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Abstract. Dark radiation (DR) appears as a new physics candidate in various scenarios beyond
the Standard Model. While it is often assumed that perturbations in DR are adiabatic, they
can easily have an isocurvature component if more than one field was present during inflation,
and whose decay products did not all thermalize with each other. By implementing the
appropriate isocurvature initial conditions (IC), we derive the constraints on both uncorrelated
and correlated DR density isocurvature perturbations from the full Planck 2018 data alone,
and also in combination with other cosmological data sets. Our study on free-streaming
DR (FDR) updates and generalizes the existing bound on neutrino density isocurvature
perturbations by including a varying number of relativistic degrees of freedom, and for coupled
DR (CDR) isocurvature, we derive the first bound. We also show that for CDR qualitatively
new physical effects arise compared to FDR. One such effect is that for isocurvature IC, FDR
gives rise to larger CMB anisotropies compared to CDR — contrary to the adiabatic case.
More generally, we find that a blue-tilt of DR isocurvature spectrum is preferred. This gives
rise to a larger value of the Hubble constant H0 compared to the standard ΛCDM+∆Neff
cosmology with adiabatic spectra and relaxes the H0 tension.
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1 Introduction

The precision cosmological data from Cosmic Microwave Background (CMB) and Large
Scale Structure (LSS) are crucial probes of physics beyond the Standard Model (BSM). In
particular, CMB can be very sensitive to new relativistic degrees of freedom present around
recombination [1]. Many BSM scenarios contain “dark” radiation (DR) that are such ultralight
degrees of freedom, very weakly coupled to the Standard Model (SM) (see [2] and the references
therein). The energy density ρDR in such DR is usually compared to the energy density in
one SM neutrino species, ρ1ν and is parametrized by ∆Ntot ≡ ρDR/ρ1ν [3, 4]. Depending on
the microphysics, DR can be free-streaming (FDR) or coupled (CDR). Given their feeble
couplings to the SM, both kinds of DR can be extremely difficult to probe at collider or direct
detection experiments. However, even for gravitational coupling of the DR to the SM, CMB
can still be sensitive to the energy density in DR, and CMB observations can be the first to
discover the new physics associated with DR. More importantly, we will see that beyond the
existence of DR, precision CMB observations are also sensitive to the origin of DR, and hence
to the inflationary and reheating history of the Universe [5].

– 1 –
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FDR that carries an adiabatic perturbation modifies the CMB power spectrum mainly
via two effects. First, the radiation energy increases the rate of cosmic expansion and thereby
decreases the sound horizon at recombination. For a fixed value of the angular size of the
sound horizon θs, this increases the angular size of the damping scale θd, implying more
Silk damping at high multipole moments ` [6–8]. Moreover, the supersonic propagation
of free-streaming radiation perturbation induces a phase shift in the sound waves in the
photon-baryon plasma, resulting in a phase shift of the CMB and baryon acoustic oscillations
from the ΛCDM result [7–11]. The Planck measurements are sensitive enough to probe both
of these effects [10, 12].

On the other hand, for CDR, where the coupling can come from self-interacting parti-
cles [13–16] or from scatterings between radiation and non-relativistic particles [17–20], the
radiation can behave as an ideal relativistic fluid. The ideal fluid perturbations no longer
propagate supersonically and they generate a different phase shift in photon perturbation
equations than the free-streaming radiation. The scattering also forbids the diffusion damp-
ing of the DR perturbation and enhances the initial metric perturbation compared to the
free-streaming radiation [7, 21, 22]. This latter effect increases the CMB temperature fluctua-
tion, and the Planck measurements are again sensitive to both of these effects. The ∆Ntot
constraints therefore take different values between the FDR and CDR even with adiabatic
perturbations [10, 23, 24].

In the discussion so far we assumed that all the primordial perturbations in the Universe
come from the quantum fluctuations of a single field, such as the inflaton. In this case, both
FDR and CDR carry the same adiabatic perturbations as the SM neutrinos and photons,
before being further processed by the subhorizon physics [25]. However, the inflationary and
the reheating history of the Universe can easily be different from this simplest setup. As
a simple example, DR can originate from the decay of a curvaton or an axion field χ that
can obtain its own quantum fluctuations uncorrelated with the inflaton [26–29]. In this case,
FDR and CDR inherit the isocurvature perturbations (see e.g. [30–34] for inflationary models
generating isocurvature perturbations) of χ, and generate different corrections to the CMB
spectrum compared to the adiabatic DR perturbations discussed above.

To characterize these differences, we first derive the appropriate initial conditions for
DR isocurvature density perturbations (DRID) for both FDR and CDR. Implementing these,
we then update and generalize the constraints on DRID perturbations using the current
CMB power spectrum and the baryon acoustic oscillation (BAO) data [35]. As we will show,
depending on the size and the spectral tilt of the DRID, current data sets different bounds on
∆Ntot compared to the adiabatic DR perturbations.

In fact, for the case of FDR isocurvature, both the initial conditions and the Boltzmann
equations of the perturbations are identical to the scenario of neutrino density isocurvature
(NDI) [5, 29, 36, 37]. Planck has presented constraints on NDI in ref. [5] by fixing the neutrino
number to be the SM prediction Ntot = 3.046. We repeat such an analysis. However, to
make the bound more applicable to different BSM scenarios, we also present bounds on FDR
isocurvature with varying ∆Ntot, i.e., varying the amount of both SM neutrinos and DR,
using Planck temperature, polarization and lensing data. Ref. [29] also studied the constraint
on the FDR isocurvature with varying ∆Ntot using the 7-year WMAP data. As we will show,
the bound improves significantly when the Planck data is taken into account.

Beyond studying NDI and the related FDR isocurvature perturbations, we further
consider the isocurvature perturbations in CDR that can easily arise in various BSM scenarios.
Since in this case DR behaves as an ideal fluid, it has a vanishing anisotropic stress. As we
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will show later, this fact leads to a sign difference in the total anisotropic stress of the system
(for fixed choices of initial isocurvature density perturbations) between FDR and CDR. This
then gravitationally affect the photon perturbations, and in particular, for isocurvature initial
conditions the CMB power spectrum becomes enhanced in the case of FDR compared to
CDR. This feature is exactly opposite to the case of adiabatic perturbations in DR, for which
CDR enhances the CMB spectrum further compared to FDR. We will provide both numerical
results and an analytical explanation of this intriguing phenomena. As in the case of FDR,
we present results for two cases, one where the energy density in SM neutrinos is kept fixed,
and the other where it is varied.

Furthermore, using the CMB data we show that the addition of DRID helps to accommo-
date a larger value of the Hubble constant H0 compared to the ΛCDM fit. In particular, the
changes induced by a blue tilted isocurvature spectrum can be compensated by a higher value
of ∆Ntot which increases the value of H0. Therefore, DR isocurvature spectrum relaxes the
tension between the CMB and the local measurement of H0 by the SH0ES collaboration [38] to
a better extent, compared to scenarios with adiabatic perturbations in either FDR or CDR.1,2

In table 1, we summarize our results for H0 for different scenarios, and quantify the
improvement compared to ΛCDM following the procedure in ref. [45]. Here ‘GT’ refers to
Gaussian Tension which is a simple measure of disagreement between two measurements,

GT ≡ H0,D −H0,SH0ES√
σ2
D + σ2

SH0ES

, (1.1)

where H0,D and σD are the central value and 68% CL error, obtained from our simulations
with Planck TTTEEE+low E+ lensing data.3 H0,SH0ES and σSH0ES are obtained from [46]
and are given by 73.04 and 1.04 in units of km/s/Mpc. The second criterion

√
∆χ2 quantifies

how much the inclusion of the SH0ES data affects the best fit in the context of a given model,
with a larger value signifying a larger tension.4 This is defined via,

∆χ2 ≡ χ2
min,D+BAO+SH0ES − χ2

min,D, (1.2)

where D includes full Planck data. The last criterion ‘∆AIC’ measures how well a model M
performs compared to ΛCDM when SH0ES data is included,

∆AIC = χ2
min,M − χ2

min,ΛCDM + 2(NM −NΛCDM). (1.3)

Due to the last factor, models with more parameters NM, but without associated improvement
in χ2, are less favored according to this criterion. As will be explained later, the number
of extra parameters for ‘FN’ scenario is 3 (the energy density in DR, the amplitude of DR
perturbation and its tilt). For ‘VN’ this number is 4 since we also let the energy density in
SM neutrino to vary.

1There are other local H0 measurements, for instance, based on the TRGB distance ladder measurement [39]
or measurements using strong gravitational lensing systems [40, 41]. The obtained H0 varies between these
different measurements. To show the application of the DRID to the H0 fit, we will focus on the SH0ES result
that has the largest deviation from the Planck result.

2For recent reviews and other proposed solutions to the H0 tension see, e.g., [42–44].
3For our simulations, the upper and lower errorbars are asymmetric around the best fit value for H0 (see

e.g. table 4) and we use the smaller of the two errors to be conservative.
4For our numerical results, we use two collections of dataset. In the first one, we include only Planck data.

Since the H0 determined using BAO dataset is in agreement with the Planck [1], inclusion of the BAO data
would not give any additional inconsistency. Therefore, in the second collection we include BAO and SH0ES
at the same time. This way we can still make statements about how the H0 values are changed in the absence
or presence of SH0ES data.
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Scenario H0(km/s/Mpc) GT
√

∆χ2 ∆AIC

FN, FDR 69.69+0.82
−1.3 2.5σ 4.0 -9.4

FN, CDR 69.57+0.88
−1.5 2.5σ 4.1 -5.1

VN, FDR 68.8+1.6
−1.6 2.2σ 4.4 -6.1

VN, CDR 69.2+1.6
−1.8 2.0σ 4.1 -3.7

Table 1. Quantification of the tension using different criteria following [45] (see text for a description
of various criteria). ‘FN’ or ‘VN’ refer to the case where neutrino energy density is kept fixed or varied,
respectively. Here we also assume no correlation between isocurvature and adiabatic perturbations.
We use the latest SH0ES data [46] which gives H0 = 73.04+1.04

−1.04km/s/Mpc.

As one example, when we allow isocurvature perturbations in CDR in ‘VN’ scenario,
the fit with the Planck data gives H0 = 69.2+1.6

−1.8 km/s/Mpc. The Gaussian tension with the
latest SH0ES measurement [46] 73.04 ± 1.04 km/s/Mpc is then reduced to approximately
2.0σ compared to the 4.8σ (3.1σ) Gaussian tension between the SH0ES measurement and the
ΛCDM [1] (plus adiabatic CDR studied in [24]). When further including the SH0ES data
in our analysis, the CDR-DRID ‘VN’ scenario gives H0 = 71.46± 0.87 km/s/Mpc, and the
discrepancy is reduced to 1.2σ. On the other hand, for ‘FN’ scenario with FDR, the ∆AIC
result is promising and passes the requirement ∆AIC < −6.91 described in ref. [45].

The outline of the paper is as follows. In the next section we discuss the definition of
DR isocurvature, and present the isocurvature initial conditions for both FDR and CDR.
We also write down a curvaton model that relates the cosmological observables used in the
data analysis to the primordial fluctuations of the curvaton and the inflaton fields. This
model serves as a simple example of how DR isocurvature can arise. Then in section 3 we
derive model-independent results from the Markov-Chain Monte-Carlo (MCMC) study of
the FDR and CDR scenarios using the Planck 2018 and BAO data, assuming negligible
correlation between isocurvature and adiabatic perturbations. We show how DRID relaxes
the tension between the CMB and the SH0ES measurements of H0, and present bounds
on DR isocurvature. While this updates the previous study of FDR isocurvature [29] by
incorporating the Planck 2018 data, to the best of our knowledge, phenomenology of and
bounds on CDR isocurvature are derived here for the first time. In section 4 we explain the
difference of the FDR and CDR isocurvature using analytical arguments, and explain why for
isocurvature initial conditions FDR gives rise to larger CMB anisotropies than CDR, opposite
to the case of adiabatic initial conditions. Our conclusions are in section 5. In appendix A we
show the MCMC results when correlations between adiabatic and isocurvature perturbations
are taken into account. In appendix B and C we include more detailed triangle plots for the
analysis without and with correlation, respectively.

Notations and conventions. Here we summarize some of the notations often used through-
out this paper. When discussing the model involving a curvaton, we use Ri = ρ̄i/(ρ̄γ+ρ̄ν+ρ̄DR)
for i = (γ, ν,DR) to denote the fractional homogeneous energy density in radiation species
i. For our numerical simulations, Nur and Ndr denote the effective number of degrees of
freedom in SM neutrinos (ν) and DR respectively, with Nur = 3.046 being the standard
ΛCDM choice. We define Ntot = Nur +Ndr and fdr = Ndr/Ntot. Curvature perturbation on
uniform density hypersurfaces is denoted by ζ [47] and the corresponding quantity for any
individual species i (e.g., γ, ν etc.) is denoted by ζi. Isocurvature perturbations are defined

– 4 –
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with respect to photon perturbations. For example, DR isocurvature perturbations are defined
via, SDR ≡ 3(ζDR − ζγ). Given an isocurvature perturbation Si, we use fiso ≡ Aiso/As to
denote the ratio of the square of the primordial power spectra of the isocurvature (Aiso) and
adiabatic (As) contributions. We also use niso to denote the tilt of the power spectrum of Si.

2 Dark radiation isocurvature perturbations

If the Universe obtains all its density perturbations from a single source of quantum fluctuations,
as in single-field inflation, then the density perturbations are necessarily adiabatic. In such a
scenario, all of the Universe undergo the exact same expansion history albeit with different
time delays, δt(t,x) that varies as a function of t and x. In particular, we can use this time
delay δt(t,x) to describe the perturbations in all the components of the Universe,

δt = δρrad
˙̄ρrad

= δρc
˙̄ρc

= δρb
˙̄ρb
. (2.1)

Here ρ̄i’s are the homogeneous energy densities of various components: c and b represent the
cold dark matter (CDM) and baryon respectively, and the radiation ‘rad’ can be photon γ,
neutrino ν, or DR. The overdot here denotes a derivative with respect to physical time t.
From the continuity equation ˙̄ρ = −3H(ρ̄+ p̄), the perturbations are then seen to follow the
adiabaticity condition

3
4
δρrad
ρ̄rad

= δρc
ρ̄c

= δρb
ρ̄b

. (2.2)

However, there is no prior reason for all the perturbations to originate from a single
source of fluctuations. For example, if there is another fluctuating scalar field σ during the
inflation which later reheats into DR with energy density ρDR, and if DR only couples to the
ΛCDM components through gravity, then the perturbations of ρDR need no longer respect
the adiabaticity condition. Instead, a non-zero isocurvature perturbation can arise5

SDR = 3
4

(
δρDR
ρ̄DR

− δργ
ρ̄γ

)
. (2.3)

Compared to the adiabatic perturbations, isocurvature perturbations in DR contribute
differently to the coupled evolution of different species, and give rise to modifications of
the CMB spectra beyond the standard ΛCDM + ∆Ntot-only result with all perturbations
being adiabatic.

While the scenario in which DR is free-streaming (FDR) and has isocurvature perturba-
tion, is similar to the well-studied case of neutrino density isocurvature (NDI), when DR is
a coupled fluid (CDR), the physics is qualitatively different. Such situations can arise, for
example, if DR consists of massless gauge bosons from a deconfined non-abelian gauge theory,
or massless dark photons scattering with dark electrons. In these cases, the corrections to the
CMB spectra is also different compared to just having isocurvature perturbations in freely
streaming extra neutrinos. To capture this difference in physics, we first need to derive the
initial conditions for isocurvature perturbations for both CDR and FDR. Following this, we
give a simple toy model of the χ field that can produce isocurvature perturbations in DR.
After discussing the constraints on FDR and CDR from different datasets in section 3, we
come back in section 4 to get an analytical understanding for the difference between FDR
and CDR.

5In terms of the individual perturbations ζi for species i [48], SDR ≡ 3(ζDR − ζγ).
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2.1 Isocurvature initial conditions

To derive the isocurvature initial conditions,6 we work in the synchronous gauge parametrized
by (see e.g. [21]),

ds2 = a2(τ)
(
−dτ2 + (δij + hij)dxidxj

)
(2.4)

with,

hij(τ, ~x) =
∫
d3kei

~k·~x
(
k̂ik̂jh(τ,~k) +

(
k̂ik̂j −

1
3δij

)
6η(τ,~k)

)
. (2.5)

We also use the standard notation δi ≡ δρi/ρ̄i to denote density perturbations in species i,
and write the conformal Hubble rate in the presence of radiation and matter as,

H(τ) ≡ da/dτ

τ
= 1
τ

1 + 1
2ωτ

1 + 1
4ωτ

, (2.6)

where ω ≡ a(τi)ρ̄m(τi)/(
√

3ρ̄r(τi)Mpl) is determined in terms matter and radiation energy
densities at initial time τi. For our choices of initial time, ωτ � 1 at early enough times and
it will serve as an expansion parameter. Using these relations, we now sketch our derivation
of the initial conditions that have a non-zero SDR. The derived initial conditions can then
be used along with the standard Boltzmann and Einstein equations to obtain the late time
perturbations. In practice, we do this with our modified version of CLASS [52] where we
encode the new initial conditions.

As with isocurvature perturbations in other components, such as baryons, CDM or
neutrinos, isocurvature in DR correspond to vanishing metric perturbations in the superhorizon
limit, kτ → 0, where k is a comoving momentum and τ is the conformal time. As the modes
renter the horizon at kτ = 1, DR perturbations gravitationally source the metric perturbations
which in turn modify the perturbations in other components as well, eventually contributing
to CTT,TE,EE

` spectra.
Following the convention for the neutrino density isocurvature (NDI), e.g., [36], we define

the DR isocurvature initial condition by requiring the sum of the density perturbations in
radiation to vanish

δρDR + δργ + δρν = 0 , (2.7)

so that in the radiation dominated Universe at kτ → 0, the radiation fluid is homogeneous
and there is no curvature perturbation at all. Therefore, this initial condition does not affect
the adiabatic curvature perturbations, as required. Furthermore, we also do not want any
isocurvature perturbations for neutrinos, and therefore we require δν = δγ , and also choose a
normalization, δDR = 1.7 These two requirements, along with eq. (2.7), then completely fix
the non-zero perturbations in the kτ → 0 limit,

δDR = 1, δγ = δν = − RDR
1−RDR

, (2.8)

6See, e.g., [49–51] for discussions of isocurvature initial conditions in different cosmological models.
7Note, this normalization choice ignores the physical size of the isocurvature perturbations, i.e., the reader

should imagine δγ , for example, is multiplied by a factor ∼ O(10−5) to get its physical size. This size will be
accounted for precisely in our MCMC runs.
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with all other perturbations vanishing at least as fast as O(kτ). Here we have defined energy
fraction

Ri ≡
ρ̄i

ρ̄γ + ρ̄ν + ρ̄DR
. (2.9)

To determine the rest of the perturbations, such as velocity divergence θi, stress perturbation
σi of various components and the metric perturbations h, η, we proceed analytically order
by order in kτ and ωτ to obtain a power series solution of the coupled Boltzmann-Einstein
equations in the synchronous gauge. These equations are as in Ma-Bertschinger [21] with
appropriate modifications to the Einstein equations to take into account the presence of DR.

All the above considerations apply to both FDR and CDR. Their difference however lies
in the fact that CDR behaves like a fluid with negligible stress σDR ≈ 0, whereas FDR free
streams and develops a non-zero stress σDR, just like the neutrinos.

2.1.1 Free-streaming DR (FDR)
In this case, the equation of motion for FDR is identical to that of the neutrinos, namely,

δ̇DR = −4
3θDR −

2
3 ḣ,

θ̇DR = k2
(1

4δDR − σDR

)
,

σ̇DR = 4
15θDR + 2

15 ḣ+ 4
5 η̇, (2.10)

where we have ignored moments higher than the quadrupole. To derive the initial conditions,
we solve these above equations along with the rest of the Einstein and Boltzmann equations,
order by order in kτ and ωτ . The resulting power series solutions are shown in table 2 up to
O((kτ)2) or O((ωτ)(kτ)2) depending on the specific perturbations.

Comparison with NDI. Due to their free-streaming nature, isocurvature initial conditions
(IC) in FDR should be equivalent to that in neutrinos. To see this, we can make the replacement
in FDR IC in the following order: Rν → 0;RDR → Rν ; {δ, θ, σ}DR → {δ, θ, σ}ν . Upon doing
that, we see that the results in table 2 matches with the standard NDI initial condition
result [36].8 Therefore, we recover the expected result that FDR has the same physical effect
as NDI with varying ∆Ntot as noted, for example, in refs. [29, 37].

2.1.2 Coupled DR (CDR)
The procedure for deriving initial conditions in this case is identical to the case of FDR,
except we drop the DR Boltzmann hierarchy equations involving moments higher than the
dipole, θDR, and set σDR = 0. The results are shown in table 3.

Importantly, these initial conditions can not be recasted as NDI initial conditions. We
see from tables 2 and 3, that the primary difference among the common quantities arise for η
and σ. The reason and the physical implication of this will be discussed in detail in section 4.

2.2 A curvaton model

Here we discuss a simple model involving a light axion or curvaton-like field χ that acquires
isocurvature fluctuations during inflation. We assume that both during and after inflation,
the energy density in χ is subdominant compared to the inflaton and its decay products. For

8To exactly match with [36] we need to make the identification Ωb,0 ≡ 1
4Rbω.
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variable O(0) O(kτ) O((kτ)2) O(ωk2τ3)

δγ − RDR
1−RDR

0 RDR
6(1−RDR)

θγ/k 0 − RDR
4(1−RDR) 0

δν − RDR
1−RDR

0 RDR
6(1−RDR)

θν/k 0 − RDR
4(1−RDR) 0

σν 0 0 − 19RDR
30(1−RDR)(15+4RDR+4Rν)

δDR 1 0 −1
6

θDR/k 0 1
4 0

σDR 0 0 15−15RDR+4Rν
30(1−RDR)(15+4RDR+4Rν)

η 0 0 −RDR+R2
DR+RDRRν

6(1−RDR)(15+4RDR+4Rν)

h 0 0 0 RDRRb
40(1−RDR)

δb 0 0 RDR
8(1−RDR)

δc 0 0 0 − RDRRb
80(1−RDR)

Table 2. Isocurvature initial conditions for free-streaming DR (FDR) with the normalization δDR = 1.
For the contributions at O(ωk2τ3), we only show the results of h and δc since this is the order at
which they are first non-zero.

variable O(0) O(kτ) O((kτ)2) O(ωk2τ3)

δγ − RDR
1−RDR

0 RDR
6(1−RDR)

θγ/k 0 − RDR
4(1−RDR) 0

δν − RDR
1−RDR

0 RDR
6(1−RDR)

θν/k 0 − RDR
4(1−RDR) 0

σν 0 0 − RDR
2(1−RDR)(15+4Rν)

δDR 1 0 −1
6

θDR/k 0 1
4 0

η 0 0 RDRRν
6(1−RDR)(15+4Rν)

h 0 0 0 RDRRb
40(1−RDR)

δb 0 0 RDR
8(1−RDR)

δc 0 0 0 − RDRRb
80(1−RDR)

Table 3. Isocurvature initial conditions for coupled DR (CDR) in synchronous gauge and otherwise
same as table 2.
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masses mχ � Hinf , the inflationary Hubble scale, χ remains frozen to a ‘misaligned’ value χ∗
during inflation. Subsequently, when the post-inflationary Hubble scale falls below its mass,
it starts oscillating coherently around the minimum of its potential. Eventually, χ decays into
DR which inherits the isocurvature fluctuations in χ.

To write an expression for DR isocurvature perturbation, we assume a simple quadratic
potential for χ,

V (χ) = 1
2m

2
χχ

2 , (2.11)

along with the fact that χ contributes negligibly to the energy density during inflation. In
that case, the isocurvature fluctuation in χ is given by (see e.g. [53])

Sχ = 2δχ
χ

∣∣∣∣
∗
, (2.12)

where ∗ denotes the fact that the r.h.s. is evaluated during the horizon exit and δχ denotes
the quantum fluctuation of χ. To see this, one can go to the uniform density gauge at the
onset of χ oscillations, determined by H ≈ 2mχ/3, to write

Sχ ≡ 3(ζχ − ζφ) = 3(ζχ − ζSM)

= δρχ
ρ̄χ
− 3

4
δρSM
ρ̄SM

≈ δρχ
ρ̄χ

. (2.13)

In the above, we have used that the SM radiation bath comes from the inflaton decay ζφ = ζSM,
and since the SM radiation bath dominates the energy density, on the uniform density slice
we have δρSM ≈ δρ = 0. Finally, we can use the fact δρχ/ρ̄χ ≈ 2δχ/χ remains constant
with time on superhorizon scales [31]. Therefore, we can write the power spectrum of the χ
perturbation in a form similar to the adiabatic case,

Pδχ '
(
H

πχ∗

)2 ( k

aH

)2ηχ−2ε
, (2.14)

where ηχ = m2
χ/(3H2

inf) and ε = −Ḣinf/H
2
inf . The tilt of the spectrum relates to the spectral

index niso = 1 + 2ηχ − 2ε in eq. (3.4).
To relate the fluctuations in DR, ζDR to the fluctuations of χ ζχ, we use the sudden

decay approximation and go to the uniform density hypersurface at the time of χ decay,
determined by Γχ = H [54]. On this hypersurface, the various curvature perturbations to
first order in fluctuations are given by,

ζ = −ψ, ζχ = −ψ + 1
3
δρχ
ρ̄χ

, (2.15)

ζDR = −ψ + 1
4
δρDR
ρ̄DR

, ζSM = −ψ + 1
4
δρSM
ρ̄SM

. (2.16)

Since DR originates from χ-decay, we can relate their energy densities on the above hypersur-
face,

ρ̄DR = ρ̄χ, δρDR = δρχ, (2.17)

which implies,

ζDR = 3
4ζχ + 1

4ζ. (2.18)
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Finally, since we are on the uniform density hypersurface, we have δρχ + δρSM = 0 which
implies,

ζ = 4(1− fχ)ζSM + 3fχζχ
4(1− fχ) + 3fχ

, (2.19)

where fχ = ρ̄χ/(ρ̄χ+ ρ̄SM) is the energy density fraction in χ at the time of its decay. Therefore
we can write the final DR density perturbation as,

ζDR = 3
4− fχ

ζχ + 1− fχ
4− fχ

ζφ. (2.20)

Using the isocurvature perturbation due to χ, Sχ = 3(ζχ−ζφ) we can now write the expression
for DR isocurvature perturbation,

SDR = 3
4− fχ

Sχ. (2.21)

Therefore, the power spectrum of DR isocurvature perturbation is given by,

PDR =
(

3
4− fχ

)2

Pδχ. (2.22)

Now to get the correlation of SDR with primordial curvature perturbation after curvaton
decay, we write eq. (2.19) as,

ζ = ζSM + fχ
3 SDR, (2.23)

implying a correlation between primordial curvature perturbation after χ decay and DR
isocurvature perturbation,

cos ∆ = 〈ζSDR〉
〈ζζ〉1/2〈SDRSDR〉1/2

∝ fχ. (2.24)

Here we have used that 〈ζSMSDR〉 ∝ 〈δφδχ〉 = 0. This implies for scenarios where DR
contribution to the radiation energy density is subdominant fχ � 1, as we will be interested
in this work, the correlation cos ∆� 1. In our numerical study, the ratio of the curvature
perturbation in eq. (3.4) is fiso ' (SDR/ζ)2. While the above discussion serves as an example,
where correlation between curvature perturbation and isocurvature perturbation is small,
we now focus on constraining DR isocurvature using CMB and other data sets in a model-
independent manner. In the main text, we will give the results assuming zero correlation
between curvature and isocurvature perturbations, while leaving the more general results with
correlation for appendix A. To this end, we will also use the comoving curvature perturbation
R, as opposed to ζ, to describe our constraints following Planck [5]. This difference will
not be important for the initial conditions we use, since on superhorizon scales, R ≈ ζ, see
e.g. [34, 47]. Also for notational similarity with Planck, we will use I ≡ SDR to denote DR
isocurvature.
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3 CMB signals of DR isocurvature

In this section, we describe our Bayesian analysis of cosmologies with (mixed) FDR and
CDR isocurvature initial conditions, with current cosmological datasets using Markov Chain
Monte Carlo (MCMC) sampler MontePython [55, 56]. We used the latest Planck 2018 CMB
temperature, polarization and lensing power spectra [57]. In addition, we have also used
Baryon acoustic oscillation (BAO) measurements and local measurement of the Hubble
constant to constrain the parameter space. The plots are generated using the python package
GetDist [58].

Datasets. The dataset combination ‘P18-TTTEEE+lowE+lensing’ denotes the combina-
tion of low-` (` < 30) TT, low-` (` < 30) EE, high-` (` ≥ 30) TTTEEE and lensing likelihoods.
Thus, ‘P18-TTTEEE+lowE+lensing’ contains the full information of the temperature, polar-
ization and lensing power spectra measurements from Planck. For BAO data we use the 6DF
Galaxy survey [59], SDSS-DR7 MGS data [60], and the BOSS measurement of BAO scale and
fσ8 from DR12 galaxy sample [35]. For a local measurement of the Hubble constant, we use
the latest measurement H0 = 73.04± 1.04 km/s/Mpc by the SH0ES collaboration [46], and
denote it by ‘SH0ES(L)’. We use the following likelihood combination for our analysis:‘P18-
TTTEEE+lowE+lensing’ and ‘P18-TTTEEE+lowE+lensing+BAO+SH0ES(L)’.

3.1 Parameters of DR isocurvature

Following the Planck analysis of isocurvature perturbation [5, 61, 62], we use the ‘two-
scale’ parametrization for the primordial power spectra of the dark radiation isocurvature
perturbations. Here, we briefly describe the notations and derive the relation with the
conventional amplitude and spectral index parametrization. A generalised power spectrum
Pab(k), having power law dependence of k, can be parametrized with its value specified at
two scales k = k1 and k = k2 as [61]

Pab(k) = exp
[
lnP(1)

ab

ln k − ln k2
ln k1 − ln k2

+ lnP(2)
ab

ln k − ln k1
ln k2 − ln k1

]
, (3.1)

with P(1)
ab ≡ Pab(k1) and P(2)

ab ≡ Pab(k2) being the corresponding amplitudes. Here a, b = R, I
where R and I stand for adiabatic and isocurvature (DRID) perturbations, respectively. In
accordance with the Planck analysis [5], we choose k1 = 0.002 Mpc−1 and k2 = 0.1 Mpc−1 so
that the range [k1, k2] spans most of the modes constrained by the Planck data. The spectral
index and the amplitude of the primordial adiabatic perturbations can be derived from the
above parametrization as,

ns = 1 + lnP(1)
RR − lnP(2)

RR
ln k1 − ln k2

and As = P(1)
RR exp

[
(ns − 1) ln

(
k∗
k1

)]
. (3.2)

Here k∗ is the pivot scale where the amplitude is defined. Similarly, for isocurvature perturba-
tion we have

niso = 1 + lnP(1)
II − lnP(2)

II
ln k1 − ln k2

and Aiso = P(1)
II exp

[
(niso − 1) ln

(
k∗
k1

)]
. (3.3)

For this analysis, we choose k∗ = 0.05 Mpc−1. To compare the strength of the isocurva-
ture perturbation with respect to the adiabatic perturbation, it is often useful to defined
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isocurvature perturbation fraction (fiso) as,

fiso ≡
Aiso
As

= P
(1)
II

P(1)
RR

(
k∗
k1

)niso−ns
. (3.4)

In the main text, we focus on the uncorrelated DRID perturbations. Therefore, we ignore
the correlation between DRID and the adiabatic perturbation by setting P(1)

RI = P(2)
RI = 0.

Later in appendix A and C we will relax this assumption by allowing non-zero correlation
between these perturbations. However, as shown later, uncorrelated DRID perturbation
scenario can successfully capture all the essential physical effects of DRID perturbations
relevant for cosmology.

Therefore, the simplest extension of the ΛCDM cosmology to study DRID perturbation
would include three new parameters: the energy density of dark radiation which is introduced in
terms of the effective number of degrees of freedom Ndr, the amplitudes of DRID perturbations
P(1)
II and P(2)

II at the scales k1 and k2, respectively. However, this vanilla setup is not suitable
for the analysis with cosmological data and have issues with convergence, as we now explain.

As shown in tables 2 and 3, in the presence of DRID perturbation, the initial photon
perturbations and the metric perturbations at leading order are proportional to the fractional
energy density of the dark radiation:

δγ , θγ , η, h ∝
RDR

1−RDR
≈ RDR ∝ Ndr . (3.5)

In the last equation, we have used the fact that the energy fraction of dark radiation RDR is
expected to be small since ΛCDM is an excellent description of the observed universe. This
scaling of photon perturbations also holds for sub-horizon evolution described by linearized
Boltzmann equations, i.e.,

Fγ`(k) ∝ Ndr for Ndr � 1, (3.6)

where Fγ`(k) is the `-th multipole of photon transfer function. Therefore, the CMB spectrum
induced by DRID perturbation has the (approximate) degeneracy in the following two
parameters,

C`,DRID ∝ AisoN
2
dr . (3.7)

Since, Ndr can in principle be very small, Aiso can take very large value in those cases due to
the degeneracy. Thus, for a fixed magnitude of C`,DRID, the DRID perturbation amplitude Aiso

(equivalently P(1)
II and P(2)

II ) varies across a wide range of scales depending on the value of Ndr.
Therefore, due to the large variation of P(1)

II and P(2)
II across several orders of magnitude, the

convergence of the MCMC runs with these two variable as primary cosmological parameters
is rather poor.

To circumvent the convergence issue at Ndr � 1, we decided to vary the composite
isocurvature amplitude parameters N2

drP
(1)
II and N2

drP
(2)
II as primary parameters for the

MCMC runs. These parameter combinations are more physical since they directly influence
the observed C`. Thus, for the analysis we augment the ΛCDM cosmology with three new
parameters: Ndr, N2

drP
(1)
II and N2

drP
(2)
II . We perform two separate sets of analysis where we

treat the neutrino contribution to the total energy density differently. In the first scenario
(dubbed as ‘FN’), we keep the effective number of degrees of freedom in neutrinos: Nur
fixed to the ΛCDM value 3.046. In the other scenario (dubbed as ‘VN’), we let Nur vary
as a cosmological parameter. In both these model, the total effective neutrino degrees of
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FDR (FN & NC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.264+0.018
−0.021 2.281± 0.015

ωcdm 0.1217+0.0017
−0.0025 0.1245± 0.0025

100θs 1.04219± 0.00045 1.04193± 0.00047

τreio 0.0563+0.0070
−0.0079 0.0561± 0.0072

1010P(1)
RR 23.11± 0.49 22.83± 0.47

1010P(2)
RR 20.55+0.35

−0.41 20.72± 0.36

1010N2
drP

(1)
II < 17.9 14.8+2.1

−15

1010N2
drP

(2)
II 106+40

−70 129+50
−60

Ndr < 0.216 0.36± 0.13

H0(km/s/Mpc) 69.69+0.82
−1.3 70.94± 0.80

σ8 0.8249+0.0075
−0.0087 0.8313± 0.0085

109As 2.098+0.031
−0.035 2.107± 0.032

ns 0.9700+0.0062
−0.0074 0.9752± 0.0062

niso 1.54+0.34
−0.29 1.61+0.32

−0.27

fiso < 18.7 < 6.52

Ntot < 3.26 3.41± 0.13

fdr 0.052+0.022
−0.047 0.104+0.036

−0.032

χ2 − χ2
ΛCDM −1.94 −15.4

Table 4. Mean and 1σ error of parameters for FDR-DRID (uncorrelated and fixed Nur) for the
corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters and
the derived parameters are shown in two separate blocks. The χ2 difference with respect to the ΛCDM
(fixed Ntot) model for the corresponding data-set is shown on the last line.

freedom is given by, Ntot = Nur +Ndr and the DR fraction is defined as fdr = Ndr/Ntot. In
our analysis we took neutrinos and the dark radiation to be massless. For incorporating
adiabatic perturbation, we use the ‘two-scale’ amplitudes P(1)

RR and P(2)
RR whose relation with

the familiar As and ns are given in eq. (3.2). We have used Metropolis Hastings algorithm
to perform the Bayesian analysis. We choose flat prior for all four additional parameters
(compared to ΛCDM) with no hard prior upper boundary. The Gelman-Rubin convergence
criterion [63] R− 1 < 0.01 was satisfied by all the MCMC chains.

3.2 Constraint on DR isocurvature

3.2.1 With fixed Nur = 3.046 (FN)
First we analyse the case where Nur is kept fixed to its standard value of 3.046. This scenario
represents the minimalist scenario where the curvaton decays exclusively to dark sector
and thus does not affect the neutrino abundance. In table 4 and table 5, we present the
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CDR (FN & NC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.262+0.019
−0.024 2.286± 0.016

ωcdm 0.1228+0.0018
−0.0030 0.1268± 0.0028

100θs 1.04230+0.00034
−0.00038 1.04260± 0.00034

τreio 0.0562+0.0070
−0.0080 0.0568+0.0066

−0.0075

1010P(1)
RR 23.32± 0.47 23.19± 0.47

1010P(2)
RR 20.33± 0.35 20.22± 0.36

1010N2
drP

(1)
II < 20.6 < 15.8

1010N2
drP

(2)
II 241+70

−200 339+100
−300

Ndr < 0.244 0.43± 0.13

H0(km/s/Mpc) 69.57+0.88
−1.5 71.28± 0.85

σ8 0.8237± 0.0069 0.8270± 0.0069

109As 2.083± 0.032 2.072± 0.032

ns 0.9649+0.0062
−0.0056 0.9650+0.0071

−0.0055

ntot 1.69+0.40
−0.34 1.86+0.42

−0.31

ftot < 22.4 7.1+1.7
−3.2

Ntot < 3.29 3.48± 0.13

fdr 0.059+0.024
−0.052 0.123± 0.034

χ2 − χ2
ΛCDM 1.34 −11.06

Table 5. Mean and 1σ error of parameters for CDR-DRID (uncorrelated and fixed Nur) for the
corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters and
the derived parameters are shown in two separate blocks. The χ2 difference with respect to the ΛCDM
(fixed Ntot) model for the corresponding datasets is shown on the last line.

summary constraints for the uncorrelated FDR-DRID and CDR-DRID analysis, respectively.
In figure 1 we show the constraints on the isocurvature parameters along with Ndr for P18-
TTTEEE+lowE+lensing dataset. Additionally, we include the constraint on the derived
parameter niso which is the spectral index of the DRID perturbation. Among these two types
of fluid DRID, the value of Ntot is higher in CDR compared to FDR.

For both these types of DRID perturbation, the amplitude of the physical isocurvature
perturbation at small scale (N2

drP
(2)
II ) is higher than the corresponding large scale value

(N2
drP

(1)
II ). Thus, the isocurvature initial spectrum is blue tilted (niso > 1) contrary to the

dominant red-tilted (ns < 1) adiabatic perturbation. The magnitudes of the perturbation
amplitudes at both scales are higher in case of CDR compared to FDR. Thus, fiso is higher in
CDR which means that CDR DRID allows for a larger isocurvature perturbation. The value
of N2

drP
(1)
II for CDR is roughly factor of 1.2 higher with respect to the FDR value. Whereas,

the value at the small scale N2
drP

(2)
II is approximately 2.5 times higher compared to FDR.
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Figure 1. Triangle plot for isocurvature parameters and Ndr for fixed Nur analysis for P18-
TTTEEE+lowE+lensing dataset. The constraints on individual parameters are mentioned on the
diagonal 1-D posteriors with corresponding colors. The errors represent 1σ errorbar and the limits are
at 68% confidence level (C.L.). Here and in the following triangle plots, the inner and outer contours
respectively denote 1σ and 2σ constraints.

These translate to the fact that the niso is higher for CDR compared to FDR. From the 2D
posteriors we see that Ndr and niso are positively correlated, which is especially apparent
for the CDR case. This suggests that the effects of these parameters on the CMB spectrum
compensate each other. Therefore, a bigger blue tilt of the initial DRID spectrum would prefer
a higher value of Ndr. In the following subsections, where we study the effects of isocurvature
parameters on the CMB spectrum, we will explain all these features discussed here. Note
that, the bounds on fiso in FDR and CDR are both quite weak. This is due to the degeneracy
of the CMB spectrum between PII and Ndr (or Ntot) as explained earlier. The high values of
fiso, which occurs due to the high values of PII , corresponds to the small values of Ndr.

In figure 2 we show the corresponding isocurvature parameter plots for P18-TTTEEE
+lowE+lensing+BAO+SH0ES dataset. All the qualitative features of the results from Planck
only data set analysis are present here. Due to the inclusion of the SH0ES measurement,
higher Ndr (correlated with higher H0) is preferred in both FDR and CDR cases. The values
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Figure 2. Triangle plot Isocurvature parameters and Ndr for fixed Nur analysis for P18-
TTTEEE+lowE+lensing+lensing+SH0ES(L) dataset. The constraints on individual parameters
are mentioned on the 1D diagonal posteriors with corresponding colors. The errors represent 1σ
errorbar and the limits are at 68% C.L.

of N2
drP

(2)
II for both cases are significantly higher compared to that of the Planck-only analysis.

Therefore, niso for both FDR and CDR are larger for this dataset. This is expected since Ndr
is higher for this dataset and niso and Ndr are positively correlated for isocurvature analysis.
In summary, inclusion of BAO and SH0ES dataset results in a higher value of Ndr and a
more blue tilted isocurvature spectrum compared to the Planck only analysis. In appendix B,
we show more detailed triangle plots of the isocurvature parameters along with the all other
ΛCDM parameters for all the datasets used in this paper.

3.2.2 With varying Nur (VN)
In the second scenario, we study the more general case where we also let the neutrino
contribution to the energy density Nur vary. This captures models where there are extra
relativistic neutrinos or the presence of additional cooling or heating mechanism for SM
neutrinos. In our setup, species contributing to Nur only carry adiabatic perturbations. In
table. 6 and table. 7, we present the summary of the uncorrelated FDR-DRID and CDR-DRID
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FDR (VN & NC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.252± 0.025 2.282± 0.015

ωcdm 0.1200± 0.0031 0.1248± 0.0025

100θs 1.04241± 0.00052 1.04189± 0.00047

τreio 0.0554± 0.0077 0.0560± 0.0072

1010P(1)
RR 23.32± 0.55 22.80± 0.46

1010P(2)
RR 20.37± 0.44 20.73± 0.36

1010N2
drP

(1)
II < 13.0 < 13.3

1010N2
drP

(2)
II 74+20

−60 107+40
−70

Nur 2.06+1.0
−0.50 2.29+1.1

−0.49

Ndr < 1.32 < 1.44

H0(km/s/Mpc) 68.8± 1.6 71.04± 0.81

σ8 0.820± 0.010 0.8318± 0.0086

109As 2.086± 0.037 2.108± 0.032

ns 0.9655± 0.0090 0.9756± 0.0062

niso 1.51+0.34
−0.30 1.62+0.32

−0.28

fiso 14.8+7.8
−14 15.0+7.1

−14

Ntot 3.09± 0.21 3.42± 0.13

fdr 0.33+0.14
−0.32 0.33+0.14

−0.32

χ2 − χ2
ΛCDM −3.92 −14.08

Table 6. Mean and 1σ error of parameters for FDR-DRID (uncorrelated and varying Nur) for the
corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters and
the derived parameters are shown in two separate blocks. The χ2 difference with respect to the ΛCDM
(fixed Ntot) model for the corresponding data-set is shown on the last line.

analysis for varying Nur scenario, respectively.9 In figure 3 and 4 we show the constraints
on the isocurvature parameters along with Ntot for P18-TTTEEE+lowE+lensing and P18-
TTTEEE+lowE+lensing+BAO+SH0ES(L) datasets, respectively. The plots shows similar
features to the fixed Nur analysis. We find niso to be positively correlated with Ntot, and
CDR allows for larger amplitudes of isocurvature perturbations. The 1-D posteriors of Ntot
indicate that both FDR and CDR DRID prefer higher value of Ntot compared the standard
ΛCDM value Ntot = 3.046.

9Note that the Ndr for FDR and Nur are highly degenerate as they give same signatures with adiabatic
perturbation. Therefore, due to this strong degeneracy, it is hard to find the true minima in the χ2 plane.
Because of this artifact, in some cases, the χ2 difference (with respect to ΛCDM) for the FDR-VN is larger
than FDR-FN scenario (where Nur is not varied). This artifact can be removed with more MCMC samples
and also does not significantly affect the parameter estimation.
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CDR (VN & NC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.257± 0.026 2.287± 0.016

ωcdm 0.1220+0.0033
−0.0038 0.1276+0.0028

−0.0032

100θs 1.04258+0.00061
−0.00073 1.04226+0.00063

−0.00081

τreio 0.0561+0.0071
−0.0081 0.0565± 0.0072

1010P(1)
RR 23.45± 0.55 23.11± 0.50

1010P(2)
RR 20.19± 0.46 20.35± 0.45

1010N2
drP

(1)
II < 18.9 < 17.6

1010N2
drP

(2)
II < 264 407+200

−300

Nur 2.94± 0.25 3.18+0.27
−0.22

Ndr < 0.304 0.35+0.15
−0.27

H0(km/s/Mpc) 69.2+1.6
−1.8 71.46± 0.87

σ8 0.820± 0.011 0.8304± 0.0092

109As 2.073± 0.039 2.081± 0.038

ns 0.9617± 0.0090 0.9675+0.0086
−0.0075

niso 1.66+0.43
−0.35 1.87+0.39

−0.28

fiso 58+22
−53 31.7+6.7

−27

Ntot 3.18+0.21
−0.25 3.53± 0.15

fdr 0.076+0.031
−0.068 0.098+0.041

−0.074

χ2 − χ2
ΛCDM 0.8 −11.68

Table 7. Mean and 1σ error of parameters for CDR-DRID (uncorrelated and varying Nur) for the
corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters and
the derived parameters are shown in two separate blocks. The χ2 difference with respect to the ΛCDM
(fixed Ntot) model for the corresponding datasets is shown on the last line.

3.3 Constraint on ∆Ntot and application to the H0 tension

In this subsection, we compare the values of Ntot and H0 between AD+DRID and AD only
scenario for the corresponding datasets. First we analyse the varying Nur (VN) scenario.
In figure 5 we show the constraint on Ntot and H0 for DRID with a triangle plot for P18-
TTTEEE+lowE+lensing dataset. The blue bands depict the 1σ and 2σ value of the Hubble
constant measured by the SH0ES collaboration [46]. In each plot we compare DRID results
against the results from pure adiabatic perturbation to distinguish the effects of isocurvature
perturbation. In the left panel, we compare the FDR-DRID posteriors against ΛCDM model
with varying Ntot because massless neutrinos and free-streaming DR are completely equivalent
in the presence of pure adiabatic perturbation. These two species have identical Boltzmann
evolution and initial conditions therefore affect the CMB spectrum identically. Thus, only
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Figure 3. Triangle plot for isocurvature parameters and Ndr for varying Nur analysis for P18-
TTTEEE+lowE+lensing dataset. The constraints on individual parameters are mentioned on the
diagonal 1-D posteriors with corresponding colors. The errors represent 1σ errorbar and the limits are
at 68% confidence level (C.L.).

by varying Ntot via Nur we are able simulate the effect of FDR for adiabatic case. However,
in presence of DRID, these two species evolve differently since they have different initial
condition as shown in tables 2 and 3.

As we see from the left panel of the figure, FDR-DRID prefers a higher value of Ntot
compared to ΛCDM (with varying Ntot). As a result, it also accommodates a comparatively
higher Hubble constant. The enhancement of CMB spectrum in the presence of DRID
compensates for the additional Silk damping due to higher Ntot. Consequently, the Hubble
tension for ‘VN’ scenario is reduced to ∼ 2.2σ in this scenario from the ΛCDM result. Note
that, the reduction of the tension is primary due to the enlarged errorbar of H0 for the
DRID scenarios.

In the right panel we compare results for the CDR scenario where the DR is treated
as a perfect fluid which does not free-stream. The CDR being a perfect fluid, the higher
moments of its Boltzmann evolution are identically zero which distinguishes it from a free-
streaming radiation like neutrinos. Note that in this scenario, we have an admixture CDR
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Figure 4. Triangle plot Isocurvature parameters and Ndr for varying Nur analysis for P18-
TTTEEE+lowE+lensing+lensing+SH0ES(L) dataset. The constraints on individual parameters
are mentioned on the 1D diagonal posteriors with corresponding colors. The errors represent 1σ
errorbar and the limits are at 68% C.L.

and free-streaming neutrinos in the cosmological models. The results for adiabatic initial
condition is shown in the cyan contours which itself prefers a higher Ntot compared to the
ΛCDM. Due to its fluid like nature, the perturbations in CDR do not get leaked to higher
multipole. Therefore, compared to FDR, the density perturbation in CDR is larger which
boost the potential and results in the enhancement of the CMB spectrum at small scale. To
compensate for this effect, the CDR scenario allows for large Ntot which sources greater Silk
damping of the CMB tail.

The addition of DRID in the CDR case further enhances the Ntot. Similar to the FDR
case, the presence of CDR-DRID boost the CMB spectrum which helps to accommodate
even larger Ntot to compensate for that through Silk damping. As a result, CDR-DRID
accommodate the largest Hubble constant among all the scenarios discussed so far. With
Planck data alone, the value of the H0 is pushed to 69.2+1.6

−1.8 (km/s/Mpc) and the tension
with the local measurement is reduced to ∼ 2.0σ.
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Figure 5. 1D and 2D marginalised posteriors of H0 and Ntot in different models for P18-
TTTEEE+lowE+lensing dataset for varying neutrino analysis (VN). The dots in the 2D contours
represent the best-fit points. FDR (CDR) are the free streaming (coupled) dark radiation that either
carries only adiabatic (AD) perturbation or additional isocurvature (DRID) perturbation.
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Figure 6. 1D and 2D marginalised posteriors of H0 and Ntot in different models for P18-
TTTEEE+lowE+lensing+BAO+SH0ES(L) dataset for varying neutrino analysis (VN). The dots in the
2D contours represent the best-fit points. FDR (CDR) are the free streaming (coupled) dark radiation
that either carries only adiabatic (AD) perturbation or additional isocurvature (DRID) perturbation.
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Figure 7. Relative changes to the CMB TT,TE and EE spectrum compared to ΛCDM for different
models in the context of FDR. The top-right plot shows the fractional changes for the TT spectrum.
Ntot is fixed to 3.046 for the ΛCDM model. For the DRID parameters we have chosen: fiso = 2.0 and
niso = 1.5 with Ndr = 1.0. The changes in the Ntot (∆Ntot), mentioned in the legends, are introduced
by changing Nur.

In figure 6, we show the same constraints with the inclusion of BAO and SH0ES datasets
along with the Planck data. As the SH0ES data prefers higher H0, the value of both Ntot
and H0 get boosted compared to Planck only analysis across all models. As a result, in case
of FDR-DRID, the disparity with the local Hubble measurement is relaxed to ∼ 1.5σ. The
scenario with CDR-DRID is particularly noteworthy which accommodate the largest Hubble
constant for this dataset: H0 = 71.46± 0.87 (km/s/Mpc). The discrepancy with the local
Hubble measurement in this scenario is reduced to approximately 1.2σ.

We also compare the values of the Hubble tension for fixed Nur analysis (FN) which can
be computed using table 4 and 5. For P18-TTTEEE+lowE+lensing dataset the tension with
the SH0ES measurement is ∼ 2.5σ for both FDR and CDR DRID. In addition when the
BAO and SH0ES datas are included the discrepancy reduces to 1.6σ and 1.3σ, respectively.

3.4 Changes to the CMB spectra

In figure 7, we compare the DR isocurvature spectrum with Planck CMB data and demonstrate
how it accommodates a larger Ntot. The plots show the difference of the CMB spectra for
TT, TE and EE mode for different models with respect to the bestfit ΛCDM spectra having
Ntot = 3.046. The residual for the Planck 2018 data is also shown with the error-bar.
In addition, for the TT spectra, we also show the relative changes of the spectra in the
top-right panel.

In this work, we have so far considered uncorrelated DR isocurvature spectrum. In
the absence of any correlation with the adiabatic spectrum, the additional contribution due
to DR isocurvature is always positive across all CMB multipoles for the TT spectrum as
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shown in the top-left panel of figure 7. Therefore, it amounts to an enhancement of the CMB
spectrum across all scales. In the red dashed curve, we show an example of the deviation due
to FDR DR isocurvature with fiso = 2.0 and niso = 1.5 for Ndr = 1.0 and Ntot = 3.046. For
this blue tilted isocurvature spectrum, which has excess power at small scales, the relative
enhancement increases with higher multipole as can be seen in top right panel of figure 7. A
higher value of niso gives a stronger scale dependence of the enhancement. This enhancement
due to isocurvature enables this scenario to accommodate a larger Ntot, hence a higher H0.
Increase of Ntot results in greater Silk damping which is the suppression the CMB spectra
at higher multipole in the TT spectra due to enhanced diffusion damping of the photon
perturbations [8]. The blue lines shows the effects of increasing Ntot (∆Ntot = 0.2) in the
ΛCDM with only adiabatic perturbations and keeping all other parameter fixed. Since, Silk
damping has an exponential dependence of the scale, the damping increases with higher
multipole. Therefore, the damping has similar scale dependence with the enhancement arising
from a blue tilted DR isocurvature spectrum. So, in case of DR isocurvature with varying Ntot,
these two effects can partially compensate each other, specifically at smaller scale, to allow
for a larger Ntot. We demonstrate this through the green curves which has the following DR
parameters: fiso = 2.0 and niso = 1.5 for Ndr = 1.0 and Ntot = 3.246. The resulting spectrum
agrees quite well with the data for higher multipoles (` & 1000) for the TT spectrum.

The compensation mechanism however does not work for smaller multipoles, where
higher Ntot results in an enhancement of the CMB spectrum due to larger metric potential.
Interestingly, the error of the CMB TT dataset is higher in this region comparing to the high-`
modes due to the large magnitude of the signal around the first acoustic peak. Therefore,
the CMB TT dataset alone has comparatively limited constraining power to probe these
changes at smaller multipole. Thus, TT dataset allows for the large compensation between
isocurvature spectrum and Ntot which results in a large degeneracy between Ntot and niso
(and fiso). This is the reason why the constraints from TT+lowE dataset are rather weak
and permit large values of the isocurvature parameters and Ntot, and thereby the H0.

The scenario is modified significantly when CMB polarization data is added. Polarization
measurements at large scale are more precise compared to the temperature data. So, TE and
EE spectra have much smaller error bars at the large scale than the TT spectra. Therefore, the
inclusion of the polarization data effectively constraints the large scale deviations introduced
by the DR isocurvature setup. Thus, when we consider the full Planck CMB spectrum:
TTTEEE+lensing dataset, the constraints on the parameters become much stricter and the
allowed values of the Ntot is much smaller compared to the TT-only analysis.

Note that, addition of isocurvature spectrum introduces phase shift of the CMB spectrum
compared to ΛCDM [10]. This results in a change of the Hubble constant even when Ntot is
kept fixed [5].10 However, we found out that this effect is subdominant and the bulk of the
change in H0 comes from the compensation effect which gives higher Ntot, as described above.
Although, we have only discussed FDR isocurvature in this context, the above characterization
also holds true for CDR isocurvature.

4 Analytical comparison between CDR and FDR

In this section, our goal is to analytically understand the difference between CDR and FDR
in the presence of DRID, and show that isocurvature perturbations of FDR generate a larger

10As can be seen from figure [41] from ref. [5], the change in H0 for Neutrino density isocurvature is
≈ +0.7 km/s/Mpc which is smaller than the increase in H0 in the presence of DRID with positive ∆Ntot.
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contribution to CTT
` than those of CDR. Before going into a detailed derivation, we can

understand this intuitively as follows.
For the sake of simplicity, let us neglect the presence of neutrinos so that during radiation

domination only γ and DR contribute dominantly to the energy density. Now let us first
consider CDR for which both γ and DR behave as coupled fluids. For DRID initial conditions
in the synchronous gauge, we start with vanishing total density perturbation in a patch along
with vanishing metric perturbations. As time progresses, acoustic oscillations get set up in
both γ and DR. However, since we start with (say) overdensity in DR and compensating
underdensity in γ, the acoustic oscillations progress in a way such that anytime DR gets
under(over)dense, γ gets over(under)dense. Therefore, metric perturbations do not get a
chance to develop significantly and starting with an underdense region in γ leads to a negative
CMB temperature fluctuation without SW redshifting.

The situation changes when we have FDR instead of CDR. Again we start with vanishing
metric perturbation in the superhorizon limit and an over(under)dense region in DR(γ). Now
due to anisotropic stress, DR starts developing a diffusion-like effect and no longer behaves
as a perfect fluid. Thus DR acoustic oscillations are no longer synchronized with that in γ
to maintain a vanishing metric perturbation. That is, whereas for CDR there is an efficient
outflow of DR from an overdense region, for FDR this outflow of DR is hindered by the
random walk induced by the anisotropic stress. As a result, DR does not move efficiently out
of the overdense regions. Photons however do not experience this, and they continue their
inflow into the photon-underdense region. As a result a net inflow of energy takes place which
leads to formation of gravitational wells.11 This implies when the photons come out of those
wells, they lose more energy. Hence, the photons coming from the underdense region appear
even colder and in terms of the absolute value, leads to more CMB anisotropy. Similarly
when starting with an under(over)dense patch in DR(γ), free-streaming prevents a fluid-like
inflow of DR and hence a potential “hill” develops. Correspondingly, when the already hot
photons come out of such regions, they get an additional kick which makes them even hotter.

To show this more explicitly, we start with a discussion of isocurvature initial conditions
in the synchronous gauge defined through eqs. (2.4) and (2.5). We will mostly follow the
notations in Ma and Bertschinger [21]. We will also track the contribution of ν unless
mentioned otherwise.

4.1 Properties of shear

We expect the primary difference between CDR and FDR to come from the fact that due to
its free-streaming nature, FDR would contribute to the total anisotropic stress, whereas CDR
would not. Therefore, it is useful to consider the equation relating the metric perturbations
h, η to the shear for one k-mode [21],

ḧ+ 6η̈ + 2 ȧ
a

(ḣ+ 6η̇)− 2k2η = −24πGa2(ρ̄+ P̄ )σ. (4.1)

Here and in the following, the dots denote derivative with respect to conformal time τ . The
shear σ is defined as (ρ̄ + P̄ )σ ≡ −

(
k̂ik̂j − 1

3δij
)

Σi
j in terms of the traceless part of the

energy-momentum tensor, Σi
j ≡ T ij − δijT kk /3. Assuming radiation domination and using

ρ̄ = 3H2/(8πG), the r.h.s. of eq. (4.1) can be simplified to −12a2H2σ. Now for isocurvature
11For the adiabatic case, diffusion leads to a decay of gravitational wells. However, here for isocurvature

initial conditions there is no potential well to begin with, and diffusion-induced suppression of DR outflow
leads to potential well formation.
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initial conditions at τ → 0,
∑

i=radiation δρi = 0 (see eq. (2.7)) at very early times and on
superhorizon scales. Because of this fact, h gets dominantly sourced by the matter fluctuations,
and in particular by baryon fluctuations δb.12 Using this fact, one can show h ∼ (kτ)2ωτ with
ω ≡ a(τi)ρ̄m(τi)/(

√
3ρ̄r(τi)Mpl) and ωτ � 1. However, η ∼ (kτ)2 and hence is bigger than h

as we now check in a self-consistent manner.
Assuming terms involving h can be neglected compared to η in eq. (4.1), we get the

leading order expansion in terms of (kτ),

η̈ + 2 ȧ
a
η̇ = −2a2H2σ. (4.2)

This implies a going rate, σ ∼ η, i.e., they are of the same order in kτ (using the fact that
aH ∼ 1/τ). Now using the fact that θFS ∼ k2τ and σ̇ ∼ θFS + · · · , we see σ ∼ (kτ )2 implying
η ∼ (kτ )2 � h as well. Here ‘FS’ refers to any free-streaming species, such as ν or FDR. Our
full results in tables 2 and 3 which were obtained by solving the coupled set of equations
governing metric and matter/radiation fluctuations confirm this parametric behavior.

Therefore we parametrize the leading dependence of η as, η = A(kτ )2, where the precise
values of A are given in tables 2 and 3. Then eq. (4.2) implies σ = −3A(kτ)2, i.e., for
superhorizon modes there is a simple relation,

σ ≈ −3η. (4.3)

To use the above relation, we first note that for any free-streaming species i,

δ̇i = −4
3θi −

2
3 ḣ, (4.4)

σ̇i = 4
15θi −

3
10kFi3 + 2

15 ḣ+ 4
5 η̇. (4.5)

These can be combined to give,

σ̇i = −1
5 δ̇i −

3
10kFi3 + 4

5 η̇. (4.6)

On superhorizon scales, the third moment Fi3 is suppressed compared to the other terms.
Therefore, summing over all free-streaming (FS) perturbations,

σ̇ ≡
∑
i=FS

Riσ̇i = −1
5
∑
i=FS

Riδ̇i + 4
5RFSη̇, (4.7)

where Ri = ρ̄i/ρ̄tot is the energy fraction in species i, and RFS =
∑
i=FSRi measures the

energy fraction in FS radiation. Using eq. (4.3) we then get,(
1 + 4

15RFS

)
σ̇ = −1

5
∑
i=FS

Riδ̇i. (4.8)

We further note that on superhorizon scales,

δ̈i = −k
2

3 δi + 4
3k

2σi −
2
3 ḧ ≈ −

k2

3 δi, (4.9)

12The CDM fluctuation δc is subdominant compared to δb in synchronous gauge for this initial condition.
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implying,13

δi = δ
(0)
i −

1
6(kτ)2δ

(0)
i , (4.10)

where δ(0)
i is the time-independent piece of δi. Thus we can finally write,

σ = 1
2(15 + 4RFS)(kτ)2δ

(0)
FS , (4.11)

with δFS =
∑
iRiδi is the weighted density perturbation of the free-streaming species. Now

for DRID initial conditions, the total density perturbation, Rγδγ +Rνδν +RDRδDR = 0 and
δν = δγ (to ensure there is no neutrino density isocurvature). This means with a normalization
choice δDR = 1, the initial density perturbations can be written as,

δDR = 1; δν = δγ = − RDR
1−RDR

, (4.12)

implying,

δ
(0)
FS = Rνδν = − RDRRν

1−RDR
⇒ σ < 0 for CDR, (4.13)

δ
(0)
FS = Rνδν +RDRδDR = RDR −R2

DR −RνRDR
1−RDR

⇒ σ > 0 for FDR. (4.14)

Crucially therefore, the sign of σ depends on the nature of DR. To summarize this intuitively,
we consider a patch with an overdensity in DR. For isocurvature initial conditions, this implies
an underdensity in ν. Since shear is determined by the fluctuations in free-streaming radiation
and in scenarios with CDR only ν free streams, we effectively have an underdense region
contributing to shear. On the other hand, for FDR both DR and ν free stream, and due to
the overdesity in DR, the patch effectively has an overdensity in free-streaming radiation
— flipping the sign of σ, as seen from eq. (4.11). Since σ is a gauge invariant quantity, this
conclusion remains true in conformal Newtonian gauge as well. To see how this sign affects
CMB it is more convenient to gauge transform to conformal Newtonian gauge.

4.2 Effects of shear

The conformal Newtonian gauge is parametrized as,

ds2 = a2(τ)
[
−(1 + 2ψ)dτ2 + (1− 2φ)d~x2

]
. (4.15)

To go from the synchronous gauge to the conformal Newtonian gauge, we use the transforma-
tion [21]

ψ = 1
2k2

(
ḧ+ 6η̈ + ȧ

a

(
ḣ+ 6η̇

))
, (4.16)

φ = η − 1
2k2

ȧ

a

(
ḣ+ 6η̇

)
. (4.17)

13Since θi → 0 as τ → 0, there is no term linear in kτ in δi.
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Once again, to get the leading behavior in the superhorizon limit, we approximate η � h,

ψ ≈ 3
k2

(
η̈ + ȧ

a
η̇

)
, (4.18)

φ ≈ − 3
k2
ȧ

a
η̇, (4.19)

implying

φ+ ψ ≈ 3
k2 η̈ ≈ −

2σ
(kτ)2 . (4.20)

Since we showed above that the sign of σ(< 0 or > 0) depends upon the nature of DR (CDR
or FDR), and we also showed σ ≈ −3η on superhorizon scales, we see that φ+ ψ > 0 (< 0)
for CDR (FDR). To see the implication of this, we consider the photon-baryon fluid in the
tight-coupling regime where it obeys the equations,

δ̇con
γ = −4

3θ
con
γ + 4φ̇,

θ̇con
γ ≈ 1

4k
2δcon
γ + k2ψ. (4.21)

Here and below the superscript “con” denotes that the relevant quantities are evaluated
in the conformal Newtonian gauge. By defining the gauge invariant perturbation for the
photons [47], ζγ = −φ+ 1

4δ
con
γ we can rewrite the above as,

ζ̈γ ≈ −
1
3k

2 (ζγ + φ+ ψ) . (4.22)

Now our goal is to study the solution of the above equations for times just after the horizon
reentry for a given k-mode. To this end, we can ignore the time evolution of φ, ψ since they
are subdominant on superhorizon scales compared to ζγ for isocurvature initial conditions, as
can also be seen from figure 8. Then we can further approximate the above equation as,(

ζ̈γ + φ̈+ ψ̈
)
≈ −1

3k
2(ζγ + φ+ ψ), (4.23)

which has the solution,

ζγ + φ+ ψ ≈ A cos
(
kτ/
√

3
)
. (4.24)

In the above, we have used the fact ζγ + φ+ ψ remains a non-zero constant on superhorizon
scales. Conveniently, ζγ +φ+ψ = 1

4δ
con
γ +ψ, i.e., the Sachs-Wolfe (SW) contribution. Now to

compare CDR and FDR, we note that for both CDR and FDR, ζγ is identical and negative
at the time of horizon reentry, and can be written in terms of the density perturbation in the
synchronous gauge,

ζγ = 1
4δγ − η ≈ −

1
4

RDR
1−RDR

< 0. (superhorizon initial condition) (4.25)

However, as we have seen above, (φ+ ψ) (τ → 0) is > 0 (< 0) for CDR (FDR). Therefore,
A = (ζγ + φ+ ψ) (τ → 0) is bigger in magnitude for FDR compared to CDR. Thus, as the
modes reenter the horizon, they start a bigger amplitude of oscillations for the case of FDR.
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Figure 8. Time evolution of ζγ and φ + ψ for FDR and CDR with isocurvature initial condition
for k = 0.2 Mpc−1. The dashed black line shows that for both FDR and CDR, ζγ has the same
superhorizon value given by eq. (4.25). These quantities are computed using our modified version of
CLASS using Nur = 0.0, Ndr = 3.046.

This then translates into a larger value of the SW term at recombination τ∗,
(

1
4δ

con
γ + ψ

)
(τ∗),

leading to more SW anisotropy. To obtain the specific values of 1
4δ

con
γ + ψ for CDR and FDR,

we can use gauge transformations (4.16) and (4.17) from the conformal Newtonian gauge to
the synchronous gauge to write in the superhorizon limit,

1
4δ

con
γ + ψ ≈ 1

4δγ + 3
k2 η̈ ≈


−1

4
RDR

1−RDR
+ RDRRν

(1−RDR)(15 + 4Rν) CDR

−1
4

RDR
1−RDR

− RDR −RDRRν −R2
DR

(1−RDR)(15 + 4Rν + 4RDR) FDR
. (4.26)

Here we have used the superhorizon values of δγ , η from tables 2 and 3. In particular, it is
instructive to consider a parametric limit, RDR � 1, Rν = 0, for which we get the leading
order result,

1
4δ

con
γ + ψ ≈


−1

4RDR CDR

−19
60RDR FDR

, (4.27)

and now the O(1) difference between CDR and FDR is manifest.
The same conclusion is also true for the Doppler contribution to CMB anisotropy. To

see this, we can approximate the photon velocity equation as,

θcon
γ ≈ −3

4 δ̇
con
γ ≈ −3ζ̇γ ≈

√
3Ak sin

(
kτ/
√

3
)
. (4.28)

Therefore, once again for FDR, θγ oscillations have a bigger amplitude compared to CDR and
this leads to larger θcon

γ (τ∗). In figure 9, we numerically evaluate the evolution of both SW
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(a) Evolution of the Sachs-Wolfe term
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(b) Evolution of the Doppler term

Figure 9. Comparison of time evolution of two different k-modes for isocurvature initial conditions
(IC). For k = 0.1 Mpc−1, the mode reenters the horizon earlier and get a chance to oscillate multiple
times before recombination at τ∗. Therefore generically, FDR exhibits larger anisotropies as argued in
the text. For k = 0.01 Mpc−1, the mode enters later and happens to go near its minimum around τ∗,
and therefore the distinction between CDR and FDR is less significant. In panel (a), the dashed gray
and dotted black lines show the superhorizon values derived above for CDR and FDR respectively,
using eq. (4.26) for Rν = 0. These are exactly matched by the numerical initial values computed using
our modified version of CLASS using Nur = 0.0, Ndr = 3.046. In panel (b), we show the evolution of
photon velocity where similar enhancement for FDR is observed.

term (controlled by
(

1
4δ

con
γ + ψ

)
), and the Doppler term (controlled by θcon

γ ) for two different
k-modes where enhanced oscillations for FDR is apparent.

Now let us translate this into our final expectations on CMB power spectrum. We have
seen above that both for the SW term and the Doppler term, FDR is expected to exhibit
more anisotropy for DRID initial conditions. The integrated Sachs-Wolfe (ISW) term gets
its primary contribution around the time of matter-radiation equality and the onset of dark
energy domination. Therefore at least for large enough `, where SW and Doppler effects
dominate, we expect FDR to exhibit more anisotropy compared to CDR. This is indeed what
is seen in panel (b) of figure 10.

The disparity in the sizes of the anisotropy perturbations for CDR and FDR is also
reflected in the DRID constraints shown in figure 1 and 2 (or in figure 3 and 4). It can be
seen from those figures that the sizes of N2

drP
(1)
II and N2

drP
(2)
II are systematically higher on

CDR compared to FDR. To induce similar sized modification in the CMB spectrum, the
amplitude of the initial DRID perturbation must be higher for CDR compared to the FDR
scenario to compensate for the suppression of CDR spectrum as shown in figure 10 (b).

Comparison with adiabatic initial conditions. One can repeat the above exercise for
the case of adiabatic initial conditions. In particular, the primary difference with the DRID
scenario is that, for adiabatic IC, the sign of the total shear perturbations σ does not change
between CDR and FDR. For CDR, the shear perturbation is identical to the ΛCDM result
since DR does not contribute to it. For FDR, on the other hand, σDR = σν and they are
given by changing Rν → Rν +RDR from the ΛCDM result. Furthermore, it can be derived
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Figure 10. Comparison of DTT
` ≡ [`(`+ 1)/(2π)]CTT

` for various initial conditions. In panel (a) for
adiabatic initial conditions, and Nur = 0.0, Ndr = 3.046, we see the well known fact that CDR gives a
more enhanced contribution to DTT

` than FDR. In panel (b) for the same choice of Nur and Ndr but
with pure isocurvature initial conditions, and fiso = 3.0, niso = 1.0 we see that FDR instead gives
a more enhanced contribution to DTT

` than CDR. From panel (b) we also see that FDR spectrum
coincides with a pure NDI induced spectrum with Nur = 3.046, Ndr = 0.0, as expected. In these
comparisons, all the other parameters are set to their ΛCDM values.

that the analog of eq. (4.26) is given by,

1
4δ

con
γ + ψ

∣∣∣∣
τ→0
≈


5

15 + 4Rν
CDR

5
15 + 4Rν + 4RDR

FDR
. (4.29)

The difference in the initial condition is well studied in the literature [7, 10, 24], which results
in larger CMB anisotropies for the case of CDR than FDR.

5 Conclusion

In this paper, we show how the current CMB data alone and also in combination with
BAO and SH0ES data, constrain the DR isocurvature perturbation and how the existence
of DR isocurvature density perturbation (DRID) helps to relax the H0 tension. We start
the discussion with a simple curvaton model to explain how the curvaton fluctuations can
source DRID perturbations with different sizes and tilts from the adiabatic perturbations.
We then turn to a more general study of the DRID cosmology by first systematically deriving
the initial conditions for both the FDR-DRID and CDR-DRID scenarios. Using a MCMC
study with current cosmological datasets, we then calculate bounds on the size (PII) and
the tilt (niso) of the DRID perturbations, and find constraints on the energy density of the
DR (Ndr). We showed two sets of analyses where the neutrino effective number Nur is kept
fixed to 3.046 in one case and varied in the other. The constraints derived in these two cases
are similar. While we considered only uncorrelated DRID perturbations in the main text, we
show the constraints for correlated DRID scenario in the appendix.

The FDR-DRID constraint from Planck 2018 dataset for fixed Nur (for varying Nur)
analysis is summarized by the blue contours in figure 1 (figure 3) and the numbers in table 4
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(table 6) with additional contours shown in appendix B. The CMB spectrum induced by
DRID perturbation has an approximate degeneracy in the form of C`,DRID ∝ N2

drPII . If
the curvaton χ produces FDR with Ndr = 0.4, the current data at 2σ allows a blue-tilted
FDR-DRID with 1010N2

drPII (2) ≤ 200 (TTTEEE+lowE+lensing), and 1010N2
drPII (2) ≤ 220

(TTTEEE+lowE+lensing+BAO+SH0ES(L)), where PII (2) is the magnitude of isocurvature
power spectrum at k2 = 0.1 Mpc−1. This means that current Planck data constrains the
curvaton perturbation to be δσ/σ . 2× 10−4 around comoving time ∼ k−1

2 if σ decays into
FDR. We also present the first cosmological bounds on the CDR-DRID, which can easily
exist if the curvaton decays into DR that interact with each other. For Ndr = 0.4, the 2σ
upper bound on the CDR-DRID is 1010N2

drPII (2) ≤ 600 (TTTEEE+lowE+lensing), and
1010N2

drPII (2) ≤ 1000 (TTTEEE+lowE+lensing+SH0ES(L)). The bound on the curvaton
perturbation from the Planck data is δσ/σ . 5 × 10−4 around comoving time ∼ k−1

2 if σ
decays into CDR. The above numbers are in regards to the varying Nur analysis and similar
sized bounds are derived for the fixed Nur case.

The weaker bounds on N2
drPII for CDR shows an intriguing feature of the DRID scenario

very different from the adiabatic case — the FDR-DRID enhances the CMB TT spectrum
more than the CDR-DRID, opposite to the relative FDR versus CDR contribution to the
TT spectrum in the adiabatic case. We give an analytical explanation of the behavior, which
comes from the nature of the isocurvature perturbations existing on a manifold with constant
total radiation density. Because of this, the metric perturbation mainly comes from the shear
of neutrino (for CDR-DRID) or the DR (for FDR-DRID), which results in different SW
contributions and a larger TT spectrum from the DRID in the FDR case.

Besides studying the DRID constraint, we also check if the presence of DRID helps to
reconcile the tension between the CMB and the local H0 measurements. As summarized
in figure 5 and 6, the presence of isocurvature perturbation does indeed help to reduce
the tension better than the adiabatic DR. The FDR-DRID with varying Nur (with fixed
Nur) setup reduce the tension between the Planck and SH0ES measurements to ∼ 2.2σ
(∼ 2.5σ), while the CDR-DRID scenario further reduces the tension to ∼ 2.0σ (∼ 2.5σ). As a
comparison, the same estimate of the tension with adiabatic CDR studied in [24] is ∼ 3.1σ.
Therefore the DRID perturbation does help to further suppress the tension. If including
both the Planck and SH0ES data, the fit of H0 from the CDR-DRID (FDR-DRID) scenarios
has a ∼ 1.2σ (1.5σ) discrepancy to the SH0ES measurement for the varying Nur scenario
and ∼ 1.3σ (1.6σ) discrepancy for the fixed Nur scenario. As is demonstrated in figure 7,
the blue-tilted DRID perturbation helps to compensate for the suppressed CTT

` at higher
multipoles due to the larger Silk damping caused by the energy density in DR. This allows
the existence of larger DR energy density that enhances the H0 from fitting the Planck data.
However, the enhancement is still limited by the TE and EE data that sets strong constraints
on the perturbations of lower-` modes.

Free streaming and coupled DR are plausible forms of energy in the early Universe
motivated by many BSM scenarios, and depending on the inflationary and reheating process,
DR can easily carry isocurvature perturbations uncorrelated or correlated to the adiabatic
perturbations. Our work shows that besides being sensitive to an additional source of
perturbations and energy density in the invisible radiation, CMB measurements can further
probe the interactions of DR in the early Universe. Since we have seen relatively large,
blue-tilted isocurvature perturbation from DR is allowed by the present data, and that affects
the tail of the CMB spectrum, future small scale CMB measurements will be able to put
stronger constraints or discover isocurvature perturbations in the Universe.
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A Constraint on DR isocurvature with correlation

In the main text, we have discussed and derived the constraints on uncorrelated dark radiation
isocurvature perturbations by setting the correlations between the adiabatic and DRID
perturbation at both scales (in the two-scale parametrization) P (1)

RI = P
(2)
RI = 0. In this

section, we relax this restriction and consider non-zero correlation between these two types of
perturbations.

The most general parametrization of the correlation will require independent values of
both P (1)

RI and P (2)
RI which can be translated into the amplitude and tilt of the correlation

power spectrum. Further, the positive definiteness of the initial condition matrix requires,

PRR(k)PII(k) ≥ [PRI(k)]2 (A.1)

for all k modes of interest. However, the positive definiteness of perturbations at scales k1
and k2 only guarantee positive definiteness for k-modes lying within the range k1 < k < k2.
Using the definition of power spectrum in eq. (3.1)

2 lnPRI(k) = 2 lnP(1)
RI

ln k − ln k2
ln k1 − ln k2

+ 2 lnP(2)
RI

ln k − ln k1
ln k2 − ln k1

. (A.2)

The positive definiteness of the input power spectrum means,

2 lnP(1)
RI ≤ lnP(1)

RR + lnP(1)
II , (A.3)

2 lnP(2)
RI ≤ lnP(2)

RR + lnP(2)
II . (A.4)

Using eq. (A.3) and eq. (A.4) we can derive from eq. (A.1) the following condition:

2 lnPRI(k) ≤ (lnP(1)
RR + lnP(1)

II ) ln k − ln k2
ln k1 − ln k2

+ (lnP(2)
RR + lnP(2)

II ) ln k − ln k1
ln k2 − ln k1

(A.5)

≤ lnPRR(k) + lnPII(k) (A.6)

for positive definiteness of a general k mode if and only if
ln k − ln k2
ln k1 − ln k2

≥ 0 and ln k − ln k1
ln k2 − ln k1

≥ 0 ⇒ k1 < k < k2 . (A.7)

Therefore, for modes outside [k1, k2] positive definiteness of initial condition matrix in not
guaranteed.

To remedy this problem, following isocurvature studies by Planck collaboration [5, 62],
we vary only P(1)

RI as an independent parameter and P(2)
RI is determined as,

P(2)
RI = P(1)

RI

√√√√P(2)
RRP

(2)
II

P(1)
RRP

(1)
II

. (A.8)

– 32 –



J
C
A
P
0
5
(
2
0
2
2
)
0
1
4

Using the above definition we can show that for any k mode

2 lnPRI(k)− (lnPRR(k) + lnPII(k)) = 2 lnP(1)
RI −

(
lnP(1)

RR + lnP(1)
II

)
≤ 0

[following eq. (A.3)] (A.9)

Thus, in this scheme, the positive definiteness of all modes are guaranteed as long as the
initial spectrum at k1 is positive definite. It can easily be shown that eq. (A.8) amounts to
setting the spectral index of the correlation power spectrum, which is defined as [52]

ncor ≡
lnP(1)

RI − lnP(2)
RI

ln k1 − ln k2
− 1

2 (ns + niso − 2) (A.10)

to zero i.e., ncor = 0.14 Therefore, effectively we are assuming a scale invariant correlation
spectrum in this analysis. Eq. (A.8) also dictates that correlation fraction cos ∆ which is
defined as,

cos ∆ = PRI(k)√
PRR(k)PII(k)

(A.11)

is constant for all k modes.

A.1 MCMC results
We performed MCMC analysis of correlated DRID model with the same dataset described
section 3. We redo the analysis as done in that section with the addition of one new parameter
for correlation: NdrP

(1)
RI . Note the different Ndr scaling in the correlation parameter compared

to the isocurvature parameters: N2
drP

(1)
II and N2

drP
(2)
II . Since the correlation is the interference

between adiabatic and isocurvature perturbations, it is linear in isocurvature perturbation.
Therefore, we only scale it by a single power of Ndr to take care of the generic convergence
issue of DR isocurvature discussed in section 3. Thus, we vary the ‘physical’ correlation
parameter NdrP

(1)
RI as a primary parameter and P(1)

RI is recovered as a derived parameter by
diving the former by Ndr.

In figure 11, 12, 13 and 14 we show the constraints on the isocurvature parameters
which now include the correlation parameter and correlation fraction. The value correlation
parameter in all our runs are consistent with zero. The other isocurvature parameters also
exhibit similar degeneracies that was observed in the runs without correlation.

B Triangle plots for uncorrelated DRID

Figure 15, 16, 17 and 18 show the constraints on the adiabatic as well as the isocurvature
parameters for uncorrelated FDR-DRID and uncorrelated CDR-DRID, respectively with both
fixed and varying Nur for all the datasets used in this paper.

C Triangle plots for correlated DRID

Figure 19, 20, 21 and 22 show the constraints on the adiabatic as well as the isocurvature
parameters for FDR-DRID and CDR-DRID with correlation, respectively for both fixed and
varying Nur.

14The definition of ncor is taken from CLASS [52]. Note the difference between the definitions of ncor and
nRI ≡ (lnP(1)

RI − lnP(2)
RI)/(ln k1 − ln k2) which is used in the analysis of isocurvature perturbation by the

Planck collaboration [5, 62].
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FDR (FN & WC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.264+0.018
−0.022 2.281± 0.015

ωcdm 0.1217+0.0016
−0.0025 0.1247± 0.0026

100θs 1.04219+0.00055
−0.00069 1.04206+0.00063

−0.00075

τreio 0.0564+0.0071
−0.0081 0.0564± 0.0072

1010P(1)
RR 23.10± 0.50 22.79± 0.47

1010P(2)
RR 20.55± 0.40 20.68± 0.42

1010N2
drP

(1)
II 19.8+3.0

−20 < 19.1

1010N2
drP

(2)
II 99+40

−70 118+50
−70

1010NdrP
(1)
RI −0.18+1.4

−0.99 0.24+1.2
−0.95

Ndr < 0.208 0.37± 0.13

H0(km/s/Mpc) 69.66+0.82
−1.4 71.01± 0.83

σ8 0.8250+0.0075
−0.0087 0.8318± 0.0087

109As 2.098± 0.035 2.104± 0.037

ns 0.9702+0.0063
−0.0075 0.9752+0.0077

−0.0061

niso 1.45+0.37
−0.28 1.55+0.37

−0.28

fiso 57+15
−51 7.0+1.1

−3.5

cos ∆ 0.003+0.058
−0.075 0.028+0.055

−0.082

Ntot < 3.25 3.41± 0.13

fdr 0.051+0.020
−0.047 0.106+0.036

−0.032

χ2 − χ2
ΛCDM −1.9 −14.62

Table 8. Mean and 1σ error of parameters for FDR-DRID with correlation for fixed Nur scenario for
the corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters
and the derived parameters are shown in two separate blocks. The χ2 difference with respect to the
ΛCDM (fixed Ntot) model for the corresponding data-set is shown on the last line.
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CDR (FN & WC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.262+0.018
−0.025 2.286± 0.016

ωcdm 0.1229+0.0018
−0.0030 0.1267± 0.0028

100θs 1.04221+0.00035
−0.00040 1.04250± 0.00035

τreio 0.0556+0.0070
−0.0079 0.0559± 0.0074

1010P(1)
RR 23.29± 0.45 23.11± 0.45

1010P(2)
RR 20.49± 0.36 20.40± 0.37

1010N2
drP

(1)
II 28+6

−30 23+4
−20

1010N2
drP

(2)
II < 386 < 603

1010NdrP
(1)
RI −1.3+1.5

−1.3 −1.3+1.4
−1.0

Ndr < 0.253 0.43± 0.13

H0(km/s/Mpc) 69.62+0.90
−1.6 71.28± 0.86

σ8 0.8285± 0.0081 0.8324± 0.0084

109As 2.096± 0.033 2.085± 0.034

ns 0.9673± 0.0057 0.9681+0.0065
−0.0048

niso 1.59+0.44
−0.31 1.77+0.43

−0.27

fiso 66+22
−59 8.5+3.5

−4.8

cos ∆ −0.050+0.041
−0.066 −0.055+0.040

−0.061

Ntot < 3.30 3.48± 0.13

fmdr 0.061+0.025
−0.053 0.123± 0.034

χ2 − χ2
ΛCDM 0.48 −11.62

Table 9. Mean and 1σ error of parameters for CDR-DRID with correlation for fixed Nur scenario for
the corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters
and the derived parameters are shown in two separate blocks. The χ2 difference with respect to the
ΛCDM (fixed Ntot) model for the corresponding data-set is shown on the last line.
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FDR (VN & WC) P18-TTTEEE
+lowE+lensing

P18-TTTEEE+lowE+
lensing+BAO+SH0ES(L)

102ωb 2.248± 0.026 2.282± 0.015

ωcdm 0.1193± 0.0032 0.1249± 0.0026

100θs 1.04225± 0.00061 1.04200± 0.00067

τreio 0.0548+0.0070
−0.0082 0.0564± 0.0073

1010P(1)
RR 23.39± 0.60 22.76± 0.48

1010P(2)
RR 20.39± 0.44 20.70± 0.41

1010N2
drP

(1)
II < 18.8 < 16.2

1010N2
drP

(2)
II 65+20

−60 99+40
−70

1010NdrP
(1)
RI −0.59+1.4

−0.94 0.21+1.0
−0.86

Nur 2.08+1.0
−0.46 2.40+1.0

−0.44

Ndr < 1.23 < 1.29

H0(km/s/Mpc) 68.4± 1.7 71.06± 0.83

σ8 0.819± 0.011 0.8324± 0.0087

109As 2.089± 0.037 2.105± 0.036

ns 0.9650± 0.0093 0.9758+0.0072
−0.0064

niso 1.38+0.36
−0.31 1.54+0.36

−0.28

fiso < 3.35 14.7+5.9
−14

cos ∆ −0.027± 0.072 0.025+0.053
−0.076

Ntot 3.05± 0.22 3.43± 0.13

fdr 0.32+0.13
−0.31 0.30+0.12

−0.30

χ2 − χ2
ΛCDM −2.64 −14.68

Table 10. Mean and 1σ error of parameters for FDR-DRID with correlation for varying Nur scenario
for the corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters
and the derived parameters are shown in two separate blocks. The χ2 difference with respect to the
ΛCDM (fixed Ntot) model for the corresponding data-set is shown on the last line.
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Table 11. Mean and 1σ error of parameters for CDR-DRID with correlation for varying Nur scenario
for the corresponding datasets. The limits are at 68% C.L. The constraints on the primary parameters
and the derived parameters are shown in two separate blocks. The χ2 difference with respect to the
ΛCDM (fixed Ntot) model for the corresponding data-set is shown on the last line.
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Figure 11. Triangle plot for DR isocurvature with correlation for fixed Nur for P18-
TTTEEE+lowE+lensing dataset. The constraints on individual parameters are mentioned on the
diagonal 1-D posteriors with corresponding colors. The errors represent 1σ errorbar and the limits are
at 68% C.L.
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Figure 12. Triangle plot for DR isocurvature with correlation for fixed Nur for P18-
TTTEEE+lowE+lensing+lensing+SH0ES(L) dataset. The constraints on individual parameters
are mentioned on the 1-D diagonal posteriors with corresponding colors. The errors represent 1σ
errorbar and the limits are at 68% C.L.
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Figure 13. Triangle plot for DR isocurvature with correlation for varying Nur for P18-
TTTEEE+lowE+lensing dataset. The constraints on individual parameters are mentioned on the
diagonal 1-D posteriors with corresponding colors. The errors represent 1σ errorbar and the limits are
at 68% C.L.
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Figure 14. Triangle plot for DR isocurvature with correlation for varying Nur for P18-
TTTEEE+lowE+lensing+lensing+SH0ES(L) dataset. The constraints on individual parameters
are mentioned on the 1-D diagonal posteriors with corrosponding colors. The errors represent 1σ
errorbar and the limits are at 68% C.L.
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Figure 15. Triangle plot for FDR isocurvature without correlation for the fixed Nur analysis for all
the datasets. The constraints on individual parameters are mentioned on the 1-D diagonal posteriors
with corresponding colors. The errors represent 1σ errorbar and the limits are at 68% C.L.
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Figure 16. Triangle plot for CDR isocurvature without correlation for the fixed Nur analysis for all
the datasets. The constraints on individual parameters are mentioned on the 1-D diagonal posteriors
with corresponding colors. The errors represent 1σ errorbar and the limits are at 68% C.L.

– 43 –



J
C
A
P
0
5
(
2
0
2
2
)
0
1
4

2.20 2.25 2.30

102ωb

5

6

7

8

9

10

z r
e
io

0.94

0.96

0.98

n
s

2.0

2.1

2.2

10
9
A
s

100

200

300

1
0

1
0
N

2 d
r
P

(2
)
II

20

40

60

80

1
01

0
N

2 d
r
P

(1
)
II

1

2

3

N
d
r

2.5

3.0

3.5

N
to

t

64

66

68

70

72

74

H
0
(k

m
/s
/M

p
c)

0.110

0.115

0.120

0.125

0.130

ω
c
d
m

2.252± 0.025

2.282± 0.015

0.12 0.13

ωcdm

0.1200± 0.0031

0.1248± 0.0025

64 66 68 70 72 74

H0(km/s/Mpc)

68.8± 1.6

71.04± 0.81

2.5 3.0 3.5

Ntot

3.09± 0.21

3.42± 0.13

1 2 3

Ndr

< 1.32

< 1.44

20 40 60 80

1010N2
drP

(1)
II

< 13.0

< 13.3

100 200 300

1010N2
drP

(2)
II

74+20
−60

107+40
−70

2.0 2.1 2.2

109As

2.086± 0.037

2.108± 0.032

0.94 0.96 0.98

ns

0.9655± 0.0090

0.9756± 0.0062

5 6 7 8 9 10

zreio

FDR (VN & NC)

7.74± 0.77

7.85± 0.72

TTTEEE+lowE+lensing

TTTEEE+lowE+lensing+BAO+SH0ES(L)

Figure 17. Triangle plot for FDR isocurvature without correlation for the varying Nur analysis for all
the datasets. The constraints on individual parameters are mentioned on the 1-D diagonal posteriors
with corresponding colors. The errors represent 1σ errorbar and the limits are at 68% C.L.
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Figure 18. Triangle plot for CDR isocurvature without correlation for the varying Nur analysis for all
the datasets. The constraints on individual parameters are mentioned on the 1-D diagonal posteriors
with corresponding colors. The errors represent 1σ errorbar and the limits are at 68% C.L.
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Figure 19. Triangle plot for FDR isocurvature with correlation for the fixed Nur analysis. The
constraints on individual parameters are mentioned on the 1-D diagonal posteriors with corresponding
colors. The errors represent 1σ errorbar and the limits are at 68% C.L.
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Figure 20. Triangle plot for CDR isocurvature with correlation for the fixed Nur analysis. The
constraints on individual parameters are mentioned on the 1-D diagonal posteriors with corresponding
colors. The errors represent 1σ errorbar and the limits are at 68% C.L.

– 47 –



J
C
A
P
0
5
(
2
0
2
2
)
0
1
4

2.20 2.25 2.30

102ωb

5

6

7

8

9

10

z r
e
io

0.94

0.96

0.98

n
s

2.0

2.1

2.2

10
9
A
s

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

co
s

∆

−6

−4

−2

0

2

4

10
1
0
N

d
r
P

(1
)
R
I

100

200

300

10
1
0
N

2 d
r
P

(2
)
II

20

40

60

80

100

1
01

0
N

2 d
r
P

(1
)
II

1

2

3

N
d
r

2.5

3.0

3.5

N
to

t

64

66

68

70

72

74

H
0
(k

m
/s
/M

p
c)

0.11

0.12

0.13

ω
c
d
m

2.248± 0.026

2.282± 0.015

0.11 0.12 0.13

ωcdm

0.1193± 0.0032

0.1249± 0.0026

64 66 68 70 72 74

H0(km/s/Mpc)

68.4± 1.7

71.06± 0.83

2.5 3.0 3.5

Ntot

3.05± 0.22

3.43± 0.13

1 2 3

Ndr

< 1.23

< 1.29

20 40 60 80 100

1010N2
drP

(1)
II

< 18.8

< 16.2

100 200 300

1010N2
drP

(2)
II

65+20
−60

99+40
−70

−6 −4 −2 0 2 4

1010NdrP(1)
RI

−0.59+1.4
−0.94

0.21+1.0
−0.86

−0.2 0.0 0.2

cos ∆

−0.027± 0.072

0.025+0.053
−0.076

2.0 2.1 2.2

109As

2.089± 0.037

2.105± 0.036

0.94 0.96 0.98

ns

0.9650± 0.0093

0.9758+0.0072
−0.0064

5 6 7 8 9 10

zreio

FDR (VN & WC)

7.67± 0.78

7.90± 0.72

TTTEEE+lowE+lensing

TTTEEE+lowE+lensing+BAO+SH0ES(L)

Figure 21. Triangle plot for FDR isocurvature with correlation for the varying Nur analysis. The
constraints on individual parameters are mentioned on the 1-D diagonal posteriors with corresponding
colors. The errors represent 1σ errorbar and the limits are at 68% C.L.
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Figure 22. Triangle plot for CDR isocurvature with correlation for the varying Nur analysis. The
constraints on individual parameters are mentioned on the 1-D diagonal posteriors with corresponding
colors. The errors represent 1σ errorbar and the limits are at 68% C.L.
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