
Massive ultra-reliable and low-latency communi-
cations (mURLLC) has been developed as a new 
and dominating 6G-standard services to sup-
port statistical quality of service (QoS) provi-

sioning while raising several major design issues, 
including massive connectivity, ultra-low latency, and 
super-reliability. Correspondingly, a number of emerging 
6G candidate enablers, including statistical delay and 
error-rate bounded QoS provisioning, finite blocklength 
coding (FBC), intelligent reflecting surfaces (IRS), 

unmanned aerial vehicle (UAV), etc., have been devel-
oped to support mURLLC. Specifically, due to the poten-
tial improvements in coverage capability as well as the 
spectral efficiency, both IRS and UAV have been widely 
proposed to reconfigure wireless propagation environ-
ments to compensate for blocked line-of-sight (LOS) com-
munication links and create controllable and smart radio 
environments. In addition, to solve the massive connec-
tivity issues imposed by mURLLC, integrating UAV with 
IRS provides a promising means to significantly enhance 
LOS coverage due to the relatively high altitude and 3D 
mobility of the UAVs. However, although small-packet 
communications enabled by FBC are usually employed 

Digital Object Identifier 10.1109/MVT.2022.3158047

Date of current version: 24 May 2022

JOINT OPTIMIZATION OF 
IRS AND UAV-TRAJECTORY

For Supporting Statistical Delay and Error-Rate Bounded QoS 
Over mURLLC-Driven 6G Mobile Wireless Networks Using FBC 

Xi Zhang, Jingqing Wang, and H. Vincent Poor
©
S
H
U
T
T
E
R
S
TO

C
K
.C
O
M
/A
E
R
O
G
O
N
D
O
2

JUNE 2022  |  IEEE VEHICULAR TECHNOLOGY MAGAZINE 1556-6072/22©2022IEEE ||| 55 

Authorized licensed use limited to: Texas A M University. Downloaded on October 22,2022 at 07:29:41 UTC from IEEE Xplore.  Restrictions apply. 



56 |||    IEEE VEHICULAR TECHNOLOGY MAGAZINE  |  JUNE 2022 

for massive access to reduce access latency and decod-
ing complexity, how to upper-bound both delay and error 
rate while efficiently supporting mURLLC in IRS-UAV-inte-
grated systems still remains a challenging problem. 

To overcome these difficulties, in this article, we pro-
pose FBC-based joint IRS-deployment and UAV-trajecto-
ry optimization schemes to support statistical delay and 
error-rate bounded QoS provisioning for mURLLC over 
6G mobile wireless networks. First, we develop IRS-UAV-
integrated 3D wireless channel models for mURLLC in 
the finite blocklength regime. Second, we formulate and 
solve the -e effective energy-efficiency maximization prob-
lem for our proposed schemes by applying the iterative 
algorithms. Third, we develop the deep reinforcement 
learning (DRL)-based algorithms to solve the joint IRS-
deployment and UAV-trajectory optimization problem. 
Finally, we conduct numerical analyses that validate and 
evaluate our developed schemes for mURLLC over IRS-
UAV-relay based 6G mobile wireless networks.

Introduction
While 5G mobile wireless networks are being widely 
deployed around the world, researchers have begun to 
conceptualize 6G mobile wireless networks [1] to support 
unprecedented scenarios with extremely diverse and 
challenging QoS requirements. The delay-bounded QoS 
theory [2]–[4] has been proposed and developed to 
characterize queueing behaviors in supporting the 
explosively growing demands of time-sensitive and 
spectrum-consuming wireless multimedia applications 
over the emerging 6G networks, which are defined and 
featured, for example, in [1]. Because of the highly time-
varying fading channels and complex, heterogeneous, 
and dynamic 6G mobile wireless network architectures, 
it is usually infeasible to guarantee deterministic QoS 
requirements for emerging multimedia traffic dominating 
6G mobile wireless networks. Alternatively, statistical 
QoS provisioning theory [2]–[4], in terms of effective 
capacity, has been proposed as a powerful technique to 
characterize and implement delay-bounded QoS guaran-
tee for wireless real-time traffic. However, with the rapid 
6G developments, the exponentially increasing volumes 
of bandwidth-intensive and delay-sensitive multimedia 
traffics impose even more stringent and diverse QoS 
requirements, including bounded end-to-end delay  
(<1 ms), super-reliability ( . %),99 999992  and extra-high 
energy efficiency, etc.

Toward this end, the mURLLC [1], as one of the new 
and dominating 6G standard traffic services, has been 
proposed to quantitatively design and evaluate various 
6G QoS performances. Researchers have proposed small-
packet communications techniques, such as FBC [5], [6], in 
supporting various massive access techniques for reduc-
ing access latency and decoding complexity while guar-
anteeing the stringent QoS requirements of mURLLC [1]. 
The authors of [5] have shown that the codeword block-
length can be as short as 100 channel symbols for reli-
able communications. The authors of [6] have studied the 
different properties of channel codes that approach the 
fundamental coding rate limits using FBC.

On the other hand, QoS performance will be affected 
by uncontrollable interactions between transmitted ra-
dio waves and surrounding objects in dynamic wireless 
propagation environments. With the recent develop-
ments of IRS [7], [8], which consist of an array of passive 
reflecting elements to respectively impose the different 
phase shifts on reflected waves, network operators are 
able to control the scattering, reflection, and refraction 
characteristics of radio waves. IRSs can improve not 
only various QoS requirements but also radio connectiv-
ity by reducing power consumption and mitigating the 
stochastic nature of electromagnetic wave transmission. 
The authors of [9] have provided a comprehensive litera-
ture review on recent advances, applications, and design 
aspects of IRS. The authors of [10] have discussed the 
integration of IRS future Smart Cities and highlighted the 
potential advantages of IRS deployments.

Furthermore, since 6G wireless network frameworks 
are expected to provide various services combining space, 
aerial, and terrestrial networks for universal coverage, it 
is very challenging to characterize system models and 
guarante stringent QoS requirements in such complicated 
and dynamic network environments while supporting 
mURLLC. In the context of the small data packet transmis-
sion regime, most previous works have mainly focused 
on communications between ground devices and ground 
base stations (GBSs). However, it is not always possible to 
support a massive number of mobile devices while guaran-
teeing stringent mURLLC requirements through non-LOS 
wireless links on the ground. Inspired by the advantages 
of deployment capability and high mobility, UAV has been 
proposed to potentially support various massive access 
techniques by significantly enhancing LOS coverage while 
guaranteeing various QoS requirements.

In addition, integrating IRS with UAV provides a prom-
ising avenue to implement over-the-air intelligent reflec-
tion and enlarge wireless coverage. Motivated by the 
appealing advantages of passive IRS, IRS-UAV-integrated 
systems can significantly reduce energy consumption by 
UAVs and prolong their operational time. Compared with 
terrestrial IRSs, IRS-UAV-integrated systems are more 
likely to establish strong LOS links with ground devices 
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due to the relatively high altitudes and flexible 3D mo-
bility of UAVs. Moreover, by adjusting the phase shifts 
of the IRS’s reflecting elements, IRS-UAV-integrated sys-
tems are able to achieve panoramic full-range reflection, 
which significantly increases the number of supported 
mobile users.

There are many new challenges, including the endur-
ance, stability, and controllability of IRS-UAV as com-
pared with terrestrial IRS systems. In particular, it is 
difficult to characterize IRS-UAV-integrated 3D wire-
less channel models with low complexity. In addition, 
it is crucial to design and optimize 3D trajectories of 
IRS-UAV with user association to maximize system per-
formance. Due to the complex, high-dimensional, and 
time-varying system state/action spaces and evolving 
environments, it is challenging to characterize the op-
timization problems for statistical delay and error-rate 
bounded QoS, especially when taking into account the 
massive access scenarios to support mURLLC using FBC. 
To address these issues, we can turn to DRL, which is a 
powerful tool for solving large-scale networking optimi-
zation problems without deriving explicit optimal solu-
tions based on complex mathematical models. However, 
how to apply DRL techniques for the joint optimization 
of IRS deployment and UAV trajectory while statisti-
cally upper-bounding both delay and error-rate in the 
finite blocklength regime is an open problem over 6G 
wireless networks.

To effectively overcome the previously mentioned 
challenges, in this article, we propose FBC-based joint 
IRS-deployment and UAV-trajectory optimization schemes 
to support statistical delay and error-rate bounded QoS 
for mURLLC over 6G mobile wireless networks. In particu-
lar, we develop system architecture models, including a 
controllable IRS-UAV-integrated 3D wireless channel mod-
el and FBC-based channel coding rate model. Furthermore, 
we formulate and solve the FBC-based -e effective energy-
efficiency maximization problem by using an iterative al-
gorithm for statistical delay and error-rate bounded QoS 
over IRS-UAV-integrated 6G wireless networks. We also ap-
ply the double deep Q-network (DDQN) algorithm to solve 
the proposed joint optimization problem for mURLLC. Fi-
nally, we conduct a set of simulations that validate and 
evaluate our developed schemes.  

The Systems Architecture Models
Figure 1 shows the system architecture model for our 
proposed IRS-UAV-integrated 6G mobile wireless net-
works in supporting statistical delay and error-rate 
bounded QoS provisioning, which consists of one GBS, 
K mobile users, and one UAV, which is equipped with a 
large array of IRS elements to assist the communica-
tions between mobile users and the GBS. The UAV is 
equipped with L reflecting elements. Assume that there 
exists no LOS link between mobile users and the GBS, 

and thus, the UAV operates as a passive aerial relay 
between mobile users and the GBS. We assume that the 
finite time T is equally divided into N time slots, denot-
ed by , , , ,N1 2 fn =  and the equal duration of each time 
slot is denoted by .t  Assume that the UAV can choose 
to connect with K mobile users along its flight trajecto-
ry. Define the binary variable ( )bk n  for the user associa-
tion between mobile user k and the UAV at time slot .n  
When ( )bk n  is set to be 1, the UAV chooses to connect 
with the kth mobile user at the thn  time slot. Other-
wise, ( )bk n  is set to be zero.

Without loss of generality, we assume that the 
GBS is located at the coordinate origin. Denote by 
qk  the 3D-coordinate for the position of mobile us-
ers k K( , , .k 1 f= )  The 3D-coordinate for the UAV’s 
position is denoted by ( )q n  at the thn  time slot with 

{ , , .N1 f!n }  We denote the UAV’s flight altitude by 
( ),z n  which must satisfy a minimum flight altitude Hmin  

and maximum flight altitude ,Hmax  respectively. Denote 
by N and K  the index sets for all N time slots and K 
mobile users, respectively.

The 3D Wireless Channel Model for  
the Controllable Integrated IRS-UAV
Denote d ,k U  and d ,k G  as the distances for the mobile user 
k -UAV link and UAV-GBS link, respectively. Let 

( , / )0 2,k U !a r  and ( , / )0 2,k G !a r  be the elevation angles 
between mobile user k and the IRS-UAV node and the 
IRS-UAV node and the GBS, respectively, which can be 
determined by the UAV’s flight altitude ( )z n  and the 
transmission distances. Assume that the small-scale fad-
ing coefficient h ,

( )
k
i
U  between mobile user k and the ith 

reflecting element at the UAV follows a Rayleigh distribu-
tion. Note that due to the relative motion between the 
UAV and the mobile users as well as the change in the 
UAV’s flight altitude, the UAV can only establish a proper 
passive reflecting link to provide a LOS path with a cer-
tain probability, which depends on environmental 
parameters and elevation angles.

Then, the IRS reflects the finite-blocklength signal 
down to the GBS through the link between the IRS-UAV 
and the GBS with a power reflection efficiency factor, de-
noted by ,o  with ,0 11 1o  which usually depends on 
the characteristics of the incident wave, the material 
that the metasurface is made of, and the angles of inci-
dence and reflection. Assume that the small-scale fad-
ing coefficient h ,

( )
k
i
G  between the ith reflecting element at 
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the IRS-UAV and the GBS also follows a Rayleigh distri-
bution. Then, the end-to-end signal-to-noise ratio (SNR) 

( )
kc
n  from mobile user k to the GBS through the IRS-UAV 

node is a function of both the small-scale fading coeffi-
cients and transmission distances.

The Channel Coding Rate Using FBC
To support stringent QoS constraints for mURLLC servic-
es, Shannon’s asymptotic capacity formalism is not appli-
cable in the finite blocklength regime. As a result, we 
propose to develop an alternative analysis by applying 
the FBC technique to provide statistical delay and error-
rate bounded QoS guarantees. We define a message set 

M{ , , ,M 1 f= }  and a message is uniformly distributed 
on M,  where M is the number of codewords and ( )

ke
n  is 

the decoding error probability. Correspondingly, we 
define an , ,n M ( )

ke
n^ h-code as follows:

 ■ an encoder M: { , , A1 n7fY }  that maps the message 
M{ , ,m 1 f! } into a codeword with length n, where An  

is the codebook that represents the set of all the possi-
ble codewords mapped by the encoding function Y

 ■ a decoder : { , ,D B M1n 7 f } that decodes the received 
message into ,mt  where Bn  is the set of received code-
words of length n and mt  denotes the estimated signal 
received at the receiver; the decoder D  needs to satis-
fy the maximum error probability constraint .( )

ke
n

Given the constrained decoding error probability, the def-
inition expression for the maximum achievable coding 
rate R ( )

kc
) n^ h in bits per channel use with coding block-

length n from mobile user k to the GBS through the IRS-
UAV node at time slot n  converges to the outage capacity, 
denoted by ,C ( )

kc
n

e ^ h  as the codeword blocklength n tends 
to infinity.

Assume that h ,
( )
k
i
U  and h ,

( )
k
i
G  are statistically indepen-

dent and identically distributed. Since h ,
( )
k
i
U  and h ,

( )
k
i
G  follow 

Rayleigh distribution with scale parameter ,hv  h ,
( )
k
i 2
U  and 

h ,
( )
k
i 2
G  follow the exponential distribution with scale pa-

rameter /( ( ) ) .1 2 h
2v  As a result, we can obtain an upper 

bound on the end-to-end SNR by using the complex Cauchy-
Schwarz-Bunyakovsky inequality. Furthermore, as the num-
ber, denoted by L, of reflecting elements becomes large, we 
can show that the mean and variance of the product of inde-
pendent Rayleigh random variables h h,

( )
,

( )
k
i

k
i

U G  are /2hv r  
and ( ) ( / ),4 1 16h

2 2v r-  respectively. Then, we can derive 
the outage capacity function via the following steps. 

First, we define the outage probability function as the 
probability that the capacity of the wireless channel ex-
periencing an outage is unable to support reliable com-
munications at the targeted rate ,R ( )

kc
) n^ h  implying that 

the SNR threshold is lower than .2 1R
( )
k -c) n^ ` hj  Second, 

the outage capacity can be calculated as the maximum 
coding rate R ( )

kc
) n^ h such that the outage probability is 

q (µ)

dk,U

αk,U

hk,G
(i )

hk,U
(i )

GBS

Mobile User k

Mobile User K

Mobile User (K – 1)

Mobile User 1

MU-UAV Link

UAV-GBS Link

UAV Trajectory

Mobile User

IRS-UAV Node

figuRe 1 The system architecture model for our proposed IRS-UAV-integrated 6G mobile wireless networks in supporting statistical delay and 
error-rate bounded QoS provisioning, where ( )q n  ( , , )N1 fn =  is the 3D-coordinate for the position of the UAV at time slot ;n  h ,

( )
k
i
U  and h ,

( )
k
i
G  

( , , )k K1 f=  ( , , )i L1 f=  are the small-scale fading coefficients between mobile user k and the ith reflecting element at the IRS-UAV node 
and between the ith reflecting element at the IRS-UAV node and the GBS, respectively, d ,Uk and d ,k G are the link distances between mobile 
user k and the IRS-UAV node and the IRS-UAV node and the GBS, respectively; and ,k Ua  is the elevation angle between mobile user k and 
the IRS-UAV node.
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no larger than .( )
ke
n  Third, setting the outage probability 

function to be equal to ,( )
ke
n  we can solve for the resulting 

SNR threshold for the equation by using the complemen-
tary cumulative distribution function (CCDF) of channel 
distribution. Fourth, since the outage probability yields 
the SNR threshold in terms of the maximum coding rate, 
this coding rate, namely, the outage capacity, can then 
be expressed as a function of the inverse CCDF of the 
channel distribution. The work in [11] also validates the 
previous derivations by characterizing the relationships 
between the outage capacity function and the CCDF of 
the channel distribution. Finally, defining ( )Fh2 $u  as the 
CCDF of our channel distribution ,h2u  we can derive the 
outage capacity function as follows:

F d d[ ],logC P g g1 1( ) ( )
, ,k h k k k k2

1 2 1
U G U G

, ,k k
2

U G#c e o v= + -
n n h h

e
- - --

u^ ^ ^h h h
 (1)

where hu  is defined as the product of h ,
( )L

i k
i

1 UR =  and 
,h ,

( )L
i k

i
1 GR =  Pk  is the transmit power at mobile user k, gU  

and gG  are the excessive aerial path-losses for the mobile 
user-UAV link and UAV-GBS link, respectively, 2v  is the 
noise power, ,k Uh  and ,k Gh  are the path-loss exponents for 
the mobile user k-UAV link and UAV-GBS link, respective-
ly, and ( )F h

1
2

-
$u  is the inverse of the CCDF ( )Fh2 $u  with 

respect to .h2u  Using the central limit theorem, we 
observe that hu  approximately follows the normal distri-
bution with mean equal to /L 2hv r  and variance equal to 

( ) ( )./L4 1 16h
2 2v r-  Consequently, we show that h2u  fol-

lows a non-central chi-squared distribution with one 
degree of freedom and the non-centrality parameter .hm u  
Therefore, we can derive the inverse of the CCDF ( )F h

1
2

-
$u  

to obtain a closed-form expression for the outage capaci-
ty given in (1).

Joint IRS and UAV-Trajectory Optimizations  
Over 6G Mobile Wireless Networks Using FBC

Modeling e-Effective Energy Efficiency Using FBC
We introduce the new concept of the -e effective capacity 
for statistical delay and error-rate bounded QoS using 
FBC. Considering the nonvanishing decoding error prob-
ability ,( )

ke
n  we define the -e effective capacity, denoted by 
,EC ( , )

k i
e n ^ h  from mobile user k to the GBS through the 

IRS-UAV node at time slot μ as the maximum constant 
arrival rate for a given service process subject to statisti-
cal delay and error-rate bounded QoS constraints, which 
is thus expressed as follows:

 
,

log

exp

EC n

nR

1 1E( ( )

( )

, ) ( )
k k h k

k

2

#

_i
i

e

i c

e- +

-

-

)

n

n

e n n
u^

^
^h

h
h6

@
"

" ,,
 

(2)

where []Eh2 $u  is the expectation taken with respect to ,h2u  
i  is defined as the QoS exponent in units of 1/bits, which 
plays an important role in measuring the exponential 

decay rate of the delay-bounded QoS violation probabili-
ties, and R ( )

kc
) n^ h is the maximum achievable coding rate, 

which can be calculated and approximated by using 
C ( )

kc
n

e^ h given in (1).
In addition, given the limited size and power of the 

UAV, the number of IRS reflecting elements is limited, 
and the power/battery supply is also constrained for the 
UAV. Therefore, it is crucial to maximize the energy effi-
ciency while optimizing the number of IRS reflecting ele-
ments for our proposed schemes. Accordingly, we define 
the -e effective energy efficiency, denoted by ,EE ( , )

k i
e n ^ h  as 

the ratio of the -e effective capacity to the total power 
consumption, denoted by ,P ,

( )
kO

n  where P ,
( )

kO
n  is the total 

power consumption at time slot t from mobile user k to 
the GBS, including the following parts: 1) UAV hovering 
power consumption, 2) circuit power consumption, and 
3)  IRS hardware power consumption, denoted by .PIRS  
Note that the IRS is acting as a passive component and 
does not need any transmission power. The IRS power 
consumption can be considered to be a function of both 
the power consumption of the diode in forward biased 
mode to operate in the ON state Pf  and the phase reso-
lution power consumption Pr  [12]. Thus, the IRS power 
consumption is an increasing function of both the reso-
lution and the number of IRS reflecting elements.

IRS-UAV-Integrated Joint Optimization  
Problem Formulation Using FBC
Our goal is to maximize the total -e effective energy effi-
ciency in the finite blocklength regime. However, since 
the -e effective energy efficiency is in the form of the ratio 
of the concave and convex function with respect to the 
number L of IRS reflecting elements, the maximization 
problem can be considered as a Fractional Programming 
(FP) problem. Thus, we apply Dinkelbach’s transform 
technique [13], which introduces a suitable auxiliary vari-
able ,y  to find the global optimal solution iteratively. 
Then, we can formulate the converted total -e effective 
energy-efficiency maximization problem as follows:

 : ,argmax EC PP
( ),
, ( ),

(
,

( ), )

N K
N

b k
L

k k
k

KN

q

1
11,

O
k

i y-
d d

d

6 6

6

n n

n n

n

n

e n

==

^ h6 @) 3//  (3)

subject to the UAV’s trajectory constraints, including 
flight altitude constraint and flight velocity constraint, 
as well as the IRS’s reflecting elements constraint. Note 
that P1  is a mixed-integer nonconvex optimization prob-
lem because the user association indicator is a binary 
variable and the number of IRS reflecting elements is 
an integer variable, while the UAV’s trajectory is a con-
tinuous variable. Thus, we cannot directly solve P1  by 
using standard convex optimization techniques. There-
fore, we divide the optimization problem P1  into the 
following three subproblems and solve them in an iter-
ative manner.

Authorized licensed use limited to: Texas A M University. Downloaded on October 22,2022 at 07:29:41 UTC from IEEE Xplore.  Restrictions apply. 



60 |||    IEEE VEHICULAR TECHNOLOGY MAGAZINE  |  JUNE 2022 

1) Given the number L of IRS reflecting elements and 
UAV trajectory Q, P1  can be converted into a convex 
optimization problem in terms of the user association 
B. Then, there exists a unique optimal solution, and 
the global optimum can be efficiently found by apply-
ing the combination of a traditional convex optimiza-
tion algorithm with an exhaustive search, which can 
quickly and efficiently find the optimal solution when 
the limits are set appropriately. This can be done by 
applying the CVX toolbox [14].

2) Given the number L of IRS reflecting elements and 
user association vector B, P1  can be converted into a 
convex optimization problem in terms of the UAV tra-
jectory Q and solved by using the CVX toolbox.

3) Given the UAV trajectory Q and user association vec-
tor B, P1  can be converted into a convex optimization 
problem in terms of the number of IRS reflecting ele-
ments and solved by using the CVX toolbox.
We develop an iterative algorithm as detailed in Al-

gorithm 1 to solve P1  for our proposed schemes using 
FBC. Particularly, we can solve P1  in an iterative manner 
until it converges to a prespecified accuracy. We define 

,B( ),  ,Q( ),  ,L( ),  and ( )y ,  as the user association vector, 3D 
UAV location vector, the number of IRS reflecting ele-
ments, and the auxiliary variable, respectively, at the 
, th iteration. Define w  as the iteration tolerance thresh-
old. In each iteration, the complexity of Algorithm 1 is 
dominated by Step 1 and Step 2. The complexity of Step 
1 is O(KN). The complexity of Step 2 is O KN .3 5^^ h h by 
applying the successive convex approximation (SCA) 
technique and the CVX toolbox. Accordingly, the to-
tal complexity of Algorithm 1 is ,O I KN KN .3 5

iter +^ ^^ h hh  
where Iiter  is the number of iterations required to meet a 
stopping criterion.

The DRL-Based Joint Optimization for mURLLC Over 
IRS-UAV-Integrated Wireless Networks Using FBC
In the previous section, we have formulated and solved 
the -e effective energy-efficiency maximization problem 
in the finite blocklength regime using iterative algorithm. 

However, considering dynamic wireless propagation 
environments, the optimization for P1  tends to quickly 
become infeasible, especially for massive access scenari-
os. The time efficiency of iterative algorithms may be 
poor, and the computational complexity will increase 
dramatically as the problem scale becomes larger and 
conventional iterative algorithms may not be feasible. As 
a result, in this section applying the Markov Decision 
Process (MDP) methodology, we apply DRL, which can 
exert different actions under different network states 
with an infinite number of trials until it can gradually 
adapt to the dynamically varying environments accord-
ing to feedback received in real time.

MDP Formulation for DRL
We apply an MDP, which associates an action to each net-
work state, denoted by ( ),s n  for selecting a joint optimal 
policy. An MDP can be described by a 5 -tuple 
( , ),S A P R, , , b  where S is the state space containing all 
possible states; A  is the action space collecting all possi-
ble actions, denoted by ( ),a n  ,P  represents the transition 
probabilities; ( ) ( ), ( ) ,Pr s s a1 ;n n n+" ,  R is a reward fed 
back to the agent after executing an action; and [ , )0 1!b  
represents the discount factor, determining the impor-
tance of long-term rewards. To solve ,P1  we define the 
above mentioned elements in an MDP as follows:

 ■ State: The state ( ) Ss !n  consists of two parts: the 
UAV’s 3D locations ( )q n  and the small-scale fading 
coefficients , ,K Lh k i,

( )
k
i
U 6 ! !" , and , ,K Lh k i,

( )
k
i
G 6 ! !" , 

for the mobile user-UAV link and UAV-GBS link,  
respectively.

 ■ Action: We define ( ) Aa !n  as the action for the UAV 
trajectory Q and user association for all K mobile users.

 ■ Reward function: The agent can receive a reward, 
denoted by ( ),R 1n +  along with the state ( ).s 1n +  
Since our goal is to maximize the -e effective energy 
efficiency for supporting mURLLC constraints, the 
reward function ( )R n  at time slot μ can be defined as 
the -e effective energy efficiency.

Optimal DDQN-Based Joint Optimization 
Algorithm Using FBC
We propose to develop the DDQN-based algorithm to 
solve the joint optimization problem through trial-and-
error interactions with the wireless propagation environ-
ments. By applying the expected discounted cumulative 
reward function, the DRL agent updates its Q-function in 
an online manner to progressively find the optimal IRS 
and UAV trajectory strategy for each state ( ).s n  The key 
to the DDQN algorithm is to select an action by using the 
primary network, and then, the target network is used to 
calculate the target Q-value for the action. The DDQN 
agent learns a state-action value function approximator, 
denoted by ( ), ( ) ,Q s a ( )

DDQN;n n ~
n^ h  where DDQN~  is the 

weight matrix of the DDQN, which is updated in a fully 

algoRiThm 1 Iterative Algorithm for Solving P1.

 Input: K, N, n, and iteration tolerance threshold ;w
 Initialization: , , ,LQ B( ) ( ) ( )0 0 0  and ( )0y
 Repeat
  Step 1: Given Q( ),  and L( ), , update B( )1,+  by using the 

CVX toolbox.
  Step 2: Given B( )1,+  and ,L( ),  update Q( )1,+  by using the 

CVX toolbox.
  Step 3: Given Q( )1,+  and ,B( )1,+  update L( )1,+  by using the 

CVX toolbox.
 Update the auxiliary variable .( )1y ,+

 ( ) .1!, , +
  Until The fractional increase in the reformulated objec-

tive function in P1  is no larger than the iteration toler-
ance threshold .w
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online manner to avoid the complexities of eligibility 
traces. Using a DDQN training principle [15], we can 
apply the gradient of the loss function, denoted by 

,L DDQN
( )

d ~
n^ h  to train the value function approximator, 

where d  is the vector differential operator.
Let ( , )0 1!}  be the updating rate for the DDQN 

algorithm and I be the total number of operation it-
erations. A greedy policy is applied to avoid overfit-
ting. At each training iteration, it either chooses the 
best available action in a given state with probability 
( )1 x-  or samples a random action with probability 
.x  The gradient of the loss function L DDQN

( )
d ~

n^ h is cal-
culated with respect to a random minibatch, which 
is uniformly chosen at random from a finite replay 
memory, denoted by .C  To remove the degree of cor-
relation among the observed sequence of data and im-
prove the stability of DDQN, we adopt the experience 
replay approach, where the system transition 4-tuple 

( ), ( ), ( ), ( )Ra s s 1 1n n n n+ +^ h is stored in the replay 
memory C  after each iteration. At each iteration, a 
minibatch of the transition tuple is randomly drawn 
from the replay memory ,C  and batch gradient descent 
is employed to minimize the loss functions of the mini-
batch of the transition tuple. Thus, the previous expe-
riences are exploited more efficiently as the algorithm 
can learn from them many times. We develop a DDQN-
based algorithm, as shown in Algorithm 2, to solve the 
maximization problem P1  for our proposed schemes. 
The computational complexity of our proposed DDQN-
based algorithm is ( ).S AQ N 2; ;

Performance Evaluations
We provide a set of numerical results to validate and 
evaluate our proposed IRS-UAV-integrated joint optimiza-
tion schemes for statistical delay and error-rate bounded 
QoS over 6G mobile wireless networks. Throughout our 
simulations, we set the number of mobile users ,K 200=  
the maximum height of the UAV H 800 m,max =  the mini-
mum height of the UAV H 30 m,min =  the scale parameter 
of the Rayleigh distribution ,/1 2hv =  and the excessive 
aerial path losses . .g g 0 002U G= =

Setting the blocklength n 500=  and the QoS exponent 
,1 10 4#i = -  Figure 2 depicts the average -e effective ca-

pacity as a function of the number of IRS reflecting ele-
ments using FBC. We can observe from Figure 2 that the 
average -e effective capacity is a monotonically increas-
ing function with respect to the number of IRS reflect-
ing elements. Figure 2 also shows that the average 
-e  effective capacity is a monotonically decreasing func-

tion in terms of the distance.
We now set the decoding error probability ( )

k !e
n  

. , .0 1 0 01" , and the number of IRS reflecting elements 
.L 003=  Figure 3 plots the average -e effective capacity as 

a function of the QoS exponent using FBC. Figure 3 shows 
that the average -e effective capacity is a monotonically 

decreasing function of the QoS exponent. We can also 
observe from Figure 3 that given a decoding error prob-
ability, the gap between the curves for -e effective capac-
ity with different distances becomes smaller as the QoS 
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figuRe 2 The average -e effective capacity versus the number L of 
IRS reflecting elements for our developed schemes using FBC with 
the decoding error probability .. , .0 1 0 01( )

k !e
n " ,

algoRiThm 2 DDQN-Based Algorithm for Joint Optimization 
of IRS and UAV Trajectory.

 Input: , , , , ,K N n Ib  and a threshold ;x
 Initialization: The action-state value function ,s aQ DDQN~^ h
 for , ,i I1 f=  do
  Set 1, =
  Initialize the environment and receive an initial state ( ) .s 1
  for , ,N1 fn =  do
    if rand( · ) < x  then
     Select a random action from A.
    else
      Observe the current state ( )s n , and select an 

action ( ) ( ), .a s amax Q DDQN
Aa

n n ~=
!

^ h" ,
    end if
       The GBS observes ( )s 1n+  and calculates the 

immediate reward and stores the transition 
( ), ( ), ( ), ( )a s s R1 1n n n n+ +^ h in replay memory C.

     Randomly sample a minibatch of transitions from 
replay memory C.

    Calculate the loss function.
     Perform a gradient descent for each primary net-

work and update the target networks using 
( ) .1DDQN

( )
DDQN
( )

DDQN
( )

!~ }~ } ~+ -
n n nr r

 end for
end for
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exponent increases. This implies that with a large QoS 
exponent, the delay-bounded QoS constraints become 
very stringent, which leads to a very small, achievable 
-e effective capacity. Therefore, increasing the distance 

does not significantly affect the value of very small  
-e effective capacity.

Setting the blocklength n 005=  and the phase resolu-
tion power consumption . ,P 0 01Wr =  Figure 4 depicts the 
average -e effective energy efficiency as a function of the 
UAV flight altitude. We can observe from Figure 4 that 
the average -e effective energy efficiency first increases 
and then decreases as the UAV flight altitude increases, 
which reveals that there exists an optimal UAV flight al-
titude that maximizes the -e effective energy efficiency 
for our proposed schemes. Figure 4 also shows that the 
average -e effective energy efficiency decreases as the 
QoS exponent increases, implying that a smaller i  and 

a larger i  set an upper bound and lower bound on the  
-e effective energy efficiency, respectively.

Setting the QoS exponent 1 10 3#i = -  and decoding 
error probability . ,0 01( )

ke =
n  Figure 5 plots the average 

-e effective energy efficiency as a function of both the 
number of IRS reflecting elements and the phase resolu-
tion power consumption using FBC. We can observe from 
Figure 5 that the -e effective energy efficiency increases 
as the phase resolution power consumption decreases. 
Figure 5 also shows that the -e effective energy efficien-
cy first increases and then decreases as the number of 
IRS reflecting elements increases, which reveals the im-
portance of optimizing the number of IRS reflecting ele-
ments to maximize the -e effective energy efficiency.

Now we set the blocklength ,n 500=  the QoS exponent 
,1 10 3#i = -  and phase resolution power consumption 

.P 0 01W.r =  Using Algorithm 2, Figure 6 depicts the 
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-e effective energy efficiency against the number of training 
iterations for both instantaneous and average values to 
verify the convergence of our proposed DDQN-based joint 
optimization algorithm. We also observe from Figure 6 that 
after around 500 iterations, the system starts to converge.

Conclusions
We have developed the joint optimization of IRS-deploy-
ment and UAV-trajectory for statistical delay and error-
rate bounded QoS provisioning schemes over 6G mobile 
wireless networks using FBC. In particular, we have estab-
lished an IRS-UAV-integrated 3D wireless network com-
munication model and FBC-based channel coding model. 
We have formulated and solved the FBC-based -e effective 
energy-efficiency maximization problem by using the iter-
ative algorithm for statistical delay and error-rate bound-
ed QoS over IRS-UAV-integrated wireless networks. We 
also have proposed the DDQN-based algorithm to solve 
the joint optimization problem for mURLLC. Finally, we 
have conducted a set of numerical analyses to validate 
and evaluate our developed schemes over IRS-UAV- 
integrated 6G mobile wireless networks.
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