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Abstract

Observations of core-collapse supernovae (CCSNe) reveal a wealth of information about the dynamics of the
supernova ejecta and its composition but very little direct information about the progenitor. Constraining properties
of the progenitor and the explosion requires coupling the observations with a theoretical model of the explosion.
Here we begin with the CCSN simulations of Couch et al., which use a nonparametric treatment of the neutrino
transport while also accounting for turbulence and convection. In this work we use the SuperNova Explosion Code
to evolve the CCSN hydrodynamics to later times and compute bolometric light curves. Focusing on Type IIP SNe
(SNe IIP), we then (1) directly compare the theoretical STIR explosions to observations and (2) assess how
properties of the progenitor’s core can be estimated from optical photometry in the plateau phase alone. First, the
distribution of plateau luminosities (Lsg) and ejecta velocities achieved by our simulations is similar to the
observed distributions. Second, we fit our models to the light curves and velocity evolution of some well-observed
SNe. Third, we recover well-known correlations, as well as the difficulty of connecting any one SN property to
zero-age main-sequence mass. Finally, we show that there is a usable, linear correlation between iron core mass
and Lsy such that optical photometry alone of SNe IIP can give us insights into the cores of massive stars.
Mlustrating this by application to a few SNe, we find iron core masses of 1.3-1.5 M., with typical errors of
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0.05 M. Data are publicly available online on Zenodo: doi:10.5281/zenodo.6631964.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Type II supernovae (1731);
Computational methods (1965); Hydrodynamical simulations (767); Supernova neutrinos (1666); Supernova

dynamics (1664); Radiative transfer (1335)

1. Introduction

Core-collapse supernovae (CCSNe) are the explosive deaths
that result from the ends of stellar evolution for massive stars
with zero-age main-sequence (ZAMS) masses Mzanms = 8 M.
The current understanding suggests that some fraction of
possible progenitors will successfully produce CCSNe while
others will fail and produce a black hole (BH; O’Connor &
Ott 2011; Lovegrove & Woosley 2013; Ertl et al. 2016;
Sukhbold et al. 2016; Adams et al. 2017; Sukhbold et al. 2018;
Couch et al. 2020). The details of the explosion mechanism
have been the subject of decades of work, with current work
favoring, for most progenitors, the delayed neutrino-driven
mechanism (Bethe & Wilson 1985). For an in-depth review of
the CCSN explosion mechanism and related problems, see
recent reviews (e.g., Bethe 1990; Janka et al. 2007, 2012, 2016;
Burrows 2013; Hix et al. 2014; Miiller et al. 2016; Couch 2017;
Pejcha 2020).

CCSNe are detectable by three primary messengers—
electromagnetic (EM) waves, neutrinos, and gravitational
waves (GWs). Neutrino and GW signals have the very
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desirable property that they are emitted directly from the
core of the star at the time of collapse and may reveal
information about the structure there (e.g., Pajkos et al.
2019, 2021; Sotani & Takiwaki 2020; Warren et al. 2020),
unlike photons that are emitted from the photosphere in the
outer layers of the SN ejecta until the remnant phase.
However, to date there has been only one detection of
neutrinos from an SN (SN 1987A; Arnett et al. 1989). With
modern neutrino detectors, only CCSNe occurring within
our Galaxy may be detectable (Scholberg 2012). Similarly,
there have been no confirmed detections of GW emission
from a CCSNe. The current suite of detectors (aLIGO,
Virgo, and KAGRA) can only detect GWs from a CCSN if it
occurs within a distance of <100 kpc (Abbott et al. 2016). It
is the case, however unfortunate, that the overwhelming
majority of CCSNe will only be observed in EM signals.
The focus of this paper is connecting EM signals to progenitor
properties for SNe IIP. These events have been shown to
originate from red supergiant progenitors (Van Dyk et al. 2003;
Smartt 2009; Van Dyk et al. 2019). Despite being the most
common type of CCSNe, their diversity of observable features—
such as light-curve morphologies—is still not fully understood
(e.g., Anderson et al. 2014; Valenti et al. 2016). The connection
between Type IIP SNe (SNe IIP) and Type IIL SNe (SNe IIL),
for example, still remains an open question—whether SNe IIL
are the limit of SNe IIP as the H envelope is depleted or a
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separate class (Barbon et al. 1979; Blinnikov & Bartunov 1993;
Faran et al. 2014; Morozova et al. 2015).

Understanding the connection between SN IIP light curves
and stellar progenitors has a new urgency. Coming next-
generation telescopes such as the Vera C. Rubin Observatory
and its primary optical photometry survey, the Rubin
Observatory Legacy Survey of Space and Time (LSST; Ivezié
et al. 2019), will allow for extremely deep imaging of the entire
sky every couple of nights. The LSST will allow for statistical
studies of populations of CCSNe of an unprecedented scale (for
recent statistical studies see, e.g., Anderson et al. 2014; Sanders
et al. 2015; Gutiérrez et al. 2017a, 2017b).

Ultimately, properly characterizing the diversity in SN II
light-curve morphology will require the union of observation
and theory. On the theory side, this comprises realistic stellar
evolution models including the core collapse, following the
resulting explosion with robust physics, and calculating EM
light curves (as well as neutrino and GW signals). The gold
standard is full 3D, self-consistent simulations. CCSNe and
their progenitors are truly 3D in nature, and the key to
understanding the diversity of light-curve morphology lies in
faithfully modeling these asphericities (Wongwathanarat et al.
2013, 2015; Dessart & Audit 2019; Stockinger et al. 2020;
Sandoval et al. 2021). 3D simulations are, however, compu-
tationally expensive to perform and, as such, are limited in
number and the range of parameter space that they cover.
Spherically symmetric (1D) simulations remain necessary for
understanding the CCSN explosion mechanism and their
observables by surveying landscapes of possible CCSNe.
Great progress has been made in the past few years regarding
1D CCSN simulations (Ebinger et al. 2017; Sukhbold et al.
2016; Couch et al. 2020), allowing for successful explosions in
1D using neutrino-driven explosions across wide ranges of
progenitor masses. These 1D simulations allow for large
parameter studies performing potentially thousands of simula-
tions spanning ranges of progenitor masses, equations of state
(EOSs), and metallicities, for example.

Light-curve calculations are the final, crucial piece of the
theoretical process of understanding these explosions. Com-
monly, calculations of synthetic bolometric light curves of
CCSNe invoke a thermal bomb or piston-driven model, where
energy is artificially injected into a thin region above a user-
specified mass cut within the progenitor (see, e.g., Bersten et al.
2011; Morozova et al. 2015; Ricks & Dwarkadas 2019). In
these models, the explosion energy is a user-set parameter
instead of being determined by the structure of the progenitor
and explosion physics. The calculations cannot determine
whether a given progenitor will result in a successful SN or fail
to revive its stalled shock and collapse to a BH. The
explodability has been shown to have nontrivial behavior
across a large range of ZAMS mass progenitors (Sukhbold
et al. 2016; Ebinger et al. 2017; Sukhbold et al. 2018; Couch
et al. 2020) and cannot be captured with more simplified
models. The clear next step is the coupling of high-fidelity
CCSN simulations with bolometric light-curve calculations.

Light curves contain information about their progenitor
and the explosion—properties such as the composition of the
ejecta, mass or radius of the progenitor, or explosion energy
may be inferred (Litvinova & Nadezhin 1985; Popov 1993;
Kasen & Woosley 2009; Sukhbold et al. 2016). The process
of inferring progenitor and explosion properties from
light curves has been shown to be highly degenerate
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(Goldberg et al. 2019; Dessart & Hillier 2019), with many
combinations of properties being capable of producing a
given light curve. Of particular interest, however, is the early-
time light curve dominated by radiation streaming from the
shock-heated outer envelope. This early-time behavior can be
compared to shock cooling models to put constraints on the
stellar radius (Nakar & Sari 2010; Tolstov et al. 2013;
Shussman et al. 2016; Kozyreva et al. 2020). Recently
Morozova et al. (2016) and Rubin & Gal-Yam (2017) have
explored the effectiveness and temporal limitations of these
models, and these methods have been widely used for
constraining the progenitor pre-explosion radius (e.g.,
Rabinak & Waxman 2011; Gall et al. 2015; Gonzalez-Gaitan
et al. 2015; Sapir & Waxman 2017; Soumagnac et al. 2020;
Vallely et al. 2021). These early-time observations may help
to break the degeneracies between progenitor and explosion
properties (Goldberg & Bildsten 2020).

In this work, we calculate the bolometric light curves of the
recent 1D simulations done with the FLASH® (Fryxell et al.
2000; Dubey et al. 2009) code using the new Supernova
Turbulence In Reduced-dimensionality (STIR) model (Couch
et al. 2020). This 1D convection scheme has the benefit of
being more consistent with some properties of full physics 3D
CCSN simulations—such as explosion energies and landscapes
—while leaving the neutrino physics unaltered. Like any 1D
method, it remains a simplification of the full picture and is
not without its shortcomings (e.g., Miiller 2019). Similar 1D
schemes have also been used to study Rayleigh-Taylor
instabilities in SN remnants (Duffell 2016). The initial
conditions of these models are set by the 1D stellar evolution
models of Sukhbold et al. (2016), which make up a suite of
200 solar-metallicity, nonrotating massive stars between 9 and
120 M. We couple the final state of the STIR simulations with
the SuperNova Explosion Code (SNEC; Morozova et al. 2015),
which follows the explosion through the rest of the star and
through the plateau and nebular phases of the light curves. We
will demonstrate that using a more sophisticated 1D explosion
model to determine a distribution of explosion energies
consistent with 3D simulations imparts nontrivial features to
observables and thus properties inferred from them, high-
lighting the importance of the explosion model used. With this
set of light curves, we make available a new set of theoretical
predictions to compare directly with observations. Furthermore,
we investigate direct correlations between progenitor properties
and light-curve properties. We recover known correlations, and
we quantify the dependence of SN IIP luminosity on the
progenitor iron core mass at time of collapse—thus providing a
way of obtaining core properties from EM signals without the
need for the much rarer neutrino and GW signals.

This paper is laid out as follows: In Section 2, we discuss
the various progenitors, codes, and statistical methods that are
used in this study. Section 3 presents our results: Section 3.1
presents observable properties of our light curves and their
trends across ZAMS mass, Section 3.2 presents preliminary
comparisons to observations of SNe IIP, and Section 3.3
shows correlations found between light-curve and progenitor
properties. In Section 4, we summarize our results and briefly
discuss comparisons to other theoretical light-curve calcula-
tions and prospects for future work.
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2. Methods

For this work, we begin with massive stellar progenitors
evolved up to the point of core collapse in Sukhbold et al.
(2016)using KEPLER. The core collapse and following
explosion or collapse to a BH are simulated using the FLASH
simulation framework (Fryxell et al. 2000; Dubey et al. 2009)
with the STIR model (Couch et al. 2020), the details of which
are discussed in Section 2.2. The outputs of the STIR
simulations are mapped into the SNEC (Morozova et al.
2015, 2016, 2018) to generate bolometric light curves as
discussed in Section 2.3. In Section 2.4 we present the methods
used to analyze statistical relationships between properties of
the progenitor and observables.

2.1. Progenitors

We begin with the 200 nonrotating, solar-metallicity models
of Sukhbold et al. (2016). These models cover a range of ZAMS
masses from 9 to 120 M., and were created with the KEPLER
code assuming no magnetic fields or rotation and single-star
evolution. Progenitors with ZAMS masses above 31 M,
experienced significant mass loss during their lifetimes and did
not explode as SNe IIP, and this is the upper limit on our mass
range (see Sukhbold et al. 2016, for details on their stellar
evolution). The more massive Type I SN (SN I) progenitors are
too few in number to perform a meaningful statistical analysis,
and we defer their analysis for future work. This leaves 136
progenitors producing SNe IIP used in this work.

These progenitors span a wide range of possible CCSN
progenitor properties. Figure 1 shows the mass of the H-rich
envelope as a function of pre-SN radius (top) and the stellar
pre-SN mass as a function of ZAMS mass (bottom). Here we
show only models that successfully exploded in Couch et al.
(2020) and are included in this work. Gaps in this figure—such
as that from about 12 to 15 M.—represent models that failed to
explode and are not included in this work. These progenitors
become mass loss dominated around 23 M, as seen in the
bottom panel of Figure 1. This complicates correlations
between quantities of interest and tends to cause them to
deviate from monotonicity. This is key to investigating
observable trends in light curves across a wide range of
progenitors, as we demonstrate later.

The progenitors in Sukhbold et al. (2016) were further
investigated in Sukhbold et al. (2018) using a set of high-
resolution stellar evolutionary models. They showed that the
features of these progenitors—notably the compactness land-
scape—were not numerical in nature and were present in their
high-resolution models. Similarly, other, recent works have
found similar trends in the pre-SN mass and compactness (e.g.,
Laplace et al. 2021, using MESA; Paxton et al. 2011, 2013,
2015, 2018, 2019). We note that while general trends may be
reproduced, details such as the apparent ‘“chaos” seen in
Sukhbold et al. (2016, 2018) are sensitive to implementation
details of stellar evolution and may not appear in other studies
(Chieffi & Limongi 2020). Using a different set of progenitors
with a different compactness curve would likely affect the
explosion landscape but is not expected to affect the results
presented here.

A key result of systematic 1D studies of CCSNe are the so-
called “islands of explodabilty” (Sukhbold et al. 2016). The
final result of stellar core collapse—a successful or failed
explosion—is not a monotonic function of ZAMS mass.
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Figure 1. Properties of the progenitors of Sukhbold et al. (2016). Top: mass of
the H-rich envelope (M.,,) as a function of pre-SN radius (Rprsn). Bottom:
final stellar mass (Mpesn), after mass loss, as a function of ZAMS mass.

Instead, the explodability of the progenitor is sensitive to the
core structure at the time of collapse. While the placement of
these islands is sensitive to the explosion model and the
progenitors used, it is a feature that has now been seen among
many groups (O’Connor & Ott 2011; Perego et al. 2015;
Sukhbold et al. 2016; Ertl et al. 2016; Ebinger et al. 2019;
Couch et al. 2020). However, studies using exclusively
thermal-bomb-driven explosions uninformed by neutrino-
driven calculations cannot reproduce the explosion/implosion
fate of a progenitor and are insensitive to this feature. Any
systematic study of light curves from populations of SNe must
capture this complex behavior.



THE ASTROPHYSICAL JOURNAL, 934:67 (19pp), 2022 July 20

2.2. FLASH

The CCSN simulations were conducted in Couch et al.
(2020) using the FLASH code framework with the STIR
turbulence-aided explosion model. This model is a new method
for artificially driving explosions in 1D CCSN simulations.
Turbulence is key in simulating successful, realistic explosions,
as turbulence may constitute 50% or more of the total pressure
behind the shock (Murphy et al. 2013; Couch & Ott 2015) and
turbulent dissipation is important for post-shock heating
(Mabanta & Murphy 2018). The combined impact of these
effects is to aid the explosion. The inclusion of turbulent effects
allows for successful explosions in 1D simulations while
reproducing the results seen in 3D simulations from various
groups (Couch et al. 2020) without the need for parameterized
neutrino physics.

STIR models turbulence using the Reynolds-averaged Euler
equations with mixing-length theory as a closure. This model
has one primary scalable parameter, the mixing-length
parameter oy, inherited from mixing-length theory that scales
the strength of convection. The mixing-length parameter has
been tuned to fit STIR simulations to full 3D simulations run
with FLASH and reproduces 3D results seen in FLASH and
other codes, noting particularly good agreement with the 3D
results of Burrows et al. (2020). We use the fiducial value
found in Couch et al. (2020) for the mixing-length parameter,
ap=1.25. STIR also includes four additional diffusion
parameters that control the convective mixing of internal
energy, turbulent kinetic energy, composition, and neutrinos.
As in Couch et al. (2020), all four of these diffusion
coefficients are set to 1/6, a value consistent with comparison
to fully 3D simulation of convection in massive stars (Miiller
et al. 2016). We note that the convective dynamics are
insensitive to the choice of diffusion coefficients and, thus,
impacts on the explosion are negligible (Miiller et al. 2016;
Boccioli et al. 2021). FLASH with the STIR model has the
desirable benefit that there is no need to tune the model to
match a specific observation. Instead, its one primary parameter
is tuned to be consistent with multiphysics 3D CCSN
simulations, reducing the possibility of inserting biases into
the results.

STIR includes neutrino transport using a state-of-the-art two-
moment method with an analytic “M1” closure (Shibata et al.
2011; Cardall et al. 2013; O’Connor 2015; O’Connor &
Couch 2018). We simulate three neutrino flavors: v,, ,, and v,,
where v, combines the p—7 neutrino and antineutrino flavors.
MI transport requires no tuning and has no free parameters (up
to the choice of a closure for the high-order radiation
moments), allowing for truly physics-driven explosions. The
STIR simulations use the now commonly adopted, empirically
motivated “SFHo” EOS for dense nuclear matter (Steiner et al.
2013), which is able to replicate observed neutron star masses.

At the end of the STIR simulations, the explosion energies
for all but the highest-mass progenitors have asymptoted. It is
commonplace in CCSN work to define the explosion energy as
the sum total energy, from all sources, of material that has both
positive total energy and positive velocity (e.g., Bruenn et al.
2016) at the end of the simulation. This is zero during the
stalled shock phase, when all of the material is still
gravitationally bound, and becomes positive if/when the shock
begins to move outward again owing to neutrino heating and
other effects. This energy, once it has reached its asymptotic
value, represents the energy that is injected into the rest of the
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Figure 2. Top: explosion energies realized in the STIR CCSN simulations of
Couch et al. (2020) (black) and the final energy after removing the overburden
energy of the progenitor (blue). Bottom: STIR explosion energy as a function
of the progenitor’s iron core mass.

star to drive the explosion and unbind the stellar material.
When discussing the combined STIR 4+ SNEC simulations, this
is the explosion energy that we will reference. It is important to
note that this energy is different from the energy that would be
used in hydrodynamical modeling (e.g., thermal bomb
explosions). In the thermal bomb regime, a user-set energy is
deposited at t =0 over defined temporal and spatial extent and
assumes that the energy of the shock comes directly from the
core bounce, which is inconsistent with the physical picture of
CCSNe. In the case of high-fidelity simulations, a large amount
of material has already been gravitationally unbound by the
shock when the explosion energy is measured. A thermal bomb
model with the “same” energy injected into the inner zones
would, by the time the same amount of material is unbound, be
less energetic by exactly the binding energy of the material.
Care should be taken when comparing energetics from these
two approaches. While the physics of these two explosion
methods are inconsistent with each other, the thermal bomb
energetics can be made consistent with neutrino-driven
energetics by correcting the bomb energy by the binding
energy of the material between the shock and the proto-neutron
star (PNS) surface (this material is already unbound when the
explosion energy is calculated as above, but in thermal bomb or
piston-driven explosions it is not). Without this correction, a
thermal bomb model using energetics from neutrino-driven
simulations will have less energy available for the explosion,
impacting observables.

Figure 2 shows the explosion energies obtained with STIR
(black) alongside the explosion energy with the progenitor’s
overburden energy removed (blue). The progenitor’s over-
burden energy is the (negative) total energy above the shock
that the explosion must overcome to unbind the star (Bruenn
et al. 2016). The total energy, which we compute as the total
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energy on the computational domain after the explosion has set
in, is closer to what will characterize the ejecta. Gaps in mass,
such as from about 12 to 15 M., indicate regions where
progenitors failed to successfully launch an explosion in STIR.
The bottom panel shows the explosion energy as a function of
the iron core mass. These explosion energies are set largely by
the structure of the cores of their progenitors—effects that can
only be seen by employing neutrino-driven explosions (for
recent examples of the impacts of core structures on explosions
and observable signatures, see Warren et al. 2020; Burrows
et al. 2020). The emerging picture from high-fidelity simula-
tions is that there is no simple relationship between explosion
energy and ZAMS mass, instead requiring multiphysics
simulations to determine robustly (Sukhbold et al. 2016;
Ebinger et al. 2017, 2019; Sukhbold et al. 2018; Burrows et al.
2020; Couch et al. 2020; Ertl et al. 2020). The explosion energy
is more closely related to the pre-SN mass and properties of the
core, such as the compactness parameter or the mass of the
iron core.

2.3. SNEC

We simulate light curves for all of the models that
successfully produced explosions in Couch et al. (2020, see
their Figure 6, middle row). This is all but about 50 of the
original 200 progenitors. This limits our study to light curves
obtained from progenitors that actually explode, allowing us to
explore solely relationships that come from physically driven
explosions. At the end of the STIR simulations, the final states
are mapped into the SNEC (Morozova et al. 2015). SNEC is a
spherically symmetric, Lagrangian, equilibrium flux-limited
diffusion radiation hydrodynamics code and is publicly
available.” Unlike STIR, SNEC does not include any form of
general relativistic gravity, neutrino transport, or dense matter
EOS, which are all important for modeling the explosion but
not necessarily for computing the light curve. Instead, it
follows the basic physics needed for predicting bolometric SN
light curves. SNEC includes Lagrangian Newtonian hydro-
dynamics with artificial viscosity following the formulation in
Mezzacappa & Bruenn (1993) and a stellar EOS following
Paczynski (1983) that includes contributions from radiation,
ions, and electrons with approximate electron degeneracy. This
is used in tandem with a Saha ionization solver that can follow
ionization of any number of present elements. At high
temperatures SNEC uses OPAL Type II opacities (Iglesias &
Rogers 1996) suitable for solar metallicity. These opacities are
supplemented by those of Ferguson et al. (2005) at low
temperatures.

1D modeling cannot properly capture the mixing at
compositional interfaces due to Rayleigh-Taylor and
Richtmyer—Meshkov instabilities, for example. Without mix-
ing, sharp compositional gradients appear that produce features
in light curves that are not observed in nature (Utrobin 2007).
In these mixing processes, shock propagation outward can
cause light elements to mix inward and heavy elements to mix
outward (Wongwathanarat et al. 2015). Of particular impor-
tance is the mixing of radioactive °Ni, whose mixing extent
affects the light-curve properties (Morozova et al. 2015). SNEC
applies boxcar smoothing that smooths out compositional
profiles, simulating mixing and avoiding unphysical light-curve

? http:/ /stellarcollapse.org /SNEC
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Figure 3. Top: mass fraction of 'H (light blue), “He (dark blue), '*C (gold),
190 (red), and >°Ni (black dotted—dashed line). Solid lines show the unmixed
profiles, and dashed lines show the profiles after boxcar smoothing is applied.
The gray shaded region represents the STIR domain, which is originally set to
pure “He prior to smoothing. Bottom: radial density profile for the STIR
domain (solid line) and SNEC mapping (dashed line).

bumps. We use the fiducial parameters of Morozova et al.
(2015) for our boxcar smoothing.

In the present work we follow the ionization of lH, 3He, and
“He, similarly to Morozova et al. (2015). H and He make up the
majority of the energy contributions from recombination
relevant for producing bolometric SN IIP light curves. Our
STIR simulations do not currently track detailed compositional
information in their output. When mapping into SNEC, we fill
the composition in the STIR part of the domain to be pure “He.
This has no noticeable effect on the light curves in this study
(see Agpendix A). Figure 3 shows mass fractions of 'H (light
blue), *He (dark blue), '*C (gold), '°O (red), and *°Ni (black
dotted—dashed line). The solid lines show the unmixed profiles
that are input to SNEC. Notably, the gray region shows the
STIR domain where the composition, prior to mixing, is set to
pure *He. The dashed lines show the composition after boxcar
smoothing is applied. The bottom panel shows the radial
density profile in the STIR domain (solid line) and in SNEC
after mapping (dashed line).

The final, critical ingredient for powering an SN light curve
is radioactive heatin§ from the *°Ni — °Co — °Fe decay
chain. Radioactive *°Ni is produced in explosive nuclear
burning during the first epochs of the explosion in the inner
parts of the star. Hydrodynamic instabilities mix the *°Ni
outward. Gamma-rays and positrons emitted from the decay
process diffuse outward and provide an additional source of
energy. Capturing this is crucial, as, after the end of the plateau
phase, the light curve is powered entirely by this radioactive
decay. SNEC follows the radiative transfer of gamma-rays
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from the *°Ni and °Co decays using the gray transfer
approximation (Swartz et al. 1995), and the resulting energy
release is coupled to the hydrodynamics independently from
the rest of the radiation.

Currently, neither our STIR models used here nor the public
version of SNEC include a nuclear reaction network. To
alleviate this issue, SNEC allows for a user-specified amount of
*Ni to be input by hand throughout a specified mass
coordinate. Sukhbold et al. (2016) simulate the explosions of
these progenitors including a large nuclear reaction network,
and we use the “°Ni yields as a function of explosion energy
from their work (see their Table 4 and Figure 17) to estimate a
mass of *°Ni from that relationship to be distributed by SNEC.
For all but the lightest grogenitors, they find around 0.07 M, of
6Ni. We disperse the >°Ni up to about 75% of the way through
the He shell—avoiding mixing into the H envelope. This
provides control among the progenitors. As the mixing extent
must be set by hand, any further treatment would require a
large parameter study. In recent high-fidelity models, mixing of
radioactive “°Ni into the H-rich envelope is realized (Utrobin
et al. 2015, 2017; Stockinger et al. 2020; Utrobin et al. 2021;
Sandoval et al. 2021) and is expected to occur in at least some
of our models. In Morozova et al. (2015), they showed that
variations in these distributions had little effect on the light
curve, especially on the plateau (see their Figure 6). Goldberg
et al. (2019) show slight variations in the light curve as it falls
off the plateau depending on the extent of mixing (see their
Figure 10). Kozyreva et al. (2019) explore the effects of mixing
prescriptions for °Ni, such as uniform or boxcar, on light
curves, showing differences on the plateau between these
methods. The lack of a reaction network consistently
incorporated into the calculations forms a weakness of the
current work, despite being based on nucleosynthetic calcula-
tions and tuned to our explosion energies. However, the main
results of this work (see Section 3.3) use quantities measured
on the plateau where they are less sensitive to reasonable
variations in “°Ni mass and distribution. Future work will
include nucleosynthesis calculations with the STIR input
models to properly seed the SNEC calculations.

Typically, high-fidelity CCSN simulations do not simulate
the entire star—instead focusing on the inner 15,000 km or so
necessary for launching the explosion. We must stitch the STIR
simulation data, with the explosions developed on the grid,
onto the progenitor pre-explosion profile outside the STIR
boundary (15,000 km) in order to simulate the full star. Below
the shock, mass profiles are taken from STIR. Above the shock
mass coordinate, mass profiles are taken from the progenitor
profiles. These smooth, combined STIR—pre-explosion pro-
genitor profiles are used as the inputs to SNEC as detailed in
Morozova et al. (2015). One advantage of using the STIR
models as the initial conditions to SNEC is that the high-
fidelity EOS and neutrino transport yield a physically realistic
remnant mass to motivate the mass cut—an amount of material
not included in light-curve simulations that should be close to
the remnant mass. We place a mass cut outside the PNS at the
point where the total energy becomes positive—removing both
the PNS and a small amount of still gravitationally bound
material above it (of order 0.0001 M.). For all of the
simulations we use 1000 cells in the SNEC domain using a
geometric grid, as in Morozova et al. (2015), that places higher
resolution in the core around the shock and at the outer domain
to resolve the photosphere. Our grid is slightly modified from
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that of Morozova et al. (2015) to place added resolution in the
core over the already-existing explosion. Simulations were run
until 300 days when possible to adequately sample both the
plateau and the tail for all events.

To simulate CCSNe directly from progenitors, SNEC has the
ability to artificially drive an explosion with a piston or thermal
bomb. One of the primary qualities of our method is to
eliminate the need for this and thus eliminate user input
explosion energies, which can take any range or distribution,
replacing them with physically motivated energetics. However,
for some of the more massive progenitors in this study, the
explosion energies were still increasing by the time the shock
reached the outer boundary. Eventually, energy generation
from neutrino heating and other sources will slow as the shock
expands, and the explosion energies will asymptote. Since
our computational domain is limited to 15,000 km, some
progenitors do not reach their “true” explosion energies. In
order to fully capture the energy of the explosion in STIR, we
integrate the neutrino heating in the gain region at the end of
the FLASH simulations to estimate the asymptotic exli)losion
energy and add the difference—at most about 0.3 x 10°' erg—
as a thermal bomb over the shocked region. These additions are
most necessary in the region of high energy between about 21
and 25 M., where the final energies were still readily
increasing. This energy is what is displayed in Figure 2.

The light curves presented in this work represent those 136
progenitors (of the suite of 200) that both successfully launch
an explosion (Section 2.2) and have light curves that would be
identified as an SN IIP, which we find is simply a mass cut of
Mzams <31 Me,.

2.4. Correlations

We are interested in uncovering correlations between
observable properties of the explosion and properties of the
progenitors. The size and fidelity of the sample allow us to
address these connections necessary to understand light-curve
diversity. Our robust treatment of the explosion physics,
combined with the large sample of progenitors, makes us
uniquely situated to address correlations in a novel way. We
proceed similarly to Warren et al. (2020), wherein the
correlations between observed neutrino and GW signals with
progenitor properties were addressed.

We measure correlations with the Spearman’s rank correla-
tion coefficient. The Spearman correlation coefficient measures
any monotonic relationships between variables, in contrast to
the Pearson coefficient, which measures only linear correla-
tions. It is important that we are able to access nonlinear
relationships that are seen in the data. The combined effect of a
wide range of stellar progenitors with mass-loss effects and
nonlinear, nonmonotonic explosion energetics over the range
of progenitors produces robust and realistic—but not necessa-
rily linear—relationships.

The Spearman coefficient is obtained by first ranking the
data by replacing the values by their indices after sorting. For
example, the data (1.5 M, 1.4 M, 1.6 M) would transform
to (2, 1, 3). Then, the Spearman rank correlation coefficient is
obtained by computing the Pearson correlation of the
transformed data, calculated by

_ Z,‘(xi - f)(y,- )]
G — 200 — 9)?

p ey
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for ranked variables x and y, with ¥ and y being the mean
values. This process of first ranking the data is what allows the
Spearman process to produce a more robust correlation metric.
We note that the above equation is the same as that for the
Pearson correlation coefficient and, when used on nonranked
data, will produce the Pearson correlation coefficient.

A value of +1 (—1) represents an exact monotonic
correlation (anticorrelation), and a value of O indicates no
monotonic relationship. We consider |p| > 0.5 to indicate
strong statistical correlation, 0.3 <|p| <0.5 to be moderate
correlation, and |p| <0.3 to be a weak correlation, as is
standard practice. Correlation coefficients were calculated
using Python’s scipy.stats.spearmanr package.

We strived to limit observables considered to those reason-
ably detectable with current facilities—mostly photometric and
early-time (meaning, in this context, on the plateau but not
requiring observations within days of explosion) features.
Ultimately plateau duration, plateau luminosity, and ejecta
velocity—all at early times—proved to be the most useful and
accessible. We explored numerous properties of the progenitors
for correlations with observables—shell masses, density
structures, core compactness, and envelope mass to name a
few. Most of these parameters had weak relationships with
observable properties. Ultimately, we settled on the mass of the
iron core as the most meaningful and useful progenitor
property, as we will see in the next section.

2.5. Light-curve Fitting

A common method for estimating CCSN progenitor proper-
ties is to construct a grid of models with varying masses,
explosion energies, and *°Ni masses and distributions and
select the progenitor from that grid that best fits an observed
light curve (see Morozova et al. 2018; Martinez &
Bersten 2019; Martinez et al. 2020, for recent examples). We
accomplish this by finding the progenitor that minimizes the
average relative error € of a quantity f,

L 1 = £

where ftf is the observed quantity at time 7, f,+ is the synthetic
quantity at the same time, and N is the number of observational
data points. We compare the synthetic and observed data only
at the times where observational data are available, using the
closest synthetic data to the observational data, which are
always within 0.02 days with the output frequency used with
SNEC. That is, we do not interpolate between observational
data points. We not not consider uncertainties in the explosion
epoch in the current work. We seek models that match both
observed bolometric luminosity and velocity evolution, i.e., we
seek a model minimizing the combined error metric
e(Lsp) + e(Vie)-

Other approaches have been used, such as (historically)
simply fitting by eye, x> minimization (Morozova et al. 2018),
and Markov Chain Monte Carlo methods (Martinez et al.
2020). We implemented several minimization approaches and
found that the above method worked best for the current work.
This is discussed more in Section 3.2.2.
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Figure 4. Log of the plateau luminosity at day 50 for the STIR + SNEC
models.

3. Results

We consider the properties of the bolometric light curves
followed through the end of the plateaus and into the
radioactive tails and the ejecta velocities for models with
ZAMS masses 9 M, < Mzams <31 M, for a total of 136
progenitors. In an effort to find relationships with observables
that are easily detectable, we consider primarily the photo-
metric and spectroscopic properties in the plateau phase. The
primary quantities that we consider are the plateau luminosity
at day 50 (Lso), the plateau duration (z,), and the ejecta velocity
at day 50 (vsg). These quantities are commonly used when
inferring explosion properties from observations (e.g., Litvi-
nova & Nadezhin 1985; Popov 1993; Pejcha & Prieto 2015),
and so their trends from realistic models are of particular
interest. These quantities are easily detectable by current and
next-generation facilities without the need for late-time
observations or particularly high cadences, acknowledging that
the photospheric velocity will not be as easily observable for
most sources. This will allow for a relationship to be obtained
between these quantities and properties of the core of the
progenitor that is both robust and easily detectable with
standard measurements.

3.1. Landscape Properties across ZAMS Mass

Here we present global trends in photometric properties to
test the impact of our explosion calculation on light-curve
features. As we will see, these properties exhibit nonmonotonic
features as a function of ZAMS mass and thus introduce
degeneracy into attempts to infer progenitor properties from
direct comparisons to light curves.

Figure 4 shows the bolometric luminosity at day 50 (on the
plateau for all progenitors) for all masses. The imprint from the
distribution of explosion energies is readily seen in the plateau
luminosities, with more energetic explosions yielding brighter
plateaus. A consequence of this is the highly degenerate
mapping between plateau luminosity and ZAMS mass follow-
ing the explosion energy distribution (Figure 2).
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Figure 5. Plateau duration for the STIR + SNEC models. Two progenitors
between 27 and 28 M., have been removed for fair comparison, as some of
them did not reach the radioactive tail in the simulation time.

Figure 5 shows the plateau duration for the STIR + SNEC
models. We follow Valenti et al. (2016) and Goldberg et al.
(2019) and compute the plateau duration by fitting part of the
light curve near the end of the plateau to a combined Fermi—
Dirac-linear function of the form

f@®

1 + exp((t — t,)/wo)

This avoids biases or inconsistencies that may possibly be
introduced by determining the plateau durations by eye for a
large sample of light curves. The physical significance of the
various fitting parameters is described in detail in Valenti et al.
(2016) and Goldberg et al. (2019). Importantly, the parameter ,
is taken to be the plateau duration and tends to be placed about
halfway through the drop-off of the plateau. Also of interest are
ag and wy, which describe the luminosity drop at the end of the
plateau and the width of the drop, respectively. Fitting was done
using Python’s scipy.optimize.curvefit package starting shortly
before the end of the plateau. For a few of the high-mass models
between 27 and 28 M., time-step restrictions made it difficult to
simulate the explosions into the radioactive tails. Most made it to
the end of the plateau and began to drop off, but two progenitors
were unable to reach the end of the plateau. For the former case,
the fitting is unable to work properly and the plateau duration is
set by hand in a way that was consistent with the fitting routine.
For the two progenitors that could not reach the end of the
plateau—27.4 M, and 27.5 M.—we omit them in comparisons
involving the plateau duration.

Clearly, the distribution of the explosion energies imparts a
resulting morphology on the plateau durations that cannot be
reproduced without energetics informed by neutrino-driven
explosions. We note that many of the plateaus here are quite
long, greater than 150 days or so, which is not very common.
These plateaus originate from very massive progenitors, around
20 M, which are rare in nature. Moreover, these models retain
quite massive H-rich envelopes (see Figure 1) and have
reduced explosion energies (see Figure 2). The combination of

+ (pgy t) + my. 3)
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Figure 6. Time for shock breakout for the STIR + SNEC models.

massive H-rich envelope with reduced explosion energy results
in extended plateaus (Popov 1993). Some uncertainty in the
plateau duration remains through the prescription for setting the
mass and mixing of radioactive “°Ni, as it lengthens the plateau
slightly (Kasen & Woosley 2009; Morozova et al. 2015;
Sukhbold et al. 2016; Goldberg et al. 2019; Kozyreva et al.
2019). These uncertainties, however, should be on the order of
days (see, e.g., Figure 13 from Morozova et al. 2015; Figure 10
from Goldberg et al. 2019; Figure 4 from Kozyreva et al.
2019). It is also somewhat difficult to fairly compare plateau
durations to observed works, as many authors present the
length of the optically thick phase duration (e.g., Gutiérrez
et al. 2017b), which may be smaller than our measurement by
another 5-10 days or more. For these reasons, we defer further
comparisons to observational data of the plateau durations to
future work.

All of this directly impacts the ability to reliably extract
progenitor features from light curves. Without a distribution of
explosion energies that is set by a physically realistic explosion
model, any sort of arbitrary distribution of light-curve proper-
ties may be recovered, even with the same diversity of
progenitors used. While STIR is not a perfect or parameter-free
description of the explosion—no 1D model ever will be—it
matches well with 3D results and provides a large set of such
physically motivated explosion energies for these studies.

Another quantity of interest—albeit not a directly observable
one—is the time to shock breakout. Figure 6 shows the time for
the shock to break out from the stellar surface for the STIR +
SNEC models. This is particularly important, as the time to shock
breakout sets the on-source window for EM follow-ups of GW
and neutrino events from CCSNe (Abbott et al. 2020). The time to
shock breakout is sensitive to the structure of the progenitor and
the explosion energy and may be significantly over- or
underestimated if an incorrect explosion energy is used.

With the next galactic CCSNe and prospects for detecting
their GW and neutrino signals, the time to shock breakout
becomes a measurable quantity through the difference between



THE ASTROPHYSICAL JOURNAL, 934:67 (19pp), 2022 July 20

6F 1l 130.0
_+_ 27.5

ST I 25.0
22.5

Vre [10% km s~ 1]
.

3r ++ .{ g 17.5
J

F» 15.0

oL 4

[ ] TSob = 1 12.5

4+ Observational Data ——

1 1 1 1 1 1
41.50 4175 42.00 4225 42.50

logio (Lisp [erg s71)

10.0

Figure 7. Ejecta velocity at day 50, vsy, vs. the log of the bolometric luminosity
of the plateau at day 50, Ls for all of the exploding progenitors. Simulated data
are colored by the ZAMS mass. Points with error bars are observational data
from Gutiérrez et al. (2017a, 2017b).

GW or neutrino detection time and first light from the SNe. The
SuperNova Early Warning System (SNEWS; Adams et al.
2013; Kharusi et al. 2021) will alert observatories to trigger an
EM follow-up after a neutrino detection, and knowing the
shock breakout time will be an important factor for the follow-
up study. Combined with constraints from the GW detection
(Abbott et al. 2020) and constraints from other EM observa-
tions, the time to shock breakout could help to place additional
constraints on the SN progenitor—provided that adequate
energetics are used. Similarly, constraints on the shock
breakout time after an EM signal may be used to look back
at GW and neutrino data, assuming a nearby event.

The previous figures highlight the strong dependence on the
distribution of explosion energies used to drive the explosion.
This leads to degeneracies when mapping from observables to
ZAMS mass, with many progenitors of varying masses being
capable of producing a given observation.

3.2. Comparisons with Observations

In this section, we compare our light curves to observations
of SNe IIP through both global properties of many SNe and fits
to the light curves of individual SNe IIP that have Myams
determined through pre-explosion imaging data.

3.2.1. Comparison with a Large Observational Sample

Apart from photometric observations, spectroscopic observa-
tions may also be used to constrain progenitor properties. While
we have not computed full synthetic spectra in this work, we can
approximate standard line velocities. Figure 7 shows ejecta
velocity at day 50 (vso) versus plateau luminosity at day 50 (Lsq)
for all progenitors that exploded as SNe IIP. Also plotted are data
presented in Gutiérrez et al. (2017a, 2017b).' All ejecta
velocities here are inferred from the Fe I (A5169) line. In our
models, this velocity is calculated in post-processing as the
velocity of the ejecta at the point where the Sobolev optical

1% Bolometric luminosity data were calculated from M\, measurements at day
50 provided by C. Gutierrez (2022, private communication).
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where g, and m, are the electron charge and mass, ng. is the
number density of iron atoms, 7); is the ionization fraction
relevant for the transition of interest, f = 0.023 is the atomic
oscillator strength, f.xp, is the time since explosion, and ) is
the wavelength associated with the transition. For material in
homologous expansion, this measures the strength of a
particular line (Mihalas et al. 1978; Kasen et al. 2006), and
the point where 75o, =1 has been shown to match better to
observational measurements than the 7=2/3 electron scatter-
ing photosphere (Goldberg et al. 2019; Paxton et al. 2018). To
estimate the ionization fraction, we use a table of 7, as a
function of density and temperature that is now publicly
available in MESA (Paxton et al. 2018).

We choose to use this metric for the velocity evolution because
ultimately we seek to compare with observables. While the
standard 7=2/3 photosphere and its velocity are simple to
compute, they are not simple to observe. On the other hand, the
Fenl A\5169 line is commonly measured. Therefore, we seek to
estimate the location in the ejecta where this line is measured,
using the Sobolev approximation that has been readily used in
recent works (Paxton et al. 2018; Goldberg et al. 2019; Martinez
et al. 2020). However, this approach to estimating the iron line
velocity is ultimately an approximation, and there are physical
uncertainties associated with this method. Paxton et al. (2018)
investigated the effects of the choice of the Sobolev optical depth
used and found relatively small differences when compared to
using the traditional photospheric velocity. In lieu of full spectral
calculations, this method provides an estimate of the desired
velocity, but more work may be needed to robustly compare to
observed ejecta velocities.

The sample of luminosities and velocities from our models
matches well with the observational sample but reaches higher
in luminosity than the observed set. These high-luminosity
events are from some of the higher pre-SN mass stars around
the transition to the mass-loss-dominated regime (see Figure 1).
These high-mass stars are less common than their lower-mass
companions. The highest ZAMS mass stars, those 23 M.,
dominated by mass loss, dip back down and left in luminosity
and velocity space, obtaining similar luminosities but slightly
lower velocities than lower-mass progenitors. Ultimately, we
are able to reproduce observed distributions quite well without
having to tune to observations, instead following the explosions
from self-consistent simulations.

3.2.2. Determination of Progenitor Properties for Individual Events

It is commonplace to estimate SN progenitor parameters using
a grid of hydrodynamical models (i.e., codes similar to SNEC
using a thermal bomb) with varying initial masses, thermal bomb
energies, and other parameters and determining the best-fitting
model (see, e.g., Utrobin & Chugai 2008, 2009; Pumo et al. 2017;
Morozova et al. 2018; Martinez & Bersten 2019; Martinez et al.
2020; Eldridge & Xiao 2019). We attempt to match our set of
explosions with seven observed bolometric light curves from
Martinez & Bersten (2019) and Martinez et al. (2020)."

' Observational data were provided by L. Martinez (2022, private
communication).
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Figure 8. Left: comparison between STIR + SNEC light curves (blue lines) and observations (squares). Right: comparison between STIR + SNEC velocity evolution
(lines) and Fe II A5169 line velocity observations (squares). Solid lines show approximate Fe II A5169 calculated in post-processing, and dashed lines show the proper
photospheric velocity. In both plots, blue lines show best-fit STIR 4+ SNEC models, and gold lines show light curves for ZAMS masses obtained from pre-explosion
imaging (Smartt 2015; Davies & Beasor 2018; Eldridge & Xiao 2019). The gray shaded region shows the first 30 days that we omit from fitting. From top to bottom:
SN 2004A, SN 2004et, SN 2005cs, and SN 2008bk.

Bolometric luminosities are calculated using the bolometric Section 2.5. For the velocity evolution, dashed lines show
correction method of Bersten & Hamuy (2009), which requires approximate Fe Il A\5169 line velocities estimated through the
only BVI photometry to estimate the bolometric correction. methods described in Section 3.2, and solid lines show the

Figures 8 and 9 show observed bolometric light curves (left) proper 7= 2/3 photospheric velocity. Gold lines are for ZAMS
and velocity evolution (right) for (top to bottom) SN 2004A, mass models corresponding to estimates from pre-explosion

SN 2004et, SN 2005¢s, SN 2008bk, SN 2012aw, SN 2012ec, imaging. We use the ZAMS mass estimates from Davies &
and SN 2017eaw. Dark-blue lines show bolometric luminosity Beasor (2018) for SN 2004A, SN 2004et, SN 2008bk, SN
and velocity evolution for best-fit progenitors from our sample 2012aw, and SN 2012ec. Properties of these SNe are discussed
using the STIR + SNEC model using the fitting described in in detail in Martinez & Bersten (2019) and Martinez et al.
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Figure 9. Same as Figure 8, but for (from top to bottom) SN 2012aw, SN 2012ec, and SN 2017eaw.

(2020). For SN 2005c¢s, Davies & Beasor (2018) estimated an
initial mass of about 7 M.—well below the minimum mass we
consider to produce a CCSN—so we use the estimate from
Smartt (2015). Finally, we use the mass estimate for SN
2017eaw from Eldridge & Xiao (2019). In all cases we use the
optimal value of the initial mass when possible, or the closest
value within the reported range that both was on our mass grid
and produced an explosion.

We determine the best-fit progenitor by minimizing the total
relative error of both luminosity and velocity across the entire
light curve after day 30 as discussed in Section 2.5. We also
tried minimizing xz, as was done in Morozova et al. (2018), but
found unsatisfactory performance compared to our method (see
Appendix B for an example using SN 2017eaw). We did not
consider the errors associated with the observations in our
fitting. The inverse variance weighting typically used in x>
minimization gave stronger significance to the radioactive tail,
as this region has much smaller error compared to the plateau.
The result was the selection of models that fit the tail nicely but
fit the plateau very badly. We do not consider data before 30
days after shock breakout, as very early time bolometric
luminosities may be heavily influenced by interactions with
circumstellar material (CSM) for some SNe (Morozova et al.
2018), and we have not included CSM effects in this work.
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We do not expect to find close fits for all observed CCSNe.
In this work, we have progenitors that cover a wide range of
ZAMS masses with explosions driven by turbulence-aided
neutrino radiation hydrodynamics simulations but are limited in
scope in other regards, such as rotation, metallicity, S°Ni mass
and distribution, and possible effects of binarity. Moreover, we
do not have models with masses lower than 9 M, which may
contribute to CCSNe. For example, SN 2008bk is very
underluminous with low expansion velocities and is very
likely a lower-mass progenitor than we have in our set (Mattila
et al. 2008; Van Dyk et al. 2012; Lisakov et al. 2017, 2018;
Martinez & Bersten 2019; O’Neill et al. 2021). With these
limitations in mind, we still find good fits for two observed
CCSNe, notably 16.0 M, for SN 2012aw and 20.0 M, for SN
2017eaw. Our best-fit progenitors tend to have larger ZAMS
masses than those estimated from pre-explosion imaging, for
example, by about 5 M., for SN 2017eaw. This difference of
about 5 M, is not uncommon; Goldberg & Bildsten (2020), for
example, find a possible ZAMS mass for SN 2017eaw of 10.2
M.—also about 5 M, from the value obtained from pre-
explosion imaging. We have presented light curves for which
we do not find particularly good fits for the sake of
completeness and to show the strengths and weaknesses of
the current progenitor set. As previously mentioned, there is no
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Table 1
Best-fit ZAMS Mass and Explosion Energy for SN 2012aw and SN 2017eaw for Our Work and Others in the Literature
SN Quantity This Work 1 2 3 4 5
2012aw Mzams (M) 16.0 23.0 14.35 20.0 >19.6*
Eexp (10°" erg) 0.66 1.40 0.90 0.52 15
2017eaw Mzams (M) 21.9 15.47 - (10.2, 12.7, 17.2, 11.9, 15.7, 19.0)
Eexpl (10" erg) 1.09 1.29 (0.65, 0.84, 1.30, 0.90, 1.10, 1.50)
Note.

? The authors only present ejected mass, so we present that as a lower bound for the ZAMS mass.
For all works we present the best-fit model reported with the exception of five (Goldberg & Bildsten 2020), where we list all presented matches.
References. (1) Martinez & Bersten 2019; (2) Martinez et al. 2020; (3) Morozova et al. 2018; (4) Pumo et al. 2017; (5) Goldberg & Bildsten 2020.

reason for this progenitor set to perfectly fit any specific light
curve.

The differences highlighted in Figures 8 and 9 show the
inherent degeneracy involved in extracting CCSN progenitor
properties. As shown in Goldberg et al. (2019) and Dessart &
Hillier (2019), there are families of progenitor properties that
can lead to a given light curve. This further highlights that
light-curve fitting is extremely degenerate—not only in the
ways explored in previous works, but also in the method used
to drive the explosion. Thus, we do not claim that these
progenitors necessarily reflect the true progenitors; they simply
match the observations given a set of neutrino-driven
explosions. It has become clear that more work is needed to
infer progenitor properties. Matching an observed SN is a
necessary, but not sufficient, condition for inferring progenitor
and explosion properties.

Finally, we summarize our best-fitting models for those light
curves for which we see good agreement (SN 2012aw and SN
2017eaw) in Table 1 alongside various other sources.

3.3. Correlations

In this section, we address the primary goal of this study,
which is to connect light-curve properties to progenitor
properties using a statistically significant sample of simula-
tions. Figure 10 shows the Spearman’s correlation matrix for
the observable quantities and progenitor properties that we
consider for the STIR + SNEC models. Our goal is to assess
direct correlations between individual quantities, and for this
reason we do not consider correlations with ZAMS mass
because it does not correlate with any single quantity. In many
cases, we are simply recovering well-known correlations,
which provide a sanity check on our methods. For example,
relationships between ejecta velocity and luminosity have been
used in SN IIP cosmology (Hamuy 2005; Nugent et al. 2006;
Poznanski et al. 2009). Relationships between photometric and
spectroscopic observables, Lsg, vso, and #,, and properties of the
progenitor, such as Rsg, (the pre-SN progenitor radius in units
of 500 R), in addition to the explosion energy, are used in
scaling relationships, such as those in Popov (1993), Kasen &
Woosley (2009), Sukhbold et al. (2016), and Goldberg et al.

(2019).

We first consider some typical observables of SN IIP light
curves—the plateau luminosity (Lsy), plateau duration (t,), and
ejecta velocity measured through the Fe A\5169 line during the
plateau phase (vsg). These observables correlate with each other
and are expected to correlate with properties of the progenitors,
such as the pre-SN radius (Rsqo) and envelope mass (Me,,). We
observe significant correlations between f,, Lsg, and Rsgp.
Correlations with Rsoy tend to be nonmonotonic (see, e.g.,
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Figure 10. Correlation matrices for observable quantities and properties of the
progenitors for STIR + SNEC. Here we consider the following quantities: iron
core mass (M), progenitor radius (Rsy), explosion energy (Eexp), €jecta
velocity at day 50 (vso) as determined from the Fe Il (A5169) line, log of the
plateau luminosity at day 50 (Lso), and plateau duration (t,). The lower left half
of the matrix shows the Spearman rank correlation coefficient for each pair of
quantities.

Figure 1), which is why they tend to have weaker values of the
correlation coefficient. There is a moderate correlation between
the Lso and vso and the pre-SN mass (Mpesn)-

The explosion energy (E.xpi; see Section 2.2) is expected to
correlate with both progenitor properties and observable
properties. Correlations between E.,p,; and observable proper-
ties are monotonic relationships (i.e., always increasing or
always decreasing, but not necessarily linear), for example,
with a correlation coefficient of 0.97 for Lsg—Ecyp. This is
because in the self-consistent STIR 4+ SNEC models the
explosion energies are the total positive energies of unbound
material as liberated by neutrino heating and are thus correlated
with properties of the core (and thus the rest of the progenitor
properties through stellar evolution) of the progenitor.

Finally, we turn our attention to connections between
properties of the core of the progenitor and observable
quantities. Motivated by connections between explosion energy
and the compact remnant, we explore correlations with the iron
core mass (Mg.). Progenitors with more massive iron cores tend
to liberate more gravitational binding energy, have higher
neutrino luminosities, and ultimately are associated with more
energetic explosions for progenitors that successfully explode.
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Iron Core Mass — Plateau Luminosity Relation
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Figure 11. Iron core mass Mg, vs. plateau luminosity at day 50 Lsy.

The origins of this correlation can be seen in the bottom panel of
Figure 2 through the connection between iron core mass and
explosion energy. This correlation, therefore, once again high-
lights the need for realistic physics in explosion models even in
1D. Equipped with this correlation and the previously mentioned
relationships between explosion energy and observables, one
might expect some imprint of the iron core mass on the
observables. Indeed, for the STIR + SNEC models we observe a
very strong, linear relationship between iron core mass and
plateau luminosity. We note that the compactness parameter &, 5
(O’Connor & Ott 2011) produces a stronger correlation. This,
however, is of little practical use, as the 9—12 M., progenitors
have nearly zero values of the compactness parameter (<0.02),
breaking the trend for the most common progenitors, and the
iron core mass is a more physical quantity (i.e., does not depend
on the exact choice of mass coordinate for the measurement).
The compactness parameter and iron core mass are very tightly
correlated, and both provide a measure of the gravitational
binding energy available in the explosion.

A relationship between iron core mass and SN observables
helps constrain stellar evolution models and characterize the
diversity of SN light curves. Figure 11 shows iron core mass
versus plateau luminosity at day 50. Higher-luminosity events
tend to originate from progenitors with more massive iron
cores. Ultimately, more massive stellar cores collapse to form
more massive PNSs, liberating more gravitational binding
energy in the process and resulting in higher neutrino
luminosities emanating from the PNS surface. All of this
results in a more energetic explosion and a brighter SN. In
Table 2 we report the fits coefficient for the Mg.—Lsg
relationship and the associated variances and covariances for
a linear fit of the form y =ax + b.

This correlation, though simple, has the profound implica-
tion that we can constrain core structure from optical
photometry alone. While not necessarily providing a precise
measure of the iron core mass for individual events owing to
observational error and uncertainties on the fit parameters
from scatter, which we quantify below, it provides a method
for comparing the cores of virtually all SNe IIP simulta-
neously. Furthermore, these parameter estimates can be used
to constrain stellar evolution models for CCSN progenitors.
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Table 2
Linear Fit Parameters for Iron Core Mass (Mg.) to Plateau Luminosity (Lsg) in
Units of 10*

erg s

Mge= aLso + b
a 0.0978
b 1.29
Ou 3.17 x 1073
op 831 x 1073
Oup —233x107°
Ores 3.79 x 1072
R? 0.85

Note. The first two rows show the optimal fit parameters. The next two rows
show the error on each parameter. The next two rows show the covariance
between the parameters and the residual error accounting for intrinsic scatter.
The final row shows the adjusted coefficient of determination R? for the fit.

We find a similar, although slightly weaker, correlation with
the ejecta velocity at day 50, vso, as well, but most LSST
sources will not have a spectroscopic follow-up, so this is of
limited use.

For the case of Sukhbold et al. (2016), fewer massive iron
cores produced explosions, and the explosions had a tendency
to be brighter. Using their data, we find slope and intercept
parameters of 0.033 and 1.344, respectively.

For any relationship of this type to be useful, errors must be
taken carefully into account. The optimal fit parameters were
obtained with a least-squares method. However, it is known
that the covariances provided by least-squares methods are not
appropriate for a wide range of problems, including those with
a non-Gaussian intrinsic scatter among other criteria (see, e.g.,
Clauset et al. 2009, and references therein). For this reason, we
resort to a bootstrapping method (Efron 1979) to obtain the
errors on the fit parameters. This method has the advantage of
making no assumptions about the underlying distribution of the
data. Instead, bootstrapping operates by resampling the data M
times with replacement. For each resampling, a new fit is made
and those fit parameters stored. Then, estimates of the variance
and covariance of parameters u# and v are given by

= ifj(w — u)? 5)
u Mj:1 ]

| M
= MZ:: —u)(v; — v), (6)
where u and v are the optimal fit parameters and each of u;, v;
are the fit parameters for each of the M resamples. These error
estimates tend to be, for this application, somewhat smaller
than parameter errors obtained through a simple least-squares
method. The full set of fit parameters, variances, covariances,
and adjust coefficient of determination are supplied in Table 2.
We note that the fit presented uses the non-log plateau
luminosity as its independent variable, as opposed to the log
luminosity presented in other parts of the paper. Then, given
errors on the fit parameters, it is straightforward to compute the
error on an iron core mass estimate. For a linear fit, we
propagate the combined observational-fit parameter
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Table 3
Estimated Iron Core Masses (Mg.) and Uncertainties (0, ) for a Sample of
Well-observed Supernovae

SN Mg (M) ompe (Mo)
1999em 1.42 0.041
2003hl1 1.34 0.039
2004et 1.48 0.039
20070d 1.50 0.040
2012aw 1.43 0.039
2017eaw 1.49 0.040
uncertainty in the following way:
2 272 2 2 2
Oy, = Talsp + 0L50a2 + 0p + Ores + 2L500up, @)

where Ls is the luminosity at day 50 in erg s~ and where we
have included explicitly the covariance of the fit parameters a
and b. In order to further account for intrinsic scatter in the
relationship, we have included o5, which is the 67th percentile
on the residual distribution # = |Mg, — Mpe|, where Mg, is
computed from the fit.

As an example, we estimate iron core masses for six well-
observed SNe, shown in Table 3. Data for SN 1999em, SN
2003hl, and SN 20070d are taken from Gutiérrez et al.
(2017a, 2017b). Data for SN 2004et, SN 2012aw, and SN
2017eaw are taken from Martinez et al. (2020).

4. Discussion and Conclusions

We present synthetic bolometric light curves for 136 solar-
metallicity, nonrotating CCSN progenitors and consider
statistical relationships for those with ZAMS masses ranging
from 9 to 31 M. These light curves are calculated with SNEC
using the CCSNe simulated in Couch et al. (2020) as the initial
condition. This allows for li%ht curves obtained without a user-
set explosion energy. Our *°Ni yields were fit from Sukhbold
et al. (2016), who exploded the same progenitors with an
expansive reaction network coupled to the evolution. This is
sufficient for the current work, and future work with FLASH
will include detailed nucleosynthesis calculations. These light
curves, as well as the SNEC initial profiles and necessary
parameters, are provided online on Zenodo: doi:10.5281/
zenodo.6631964. We also include the necessary binding energy
of our progenitors to correct STIR’s explosion energy to
produce identical results with a thermal bomb explosion. In the
online resources, we furthermore provide the light curves for
the Mzams > 31 M., models that successfully explode. For
progenitors that explode with STIR, we follow the explosions
in SNEC to produce bolometric light curves, forming a large,
statistically significant set of CCSN light curves that followed
from high-fidelity explosions, allowing us to address relation-
ships between progenitor properties and properties of the
explosion in a statistical way. We consider the full shape of
these light curves, but we also reduce them to characteristic
quantities such as the plateau luminosity, plateau duration, and
ejecta velocity.

Next, we show that global trends in light-curve properties—
such as plateau duration and plateau luminosity—depend
sensitively on the explosion model and require explosion
energies set by robust physics. To demonstrate this, we
compute bolometric light curves for the same set of progenitors
using two different thermal bomb models with SNEC. The
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distribution of explosion energies plays a leading role in setting
the distribution of observables across a large sample of
progenitors. Thus, the ability to identify global trends in
light-curve properties and extract progenitor features from them
depends sensitively on the determination of explosion energy,
underscoring the need for explosions driven with high-fidelity
multiphysics models.

We present a simple best-fit procedure to individual,
observed CCSN light curves (Martinez et al. 2020). The usual
procedure for estimating progenitor properties of observed
CCSNe is to construct a large grid of “hydrodynamical
models”—usually in ZAMS mass, explosion energy, and
perhaps °Ni mass and distribution—and find a best-fit model.
This approach results in known degeneracies, for example, as
shown by Goldberg et al. (2019) and Dessart & Hillier (2019),
wherein there are certain families of progenitor and explosion
parameters (such as ejecta mass, explosion energy, and ejecta
velocity) that produce a given light curve, though pre-explosion
radius measurements may help to resolve this degeneracy
(Goldberg & Bildsten 2020; Kozyreva et al. 2020). Our
approach differs in that we do not control the explosion
properties, instead following a dense set of various ZAMS
mass progenitors from neutrino-driven explosions. While this
does not solve the light-curve degeneracy problem, it could
reduce the size of the family of explosion properties for a given
light curve, as some combinations of explosion energy and
stellar mass are not realizable. Although the explosions are not
calibrated to observed data, we still find great agreement both
when comparing to large samples of events and for some
individual cases. Intriguingly, we find best-fit ZAMS masses
that are greater by as much as &7 M, than those estimated
from pre-explosion imaging in tandem with stellar evolution
modeling. The fact that hydrodynamic models have tended to
find ZAMS masses in agreement with pre-explosion imaging
estimates for these CCSNe (Morozova et al. 2018; Martinez &
Bersten 2019; Martinez et al. 2020) may indicate the danger of
exploring too large a parameter space instead of knowing
which regions are physically realizable, though we note that
some hydrodynamic models have also found noticeably higher
masses in better agreement with our conclusions (e.g., Utrobin
& Chugai 2008, 2009). Ultimately, the set of solutions for
matching a given observed light curve is degenerate, with many
progenitors being capable of producing a given light curve.

Despite the progenitors and explosions in this study not
being crafted to reproduce specific events, we find good
qualitative agreement with SN 2012aw and SN 2017eaw.
Notably, the luminosity evolution of SN 2012aw is fit by our
16.0 M., progenitor remarkably well. The best-fit progenitors
for the observed light curves in this study are not necessarily
the progenitors that these explosions originated from—they
simply reproduce the observables. We have demonstrated that
beyond the now-understood light-curve degeneracies, there are
additional degeneracies inherited from the choice of explosion
model. This result is complementary to the recent findings by
Farrell et al. (2020), where they showed that a star’s final
temperature and luminosity cannot be reliably traced back to
the star’s ZAMS mass—that very different mass stars may end
up at the same temperature and luminosity. These results
together show that much more work is needed before an SN IIP
progenitor’s ZAMS mass can be reliably determined—the path
from stellar birth to death is not a one-to-one function.
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The light curves here present avenues for future work to
explore the discussion surrounding explosion energy. There is
tension between explosion energies realized in 3D CCSN
simulations and energies inferred from fitting hydrodynamical
models to observations. The energies from these two methods
differ, with those inferred from hydrodynamical modeling
being significantly larger (see Murphy et al. 2019, which
discusses this tension in detail). On one hand, 3D simulations
of very massive progenitors have often simply not asymptoted
to their final values within the simulated time. There is also still
physics left to include, such as the recently demonstrated
effects of magnetic fields on neutrino—matter interactions
(Kuroda 2021) and improved neutrino pair-production rates
(Betranhandy & O’Connor 2020) on the explosion mechanism
and neutrino mixing, among other affects, all of which will
likely play a role in setting the final energy. On the other hand,
solutions using thermal bomb models have been shown to be
degenerate, and these studies access a very large area of this
degenerate parameter space and may not necessarily find
physically realizable solutions. The methods described here
could illuminate or even weaken the tension between these
energies by limiting the parameter space spanned by hydro-
dynamical modeling studies and by using physically motivated
explosions.

The final aim of this study is to leverage the large number of
light curves to perform a statistical investigation of relation-
ships between progenitor and explosion properties. Focusing
our investigation on SNe II, 136 light curves, a number of
correlations between the light curves and their progenitors are
found. We find a robust relationship between the iron core mass
of the progenitor and the luminosity on the plateau of the SNe.
This relationship allows one to, for the first time, constrain
properties of the stellar interior from photometry alone. We
provide an analytic approximation to the observed correlation,
including error, for future use with large survey data such
as LSST.

Recently, Curtis et al. (2021) presented synthetic light curves
and spectra from a sample of 62 CCSNe with the 1D PUSH
model (Ebinger et al. 2017) and SNEC to obtain the light
curves. Our results complement one another in several ways—
notably, the size and composition of our samples differ. Our
sample contains 148 light curves—136 of which are analyzed
in this work—from the same metallicity, compared to their 62
light curves from three different metallicity populations ranging
from zero to solar. This allows us to more robustly survey
global explosion properties of progenitors from similar origin
within the nearby universe. These studies together survey a vast
range of progenitor properties. The CCSN simulations in our
work are performed with FLASH using the STIR model.
Notably, STIR requires no tuning to observations, eliminating
the potential for biases when simulating progenitors different
from the one used for tuning. Importantly, the results from
STIR are consistent with 3D simulations. The explosion
energies, explodability, and the shape of each as a function
of ZAMS mass differ nontrivially for STIR and PUSH (see
Couch et al. 2020; Ebinger et al. 2019), and this could impact
global trends in explosion properties. On the other hand, Curtis
et al. (2020) obtained their *°Ni distributions using a nuclear
reaction network in conjunction with their CCSN simulations.
As aforementioned, we estimated *°Ni mass from the explosion
energy, informed by KEPLER yields. Curtis et al. (2021) also
have a larger diversity of SN types through their inclusion of
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sub-solar- and zero-metallicity progenitors. To keep the scope
of the current work contained, we have not produced synthetic
spectra for these explosions, whereas Curtis et al. (2021)
calculated spectra for their SNe.

Similarly, Sukhbold et al. (2016) present a sample of
synthetic light curves of the same statistical size and originating
from the same progenitors using a different parameterized,
neutrino-driven explosion mechanism. Using these simulations,
they present scaling relations to determine explosion and
progenitor properties from observables. The outcomes of these
simulations—both the explosions and resulting light curves—
differ from STIR and this work, having a tendency to be
brighter than those produced in this work. It would be
interesting, for future work, to investigate the effect of these
differences in explosion mechanism when applied to popula-
tions of observed CCSNe and implications for inferred
properties such as explosion energy.

This work is part of a larger context to understand and
predict full multimessenger signals from realistic CCSNe.
Understanding how variations in progenitors’ properties tie into
variations of different observables will ultimately help to
constrain real populations. This work, in tandem with the work
of Couch et al. (2020) and Warren et al. (2020), gives us
explosion fates, energies, neutron star mass distributions,
neutrino signals, approximate GW signals, and now EM
signals for a massive suite of neutrino-driven CCSNe. It is only
through advanced methods—studying in detail all messengers
from first principles simulations—used in tandem with growing
observational data that we can truly understand these
phenomena.
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Software: FLASH (Fryxell et al. 2000; Dubey et al. 2009), appendix, we provide comparisons of select light curves using
SNEC (Morozova et al. 2015, 2016), Pandas (McKinney 2010), thermal bombs with FLASH explosion energies for both the
NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020). modified compositional profile and the original compositional

profile. Figure 12 shows light curves with the unaltered
Appendix A (orange) and modified (blue) compositional profiles for 9, 15.2,
Compositional Dependence 25, and 30 M, progenitors. For the cases considered here, the

difference in luminosity on the plateau is bounded above by 0.1
dex, which has no meaningful effect on the iron core mass
estimates and distributions of Section 3.3.

For our light curves, we modified the compositional profile
in the FLASH part of the domain to be pure “He, as full
composition is not currently tracked in the output. In this
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Figure 12. Light curves using a thermal-bomb-driven explosion with STIR explosion energies using the modified compositional profile (blue) and unaltered profile
(orange). We show light curves for 9, 15.2, 25, and 30 M, progenitors.
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Appendix B
x> Light-curve Fitting

Here we show the effect of using the x> metric to fit light
curves, as opposed to the relative error metric discussed in
Section 2.5. We define the x> metric for an observable quantity
f(¢) as follows:

N (fp = fEP
=y

r=n gr

(BI)

where ¢ are times coinciding with observations, f are synthetic
observables, f are measured observational data, and oy is the
uncertainty on the measurement f at a time 7. Here we

Barker et al.

consider simultaneous fitting of luminosity and velocity data,
i.e., minimizing the combined metric Xz(vFe) + Xz(Lbol).
Figure 13 shows the best-fit model light curve for SN
2017eaw using the x> method (purple) and the relative error
metric (blue). The light curve obtained with the X2 method
visibly fits the observations worse than the light curve obtained
with the relative error approach, due to the inverse square error
weighting in the X2 method. This weighting gives preference to
the tail of the light curve, where observational errors are
reduced.

It is important to note that while x> minimization gave less
satisfactory results for this study, this is likely sensitive to the
details of the data being fit.
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Figure 13. Best-fitting light curve for SN 1017eaw obtained using a x> metric (purple) and relative error metric (blue).
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