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ARTICLE INFO ABSTRACT

Environmental observatory networks (EONs) are coordinated efforts to provide knowledge that ultimately de-
livers transformational ecological science from regional to global scales. We used ecosystem functional types
(EFTs), a time-varying land surface classification, as an alternative way to characterize ecosystem functional
heterogeneity based on carbon uptake dynamics. We assessed the representativeness of the eddy-covariance sites
of AmeriFlux and NEON, and their combined core sites (i.e., sites with long-term support) across the con-
terminous United States (CONUS) based on: a) the number of different EFT categories (EFT0q4e) represented by
each network, b) representativeness of the EFT inter-annual variability (EFT;,; number of unique EFTs within
each pixel during years 2001-2014), and c) the spatial representation of EFTy,oqe and EFTj,, based on a max-
imum entropy approach (i.e., spatial functional heterogeneity). AmeriFlux represents 50% of all possible EFT
categories, includes most of EFT;,, values (9 out of 14), and represents 55% of the spatial functional hetero-
geneity across CONUS. NEON represents 23% of all possible EFT categories, 7 out of 14 possible EFT;,, values,
and 23% of the spatial functional heterogeneity across CONUS. The combined effort of AmeriFlux and NEON
core sites represents 33% of all possible EFT categories, 7 out of 14 possible EFT;,, values, and 46% of the spatial
functional heterogeneity across CONUS. We used the NEON ecoclimatic domains to summarize our results
within a geographical context. The least represented NEON ecoclimatic domains were Desert Southwest,
Southern Rockies and Colorado Plateau, Great Basin, Northern Plains, and Central Plains. Our results provide
insights about the potential of AmeriFlux to address questions regarding decadal and inter-annual variability of
ecosystem functional heterogeneity across CONUS.
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(Scholes et al., 2017). EONs promote collection and dissemination of
environmental data along with efforts towards standardization of pro-

1. Introduction

Environmental observatory networks (EONSs) are organizations that
are affiliated in a flexible way that agree to join efforts towards a
common purpose while retaining their individual objectives, resources,
and management. It has been discussed that EONs are the proper
structure to address complex, global and socially imperative issues

tocols, data sharing and synthesis activities. Furthermore, EONs have
provided value added products that include databases, maps, con-
ceptual models, software/analytical tools for ecological modeling, and
virtual communities of practice. These products have been useful for
the scientific community and policy makers to assess knowledge gaps

Abbreviations: CONUS, conterminous United States; EFTs, ecosystem functional types; EFT;,, ecosystem functional type inter-annual variability; EONs, environ-

mental observatory networks; NEON, National Ecological Observatory Network
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and expand the frontiers of ecological understanding (Ciais et al., 2014;
Running et al., 1999). Examples of EONs include: AmeriFlux, National
Ecological Observatory Network (NEON), FLUXNET, Integrated Carbon
Observation System (ICOS), the Spectral Network (SpecNET), Long
Term Ecological Research Network, among others (Peters et al., 2014).

Among different research efforts, the aforementioned EONs have
monitored the exchange of matter (e.g., H>O, CO,, CH,) and energy
(e.g., heat and solar radiation) between terrestrial ecosystems and the
atmosphere to better understand biosphere-atmosphere interactions
(Baldocchi et al., 2001, 2012; Law, 2005). Consequently, representa-
tiveness studies are of prime importance to discern when, where, and at
what frequency EONs have been measuring or should measure ecolo-
gical processes (Baldocchi et al., 2012; Jongman et al., 2017; Vaughan
et al., 2001; Vos et al., 2000). These assessments inform EONs on how
to increase their utility, so the generated information could be applic-
able at regional and/or global scales (Ciais et al., 2014; Jongman et al.,
2017; Schimel and Keller, 2015). Thus, there is a pressing need to de-
sign different scientific approaches to assess the representativeness of
EONs for current and near-future applications (Lovett et al., 2007;
Jongman et al., 2017).

A spatial and temporal representativeness analyses would inform
where to establish new study sites and the basis to determine whether
to maintain/remove current sites across networks. Thus, these analyses
provide insights to improve management decisions and optimize net-
work operability and interoperability (Vargas et al., 2017; Jongman
et al., 2017). Previous studies have analyzed the spatial representa-
tiveness of national eddy-covariance networks (i.e., Canadian Carbon
Program, ChinaFlux) and have concluded that the degree of fine-scale
ecosystem processes across landscapes determine the number of study
sites needed within a network to properly monitored those processes
(Chen et al., 2012, 2011; He et al., 2015). Other studies have used
cluster-based approaches to delineate spatial sampling domains and
assess the spatial representativeness of EONs, and suggested arrange-
ments of study sites of EONs such as CarboEurope-IP (Sulkava et al.,
2011) and FLUXNET (Kumar et al., 2016). Representativeness studies
across the conterminous United States (CONUS) have concluded that
arid and semiarid ecosystems, as well as elevational changes, were
under-represented by AmeriFlux during the first decade of the 2000’s
(Hargrove et al., 2003; Yang et al., 2008).

In general, studies on EONs representativeness have used informa-
tion regarding the spatial heterogeneity of mean climate conditions and
plant functional types (PFTs) composition to represent the dynamics of
ecosystem processes (i.e., carbon uptake; Hargrove et al., 2003; Kumar
et al., 2016), along with ecosystem productivity and seasonality
(Cramer et al., 2001; Falge et al., 2002). However, recent studies have
discussed that the variability of ecological processes at the ecosystem
level is insufficiently explained by using the PFTs approach (Bond-
Lamberty et al., 2016; Petchey and Gaston, 2006; Petrakis et al., 2017;
Reichstein et al., 2014; Wright et al., 2006).

Arguably, ecosystem functionality could complement the evaluation
of the representativeness of EONs by incorporating several aspects:
First, information on ecosystem functionality complements descriptions
based solely on climate or vegetation structure; for example, by com-
plementing information of climate drivers with information on canopy
productivity, and the temporal patterns of seasonality or phenology
(Valentini et al., 1999; Alcaraz et al., 2006; Alcaraz-Segura et al., 2017).
Second, the inertia of ecosystem structural attributes may delay the
quantification of ecosystem responses to environmental changes, while
ecosystem processes (i.e., exchange of energy and matter of an eco-
system) have a faster quantifiable response (Milchunas and Lauenroth,
1995; Mouillot et al., 2013). Third, ecosystem function offers an in-
tegrative response to environmental drivers and changes (Nagendra
et al.,, 2013; Vaz et al., 2015). Last, functional attributes allow the
qualitative and quantitative assessment of ecosystem services (Costanza
et al., 1997).

We explored the applicability of Ecosystem Functional Types (EFT)
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(Alcaraz et al., 2006) as an alternative way to characterize ecosystem
functional heterogeneity (Alcaraz-Segura et al., 2013) and assess the
representativeness of eddy covariance sites across AmeriFlux and
NEON. EFTs have been conceptually defined as groups of ecosystems or
patches of the land surface that share similar dynamics of matter and
energy exchanges between the biota and the physical environment
(Alcaraz et al., 2006; Paruelo et al., 2001). The EFT concept is analo-
gous to the Plant Functional Type (PFT) concept but defined at a higher
level of biological organization. As species can be grouped into plant
functional types based on common species traits, ecosystems can be
grouped into ecosystem functional types based on their similar eco-
system functioning. In practice, EFT is a time-varying land surface
classification based on remote sensing vegetation indexes (i.e., MODIS-
EVI) that are used to represent the spatial patterns and temporal
variability of key ecosystem functional traits (i.e., productivity, sea-
sonality and phenology) without prior knowledge of vegetation type or
canopy architecture (Alcaraz-Segura et al., 2017, 2013; Cabello et al.,
2013). Therefore, the ecosystem functional characterization obtained
with EFTs can infer information on vegetation structure and composi-
tion (e.g., canopy architecture, vegetation type, PFT), because they
constitute complementary dimensions of biodiversity complexity (Noss,
1990; Pettorelli et al., 2016).

The overarching goal of this study was to assess the representa-
tiveness of AmeriFlux and NEON based on ecosystem functional di-
versity characterized by EFTs across CONUS. These networks monitor a
wide range of ecosystem types (Novick et al., 2017; Schimel et al.,
2007), and recently have joined forces to have a long-term monitoring
plan to support specific core sites. Data from both AmeriFlux and NEON
support governmental and intergovernmental programs and reports,
such as the North American Carbon Program (NACP), State of the
Carbon Cycle Report (SoCCR), the UN Intergovernmental Panel on
Climate Change (IPCC), and multiple regional to global syntheses ac-
tivities. We assess the representativeness of these networks by ana-
lyzing the categorical, temporal, and spatial representation of EFTs
across CONUS. Specifically, we quantify the representativeness of (a)
the historical AmeriFlux archive (i.e., all sites active and inactive within
the AmeriFlux network), (b) core and relocatable NEON sites, and (c)
the joint effort of AmeriFlux and NEON active core sites. In light of the
20" anniversary of the AmeriFlux network, we asked three interrelated
research questions: What are the spatial and temporal patterns of EFTs
across CONUS? How do the historical AmeriFlux archive and planned
NEON sites represent spatial and temporal patterns of EFTs across
CONUS? and What is the representativeness of the joint effort of
AmeriFlux and NEON core sites? We used the 17 NEON ecoclimatic
domains across CONUS as geographical categories to organize and
summarize the results of this study. Our EFT-based approach provides
an alternative framework to previous assessments of the representa-
tiveness of EON’s (Hargrove et al., 2003; Yang et al., 2008; Chen et al.,
2012), it is explicitly based on ecosystem functional attributes derived
from publicly available data, provides insights for the design, im-
provement, and growth of EONs, and it is applicable to other EONs
around the world.

2. Materials and methods
2.1. Environmental observatory networks

AmeriFlux is an integrated “bottom-up” effort from principal in-
vestigators (PIs) to coordinate eddy covariance measurements across
the most common ecosystems in the United States and the Americas
(Keller et al., 2011; Law, 2005; Novick et al., 2017). The historical
AmeriFlux archive represents the total wealth of information collected
by all active and inactive study sites registered since the establishment
of AmeriFlux. The historical AmeriFlux archive has a total of 207 re-
gistered study sites across the CONUS and 46 of those sites are currently
considered to be core sites (revised on 7/2017). Those core sites have
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received direct support and funding from the AmeriFlux Management
Program (AMP) and are more likely to remain active (i.e., long-
term, > 10 years) than independently funded sites (AMP, 2017). The
number of active sites within the AmeriFlux archive has varied through
time due to multiple factors (e.g., available funding, human resources,
project timelines).

The National Ecological Observatory Network (NEON) is an ecolo-
gical observatory platform that is organized under a “top-down” ap-
proach, which is designed for discovering, understanding and fore-
casting of ecosystem processes at a continental scale (Kampe et al.,
2010; Schimel et al., 2011). NEON observations are distributed across
20 ecoclimatic domains (i.e., NEON domains), which act as spatial
sampling domains and represent regions of distinct landforms, vegeta-
tion, climate and ecosystem dynamics (Keller et al.,, 2011; Schimel
et al., 2007). NEON domains are derived from ecoclimatic variables
that are clustered based on a multivariate statistical approach, the
clusters are formed in a way that each of them grouped the same
fraction of the total ecoclimatic variance (Hargrove and Hoffman, 1999;
Keller et al., 2011). Each NEON domain is represented by one core wild
land site (total 20 observatory sites, 17 within CONUS) and additional
relocatable sites (39 within CONUS) to represent the ecoclimatic
properties and gradients within and among NEON domains (Keller
et al., 2011; Schimel et al., 2011), or address grand challenge areas as
described by the National Academy of Sciences (NRC, 2001, 2005,
2007). Throughout this study, we used the 17 NEON domains across
CONUS to organize and summarize our results.

Finally, AmeriFlux and NEON have a unique opportunity for long-
term monitoring by joining efforts from core sites. AmeriFlux has se-
lected 46 core sites while NEON has designed 17 core observatory sites
across CONUS (n = 68 of AmeriFlux plus NEON core sites). Thus, there
is a need to provide information of potential representativeness as these
networks join long-term monitoring efforts.

2.2. Terrain complexity

We used terrain complexity as a static topographic metric derived
from a digital elevation model. Complex topography is an important
limitation for the eddy-covariance technique as it influences the as-
sumption of horizontal homogeneity required for a proper estimation of
biosphere-atmosphere fluxes (Gockede et al., 2004). Terrain complexity
was derived from a publicly available digital elevation model consisting
of a 30-arc second resolution global topographic/bathymetric grid
(Becker et al., 2009). Terrain complexity was defined by calcu-
lating = 1 standard deviation of the terrain altitude within areas of
approximately 0.05° X 0.05°. We used this resolution to represent the
major topographic characteristics of CONUS as this resolution is widely
used in country-scale or regional studies (Low et al., 2011; Piao et al.,
2015; Chrysoulakis et al., 2003). We used this metric to describe the
mean terrain complexity for each one of the NEON domains across
CONUS.

2.3. Ecosystem functional types

The basis of the concept of EFTs assumes that by using time-series of
satellite images it is possible to identify and map areas with similar
ecosystem functional characteristics (Alcaraz-Segura et al., 2017,
Alcaraz et al., 2006; Paruelo et al., 2001). Spectral indices derived from
satellite images can provide information about key ecosystem func-
tional aspects such as primary production, evapotranspiration, surface
temperature and albedo (Fernandez et al., 2010; Lee et al., 2013;
Paruelo et al., 1997).

In this work, we used a holistic approach to assess ecosystem
functioning (Jax, 2010). The regional ecosystem functional hetero-
geneity was characterized by means of EFTs derived from the seasonal
dynamics of the Enhanced Vegetation Index (EVI), as a surrogate of
carbon gain dynamics (Alcaraz-Segura et al., 2013). We used the
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2001-2014 time-series of satellite images of the EVI from NASA's
Moderate Resolution Imaging Spectroradiometer (MODIS) product
MOD13C2 with a spatial resolution of 0.05° X 0.05° across CONUS. We
used this resolution to characterize the patterns at the country scale as
done in other studies (Low et al., 2011; Piao et al., 2015; Chrysoulakis
et al., 2003). EFTs were derived from three meaningful metrics of the
EVI seasonal curve related to the dynamics of terrestrial carbon gains:
a) annual mean (EVI_Mean) as an estimator of primary production; b)
EVI seasonal coefficient of variation (EVI_sCV) as a descriptor of sea-
sonality; and c) the month of the annual maximum EVI value (DMAX)
as an indicator of phenology. Those three metrics represent more than
80% of variance in the annual EVI time series (Alcaraz et al., 2006;
Paruelo et al., 2001). The range of values of each EVI metric was di-
vided into four intervals, giving a potential number of 64 EFTs as
previously done (i.e., 4 X 4 X 4 = 64; Alcaraz-Segura et al., 2013). To
obtain the intervals for EVI_mean and EVI sCV, we extracted the first,
second, and third quartiles for each year, and then calculated the inter-
annual mean of each quartile. For EVI DMAX, the four intervals agreed
with the four seasons of the year (Alcaraz-Segura et al., 2013).

We labeled all 64 EFT categories using a previously published no-
menclature, where two letters and one number describe each category
(Alcaraz-Segura et al., 2017; Paruelo et al., 2001). Therefore, each EFT
category is a summary of the information contained in the three EVI
metrics for each 0.05° x 0.05° grid pixel. The first letter (capitalized)
represents the EVI Mean, which ranged from A (low primary pro-
ductivity) to D (high primary productivity). The second letter re-
presents EVI_sCV, which ranged from a (high seasonality) to d (low
seasonality; Alcaraz-Segura et al., 2013). The third position is a number
that represents DMAX, which indicates the phenology stage during the
year (1-4: spring, summer, autumn, and winter, respectively, Alcaraz-
Segura et al., 2013). For example, Aal represents an EFT category of
low productivity, high seasonality and with a growing season with a
spring maximum. In contrast, Dd2 represents an EFT with a high pro-
ductivity, low seasonality and a growing season with summer max-
imum.

2.4. Network representativeness analyses

2.4.1. Categorical representativeness

To summarize the spatial heterogeneity of ecosystem functioning
for the 2001-2014 period, we calculated the mode of the annual EFT
maps. We refer to this as the EFT 04 and consequently it corresponds
to the most dominant EFT for each pixel during the 14-year period. The
categorical representativeness analysis evaluated whether each one of
the EFT 04 categories found across CONUS was represented by: (a) the
historical AmeriFlux archive; (b) NEON sites; or (¢) AmeriFlux and
NEON core sites. In addition, we analyzed how the AmeriFlux network
has represented the EFT categories as sites have been added or became
inactive in the network throughout the 2001-2014 period.

2.4.2. Temporal representativeness

EFT categories can change through time in a particular pixel as they
represent annual dynamics of terrestrial carbon gains within each pixel
across CONUS. Thus, we used the number of unique EFTs occurring
within each pixel throughout the 2001-2014 period as an indicator of
the inter-annual variability in ecosystem functioning (EFTiy,). For ex-
ample, if a pixel displayed three unique EFT categories from 2001 to
2014, then EFT;,; was 3; despite if one EFT was more abundant than the
other two. An EFT;, of 14 meant that every year there was a unique
EFT within that pixel. The temporal representativeness analysis eval-
uated whether different values of inter-annual variability (EFT;,.) were
covered by: (a) the historical AmeriFlux archive; (b) NEON sites; or (c)
AmeriFlux and NEON core sites.

2.4.3. Spatial representativeness
We assessed the spatial functional heterogeneity of the network
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using a probability distribution technique based on maximum entropy
distribution (Phillips et al., 2004, 2006). We used this approach to
express the suitability of the study sites to monitor the range of eco-
system functional heterogeneity across CONUS. The maximum entropy
approach (Maxent) is largely used in estimating the relationship be-
tween spatial observations (i.e., site locations) and environmental or
spatial properties (i.e., EFTp4c and EFTy,) associated with those lo-
cations across a well-defined geographic region (i.e., CONUS). Entropy
can be seen as a measure of dispersedness, while the maximum entropy
approach maximizes the entropy distribution of a set of environmental
properties within a geographic space (Elith et al., 2011). Here, we
performed a Maxent analysis for: (a) the historical AmeriFlux archive;
(b) NEON sites; and (c) AmeriFlux and NEON core sites, to represent the
spatial functional heterogeneity of EFT,,,4. and EFT;,, (i.e., environ-
mental properties) across CONUS. The randomness of the Maxent
model was tested using the area under the curve (AUC) of the training
data (i.e., EFT 04 and EFT;,) and that of a random prediction as re-
commended (Fielding and Bell, 2016; Hijmans, 2012; Liu et al., 2011;
Phillips et al., 2004). A random classification has a typical value for the
area under the curve equal to 0.5, while a non-random classification
(i.e., distinction between potential presence and absence) has values
closer to 1. The final result derived from our Maxent model are ex-
pressed using a Kappa index derived from cross-validation, where
Kappa index of 1 indicates areas with characteristics that are more
likely to be monitored by the study sites (i.e., sampling locations). We
reported our results on spatial representativeness as the percentage
ratio of those pixels with a Kappa index equal to 1 divided by the total
number of pixels for each NEON ecoclimatic domain. See Supplemen-
tary Methods for more detail.
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Table 1

Dominant Ecosystem Functional Types (EFTpoqe), mean EFT inter-annual
variability (EFT;,) and mean terrain complexity for each NEON ecoclimatic
domain across the conterminous United States.

NEON ecoclimatic domain Two most Mean EFT inter- Mean terrain

dominant annual variability  complexity
EFTmode (EFTint)
Northeast Db2, Da2 3.3 63.1
Mid Atlantic Db2,Dc2 3.8 30.1
South East Dc2,Dd2 3.9 8.1
Atlantic Neotropical Dd2,Cd2 4.9 1.7
Great Lakes Ca2,Cb2 3.5 13.9
Appalachian and Db2,Da2 3.7 54.4
Cumberland Plateau
Prairie Peninsula Ca2,Cb2 3.5 15.1
Ozark Complex Db2,Dc2 4.2 22.7
Northern Plains Ba2,Bb2 4.7 35.1
Central Plains Bc2,Bb2 6.6 25.1
Southern Plains Ccl,Cc2 6.7 20.1
Northern Rockies Cd2,Bd2 5.1 207.6
Great Basin Adl,Acl 5.6 142.6
Southern Rockies and Ad2,Bd2 5.2 147.0
Colorado Plateau

Desert Southwest Ad1, Ad2 6.0 120.1
Pacific Northwest Dd2,Cd2 3.5 194.2
Pacific Southwest Bd1,Cd1 4.7 168.0

Note: The EFTo4e represents the summary of the spatial heterogeneity of
ecosystem functioning of the 2001-2014 period. EFT;,, represents the average
number of unique EFT that occurred within an ecoclimatic domain during the
2001-2014 period. Terrain complexity was defined by calculating the =1
standard deviation of the terrain altitude within areas of approximately
0.05° x 0.05°.
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variability of Ecosystem Functional Types (EFTs)
across the conterminous United States (CONUS)
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(EFT04e); and b) inter-annual variability of EFTs
(EFTy,; i.e., number of unique EFTs that occurred
in the 14-year period), where red areas represent
high inter-annual variability and blue areas low
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Moderate Resolution Imaging Spectroradiometer
Enhanced Vegetation Index (MODIS-EVI). Capital
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Fig. 2. Categorical representativeness of the Ecosystem
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3. Results Table 2

3.1. Categorical representativeness

The EFT 04e for the 2001-2014 period across CONUS (Fig. 1 and
Table 1) showed that ecosystems with high productivity were located in
the NEON ecoclimatic domains of Northeast, Mid-Atlantic, Southeast,
Appalachians and Cumberland Plateau, and the Ozark Complex. In
contrast, ecosystems with low productivity were found at the Great
Basin, Desert Southwest and Southern Rockies, and Colorado Plateau.
The ecosystems with the highest seasonality were common in the Great
Lakes, Prairie Peninsula, Northern Plains, Northeast, and Appalachians
and Cumberland Plateau; while ecosystems with the lowest seasonality
occurred in the South East, Central Plains, and Southern Plains. Most
ecoclimatic domains were dominated by ecosystems with growing
season with summer maxima, except for the Great Basin, Pacific
Southwest and Desert Southwest where the growing season maxima
was reached during spring.

The historical AmeriFlux archive covered 31 out of the 64 possible
EFT04e categories (Fig. 2). In contrast, NEON sites only represented 16
EFT0qe categories (Fig. 2¢), and the combined efforts of the AmeriFlux
and NEON core sites represented 21 EFT,,0qe categories (Fig. 2d). The
frequency distribution of the number of sites (across AmeriFlux and
NEON networks) did not follow the frequency distribution of EFT ,,qe
categories (Fig. 2). In other words, the most abundant EFT,,q. cate-
gories across CONUS did not have the largest number of monitoring
sites.

Year-specific categorical representativeness of AmeriFlux changed
through time as eddy covariance sites have been added or became in-
active from the network (Table 2). Despite the sustained increase in the
number of eddy covariance sites across the years, the number and
EFT04e categories represented by AmeriFlux have remained relatively
constant since 2007. The most common EFT 4. categories represented
by AmeriFlux are CaZ2 (i.e., ecosystems with medium high productivity,
very high seasonality, and summer maximum) and Db2 (i.e., ecosystems
with very high productivity, low seasonality, and summer maximum).
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Changes in categorical representativeness of the AmeriFlux network in terms of
number of EFT,,q. categories represented by active sites for each year between
2001 and 2014.

Year  Number of Number of EFT04e Most represented EFT ,0qe
sites categories categories
2001 37 16 Dd2 (6), Ca2 (5)
2002 46 17 Dd2 (7), Ca2 (7)
2003 50 19 Db2 (8), Dd2 (7)
2004 77 24 Db2 (13), Ca2 (10)
2005 78 24 Ca2 (11), Db2 (10)
2006 81 26 Ca2 (13), Db2 (10)
2007 99 28 Ca2 (14), Db2 (11)
2008 98 29 Ca2 (14), Db2 (9)
2009 108 29 Ca2 (20), Db2 (9)
2010 107 30 Ca2 (20), Db2 (9)
2011 111 30 Ca2 (22), Db2 (9)
2012 117 31 Ca2 (21), Db2 (10)
2013 124 31 Ca2 (21), Db2 (11)
2014 131 31 Ca2 (20), Db2 (11)

Note: numbers in parenthesis under "Most represented EFTy,qc categories" re-
present number of active sites for each EFT,0qe category. For example, during
year 2014 there were 20 active sites in the AmeriFlux network for EFTy,qe
category Ca2.

3.2. Temporal representativeness

We mapped the patterns of EFT;,, (i.e., number of unique EFT that
occurred in a pixel during the 2001-2014 period) across CONUS
(Fig. 1b). The highest EFT;,, was found in the Southern and Central
Plains, while the lowest variability was found in the Great Lakes, Prairie
Peninsula, Pacific Northwest, and Northeast (Table 1). Across CONUS,
the most common values of EFT;,, were between 3 and 5, EFT;,, va-
lues < 3 or > 9 were less common, and the maximum value of EFTj,
was 14 (Fig. 3a).

The historical AmeriFlux archive included information of sites with
EFT;, values between 1 and 9, and where values between 3 and 5 were
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also the most common (Fig. 3b). Nearly 80% of study sites within the
AmeriFlux network were located at EFT;,,; values between 3 and 6; 7%
at EFT;, values <2; and 12% at EFT;,,; values >7. Across NEON sites,
EFT;,, values 3, 4 and 7 were the most common (Fig. 3c). The combined
effort of AmeriFlux and NEON core sites did not include EFT;, va-
lues < 3 or > 9, despite the fact that EFT;,, value 2 is relatively abun-
dant across CONUS (Fig. 3a).
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Fig. 4. Representativeness of the inter-annual variability of EFTs (i.e., EFT;,,)
and number of years with information in the historical AmeriFlux archive. The
X-axis represents values of EFT;,,, and the Y-axis represents the number of years
with eddy covariance information per site available in the historical AmeriFlux
archive. Colors represent the number of sites that report a specific number of
years with eddy covariance information for each value of EFT;,. Numbers in
parenthesis indicate the number of total study sites available for each EFT;,,
value within the historical AmeriFlux archive. For example, there is a total of 2
sites in the historical AmeriFlux archive (number in parenthesis) with an EFT;,,
value of 9 (see X-axis), where one single site (color or the circle [dark blue]) has
6 years of information (see Y-axis) and a second single site (color of the circle
[dark blue]) has 10 years of information (see Y-axis). The dashed line represents
the threshold where the number of years of available information is equal to
EFTine.
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Individual monitoring sites within the historical AmeriFlux archive
had between 1 and 28 years of available eddy-covariance information
(Fig. 4). Most study sites (62) were located at an EFT;,, value of 3
(Fig. 3b and Fig. 4), and 42 of these sites had > 3 years of available
information (Fig. 4). Sites at EFT;,,, values of 4 (49 sites) and 5 (38 sites)
were also common, with 29 and 24 sites having more than 4 and 5 years
of available information, respectively. Only one site with > 9 years of
information was located at an EFTj,, value of 9 (Fig. 4).

3.3. Spatial representativeness

The maximum entropy analysis provides information on the re-
presentativeness of AmeriFlux, NEON and the combine core sites to
monitor the spatial functional heterogeneity. The overall spatial re-
presentativeness is expressed as the ratio of all pixels with a Kappa
index equal to 1 divided by the total number of pixels across each
NEON ecoclimatic domain. This resulted in a spatial representativeness
of 55% by the historical AmeriFlux archive, 23% by NEON sites, and
46% by the combined AmeriFlux and NEON core sites of the CONUS
surface (Table 3 and Supplementary Fig. 1). The most represented
ecoclimatic domains by the historical AmeriFlux archive were Great
Lakes, Prairie Peninsula, Northeast, and Appalachians and Cumberland
Plateau whereas the least represented were Desert Southwest, Northern
Plains and Great Basin (Table 3 and Supplementary Fig. 1). NEON sites
had high spatial representation across the Northeast, Appalachians and
Cumberland Plateau and Mid Atlantic domains, whereas the least re-
presented domains were Desert Southwest, Northern Plains, and
Southern Rockies and Colorado Plateau (Table 3). The most represented
ecoclimatic domains by the combined effort of AmeriFlux and NEON
core sites were Pacific Northwest, Northeast and Mid-Atlantic, whereas
the least represented were Desert Southwest, Northern Plains, and
Southern Rockies and Colorado Plateau (Table 3 and Supplementary
Fig. 1).

Maxent model was tested using the area under the curve (AUC; see
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Table 3

Spatial representativeness for each network and the combined core sites across
NEON ecoclimatic domains. Each percentage corresponds to the ratio of pixels
with a kappa index equal to 1 divided by the total number of pixels for each
NEON domain.

NEON ecoclimatic Historical Core and AmeriFlux and
domain AmeriFlux relocatable NEON NEON core sites
archive (%) sites (%) (%)

Northeast 89 85 84

Mid Atlantic 58 68 64

South East 55 54 58

Atlantic Neotropical 79 25 36

Great Lakes 92 30 46

Appalachians and 89 70 58
Cumberland Plateau

Prairie Peninsula 91 10 24

Ozark Complex 63 52 44

Northern Plains 12 1 5

Central Plains 39 1 31

Southern Plains 55 8 40

Northern Rockies 48 12 40

Great Basin 20 4 17

Southern Rockies and 26 1 16

Colorado Plateau
Desert Southwest 6 1 6
Pacific Northwest 83 87
Pacific Southwest 73 63

Supplementary methods). The AUC for the historical AmeriFlux archive
(0.65), NEON sites (0.59), or AmeriFlux and NEON core sites (0.63)
were always higher than the AUC of a random prediction (0.5); thus,
supporting the applicability of the maximum entropy analysis. The re-
lative contribution of each variable to the maximum entropy analyses
was 88% for EFT ;04 and 12% for EFT;,; consequently, our results for
spatial functional heterogeneity have a larger weight on the informa-
tion contained in the spatial distribution of EFT oqc.

4. Discussion
4.1. Categorical representativeness

Our results demonstrate how the characterization of ecosystem
functional heterogeneity made by EFTs at the regional scale can be
applied to assess the representativeness of EONs. EFTy,0q. showed a
contrasting pattern of carbon gain dynamics across CONUS. The eco-
climatic domains located in temperate humid conditions (Bailey, 1983)
such as Northeast, Appalachian and Cumberland Plateau, Mid Atlantic,
South East, Atlantic Neotropical and the Pacific Northwest showed high
productivity, low seasonality, and had a growing season with summer
maxima (Fig. 1a and Table 1). In contrast, ecoclimatic domains located
in grasslands and open-shrublands under dry conditions such as Great
Basin, Desert Southwest and the Southern Rockies and Colorado Pla-
teau showed the lowest productivity, low seasonality, and the growing
season was tightly coupled with water availability (e.g., spring in
Mediterranean regions, summer across the North American Monsoon
region).

Our results demonstrate that ecosystem functional heterogeneity is
well represented by the historical AmeriFlux archive, which included
nearly 50% of all possible EFT.q4. categories across CONUS. The
AmeriFlux network, as a bottom-up community effort, has experienced
the removal and addition of eddy covariance sites over the last two
decades. Thus, at any given year, some EFTy,0qe categories could have
been added or removed based on the location of active eddy covariance
sites. The network has constantly increased the number of active sites
across years, but the number of represented EFT.q. categories has
remained relatively constant (~30 categories) since 2007.
Furthermore, ecosystems with very high or medium high productivity,
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very high or low seasonality, and with growing seasons with summer
maximum (Ca2, Db2) have been the most commonly monitored since
2005, likely due to the interest on large terrestrial carbon sinks
(Running et al., 1999). It is likely that AmeriFlux will continue pro-
viding information from these and other EFTy.qe categories as re-
searchers address unexplored ecological questions across ecosystems.
The long-term perspective of AmeriFlux and NEON core sites will
provide information of the 12 most dominant EFT,,q. categories across
CONUS (33% of all possible EFT,,qe categories). That said, the prob-
ability distribution of these core sites did not follow the probability
distribution of EFT g categories across CONUS (Fig. 2). This means
that the most abundant EFTy,4. categories do not necessarily have the
largest number of study sites. Looking forward, these results open
questions about network design, such as: a) Should new monitoring
sites emphasize research on ecosystems within EFT’s with the most
frequency of occurrence (i.e., Ca2 and Db2)? or b) Should new mon-
itoring sites aim to represent the probability density distribution of
ecosystem functional heterogeneity across CONUS? Long-term mon-
itoring core sites are and will continue to be limited due to the financial
and pragmatic requirements for their operation, but the joint effort by
AmeriFlux and NEON provides an exciting and unique opportunity for
decadal-scale information that otherwise would not be available.

4.2. Temporal representativeness

The inter-annual variability of EFTs showed contrasting patterns
across CONUS. We postulate that NEON ecoclimatic domains with
lower EFTy,, values are typified by forested ecosystems in temperate
humid regions, which are mainly constrained by temperature, light and
nutrient cycling (Allen and Chapman, 2001; Nemani et al., 2000;
Vargas et al., 2010). In contrast, ecoclimatic domains with high EFT;,,
values are represented by grasslands and shrublands across water-lim-
ited regions, and are sensitive to changes in timing and magnitude of
precipitation that substantially influence carbon gain dynamics
(Arredondo et al., 2016; Schwinning et al., 2004; Vargas et al., 2010).
Quantifying EFTj,, values is important as recent studies have high-
lighted the need of long-term flux data records to describe the inter-
annual variability of carbon uptake (Novick et al., 2017; Zscheischler
et al., 2016).

We highlight that EFTy,, represents the number of changes in EFT
categories within a single pixel. This does not necessarily mean that
changes in EFTs are changes in vegetation structure or composition
(e.g., changes from a forest to a grassland). Changes in EFT categories
could be the result of ecosystem structural changes such as those im-
posed by land-use change (e.g., deforestation), but also the result of
more subtle changes. For example, a pixel could represent a grassland
throughout our study period (i.e., 2001-2014), but displayed a EFTj,,
value of 5. This means that the plant functional type and vegetation
structure was the same (i.e., grasslands) throughout the study period,
but there were changes in terms of productivity, seasonality and phe-
nology that resulted in different EFT categories. This could happen for
instance, as a result of droughts, floods or fires. In addition, the same
EFT;,, value of 5 could be present in grasslands, shrublands, or ever-
green forests, but it only indicates unique changes in EFT categories
throughout the study period. Thus, site-specific interpretation of our
results should take into consideration the underlying plant functional
type and history (land use or weather) at a location of interest. Overall,
our results highlight the importance of network representativeness to
understand how changes in biophysical forcing factors could influence
ecosystem functional heterogeneity across regions and the whole
CONUS. We recognize that this approach requires further development
and research, but also acknowledge that the addition of EFT informa-
tion has already improved the performance of regional climate (Lee
et al.,, 2013) and biodiversity models (Alcaraz-Segura et al., 2017,
2013).

The historical AmeriFlux archive has a good representation of the
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inter-annual variability of EFTs across CONUS. Most eddy covariance
sites within AmeriFlux have EFT;,, values between 3 and 6, which are
also the most common values across CONUS. In contrast, NEON lacks
representation of EFT;, values < 3 and has a higher representation of
sites with an EFTj,, value of 7. The long-term perspective of AmeriFlux
and NEON core sites will provide information of EFT;,, values between
3 and 9. Both the historical AmeriFlux archive and NEON do not have
sites at EFT;,, values > 9, regardless there are pixels with EFT;,, values
up to 14 across CONUS. We recognize that areas with high EFT;,, values
are rare, and properly monitoring their long-term carbon dynamics will
require decades due to their high inter-annual variability. Long-term
monitoring of ecosystems with low EFTj,, values could provide in-
formation about ecosystem resiliency from weather variability and
disturbances; while monitoring ecosystems with high EFT;,, values
could provide information from the most sensitive ecosystems in terms
of carbon uptake dynamics.

Many AmeriFlux study sites have more years with site-specific
measurements than the annual temporal variability of EFT (EFTint)
associated to the location of those sites (Fig. 4). For example, the net-
work has information of 62 sites located at an EFTj, value of 3,
but > 40 sites have over 3 years of site-specific measurements. On one
end of the spectrum, there are 2 sites with over 10 years of site-specific
measurements at the EFT;, value of 1, where questions about eco-
system stability and resiliency could be asked. On the other end of the
spectrum, there are 4 sites (out of 10) at the EFT;,, value of 8 with over
10 years of site-specific measurements, where we can ask questions
about sensitivity and variability of ecosystem processes. Overall, our
results support that the AmeriFlux network has unique information to
address questions regarding inter-annual variability of carbon gain
dynamics, ecosystem stability and resiliency across the CONUS.

4.3. Spatial representativeness

Our results show that the historical AmeriFlux archive includes in-
formation of ecosystem functional heterogeneity for 55% of the
CONUS. This contrast with the 23% of the CONUS represented by
NEON sites, but the sites in this network are fewer and with a long-term
perspective than the wide bottom-up effort of AmeriFlux. It is important
to mention that the combined effort of AmeriFlux and NEON core sites
represents 46% of CONUS surface, demonstrating that few but strate-
gically located sites could represent a large proportion of the con-
tinental ecosystem functional heterogeneity.

In general, AmeriFlux and NEON (individually) do not properly
represent ecosystems dominated by grasslands and shrublands across
water-limited ecosystems. These results are in accordance with previous
studies that identified an overall high representativeness of temperate
forested ecosystems by the AmeriFlux network (Hargrove et al., 2003;
Yang et al., 2007), but to our knowledge no assessment has been done
for the NEON eddy covariance sites. Historically, there has been a (bias)
better representation of ecosystems with larger potential to uptake and
store carbon, likely due to the large interest on quantifying and char-
acterizing the processes that control large terrestrial carbon sinks
(Cramer et al.,, 2001; Luo et al,, 2007; Running et al.,, 1999). We
highlight that these forested lands are of critical importance for the
regional carbon budget of North America (Hayes et al., 2012) and the
world (Pan et al., 2011). That said, there is an increasing interest to
improve the representation of water-limited ecosystems in ecosystem
processes-based models (Biederman et al., 2016; Vargas et al., 2013) as
is important to understand how their inter-annual variability con-
tributes to the regional-to-global carbon balance (Ahlstrom et al., 2016;
Biederman et al., 2016; Poulter et al., 2014)

Our results provide evidence that there is a lack of representation by
the historical AmeriFlux archive and NEON sites across the Desert
Southwest, Southern Rockies and Colorado Plateau, Great Basin,
Northern Plains, and Central Plains ecoclimatic domains. These regions
have been recognized to have wide range of bioclimatic drivers
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(Gilmanov et al., 2005; Zhang et al., 2010) and anthropogenic activities
such as land-use-change (Chuluun and Ojima, 2002). Thus, research in
these regions represent an opportunity to better understand socio-eco-
logical processes and the nexus of food, energy, and water systems
(Bazilian et al., 2011).

The combined effort of the AmeriFlux and NEON core sites lacks
representation of the Prairie Peninsula ecoclimatic domain. These core
sites have good representation of the CONUS surface (46%) and almost
represent the same ecoclimatic domains as the historical AmeriFlux
archive and NEON sites (Table 3 and Supplementary Fig. 1). The
Midwest corn belt of the United States produces over 35% of the global
corn production and is part of the Prairie Peninsula (Graham et al.,
2007; Ort and Long, 2014). Hence, the ecosystem functional hetero-
geneity of this region represents a network limitation when long-term
carbon dynamics for agro-ecosystems are considered for the spatial
representativeness of the CONUS. The lower representation at this and
other ecoclimatic domains brings attention to the limitations to cover a
heterogeneous landscape with few core sites.

Finally, complex topography creates ecological niches that could influ-
ence carbon dynamics across topographic gradients and landscapes (Katul
et al., 2006; Swanson et al., 1988). For example, it has been estimated that
nearly 70% of the carbon uptake across the western CONUS occurs at high
elevation, with about 50-85% taking place on complex terrain (Schimel
et al., 2002). Unfortunately, complex topography is a large limitation for
implementation of the eddy covariance technique as it is often violates
assumptions for the technique for annual carbon budgets and promotes
advection processes (Gockede et al., 2004). Congruently, three of the least
represented NEON ecoclimatic domains are also characterized by complex
topography (Southern Rockies and Colorado Plateau, Great Basin, Desert
Southwest; Table 1). These results support previous reports that suggest
AmeriFlux lacks representation of the western mountain ranges of the
CONUS (Hargrove et al., 2003). We argue that monitoring ecosystem
functional heterogeneity across complex terrain represents a final frontier
for AmeriFlux and NEON networks that could limit an accurate spatial in-
ference of carbon dynamics across CONUS.

4.4. Considerations and network inferences

We provide an alternative approach to assess representativeness of
EON's based on metrics of ecosystem functional heterogeneity that
complements previous assessments based on vegetation climatic or
structural features. We interpret EVI dynamics as a surrogate for eco-
system carbon gain dynamics. There are known limitations when using
EVI, especially in evergreen and water-limited ecosystems, that could
influence the assumption that EVI is closely related to carbon gain
dynamics (Ha et al., 2015; Sims et al., 2014). Hence, our EFT classifi-
cation may inherit the intrinsic limitations of EVI and consequently
there could be area-specific biases; for example: a) areas with apparent
low inter-annual variability (i.e., EFT;,) could actually have larger
inter-annual variability (e.g., evergreen forests); and b) areas with ap-
parent low seasonality could in fact have larger seasonality (e.g.,
grasslands and shrublands). That said, there is strong evidence that EVI
is still the best predictor for describing carbon gain dynamics at the
continental scale (Rahman et al., 2005; Sims et al., 2006). Arguably,
there is no definitive and universal definition for PFTs where there
could be different criteria to develop classifications (Ustin et al., 2004).
Similarly, there could be different criteria to develop classifications of
EFTs (e.g., carbon gains, water balance, energy balance). We propose
that the current limitations for calculation of EFTs based on EVI as a
surrogate of carbon gain could be addressed with long-term remote
sensing information on solar induce chlorophyll fluorescence (Joiner
et al., 2011), or new pigment indexes sensitive to seasonality of ever-
green conifers (Gamon et al., 2016).

The historical AmeriFlux archive is unique for representing regional
biosphere-atmosphere interactions (focused in CONUS) and is only
rivaled by information from European networks. The number of active
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sites has consistently grown every year, but the number of sites sharing
data has decreased since 2005 (Novick et al., 2017). This means that
our representative analysis of the historical AmeriFlux archive is only
applicable if all sites share the available data (Fig. 4). Our analyses of
the combined effort of AmeriFlux and NEON core sites likely represent
the long-term representativeness of carbon uptake dynamics across
CONUS, as data from these sites is available and funding for operation
is less uncertain. New representativeness analyses could be based on
other ecosystem functional processes such as ecosystem CO, losses to
the atmosphere (i.e., ecosystem respiration), energy balance, water
fluxes, or dynamics of non-CO, gases. Finally, an aspirational goal of
AmeriFlux is to provide a collaborative and networking platform for all
eddy-covariance sites across the Americas. This effort has fundamental
benefits because understanding of global environmental challenges is
only reached through international programmatic and scientific colla-
borations (Vargas et al., 2012); therefore, there are open research
questions for the potential representativeness of the joint efforts of all
regional networks across the Americas.

5. Conclusions

We used EFTs as an alternative approach to assess the representa-
tiveness of AmeriFlux and NEON to monitor ecosystem functional
heterogeneity across CONUS. This analysis complements previous stu-
dies based on climatic or vegetation structural characteristics (Hargrove
et al.,, 2003; Yang et al., 2008), and addresses the interests for con-
sidering alternative information on ecosystem functionality (Bond-
Lamberty et al., 2016; Petrakis et al., 2017; Petchey and Gaston, 2006;
Reichstein et al., 2014; Valentini et al., 1999; Wright et al., 2006).
Throughout its 20-year history of biosphere-atmosphere flux observa-
tions, the AmeriFlux network provides representation of spatial func-
tional heterogeneity for 55% of CONUS. The joint effort of AmeriFlux
and NEON core sites provides a long-term opportunity for representa-
tion of spatial functional heterogeneity for 46% of CONUS. The his-
torical AmeriFlux archive also provides unique information about
temporal variability of ecosystem functional heterogeneity due to dec-
adal monitoring efforts at multiple study sites. Overall, representation
could be enhanced across the Desert Southwest, Southern Rockies and
Colorado Plateau, Great Basin, Northern Plains, and Central Plains of
the NEON ecoclimatic domains. Most of these regions are characterized
by complex terrain and therefore represent a scientific and methodo-
logical challenge to measure biosphere-atmosphere fluxes. This study
provides insights for EONs design and improvement, is based on pub-
licly available data, and is applicable to other networks around the
world.
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