aircraft during
data collection using aided viewing equipment such as binoculars,
and the aircraft must be above the extended nominal ocular hazard
distance (eNOHD) to prevent injury (International Electrotechnical
Commission, 2014). The eNOHD range depends on the laser pulse
repetition rate (PRR) (number of pulses per second), the laser beam
divergence (which drives the number of photons per m?) and the
laser power setting. In most laser configurations, the eNOHD of
AOP lidars equals or exceeds the 500m minimum AGL established
by spectrometer sampling requirements, which further limits mini-
mum flight altitude. Since low-to-medium laser power settings must
be used to ensure eye-safety compliance, this can negatively affect
canopy penetration and ground returns, and may require a reduced
PRR, leading to lower pulse densities.

To provide wall-to-wall coverage over NEON flight boxes, flight
lines are oriented in a north-south direction—regardless of terrain
conditions—to reduce the contributions of view angle and sun-
sensor geometries to bi-directional distribution function (BRDF)
phenomena (nonlinear artefacts) in the imagery and provide consis-
tency in flight line orientation between annual collections. North-
south flight line orientation can result in large variations in flight line
AGLs in the presence of variable terrain. The highest elevation along
a flight line drives the altitude of the aircraft over mean sea level
(MSL), which can produce larger than desired mean AGLs over the
course of a line. We are currently experimenting with variable MSL
flight lines that maintain relatively constant AGLs along the flight
track at sites with highly variable terrain elevations. The lidar FOV is
configured at a full scan angle of 37° to ensure complete lidar cover-
age beyond the spectrometer FOV of 34°. Usable overlap between
adjacent lidar swaths is set at 37% to eliminate gaps between ad-
jacent spectrometer swaths in the presence of terrain variation or

significant turbulence.

2.3 | Determination of spatial sampling boundaries
for the AOP

Up-scaling of both in situ and airborne measurements requires
an airborne sampling design that (a) covers the ‘area-of-influence’

associated with the TIS cumulative eddy covariance flux tower in-
strumentation, TOS field observations and co-located AIS/AOS
measurements; (b) captures landscape environmental representa-
tiveness and heterogeneity around field sites; and (c) is sensitive to
temporal system variation (e.g. phenology). The criteria used in the
protocol delineating airborne survey boundaries over each site re-
sult in datasets with adequate spatial extent to support the scaling
of NEON field data to regional scales (Keller et al., 2008; Thorpe
et al, 2016).

The airborne spatial sampling design process for terrestrial sites
is as follows: A 10 kmx 10 km minimum airborne sampling area
(‘flight box’) is delineated over each terrestrial site, centred on the
NEON tower and repositioned as necessary to capture the TOS sam-
pling boundary and 90% cumulative eddy covariance flux and con-
centration footprints (‘tower airshed’) in their entirety. Since airflow
will occasionally interact with vegetation of interest located outside
of the tower airshed, a minimum 2 km distance is maintained be-
tween the tower and the edge of the flight box (Figure 2).

The horizontal placement of the 10 kmx 10 km flight box may be
visually adjusted to capture gradients in land cover, precipitation and
temperature, elevation, and vegetation change adjacent to the TOS
boundary that potentially influence field observations (Figure 3). For
sites with TOS boundaries exceeding the minimum 10 kmx 10 km
sampling area, the flight box is expanded to cover the entire TOS
boundary. This core sampling area becomes the Priority 1 flight
box for data collection. (All flight boxes can be downloaded in ESRI
shapefile or KMZ formats at www.neonscience.org/data-samples/
data/spatial-data-maps.)

At certain sites, it may be necessary to expand airborne sam-
pling to capture ecologically relevant areas outside the Priority 1
flight box (e.g. watershed extents for collocated aquatic sites or TOS
boundaries). This expanded sampling area becomes the Priority 2
flight box. Assigning a lower flight collection priority to these areas
improves flight operations efficiency in the event poor weather con-
ditions prevent complete spatial coverage of a site during the annual
flight campaign.

For terrestrial sites located in proximity to one another (DCFS
& WOOD, KONZ & KONA, STEI & TREE) (see Table S1 for full site
names), the 10 kmx 10 km minimum area flight boxes are joined to
create a single Priority 1 flight box that adheres to the airborne sam-
pling criteria described above. For the 13 non-collocated aquatic
sites (i.e. those not included within the survey areas of terrestrial
sites), flight boxes are delineated to capture the entire watershed
boundary upstream of aquatic instrumentation. Flight boxes for wa-
tersheds are truncated where surveys would exceed a single collec-
tion day in optimal weather conditions (ARIK, BLUE and SYCA), and
may cover less than the 10 kmx 10 km minimum size threshold for
terrestrial sites. Finally, flight boxes for all sites may be modified in
the future to accommodate ecosystem changes such as major dis-
turbance events.

AOP flight parameters or spatial sampling boundaries at NEON
sites may be impacted by Federal Aviation Administration (FAA) lim-
its on flight activities over sensitive infrastructure and environmental
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FIGURE 3 Environmental gradients
used to optimize locations of Airborne
Observation Platform flight boxes include
(a) PRISM temperature and (b) PRISM
precipitation (Di Luzio et al., 2008), (c)
National Land Cover Database land cover
(Homer et al., 2015) and forest change
(Hansen et al., 2013), and (d) National
Ecological Observatory Network-derived
watershed boundaries

(b)

areas, both for safety and noise abatement reasons. Certain NEON the FAA requests that aircraft maintain a minimum altitude of 610m
sites are located within or adjacent to national parks (GRSM, RMNP, (2,000ft) AGL or greater (FAA Advisory Circular, 2004). This limits
YELL) and wilderness areas (BART, MLBS, SCBI, SRER, TEAK) where the minimum altitude AOP can fly over high-elevation areas, either
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during data collection or while making turns between flight lines,
which can result in flight lines exceeding the nominal mean 1,000m
AGL, reducing the spatial resolution of the Level O remote sensing
data.

Additional airspace restrictions impacting AOP flight box design
include Military Operations Areas (MOAs) and Restricted Areas
established to separate hazardous and non-hazardous military ac-
tivities from civilian air traffic. Sites effected by these restrictions
include JORN, located adjacent to the White Sands Missile Range in
New Mexico; DEJU, near the Buffalo Restricted Airspace and MOA
in Alaska, and LAJA, within the airspace of a tethered aerostat radar
system operated by U.S. Customs and Border Protection in Puerto
Rico. Therefore, flight lines from JORN and DEJU do not cover the
entire watershed extent, and from LAJA do not capture the entire

TOS sampling area and deviate from a north-south orientation.

2.4 | Determination of temporal sampling windows
for the AOP

The original NEON design called for annual surveys at all terrestrial
sites. Reflecting budgetary limitations, surveys at NEON terrestrial
sites are currently attempted a minimum of three of every 5years
during their peak greenness periods, except for those located in D20
(Hawaii) and D04 (Puerto Rico) which are surveyed at 5-year intervals
due to high deployment costs. Each year canopy foliar chemistry sam-
pling occurs at a rotating subset of 9-11 sites; these sites are always
included in the annual flight campaign schedule. At all sites flown, cer-
tain field collection activities that link directly to AOP data products
(e.g. canopy foliar chemistry sampling, aquatic water quality sampling)
are scheduled to align with airborne surveys (Thorpe et al., 2016).

Three important constraints on the daily and seasonal tempo-
ral sampling windows of NEON airborne data collection are (a) the
timing of acceptable solar elevation angles, (b) the cloud conditions
present or anticipated during sampling and (c) the phenological state
of dominant vegetation at each site. Scheduling of daily flights and
seasonal campaign deployments requires accurate models of each
of these factors; post-flight assessment of their state during data
acquisition can help the end-user better understand data quality. (All
data and processing code are available for download—see Musinsky
etal., 2021.)

2.5 | Solar elevation angles

Most airborne mapping projects operating optical sensors are flown
while solar angles exceed 30-45° to maximize surface-reflected
solar radiance and minimize shadowing from topography and veg-
etation (Honkavaara et al., 2012; Pepe et al., 2018). AOP surveys
most sites during daylight hours when solar angles exceed 40°; ac-
ceptable solar angles are relaxed to 35° at grassland and agricultural
sites characterized by flat terrain and low vegetation, maintaining
minimal shadowing in the imagery despite the lower solar elevation

angle. At the northern latitude sites of Alaska, 35° solar angles are
used by default due to limited 40° flight windows during summer
months. Except for solar angle timings, no time-of-day constraints
(e.g. avoiding solar noon during aquatic site surveys to minimize sun

glint) are included in the sampling protocol.

2.6 | Cloud-cover

Changes to illumination conditions from clouds and aerosols greatly
influence the quality of data produced by the spectrometer. To re-
duce the impact of atmospheric-induced degradation to the spec-
troscopy, AOP attempts to survey when cloud-cover represents less
than 10% of sky coverage. Since many NEON sites are in regions
where clouds are persistent during peak greenness periods, more
days must be allocated to deployments to these sites to increase the
likelihood of encountering cloud-free conditions.

Starting with the 2019 flight campaign, AOP implemented a
probabilistic model to estimate the number of days required to
collect cloud-free data given the number of flight hours needed to
survey a site during acceptable solar angles. To better understand
cloud patterns and trends at each site throughout the year, we cal-
culated daily cloud-cover percentages for each Priority 1 flight box
from a 16-year time series (2002-2017) of daily moderate resolution
imaging spectroradiometer (MODIS) 1,000m surface reflectance
data (MODO9GA/MYDO9GA Collection 6 from the Terra and Aqua
satellites, whose overpass times are roughly concurrent with AOP
morning and afternoon flights), using the reflectance data state QA
band, where QA bits 0-1: Cloud State in the State_1km Bitmask are
set to bit values of 1-3 (i.e. ‘cloudy’, ‘mixed’ and ‘not set’) (Roger
et al., 2020). The total number of days per month per year where
cloud-cover represented less than 10% of the Priority 1 flight box for
each site during at the time of daily MODIS overpass was then calcu-
lated, and from this the mean percentage of cloud-free days (<10%
cloud-cover) per month (Table 2). Domain 20 was not included in the
analyses since the flights are performed by an outside contractor.

To better utilize these cloud-free fractions as part of flight cam-
paign scheduling, we developed a Monte Carlo simulation to deter-
mine the probabilities that flight deployments of specific durations
would result in cloud-free data acquisitions during the months of the
year coinciding with each site's peak greenness period. The Monte
Carlo simulation draws from the probability density for a binomial
distribution as follows:

P(N) = ( )pN(l—p)"’N, (1)

n
N
where n is the number of trials (10,000 in this case), p is the probability
of success (0.5, 0.625, 0.8, 0.9) of acquiring cloud-free data and N is the
minimum number of flight-days required to complete the survey of a
site based on the flight box area. We calculated the probability shown in
Equation 1 for an increasing number of flight-days until our desired prob-
ability of success was reached. The associated cloud-free flight-day val-
ues per probability-of-success level were stored in probability-of-success
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TABLE 2 Percent of days per month with <10% cloud-cover within each Airborne Observation Platform Priority 1 flight box (16-year
mean)

Domain Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
01 HARV 0.21 0.17 0.22 0.29 0.22 0.21 0.27 0.29 0.35 0.22 0.26 0.16
01 BART 0.02 0.05 0.14 0.20 0.20 0.16 0.09 0.16 0.32 0.26 0.21 0.05
02 SCBI 0.18 0.21 0.25 0.30 0.22 0.18 0.17 0.18 0.26 0.31 0.32 0.21
02 SERC 0.25 0.28 0.30 0.36 0.28 0.24 0.25 0.28 0.32 0.35 0.38 0.25
02 BLAN 0.23 0.26 0.31 0.31 0.28 0.25 0.22 0.24 0.30 0.32 0.33 0.23
03 OSBS 0.38 0.39 0.36 0.28 0.22 0.07 0.05 0.06 0.10 0.26 0.40 0.35
03 DSNY 0.37 0.32 0.29 0.24 0.20 0.06 0.05 0.04 0.06 0.20 0.34 0.33
03 JERC 0.40 0.37 0.38 0.41 0.33 0.19 0.15 0.13 0.27 0.43 0.51 0.36
04 GUAN 0.17 0.15 0.07 0.05 0.04 0.05 0.06 0.05 0.11 0.14 0.16 0.17
04 LAJA 0.28 0.22 0.12 0.07 0.03 0.03 0.05 0.06 0.09 0.12 0.21 0.31
05 STEI/TREE 0.06 0.21 0.26 0.29 0.25 0.20 0.23 0.23 0.33 0.25 0.16 0.03
05 UNDE 0.02 0.04 0.11 0.19 0.21 0.22 0.18 0.20 0.30 0.19 0.11 0.01
05 STEI-CHEQ 0.05 0.12 0.25 0.30 0.25 0.23 0.24 0.26 0.34 0.26 0.20 0.04
06 KONZ/KONA  0.33 0.35 0.33 0.34 0.33 0.40 0.40 0.42 0.48 0.48 0.43 0.30
06 UKFS 0.36 0.35 0.31 0.32 0.32 0.36 0.38 0.39 0.46 0.45 0.39 0.33
07 ORNL 0.25 0.22 0.29 0.31 0.23 0.21 0.14 0.23 0.37 0.37 0.37 0.25
07 GRSM 0.19 0.18 0.17 0.24 0.14 0.07 0.04 0.05 0.14 0.31 0.35 0.22
07 MLBS 0.10 0.08 0.20 0.25 0.14 0.10 0.06 0.06 0.19 0.29 0.28 0.11
08 TALL 0.37 0.31 0.34 0.37 0.28 0.18 0.13 0.23 0.36 0.47 0.45 0.31
08 DELA 0.37 0.32 0.34 0.36 0.30 0.18 0.11 0.25 0.34 0.46 0.44 0.32
08 LENO 0.39 0.32 0.35 0.35 0.28 0.18 0.12 0.22 0.31 0.47 0.48 0.30
09 WOOD/ 0.25 0.20 0.17 0.29 0.30 0.28 0.39 0.39 0.43 0.33 0.22 0.14
DCFS
09 NOGP 0.24 0.29 0.25 0.32 0.34 0.33 0.46 0.46 0.49 0.34 0.30 0.19
10 CPER 0.31 0.31 0.40 0.34 0.32 0.53 0.53 0.54 0.57 0.49 0.45 0.30
10 STER 0.27 0.31 0.35 0.38 0.42 0.58 0.63 0.60 0.61 0.52 0.40 0.27
10 RMNP 0.02 0.03 0.11 0.13 0.14 0.29 0.22 0.23 0.34 0.35 0.16 0.04
11 CLBJ 0.47 0.45 0.41 0.41 0.36 0.37 0.44 0.45 0.44 0.51 0.52 0.43
11 OAES 0.53 0.47 0.45 0.46 0.42 0.44 0.52 0.49 0.54 0.52 0.57 0.46
12 YELL 0.03 0.09 0.11 0.08 0.10 0.26 0.46 0.40 0.43 0.20 0.05 0.02
13 NIWO 0.00 0.00 0.00 0.00 0.06 0.07 0.06 0.12 0.18 0.06 0.00 0.00
13 MOAB 0.42 0.42 0.54 0.48 0.52 0.71 0.60 0.55 0.61 0.62 0.58 0.39
14 SRER 0.60 0.57 0.67 0.76 0.79 0.78 0.41 0.43 0.55 0.71 0.68 0.56
14 JORN 0.62 0.66 0.66 0.71 0.73 0.77 0.57 0.61 0.59 0.69 0.70 0.56
15 ONAQ 0.20 0.17 0.16 0.20 0.32 0.53 0.49 0.47 0.53 0.44 0.30 0.18
16 WREF 0.07 0.13 0.09 0.14 0.19 0.27 0.59 0.53 0.45 0.29 0.12 0.07
16 ABBY 0.11 0.16 0.09 0.13 0.17 0.23 0.48 0.43 0.39 0.26 0.14 0.09
17 SJER 0.36 0.42 0.50 0.55 0.71 0.86 0.91 0.90 0.87 0.77 0.56 0.37
17 SOAP 0.43 0.37 0.37 0.35 0.54 0.77 0.83 0.85 0.79 0.65 0.50 0.37
17 TEAK 0.22 0.19 0.15 0.16 0.28 0.58 0.67 0.70 0.64 0.60 0.42 0.17
18 TOOL 0.31 0.36 0.31 0.40 0.40 0.37 0.28 0.23 0.21 0.26 0.27 0.11
18 BARR 0.08 0.11 0.07 0.18 0.19 0.16 0.26 0.13 0.04 0.01 0.11 0.00
19 BONA 0.22 0.16 0.45 0.40 0.24 0.21 0.14 0.19 0.26 0.13 0.12 0.25
19 DEJU 0.10 0.21 0.43 0.25 0.25 0.23 0.20 0.20 0.22 0.18 0.12 0.10

19 HEAL 0.13 0.20 0.26 0.26 0.24 0.14 0.13 0.19 0.19 0.17 0.12 0.15
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tables (Table 3; Tables S2-S4) for cross-reference with the cloud-free days
per month table, enabling calculations of total flight-days required during
deployment in a given month. For example, based on historical MODIS
data, an average of 28% of days in the month of May have less than 10%
cloud-cover at TALL and it takes 1day to survey the site under cloud-free
conditions; therefore, rounding the percentage of cloud-free days up to
30%, Table 3 indicates that a total of seven flight-days should be sched-
uled if planning to fly TALL in May to ensure a 90% probability of success-
fully acquiring cloud-free data over the entire Priority 1 flight box.

For sites where field-based canopy foliar chemistry sampling coin-
cident with AOP surveys is planned, we set cloud-free collection prob-
abilities to 80% or 90%, while sites without foliar sampling are set to
50% or 62.5% probability. When the required flight-days per site are
added to estimates for the required transit days between domains, no-
fly days due to pilot rotation, spectrometer cooling days and aircraft
maintenance days, the application of this approach results in a series of
flight deployment windows for all sites selected to be flown (note that
the required collections days for each site in a domain are additive to
determine the total length of a collection period in a domain). The flight
deployment windows are assembled into an optimized flight campaign
schedule that maximizes the likelihood of cloud-free data collection

during the peak greenness windows of each NEON site (Table S5).

2.7 | Phenology

Due to budget constraints and limited payload capacity, AOP only
samples each site included in the seasonal flight schedule a maximum

TABLE 3 Probability-of-success table—
number of days required (survey days plus
weather contingency) to achieve 90%
probability of cloud-free data collection
when minimum number of days to survey
a site equals (n) and percent of monthly
cloud-free days equals (p). (see Tables S2-
S4 for 80%, 62.5% and 50% probabilities)
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of once per year during the height of the growing season. To ensure
remote sensing observations control for changes in vegetation due
to natural phenological variations across multiple years, the initial
NEON design specified that AOP sampling was to be limited to the
period when the overstory of dominant vegetation at a site is at
>90% peak photosynthetic capacity (Kampe, Johnson, et al., 2010;
Schimel, 2013).

To delineate the peak greenness periods of different vegeta-
tion types at each site, we used Google Earth Engine (GEE) to pro-
duce time series of Enhanced Vegetation Index (EVI) calculated
from MODIS imagery for land cover classes as defined by the 2011
USGS National Land Cover Database (NLCD), a dataset derived
from 30m Landsat data (Homer et al., 2015; Huete et al., 2002). For
each major land cover class exceeding 20% of the total area of each
NEON terrestrial site, we extracted Area-of-Interest (AOI) masks
from the NLCD basemap, cropped to each site's Priority 1 flight box
and TOS boundary, and resampled to 125m using a majority filter
so that the resolution of the input NLCD vegetation classes more
closely matched the resolution of MODIS EVI data while reducing
processing errors in GEE. An 18-year EVI time series (2003-2020)
for each land cover AOI was extracted from 16-day EVI compos-
ites of 250m MOD13Q1 (Terra) and MYD13Q1 (Aqua) Collection
6 using only those pixels tagged with Detailed QA Bitmask bit-01
equal to 00 (i.e. ‘VI produced with good quality’) (Didan et al., 2015;
Huete, 1999). The mean EVI value of the AOI for each 8-day incre-
ment was then calculated, resulting in a maximum of 46 observations
per year at 8-day intervals. These were smoothed using a LOESS lo-

cally weighted regression algorithm with a smoothing span of 0.25,

n=2 n=3 n=4 ni=I5 n=6 (117 n=28 ni=19
77 None None None None None None None
38 51 66 79 91 None None None
26 34 43 52 59 69 77 85
19 25 32 39 44 51 56 64
15 20 25 30 35 40 45 50
12 16 21 25 29 83 37 41
10 14 18 21 25 28 32 35
9 12 15 18 22 24 27 30
8 11 13 16 19 21 24 27
7 9 12 14 17 19 21 24
6 8 11 13 15 17 19 21
5 7 9 11 13 15 17 19
5 7 9 10 12 14 16 17
4 6 8 9 11 13 14 16
4 6 7 9 10 12 13 15
3 5 6 8 9 11 12 13
3 5 6 7 9 10 11 12
3 4 5 7 8 9 10 11
2 4 5 6 7 9 10
2 3 4 5 6 8 9
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a non-parametric approach that reduces noise by estimating a local
regression at each point in the time series (Klosterman et al., 2014).
The resulting datasets were used to produce both annual and 18-
year mean EVI phenology curves for dominant vegetation classes at
each site; these analyses are updated on a yearly basis.

Before finalizing peak greenness windows for each site (de-
scribed below), we verified the 90% end-of-spring (EOS) and start-
of-fall (SOF) phenophase transition thresholds for each NLCD class
by visually inspecting available top-of-tower PhenoCam images
from 2016 to 2020 from the National Phenology Network (NPN)—
which include those collected from PhenoCams mounted on NEON
towers—corresponding to the annual 90% MODIS EVI EOS and SOF
dates at each site (Figure S1) (construction of NEON towers was
completed in phases so PhenoCam data are not available for five
complete years at all sites). Based on the size and colour of spring
foliar growth, the images confirmed that 90% was an appropriate
threshold to use for start-of-peak greenness (EOS) for all vegetation

classes. In contrast, inspection of PhenoCam images showed that
the threshold that best represented end-of-peak greenness (SOF)
varied among vegetation class: 90% for grasslands, shrublands, ag-
riculture and tundra, and 80% for deciduous broadleaf forest, ever-
green forest, mixed forest and woody wetlands.

We determined peak greenness windows for each vegetation
class by identifying EOS and SOF dates corresponding to 90% of the
amplitude from start-of-spring (SOS) to the maximum value of the
mean phenology curve in the 18-year mean EVI phenology curve
(Figure 4). For this analysis, we assumed SOS to be the day of year
when the largest rate of change of the slope occurred during the
beginning of the green-up phase, calculated as the maximum value
of the second derivative of the pre-peak phenological curve. We ob-
tained the 90% value representing EOS by multiplying the amplitude
(maximum value minus SOS value) by 0.9 and used the FORECAST
linear regression function in Excel to determine the specific day-of-
year (DOY) this 90% value was reached along the rising (pre-peak)
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FIGURE 4 2003-2020 mean phenology and peak greenness window for deciduous broadleaf forest at Harvard Forest. Start-of-spring
(SOS) calculated as the point of largest rate in change of slope (maximum value of the second derivative of the slope); end-of-spring
calculated as 90% of the amplitude between SOS and the maximum mean Enhanced Vegetation Index (EVI) value; start-of-fall calculated as
either 90% or 80% of the amplitude between SOS and the maximum mean EVI value, depending on vegetation type
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slope of the mean phenology curve, interpolated between the DOYs
associated with the sequential 8-day MOD13Q1 and MYD13Q1
DOY intervals.

Although most sites display a single phenological peak, certain
sites are characterized by multiple phenological peaks. For these
‘bi-modal’ sites, we select the highest peak in the long-term mean
for AOP data collection. At managed sites with more than one phe-
nological peak (e.g. agricultural sites where multiple crop plantings
occur), we estimated peak greenness windows for each phenological
peak. Multiple deployments to these domains in a given year might
be required if the none of the peak greenness periods of the agricul-
tural sites aligned with the peak greenness periods of other sites in

the same domain.

2.71 | Validation of MODIS EVI phenology

PhenoCam images can be used to create a Green Chromatic
Coordinate (GCC) index that is analogous to EVl in its ability to meas-
ure seasonal phenological greenness patterns (Richardson, Hufkens,
Milliman, & Frolking, 2018). To better understand the accuracy of
MODIS EVI data as a planning tool, we compared the mean MODIS
EVI EOS/SOF phenophase transition dates to the EOS/SOF transi-
tion dates extracted from PhenoCam GCC time series for match-
ing NLCD cover classes. Since NLCD uses a different land cover
classification scheme than the NPN, NLCD cover classes were first
translated to NPN vegetation types (Table S1) (Richardson, Hufkens,
Milliman, Aubrecht, et al., 2018). phenocamr PhenoCam process-
ing software was used to download the top-of-tower 3-day sum-
mary product for each site from 2016 to 2020, iteratively smooth
and interpolate the data and flag outliers, and extract the 90%
EOS and 90%/80% SOF phenophase transition dates for each year

based on the target NPN vegetation types (Hufkens et al., 2018;
Seyednasrollah et al., 2019) (Figure 5).

3 | RESULTS

3.1 | Cloud-free data collection

To understand how well the cloud-free probabilities model per-
formed in practice, we evaluated the success the AOP flight op-
erations teams had in acquiring cloud-free data with deployments
scheduled at the different probability thresholds. AOP defines a suc-
cessful collection when 80% or more of the flight lines in a Priority
1 flight box are flown under <10% cloud-cover. Results from the
2019, 2020 and 2021 flight campaigns scheduled based on mod-
elled probabilities of cloud-free data collection showed the model
overestimated the likelihood—and underestimated the number of
days required—of surveying NEON sites in cloud-free conditions by
13%-26% based on the actual number of flight lines AOP was able
to collect (Figure 6).

3.2 | Peak greenness windows

3.2.1 | Spatial and temporal variability

Certain vegetation classes exhibit relatively consistent interannual
peak greenness start- and end-dates, while others experience high
year-to-year variability in green-up and senescence (Figure 7). The
90% EOS dates for deciduous broadleaf and evergreen needle for-
ests were relatively consistent and predictable year-to-year in the

EVI data, most likely because green-up and senescence are linked
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to broad-scale seasonal changes in temperature and precipitation
rather than short-term climate events. Grasslands were highly vari-
able and less predictable, with green-up principally driven by rainfall
and water abundance. Shrublands (including the desert southwest)
displayed moderate variability, possibly due to the existence of
precipitation-sensitive plants (e.g. grasses) growing among shrubs
which cannot be distinguished at the observation scale of MODIS
but are aggregated in the EVI data. Agricultural sites were variable
due to management practices that closely track climate. Tundra sites
in Alaska showed the greatest interannual consistency in pheno-
phase transition dates.

In addition to phenological variability in dominant vegetation
classes among sites, different vegetation classes at a single site may
demonstrate distinct, asynchronous responses to seasonal tempera-
ture and precipitation patterns. While in most sites, the phenolog-
ical peaks of dominant vegetation classes did overlap sufficiently
to plan airborne surveys during the peak greenness periods of sub-
dominant vegetation, at certain sites (e.g. DSNY—Figure 8) the peak
growth periods for different vegetation classes were asynchronous
in their timing, and the overlapping peak greenness windows short

or non-existent.

3.2.2 | Accuracy of MODIS EVI phenology
Pairwise correlations between the >90% peak greenness start-
(EOS) and end-dates (SOF) of mean MODIS EVI and mean
PhenoCam GCC for 2016-2020 show that agreement was signifi-
cantly greater for EOS than SOF and varied by vegetation class for
both EOS and SOF (Figure 9). Although their sample sizes were small,
shrub/scrub and tundra showed the closest agreement in both EOS
and SOF. Grassland and deciduous broadleaf forest each displayed
close agreement between EVI and GCC in EOS but not in SOF, while
agreement was lowest in both EOS and SOF for evergreen needle

forest.

FIGURE 6 Successful collection

of cloud-free data for deployments
scheduled at different probability
thresholds. Real-world results show that
the modelled thresholds over-estimate the
likelihood of acquiring cloud-free data and
therefore under-estimate the number of
days required to collect cloud-free data

at a site.

M Threshold Mean
m 2021
m 2020

2019

100%
ACTUAL SUCCESS RATE OF CLOUD-FREE DATA COLLECTION

3.2.3 | Surveys during actual vs. predicted peak
greenness windows

During annual flight campaigns from 2016 to 2020, a total of 148 site
surveys were collected, of which 116 surveys were scheduled within
predicted peak greenness as determined by the 18-year mean EOS and
SOF dates for the sites plus/minus the associated confidence intervals.
The remaining 32 surveys were scheduled outside of peak greenness
due to limited payload capacity (Table Sé). Of the 116 surveys collected
during predicted peak greenness, 85 surveys (73%) occurred during the
actual peak greenness window for the respective year as determined
retrospectively from MODIS EVI, while the actual peak greenness
windows for 31 surveys (27%) varied from the predicted timeframes
and the sites were collected outside of their actual peak greenness
windows. Three additional surveys were collected outside of predicted
peak greenness but inside actual peak greenness for that particular year.
In terms of vegetation class, grassland was the most difficult to predict,
accounting for 48% of the ‘missed’ peak greenness windows, followed
by shrub/scrub (43%), tundra (27%), deciduous broadleaf forest (24%),
evergreen needle forest (15%) and agriculture (0%) (both evergreen

broadleaf forest surveys were flown outside of peak greenness).

4 | DISCUSSION

The AOP sampling design is a novel, data-driven approach towards
managing the spatial and temporal complexity of the landscapes
around NEON sites and the operational flight context in which sam-
pling occurs. It represents a unique application of satellite and near-
surface remote sensing and modelling in a framework that seeks to
balance competing needs and constraints with the goal of optimiz-
ing multi-year data collection at a continental scale. We continually
seek to improve our sampling strategy to provide high-quality re-
mote sensing data efficiently and consistently over time, and results

from the past 5years of operational data collection at both NEON



MUSINSKY ET AL.

Methods in Ecology and Evolution 1877

Variability in Annual Onset of
Peak Greenness by Site
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FIGURE 7 Measuring interannual variability: Standard deviations in onset (end-of-spring) of annual peak greenness windows from 18-
year time series of moderate resolution imaging spectroradiometer (MODIS) Enhanced Vegetation Index. AG, agriculture; DB, deciduous
broadleaf; EB, evergreen broadleaf; EN, evergreen needle; GR, grassland; SH, shrubland; TN, tundra. See Supporting Information for site

name reference.

and non-NEON sites (e.g. Chadwick et al., 2020) give us a baseline
on which to better understand the strengths and weaknesses in the

current approach and develop refinements moving forward.

4.1 | Underestimation of cloud-free days

Although the sample size is limited, application of the cloud-free
probabilities model showed it underestimated the actual number of
days required to survey NEON sites in cloud-free conditions. One
limitation is the lack of accurate thin-cirrus cloud detection. Cirrus
can detrimentally affect spectral reflectance retrievals, and atmos-
pheric correction algorithms generally perform poorly when cirrus

clouds are present, so data collected under cirrus are considered
>10% cloud-cover. However, the existence of thin cirrus layers can be
difficult to identify in MODIS imagery, leading to optimistic estimates
in the percentage of cloud-free days per month per site. A second
error source is the model's reliance on MODIS imagery: cloud-cover
changes constantly during the day, and since the MODO9GA/
MYDO9GA observations are essentially snapshots of cloud condi-
tions at a moment in time they may not be representative of cloud
conditions throughout a data collection flight. Wildfire smoke—an
increasing problem throughout much of the country—is also not
addressed by the cloud forecasting model. During the 2021 flight
season, for example, wildfires in California and Washington State
produced enough haze to convert most cloud-free data collection
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18-year Mean EVI Peak Greenness Windows by Vegetation Class
Disney Wilderness Preserve (DSNY)
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FIGURE 8 18-year mean Enhanced Vegetation Index phenology curves and their associated peak greenness windows for woody
wetlands (green—day-of-year [DOY] 114-216), grasslands (yellow—DQY 163-255) and shrubs (blue—DQY 228-269) at Disney Wilderness
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days into sub-optimal or no-fly days. Thus, limited high-quality spec-
trometer data were acquired at the Domain 16 and Domain 17 sites
despite non-existent cloud-cover. Finally, simulations assume cloud-
cover is an independent random process in both the temporal and
spatial domains. However, weather patterns are likely to demon-
strate temporal autocorrelation within the AOP collection window
and spatial autocorrelation for sites within NEON domain boundaries,
particularly if sites are in proximity or overlapping. To improve the ac-
curacy of the cloud-probabilities model, we are refining cloud-cover
estimates through finer-scale temporal mapping of cloud-cover using
GOES 16/17 data to capture diurnal cloud dynamics, and modelling
temporal and spatial autocorrelation to account for this behaviour.

4.2 | Uncertainty in Phenophase
transition thresholds

There are several potential sources of error that contribute to un-
certainty in our analysis of the timing of phenophase transitions.

First, EVI measurements and their associated DOY within a 16-
day MODIS composite can vary significantly, pixel-to-pixel, due
to cloud-cover. Where clouds are persistent over the observation
period of a 16-day composite image, cloud-free EVI observations
from adjacent pixels may be acquired up to 16 days apart, which
can bias the phenophase transition calculation—although this
error may be reduced by using 8-day alternating MODO013Q1/
MYD13Q1 data and averaging EVI across all pixels representing
a particular vegetation class. Another source of potential error
is spatial variability in green-up within a single vegetation class
distributed across a flight box due to factors such as differences
in elevation, soil moisture, etc. For example, studies have found
approximately a one-day delay in EOS for every 30m in elevation
gain (e.g. White et al., 2014). We did not see such large variability
in EVI when comparing pixels located in valleys to those on peaks
in several mountainous sites, but this variability may have been
reduced in the process of smoothing and averaging time-series
data. There is also potential bias in our subjective interpretation of
PhenoCam images to confirm the EOS/SOF transition thresholds
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that we applied categorically to the different vegetation classes.
Finally, SOF typically exhibits greater uncertainty than EOS since
changes to both colour and leaf area happen more gradually during
fall transitions than spring.

While PhenoCam GCC results mostly corroborate the phe-
nological patterns derived from MODIS, the use of near-surface
observations as a validation source for satellite phenology obser-
vations is challenging. Disagreement in EOS/SOF between GCC
and EVI may be due to different vegetation classes represented in
PhenoCam ROls than in the cropped NLCD land cover masks used to
produce mean MODIS EVI values (Richardson, Hufkens, Milliman, &
Frolking, 2018). NLCD classes are mapped from 30m Landsat imag-
ery, and separability among individual plants at this resolution is im-
precise; this is exacerbated at the scale of 250m MODIS data where
a single EVI pixel can aggregate the phenological characteristics of
spatially adjacent vegetation classes.

To improve the accuracy of peak greenness windows, we hope to
explore other techniques for identifying phenophase transitions that
may be more accurate than calculating a predetermined percent of
the amplitude from SOS to maximum EVI or GCC. Zhang et al. (2018)
employed the vegetation contrast index (VCI) which has greater dy-
namic range than GCC and is more sensitive to the amount of foliage
present, while Donnelly et al. (2022) analysed site-specific pheno-
metrics from NEON field observations with a new R package phe-
nesse, generating Weibull-parameterized estimates as part of their
comparative study of in situ and remote sensing phenology. The
sigmoid-based curve-fitting and pruned exact linear time change-
point detection analysis employed by phenocamr might also prove
superior; however, we tested these latter methods with MODIS EVI
data in this study but ultimately did not adopt them due to repeated
processing failures.

Uncertainty in EOS/SOF does impact the accuracy of deploy-
ment schedules. To minimize this impact, we have employed EOS/
SOF confidence intervals (in days) for sites with long peak greenness
periods, scheduling deployment start dates at least one-half the EOS
confidence interval later than the mean peak greenness start-date
and ending the deployment at least one-half the SOF confidence
interval earlier than the peak greenness end-date. However, apply-
ing this to sites with short peak greenness periods can result in ex-
cessively narrow deployment windows, and certain sites (e.g. CPER)
would have no dates to fly at all. While campaign schedules are pre-
pared months in advance, AOP fortunately has some flexibility in
the actual timing of surveys within domain deployment windows and
uses real-time visual interpretation of PhenoCam images and GCC
time series published by the NPN (phenocam.nau.edu) to make day-
to-day decisions on whether a site is within peak greenness before
executing a collection.

4.3 | Asynchronous plant phenology

Various studies have shown that different plant species at a site
may exhibit different growth cycles (Donnelly et al., 2022; Pau

et al., 2010). At sites where highly asynchronous phenology occurs
among plant communities, AOP attempts surveys during the over-
laps in peak greenness periods among vegetation classes. If that is
not possible due to a lack of significant overlap, we survey during the
mean peak greenness period of the dominant vegetation class found
within the TOS boundary (e.g. deciduous broadleaf/woody wetlands
in DSNY or tundra in NIWO).

A key assumption by NEON is that remote sensing data are
comparable across years irrespective of the AOP collection dates
if they are acquired above the EOS/SOF peak greenness thresh-
olds. Depending on the science question, data for plant species in
a state of early green-up or senescence and outside of their opti-
mal sampling period may also be suitable for analysis. However,
certain techniques, such as the retrieval of plant functional traits
with hyperspectral data using radiative transfer model inversions
or partial least squares, are affected by phenology across the peak
growing season (Chlus et al., 2020; Schiefer et al., 2021), and data
acquired outside of peak greenness may not meet the quality stan-
dards required for such analyses. Although data processing options
may be limited for directly addressing this issue, because of opera-
tional constraints AOP frequently surveys sites in slightly different
timeframes each year, and when combined with the natural interan-
nual variability in vegetation phenology, plant communities that are
phenologically marginal in a given year may be in peak greenness
during another year's flight. For applications where data from shoul-
der seasons are problematic, researchers are encouraged to explore
the historical time series of data at a site using PhenoCames, satellite
vegetation indices or the R Shiny tool described below to verify that
a target vegetation class of interest was in peak greenness during
AOQP flights.

4.4 | Sub-optimal data, sampling and data
processing improvements

To ensure efficient data collection, after deploying to a domain AOP
will typically wait for <10% cloud-cover before attempting sur-
veys at a site. If weather forecasts indicate sub-optimal conditions
through the end of the scheduled deployment, AOP will attempt a
collection under >10% clouds to ensure complete flight box cover-
age with all instruments (lidar and camera data are unaffected by
overhead clouds) and if sky conditions improve before scheduled
transit to the next scheduled domain, AOP will make a second at-
tempt to collect cloud-free data.

Only the highest quality data acquired during annual surveys at a
site are published through the data portal, but this can include flight
lines acquired under <10% and >10% cloud conditions, or a mix of both
in the same dataset. Due to their impact to data quality, both weather
conditions and phenological conditions during data acquisition are
communicated in a variety of ways. During flights, airborne sensor op-
erators record an estimate of total cloud-cover in three categories: (a)
0%-10% cloud-cover, (b) 10%-50% cloud-cover and (c) >50% cloud-
cover, labelled as Green, Yellow and Red, respectively. The observed
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weather classifications are stored in the HDF5 flight line files as attri-
butes and converted into a weather quality image that represent dif-
ferent weather conditions among pixels in the mosaic tiles. Weather
information is also communicated through a series of Google Earth
KML files that depict each flight line coloured by the observed weather
conditions. A table summarizing the flight lines acquired each day with
the associated observed weather conditions is included in the L2
QAQC documents provided with data product downloads. Finally, we
have developed PhenoFlight, an online R Shiny app that enables inter-
active exploration of the phenology and cloud-cover conditions during
AOP data acquisition each year at each site (see Figure S2 for URL).
To improve cloud-free data collections while maximizing the
number of sites flown each year, AOP is exploring application of a
hybrid campaign model that combines fixed-schedule domain de-
ployments to certain domains with ‘hub-and-spoke’ deployments
to other domains where one domain serves as the base for deploy-
ments to its neighbours, taking advantage of short-term weather
forecasts and the appearance of fair-weather windows in nearby
domains to acquire cloud-free data outside of the scheduled deploy-
ment windows. We have also developed several GEE-based GOES
cloud tracking tools (Figure S3) and a network of sky-facing cameras
at NEON sites to assist with real-time monitoring of cloud condi-
tions, further increasing the likelihood of cloud-free data collection.
As part of continuing efforts to improve data quality, we are plan-
ning to incorporate a BRDF correction algorithm into the processing
pipeline producing L1 surface reflectance data, such as FlexBRDF
(Queally et al., 2021). Although they are spatially limited relative to
the AOP flight box footprint, we are exploring wider use of field spec-
tral measurements (reflectance tarps and ASD spectroradiometer)
and use of the Aeronet surface validation network—which includes
the Cimel sun photometers mounted on NEON towers that measure
direct solar irradiance and sky radiance—that provide inputs on aero-
sol transmission and scattering properties to the ATCOR atmospheric
correction model employed by AOP (Wang et al., 2009). Further
testing of processing techniques such as empirical line correction to
improve hyperspectral surface reflectance products under varying
cloud conditions may also be evaluated (Arroyo-Mora et al., 2021).
More suitable for large-area surveys such as those performed by AOP
is the potential integration of upward- and downward-looking solar
spectral irradiance monitors on the aircraft similar to those developed
and tested with AOP by the University of Colorado Boulder (Wright
et al, 2021). These permit simultaneous irradiance measurements
coincident with data collection during flight and allow for improved
modelling and correction of the entire atmospheric column in both
cloud-free and cloudy conditions. The ability to produce high-quality
spectroscopy under cloud-cover would greatly increase the efficiency
of flight operations, enabling more sites to be flown in a given year.

5 | CONCLUSIONS

Airborne remote sensing campaigns supporting a continental scale,
site-based observatory such as NEON require detailed investigations

into ecological conditions at local sites, consideration of the spatial
and temporal extent of other sampling activities, an understand-
ing of seasonal phenological patterns in vegetation and weather,
and adherence to the resolution and accuracy requirements of data
products. Optimizing each of these factors results in trade-offs that
impact the flight parameters and sampling windows of NEON's AOP.
Despite careful planning, unpredictable environmental disturbances
(wildfires, droughts) and longer term changes due to an altering cli-
mate pose challenges to meeting all requirements. Since sampling
optimizations are an ongoing process, we welcome feedback and
contributions from the ecological and remote sensing science com-
munities to improve this design, and encourage participation in the
NEON TWGs that relate to the AOP (NEON, 2022b).

Although the survey footprints are typically much smaller, the
spatial and temporal sampling approaches described here could be
useful for planning Unmanned Aerial Vehicle (UAV) surveys aiming
to study ecological dynamics in terrestrial environments. Projects
utilizing UAVs with high-end payloads such as hyperspectral sensors
are subject to the same constraints as AOP and may therefore ben-
efit from the tools and code shared here that enable more precise
pre-deployment planning, particularly when resources are limited.
Additional criteria, such as surveys in periods of low wind and waves,
or changes to payload instrument capabilities, might be necessary
for improved airborne remote sensing of aquatic environments.
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