

1 **An integrated techno-economic and environmental assessment for carbon**
2 **capture in hydrogen production by biomass gasification**

3 Na Wu^a, Kai Lan^a and Yuan Yao^{a,*}

4 ^a*Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven.*
5 *CT 06514, United States of America*

6 *Corresponding author: Yuan Yao, email: y.yao@yale.edu, telephone: 01 203-432-5475

7

8 **Abstract**

9 Bioenergy with carbon capture and storage (BECCS) is a potential solution addressing climate
10 change, regional wildfires, and circular economy. This study investigates the economic and
11 environmental performance of a BECCS pathway implementing carbon capture (CC) in hydrogen
12 production via gasifying forest residues in the American West, by developing a framework that
13 integrates process simulations, techno-economic analysis (TEA), and life cycle assessment (LCA).
14 The results show that forest residue-derived hydrogen is economically competitive (\$1.52–2.92/kg
15 H₂) compared with fossil-based hydrogen. Incorporating CC increases environmental impact due
16 to additional energy and chemical consumption, which can be mitigated by the energy self-
17 sufficiency design that also reduces CC cost to \$75/tonne of CO₂ for a 2,000 dry short ton/day
18 plant, or using renewable energy such as solar and wind. Compared to electrolysis and fossil-based
19 routes with CC, only BECCS can provide carbon-negative hydrogen and is more favorable
20 regarding human health impact and near-term economics.

21

22 **Keywords**

23 Carbon capture, Hydrogen, Biomass gasification, Techno-economic analysis, Life cycle
24 assessment, BECCS

25

26 **1. Introduction**

27 Bioenergy with carbon capture and storage (BECCS) has the potential to limit global warming
28 by providing net negative greenhouse gas (GHG) emissions (Donnison et al., 2020). The Sixth
29 Assessment Report recently published by IPCC (Intergovernmental Panel on Climate Change)
30 estimated the global cumulative CO₂ removal from BECCS from 2020 to 2100 to be as high as
31 30–780 Gt CO₂ (IPCC, 2021), contributing to the Paris Agreement's target to limit the temperature
32 increase to 1.5 °C (Torvanger, 2019). Furthermore, BECCS provides a non-fossil energy
33 alternative and is vital in promoting energy security (Fajardy and Mac Dowell, 2018). The energy
34 and climate benefits of BECCS have led to increasing interest in the research, development and
35 deployment of BECCS, e.g., biomass carbon removal and storage (“BiCRS”) systems in the United
36 States (Fajardy et al., 2019; Galik, 2020; New Energy and Industrial Technology Development
37 Organization, 2021; Rosa et al., 2021).

38 BECCS cover various biochemical (e.g., ethanol fermentation) and thermochemical
39 conversion pathways (e.g., combustion, gasification, and pyrolysis (Bui et al., 2021; Cheng et al.,
40 2021; Hanssen et al., 2020)). Compared to biochemical pathways, thermochemical pathways have
41 many advantages, such as lower purification requirements and higher flexibility in feedstocks,
42 products, and scalability (Sanchez and Kammen, 2016; Shahbaz et al., 2021). Among different
43 thermochemical pathways, gasification is promising in fuel decarbonization and supporting
44 circular economy (Nunes, 2022). Gasification thermally breaks down biomass into syngas, a
45 mixture of gases such as CO, CO₂, and H₂. H₂ is an essential industrial gas in the oil and chemical
46 industry and a carbon-free fuel (Salkuyeh et al., 2018). Hydrogen from biorenewable sources is
47 considered more environmentally preferable than hydrogen made from fossil fuel resources. It was
48 estimated that solid biomass in the United States can supply 48 million metric ton (MMT) of
49 hydrogen per year (Connelly et al., 2020), which are larger than the hydrogen demand estimated
50 in the literature (22 to 41 MMT/year) (U.S. DOE, 2020a). Given the high tolerance of
51 heterogeneous biomass feedstock, gasification has been explored to convert various waste
52 materials (e.g., municipal solid wastes) to H₂ and valuable chemicals as a circular economy
53 enabling technology (Bhatia, 2014). The process is also less prone to emission problems (e.g.,
54 sulfur-containing emissions compared to the flue gas from post-combustion systems) for carbon
55 capture (CC) since gas cleaning is already an essential part of the process (Neubauer and Liu,
56 2013). Some regional assessments show the advantages of gasification. For example, Baker et al.
57 (2020) assessed different negative emissions pathways (natural solution, BECCS, and direct air
58 capture) and concluded that gasification of the solid biomass types to produce hydrogen has the
59 largest promise for CO₂ removal at the lowest cost in California. Given the growing interest in the
60 circular economy and the urgent need for decarbonization, gasification-based BECCS to produce
61 hydrogen shows great promise in contributing to a more sustainable, circular, and low-carbon
62 society, yet needs more understanding for its impacts directed to these potentials.

63 Previous studies have used techno-economic analysis (TEA) or life cycle assessment (LCA)
64 to assess the economic feasibility and environmental impacts of gasification-based BECCS
65 (Andrea Corti, 2005; Ghiat et al., 2021; Oreggioni et al., 2017; Rhodes and Keith, 2005; Valente
66 et al., 2019). These studies have focused on biomass-based integrated gasification combined cycle

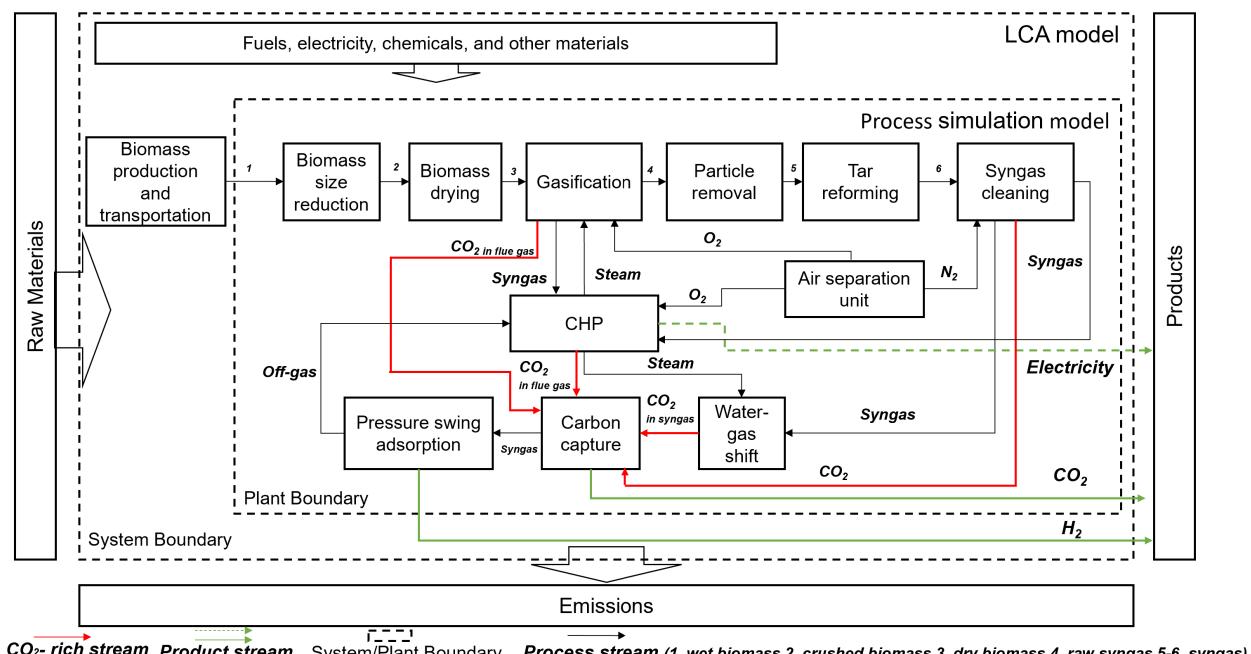
67 (IGCC) systems with post-combustion CC. A systematic literature review on TEA and LCA of
68 biomass gasification for hydrogen production is provided in Supplementary Materials (SM)
69 Section 1 Literature Review. The review shows that most TEA and LCA studies of gasification
70 systems focus on hydrogen production without considering CC. Several studies have mentioned
71 the importance of electricity sources in biomass co-gasification/gasification systems (Arnaiz del
72 Pozo et al., 2021a; Martín-Gamboa et al., 2016), yet the effect of energy supply choices and
73 strategies have not been fully explored. For example, Susmozas et al. (2016) show that adding CC
74 contributes to negative carbon impact but at the price of worse life cycle environmental impacts
75 compared to the system without CC. The authors highlighted the improvement opportunities of
76 minimizing external electricity demand and direct air emissions, although the study does not
77 analyze specific strategies. BECCS systems consume energy not only in the hydrogen production
78 steps such as gasification, product cleaning, and hydrogen purification (Ahmed et al., 2012), but
79 also in the carbon capture steps, which are typically energy-intensive (Roussanaly et al., 2021).
80 The means to provide energy (e.g., internal generation or external supply, renewable or fossil) are
81 important to determine the economics (Arnaiz del Pozo et al., 2021b) and environmental impacts
82 (Susmozas et al., 2016) associated with energy consumption. In addition, few studies (Antonini et
83 al., 2021) have considered impact categories beyond climate impact. Process-level analysis for
84 different energy supply strategies and a broad range of impact indicators are essential in
85 understanding the practical decarbonization role of BECCS with a consideration of other
86 environmental impacts.

87 Not all CO₂ emission sources within a biorefinery are considered in previous LCA and TEA
88 of BECCS systems. For example, Antonini et al. (2021) investigated the life cycle environmental
89 impact of hydrogen production from wood gasification systems by taking the hydrogen end-use
90 into account, which shows possible negative total GHG emissions for fuel cell electric vehicles
91 using hydrogen from biomass. This study includes CO₂ from syngas but not CO₂ from gas cleaning
92 off-gas and energy generation (i.e., steam and electricity). Salkuyeh et al. (2018) performed a TEA
93 and an LCA to compare different gasification systems with CC. Their system captured CO₂ from
94 syngas and flue gas stream of the steam and power generation but did not capture CO₂ in gas
95 cleaning and gasification off-gas. Susmozas et al. (2016) conducted an LCA for hydrogen derived
96 from short-rotation poplar biomass through gasification coupled with CC, and the study only
97 includes CO₂ from the exhaust gas of the boiler. Both Salkuyeh et al. (2018) and Susmozas et al.
98 (2016) captured CO₂ emissions of internal energy generation, but they have not explored how
99 different energy supply strategies would affect CO₂ capture and overall decarbonization potential
100 of their BECCS systems. Holistic understandings of the complex interactions between energy
101 supply strategies and CC implementation are critical to simultaneously maximize the carbon
102 removal potential and energy efficiency of BECCS.

103 This study addresses these knowledge gaps by developing an integrated techno-economic-
104 environmental assessment (TEES) framework. The framework integrates process simulations,
105 TEA, and LCA for gasification-based BECCS using forest residues prevalent in the Pacific
106 Northwest U.S., where large volumes of biomass are available, and there is a pressing need to thin
107 forests to mitigate severe wildfire. Sensitivity and scenario analyses were conducted to identify
108 critical driving factors and understand the impacts of different energy supply strategies. The

109 analysis includes all CO₂ emission sources within a gasification biorefinery and explored how
110 different energy supply strategies would affect CO₂ capture potential and costs. Process-level TEA
111 and LCA examined how recent and future carbon prices and renewable energy access might
112 incentivize BECCS deployment and affect the economic and environmental performances of
113 different system design. In addition to climate impact, the LCA includes other environmental
114 impact categories such as human health, eutrophication, acidification, ecotoxicity, and others.
115 Although this study focuses on forest residues, the knowledge generated from this study can inform
116 future research and large-scale deployment of BEECS for other waste feedstocks or in other
117 regions.

118 2. Methods


119 The TEES framework connects mass and energy flows from process simulation with
120 engineering economics for TEA and life cycle inventories (LCI) for LCA. The process model was
121 developed in Aspen Plus V11 (AspenTech, 2022). The detailed mass and energy balances from
122 engineering rigorous process simulations provide physically sound data for TEA and LCA (Wu et
123 al., 2021). A discounted cash flow rate of return analysis was conducted to calculate economic
124 metrics, including CAPEX, OPEX, and minimum selling price (MSP) of H₂ and CO₂ (which is
125 equivalent to the levelized cost of CC in this study (Lan et al., 2021a). A scenario analysis was
126 developed to address the CC integration and energy supply strategies, which are often overlooked
127 or insufficiently addressed in previous research (Roussanaly et al., 2021). For each scenario, TEA
128 and LCA were performed to evaluate the process efficiency, financial performance, and life cycle
129 environmental impacts. Moreover, a sensitivity analysis was applied to determine the effects of
130 parameter variations on economic performances. The system boundary includes biomass
131 production and transportation and all the unit operations in the biorefinery. CO₂ transportation and
132 storage after CC is not considered.

133 2.1. Process description and simulation

134 Fig. 1 shows the system boundary of the BECCS system in this study. The process model
135 within the plant boundary includes eight component subsystems: biomass preparation (size
136 reduction and drying), gasification, syngas clean-up, water-gas shifting, CC, pressure swing
137 adsorption, air separation unit, and heat power generation. After the feedstocks arrive at the plant,
138 forest residues are crushed to reduce the particle size and dried from 25 wt% moisture (Cao et al.,
139 2020; Haarlemmer, 2015; Motta et al., 2018) down to 10 wt% on a wet basis (Ståhl et al., 2004;
140 Svoboda et al., 2009) to be suitable for gasification. After biomass preparation, dried forest
141 residues are fed to the gasification system. The gasification system employs a dual fluidized bed
142 gasifier/reactor (DFBR) consisting of a gasifier and a combustor. The combustor oxidizes the
143 residual char from the gasifier to provide heat for the endothermic gasification reactions in this
144 study. The gasifier and combustor are interconnected by circulating bedding-olivine with catalyst
145 MgO (Spath and Ringer, 2005). Steam is used as the gasifying agent. The produced syngas and
146 solids exit the gasifier and flow to the cyclone separators, where particulates are removed from the
147 hot gas. The removed particles such as ash are landfilled. The raw syngas leaving the cyclone then
148 passes through the tar removal system, where the tars and other unsaturated hydrocarbon
149 compounds are converted into hydrogen and carbon monoxide using the alumina-based catalyst.

150 Syngas is then further cooled through a heat exchanger by cooling utilities. The Rectisol process®
 151 (developed by Linde and Lurgi) (Burr and Lyddon, 1998; Kohl and Nielsen, 1997; Taheri et al.,
 152 2018) is used to clean the syngas by removing acidic gas (sulfur) for syngas cleaning (see details
 153 in Section 2.1.2). The excess scrubber water is sent for wastewater treatment. After syngas clean-
 154 up, partial syngas (30%) is sent to combined heat and power generation (CHP) for power self-
 155 sufficiency, depending on the scenarios that are discussed in Section 2.1.3. The rest of the syngas
 156 goes through the water-gas shifting process, which includes the high-temperature shift (HTS) and
 157 low-temperature shift (LTS) to convert CO and water into CO₂ and H₂. The gas mixture then goes
 158 to the CC section, which uses amine-based scrubbing solvents for CO₂ capture. To obtain high
 159 purity hydrogen (99.9 vol%), a pressure swing adsorption (PSA) unit is used to separate the
 160 impurities such as CO₂, and CO, CH₄, and other hydrocarbons. The off gas from PSA is sent to
 161 CHP for energy recovery. For the combustion procedures (gasification and CHP), oxyfuel is
 162 deployed using an air separation unit (ASU) to enrich the CO₂ concentration in the flue gas
 163 (Borgert and Rubin, 2013; Kather and Kownatzki, 2011). The air separation unit also provides
 164 nitrogen to the Rectisol process for CO₂ and H₂S separation. The CO₂-enriched flue gas from
 165 gasification and CHP are also sent to the CC section to obtain purified CO₂ (more than 99.5 mol%).

166

167 **Fig. 1.** The system boundary of hydrogen production by biomass gasification with CC. The
 168 system boundary represents the boundary of LCA and TEA. Plant boundary represents the
 169 boundary of process simulation for the biorefinery.
 170

171

172 2.1.1. Biomass characteristics

173 Forest residues in the Pacific Northwest region are used as biomass feedstock, specifically,
 174 Douglas fir and Ponderosa pine (mass ratio 1:1 in this study). The average composition of forest
 175 residues is shown in Table 1.

176

177 **Table 1.** The average composition of forest residues used in this study.

Components	Value
<i>Proximate analysis (wet basis, w%)</i>	
Moisture	25.00
Fixed carbon	13.05
Volatile matter	61.50
Ash	0.45
<i>Ultimate analysis (dry basis, w%)</i>	
Carbon	52.34
Hydrogen	6.35
Oxygen	40.54
Nitrogen	0.14
Sulfur	0.03
Ash	0.60

178 Note: See Table S1 in SM for data references.

179

180 Feedstock particle size affects heat and mass transfer conditions. In general, the smaller particle
 181 size of feedstock contributes to higher syngas yield and conversion efficiency (Parthasarathy and
 182 Narayanan, 2014). However, an increased portion of particles with a size less than 1 mm results in
 183 less hydrogen in the product gas, while the other gases (CO and CH₄) are more along with
 184 increased tar concentration in DFBR (Wilk and Hofbauer, 2013). Fluidized bed gasifiers can
 185 handle fuels with particle diameters varying between 0.1 and 20 mm (Wood and Branch, 1986).
 186 The biomass particle size in this study is assumed to be less than 2 mm after biomass preparation
 187 for favorable conditions for product yields, process efficiency, and energy consumption (Andre et
 188 al., 2020; García-Labiano et al., 2016; Sansaniwal et al., 2017; Shahbaz et al., 2021).

189 *2.1.2. Key modeling assumptions and methods*

190 Process modeling and simulation have served as a powerful tool for analyzing gasification
 191 technology (Meramo-Hurtado et al., 2020). The plant scale in the process model in this study is
 192 assumed to be 1,500 dry short tons/day (1,361 dry metric tons/day) of feedstock. Different scales
 193 were explored to understand the impacts of scales (from 100 to 5,000 dry short tons/day). This
 194 study used the thermodynamic property package Peng-Robinson with the Boston-Mathias
 195 modifications (PR-BM) in Aspen Plus models, which have been widely recommended for high-
 196 pressure hydrocarbon applications such as gas-processing, refinery, and petrochemical processes
 197 (Gonzalez-diaz et al., 2021; Huang and Jin, 2019; Zhang et al., 2021). The process model employs
 198 different property methods to represent the thermodynamics associated with each process section.

199 For example, the “SOLIDS” property method (Aspen Technology Inc., 2001) is used for biomass
200 size reduction since it is designed for solids processing, where biomass and ash were specified as
201 non-conventional components. The HCOALGEN and DCOALGEN models (Aspen Technology
202 Inc., 2001) were used for calculating the enthalpy and density of the solids, respectively. The CC
203 section uses “ELECNRTL” to handle molecular interactions for electrolyte solutions where
204 monoethanolamine (MEA) is the solvent, this method was chosen given its capability to handle
205 mixed solvent systems at any concentration (Aspen Technology Inc., 2001). The “Peng-Robinson”
206 model was used for the syngas cleaning and air separation sections, and this method uses advanced
207 alpha function and asymmetric mixing rules to accurately model polar, non-ideal chemical systems
208 (Bisotti et al., 2021; Yu et al., 2021). An overview of the units and operating conditions in each
209 section is presented as in SM Section S2 Units and Operating Conditions.

210 *2.1.3. Scenario analysis*

211 Separating CO₂ from different gas streams requires additional energy and expenditure, and
212 generates environmental footprints. At the same time, the energy supply and fuel options for
213 hydrogen plants have direct impacts on CO₂ quantity and sources (biomass versus fossil fuels). To
214 investigate these complex interactions in the poly-generation system, the scenario analysis
215 emphasizes CC implementation and energy supply options, as well as evaluates economic metrics
216 and environmental impacts of different scenarios. The results of the scenario analysis will
217 contribute to a better understanding of implementing heat and power supply strategies and the
218 choice of CC. Table 2 outlines the scenario analysis settings adopted in this study.

219

220 **Table 2.** Scenario analysis settings.

	Scenario 1 Fully Electricity Self-Sufficient	Scenario 2 No CC	Scenario 3 Partially Electricity Self-Sufficient	Scenario 4 External Electricity
CC	Yes		Yes	Yes
CHP	Yes	Yes	Yes	
Combusting partial syngas for energy self-sufficiency	Yes			

221 Note: CC: Carbon Capture. CHP: Combined Heat and Power. Energy self-sufficiency: The
222 biorefinery fulfills its energy requirement.

223 Scenario 1 includes CC and CHP, and combusts partial syngas in CHP to reach electricity self-
224 sufficiency. As electricity is a valuable co-product that is often explored in previous TEA and LCA
225 for biomass-based systems (Echeverria et al., 2021; Lan et al., 2021a), 30% of syngas
226 (International Energy Agency Greenhouse gas R&D Programme, 2008) was modeled in Scenario
227 1 that not only meets the internal electricity demand but also provides electricity surplus. Surplus
228 electricity can be sold to the grid and bring additional revenue. For Scenario 2, the hydrogen
229 production system does not consider CC, which is a baseline to understand the impacts of
230 implementing CC in other scenarios. A CHP is deployed to burn the off gas from PSA (e.g.,
231 containing CO, CH₄, and remaining H₂) to reduce the overall system energy requirement. Grid
232 electricity from US West is imported externally if the electricity supply is not sufficient. When

233 surplus electricity is produced (Scenario 1), it is assumed to substitute grid electricity production
234 mix from US West (WECC). Similar to Scenario 1, Scenario 3 considers CC technology to
235 separate CO₂ from different CO₂ sources, including syngas, gasification off-gas, syngas cleaning
236 off-gas, and CHP flue gas (as discussed in S2 of SM). Scenario 3 uses CHP to combust the off gas
237 from PSA, representing a partially energy self-sufficient case (as the electricity generated from
238 CHP is not sufficient to meet all internal electricity demand). Different from Scenario 1, all the
239 syngas product is used for hydrogen production in scenario 3. Scenario 4 adopts CC technology
240 but does not deploy the CHP plant. Instead, a combustor is used to recover heat from PSA off-gas
241 and generate steam. All electricity demand in Scenario 4 is met by external CHP plants. Scenario
242 4 represents the least energy self-sufficient scenario.

243 *2.2. Techno-economic analysis*

244 The mass and energy balance data from the Aspen model were used to size, map the equipment,
245 and build the capital and operating cost profiles. Additionally, the capital costs of gasifiers were
246 collected from the literature (data in Table S2 of SM). Once the capital and operating costs were
247 determined, a discounted cash flow rate of return analysis was conducted to calculate the minimum
248 selling price (MSP) of hydrogen. The minimum selling price (MSP) corresponds to the product
249 selling price that makes net present value (NPV) equal to zero, considering all cash inflows and
250 outflows from capital repayments, operation and maintenance, revenues, income tax rates and tax
251 reductions due to plant depreciation (Nguyen and Clausen, 2019). MSP is widely used by the U.S.
252 Department of Energy (DOE) for funding decisions related to biofuels (U.S. DOE, 2022) and
253 establishing technical targets for hydrogen technology development (U.S. DOE, 2020b).

254

255 *2.2.1. Financial assumptions*

256 Table 3 shows the financial assumptions used in this study, which are consistent with the
257 previous process simulation studies by the U.S. national laboratories (Humbird et al., 2011; Jones
258 et al., 2013; Spath and Mann, 2004). The chemical/material/energy prices are documented in Table
259 S3 in SM. The prices are adjusted to 2018 USD using the Producer Price Index (PPI) (US bureau
260 of labor statistics, 2022).

261

262 **Table 3.** Parameters for the discounted cash flow analysis.

Parameters	Value/assumptions	References
Location	U.S.	
Plant life	30 years	(Spath and Ringer, 2005)
Year of analysis	2018	
Plant capacity	1500 dry short tons of feedstock/day	
Operating hours	8410 hrs/year	(Humbird et al., 2011)
Discount rate	10%	(Spath and Ringer, 2005)
Federal tax rate	21%	(IRS, 2022)
Depreciation method	USA IRS Modified Accelerated Cost Recovery System (MACRS)	(Humbird et al., 2011)
Depreciation Period (Years)		(Humbird et al., 2011)

General Plant	7	
Steam/Electricity System	20	
Equity	40%	(Jones et al., 2013)
Loan Interest	8%	(Jones et al., 2013)
Loan Term, years	10	(Jones et al., 2013)
Working Capital (% of FCI*)	5%	(Humbird et al., 2011)
Salvage Value		(Humbird et al., 2011)
General Plant	0	
CHP Plant	0	
Construction Period (Years)	3	(Spath and Ringer, 2005)
% Spent in Year -2	8%	
% Spent in Year -1	60%	
% Spent in Year 0	32%	
Start-up Time (Months)	6	(Spath and Ringer, 2005)

*FCI is the total fixed capital investment, which is the sum of direct and indirect capital costs.

263

264 2.2.2. Cost metrics

265 This study includes several cost metrics, including CAPEX, OPEX, MSP of H₂, and CC cost.
 266 BECCS often produces multiple products, including hydrogen, carbon dioxide, electricity, and
 267 other products (char and hydrogen sulfide). Determining the cost metrics for a multi-product
 268 system is complicated as the production cost of one product is affected by the revenue of selling
 269 other products made in the same system. Therefore, in this study, we first analyzed CAPEX and
 270 OPEX for the entire BECCS biorefinery without distinguishing the cost of individual products,
 271 then the MSPs of H₂ and CO₂ were quantified to explicitly explore the hydrogen and carbon
 272 economics and their interactions with each other.

273 As a by-product of BECCS, the CO₂ price needs to be determined when estimating the MSP
 274 of hydrogen. Carbon prices have different types, such as an emission trading system, carbon tax,
 275 and carbon offset (The world bank, 2022). For example, in the U.S., the sequestration tax credit
 276 45Q provides tax credits for carbon captured and sequestered, and the credit amount depends on
 277 the type of project (Congressional Research Service, 2021). Different carbon prices have been
 278 reported globally, depending on the policy and specific carbon programs. With this complexity in
 279 mind, this TEA study explored a range of carbon prices reported in the literature, which can help
 280 inform business and investment decisions by evaluating the impact of carbon prices on their
 281 operations, identifying potential revenue opportunities/risks, and testing the potential impact of
 282 climate change policies on their investment portfolios. In addition to geological storage, high
 283 purity CO₂ (more than 99.5%) can be sold as an industrial gas, although geological storage is more
 284 climate favorable and contributes to net carbon removal. Different CC and utilization pathways
 285 have been explored in previous studies, therefore not included in this study (Zimmermann et al.,
 286 2020).

287 2.3. Life cycle assessment

288 2.3.1 Goal and scope

289 We performed an ISO 14040 standard series compliant, attributional LCA of forest residue
290 gasification with and without CC (depending on the scenarios).

291 The functional unit is 1 kg H₂ at a pressure of 30 atm with a purity higher than 99.9%. H₂ is
292 usually the determining product given its mature market, choosing 1 kg H₂ as the functional unit
293 allows for benchmarking and cross-reference comparisons with previous literature (Salkuyeh et
294 al., 2018; Susmozas et al., 2016). To better understand the functionality of CO₂ removal, an
295 additional functional unit of 1 kg CO₂ captured was included, allowing future studies for
296 investigating different carbon negative technologies. The system boundary is cradle-to-gate,
297 including raw material acquisition, transportation, and hydrogen production (see Fig. 1).

298 2.3.2. Inventory analysis

299 The LCI data of background processes were mainly obtained from ecoinvent database v3.6,
300 unit model “allocation, cut-off by classification” (Wernet, et al., 2016), while the forest residue
301 preprocessing and transportation data are from USLCI (National Renewable Energy Laboratory,
302 2012). The preprocessing includes collection, chipping (to improve transportation efficiency), and
303 field drying. The transportation mode is a combination truck powered by diesel, the transportation
304 distance is 68 km that covers the steps from the collection site to the regional storehouse and from
305 the regional storehouse to the conversion facility. The LCI data of the foreground process (e.g.,
306 gasification) are from process simulations discussed above, and have been normalized based on 1
307 kg of hydrogen (the functional unit). The forest residue used for gasification is a product of
308 sustainable forestry of two species (Douglas fir and Ponderosa pine) grown in the Pacific
309 Northwest U.S. The CO₂ captured are assumed to be geologically stored permanently, but the costs
310 and environmental impacts of further transportation to geological sites and storage are not included
311 in this study. The electricity co-product credits (in Scenario 1) were estimated based on the
312 substitution of grid electricity production mix in the western U.S. (WECC). The system expansion
313 is used by following ISO standard 14044 to avoid allocation wherever possible (International
314 Organization for Standardization, 2006). Other products such as biochar and hydrogen sulfide are
315 cut off due to less than 0.1% contribution to the mass of total product outputs.

316 2.3.3. Impact assessment

317 The TRACI 2.1 method (EPA, 2022) was used for life cycle impact assessment (LCIA). The
318 environmental impact categories cover ozone depletion, global warming, acidification,
319 eutrophication, smog formation, human health impacts, ecotoxicity, and fossil fuel depletion.

320

321 **3. Results and discussion**

322 Based on the simulation results (mass and energy balance) of the biomass gasification plant,
323 the TEA and LCA results are reported in this section. The technical parameters of the process
324 model are presented and compared to the literature in the first section for model validation.
325 Subsequently, the economic and environmental performance for different scenarios are presented.
326 In addition, the trade-off impacts of CC integration into hydrogen production are discussed.

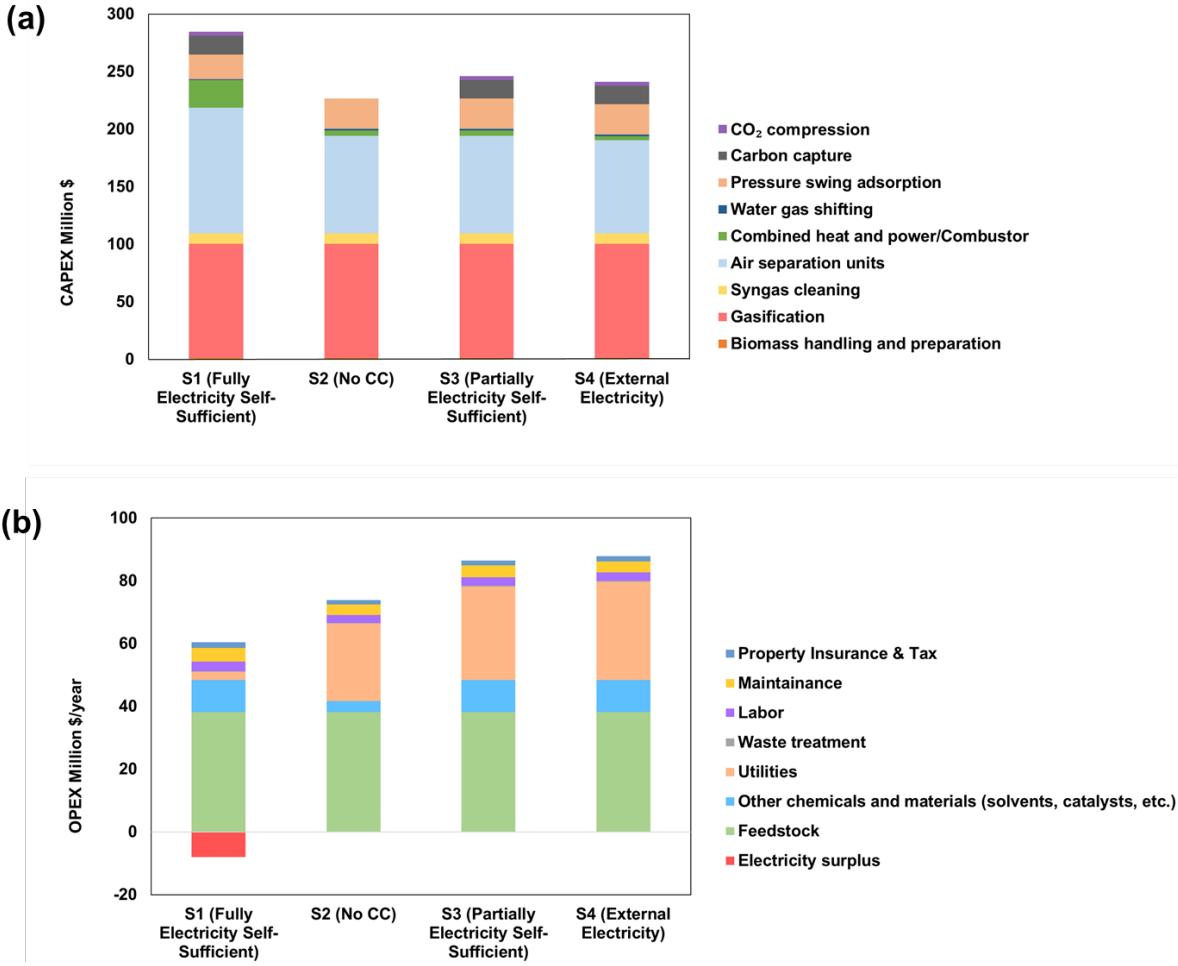
327 3.1. Process model and result validation

328 The syngas composition result of the process simulation is: 40.6 mol% of hydrogen, 14.7 mol%
329 of CO, 10.4 mol% of CO₂, 34 mol% of water, and small amounts of other gases, which are
330 consistent with the literature (Göransson et al., 2011; Pala et al., 2017). The mass and energy
331 balance results are documented in Table S5 in SM. The carbon distribution is reported in Fig. S1
332 in SM and used to calculate the carbon capture rate that reflects the fraction by which carbon
333 emissions are captured relative to the total carbon inputs (Trinks et al., 2020). The carbon capture
334 rate of this study is 87% calculated by dividing the amount of carbon captured by the total amount
335 of carbon inputs, including carbon in biomass and lean MEA solvent (0.3 mol%). The carbon
336 capture rate in this study is higher than the literature value 31%–60% (Fernanda Rojas Michaga et
337 al., 2022; Salkuyeh et al., 2018; Susmozas et al., 2016) because previous studies only considered
338 one or two carbon emission sources (e.g., boilers or syngas). In contrast, this study considers all
339 carbon emission sources in the biorefinery, including gasification, syngas, gas cleaning, and CHP.
340 The carbon capture rate for BECCS in this study is also comparable with direct air capture (e.g.,
341 85.4% and 93.1% depending on the electricity source) (Deutz and Bardow, 2021).

342 3.2. TEA Results

343 3.2.1 Production cost profiles

344 Fig. 2 presents capital expenditure (CAPEX) and yearly operating expenditure (OPEX) for all
345 scenarios. Fig. 2 (a) shows that the gasification section is the major contributor to CAPEX for all
346 scenarios. This agrees with previous studies on biomass gasification for other products such as
347 electricity/hydrocarbon or coal-biomass co-gasification systems (Arnaiz del Pozo et al., 2021b;
348 Schweitzer et al., 2018; Wang et al., 2013). The second-largest contributor to CAPEX is ASU.
349 Similar high CAPEX of ASU have been reported in the literature (AlNouss et al., 2020; Ebrahimi
350 et al., 2015; Ebrahimi and Ziabasharhagh, 2017; Prakash Rao and Michael Muller, 2007; Young
351 et al., 2021). ASU provides pure oxygen instead of air to the combustion process so that a higher
352 CO₂ concentration in the flue gas is obtained, facilitating the following CC. Moreover, ASU
353 provides nitrogen for the gas cleaning section, which benefits the entire system through service
354 sharing. Removing ASU will reduce CAPEX but significantly increase OPEX, given the need to
355 purchase nitrogen and oxygen. To quantitatively explore this impact, a comparison of the BECCS
356 system with and without the ASU was made (Table S7 of SM). It shows that the absence of ASU
357 can increase or decrease the MSP of H₂ depending on the trade-offs between the increased cost for
358 purchased O₂ and N₂ and decreased electricity cost and CAPEX.


359 Across four scenarios, Scenario 1 (Fully Electricity Self-Sufficient) has the highest CAPEX
360 due to the additional capital needed for electricity self-sufficiency. The CAPEX is reduced as the
361 electricity self-sufficiency is decreased in Scenario 3 (partially self-sufficient, 13% reduction of
362 CAPEX) and Scenario 4 (all externally purchased electricity, 15% reduction of CAPEX). The
363 highest CAPEX of Scenario 1 (Fully Electricity Self-Sufficient) is attributed to CHP and ASU.
364 This is due to the higher capacity of CHP and ASU, which burn syngas and provide more oxygen
365 for burning syngas, respectively. The benefit of electricity self-sufficiency is reduced OPEX, as
366 shown in Fig 2.(b). Scenario 2 (No CC) has the lowest CAPEX, given the absence of CC. The

367 incorporation of the CC section increases the total CAPEX by 9% (comparing Scenarios 2 and 3).
368 Another CAPEX contributor is the PSA unit (8%–10% of the total CAPEX). The contribution of
369 the rest of the operating units is minor. For Scenario 1, the annualized CAPEX (calculated using
370 Equation S1 in SM) takes about 36% of the total hydrogen production cost.

371 Compared with CAPEX, OPEX results in Fig. 2(b) show different trends of scenarios. Scenario
372 1 (Fully Electricity Self-Sufficient) has the lowest OPEX because of the lowest utilities achieved
373 by the full electricity self-sufficiency. In contrast, Scenario 4 (External Electricity) has the highest
374 OPEX caused by the highest utilities, most from electricity purchases (75%). Another 25% of
375 utility costs are for heat/cooling energy. The main contributors to electricity consumption are ASU
376 (71%), PSA (18%), CO₂ compression (8%), biomass preparation (2%) and CC (1%). Although CC
377 does not consume much electricity, it is the major contributor to heat/cooling energy (51%),
378 followed by ASU (26%) and gas cleaning (23%). This is why the inclusion of the CC section
379 increases the utilities by 20%, comparing Scenario 3 (Partially Electricity Self-Sufficient) with
380 Scenario 2 (No CC). Including CC also increase the usage of other raw materials such as solvent
381 and water by 1.8 folds.

382 In addition to utilities, the major contributor to the OPEX is feedstock cost (forest residues).
383 The high contribution of biomass feedstock is consistent with previous studies (Li et al., 2020;
384 Wang et al., 2019), where the cost of biomass accounts for at least 30% of the total production
385 cost. Given the large contribution of feedstock costs, forest residue price is included in the
386 sensitivity analysis to understand the impacts of varying feedstock prices.

387

388

389

390

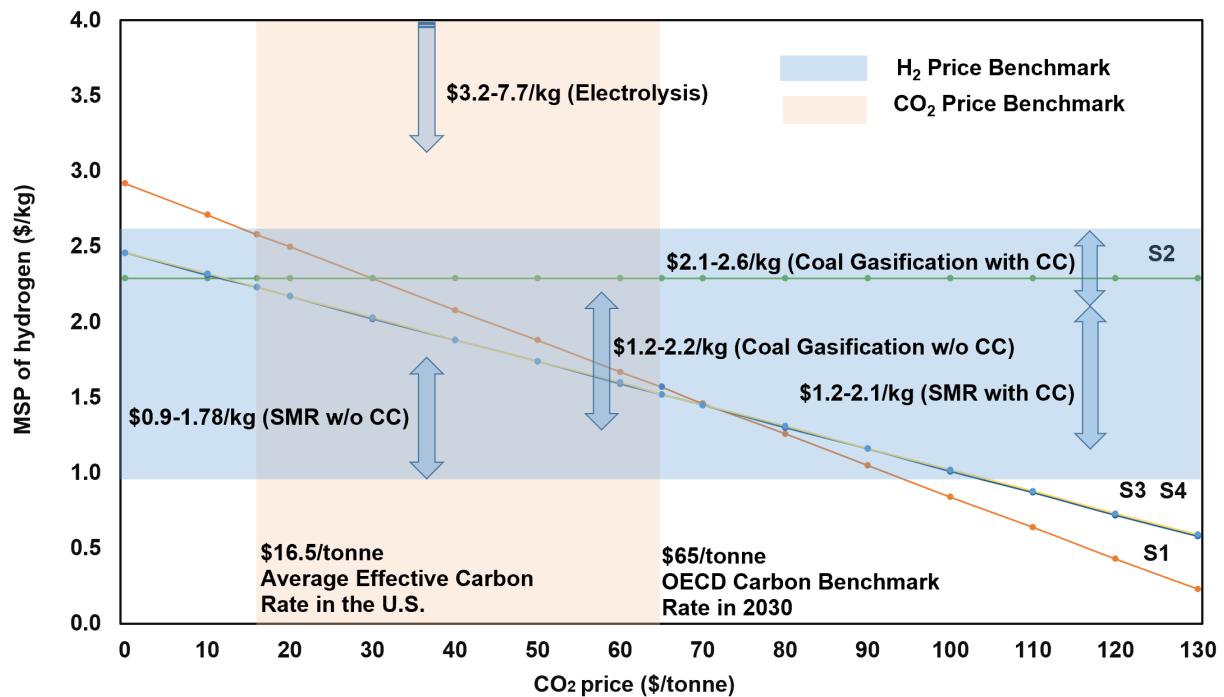
391

Fig. 2. Results of CAPEX (a) and OPEX (b) breakdown for four scenarios.

392

3.2.2. MSP of Hydrogen and carbon price

393


As discussed in Section 2.3, hydrogen cost depends on CO₂ price. Fig. 3 presents the effect of the CO₂ price on the hydrogen MSP in different scenarios. Scenario 2 (No CC) is a flat line as the exclusion of CC. Scenarios 3 (Partially Electricity Self-Sufficient) and 4 (External Electricity) are almost overlapped because of their similar CAPEX and OPEX (as demonstrated in Fig. 2). Blue areas represent benchmarked price ranges of H₂ made from fossil fuels with and without CC. The price of fossil-based hydrogen without CC ranges from \$0.9-1.78/kg H₂ (steam methane reforming, SMR) to \$1.2-2.2/kg H₂ (coal gasification) (IEA, 2020; National Research Council, 2004). When CC is included in SMR and coal gasification, their prices increase to \$1.2-2.6/kg H₂ (IEA, 2020; Parkinson et al., 2019). SMR and coal gasification were chosen as benchmark technologies because SMR contributes to 76% of the global H₂ production and coal gasification contributes to 22% (Lepage, et al. 2021). The carbon price benchmark (orange area in Fig. 3) uses the effective carbon rate of the U.S. reported by OECD (Organisation for Economic Co-operation and Development), which estimates an average carbon price from taxes and emission trading

405 systems in different countries (OECD, 2021). According to this study, the carbon price in the U.S.
406 is \$16.5/tonne in 2021 and the OECD benchmarked rate for the U.S. in 2030 is projected to be
407 \$65/tonne.

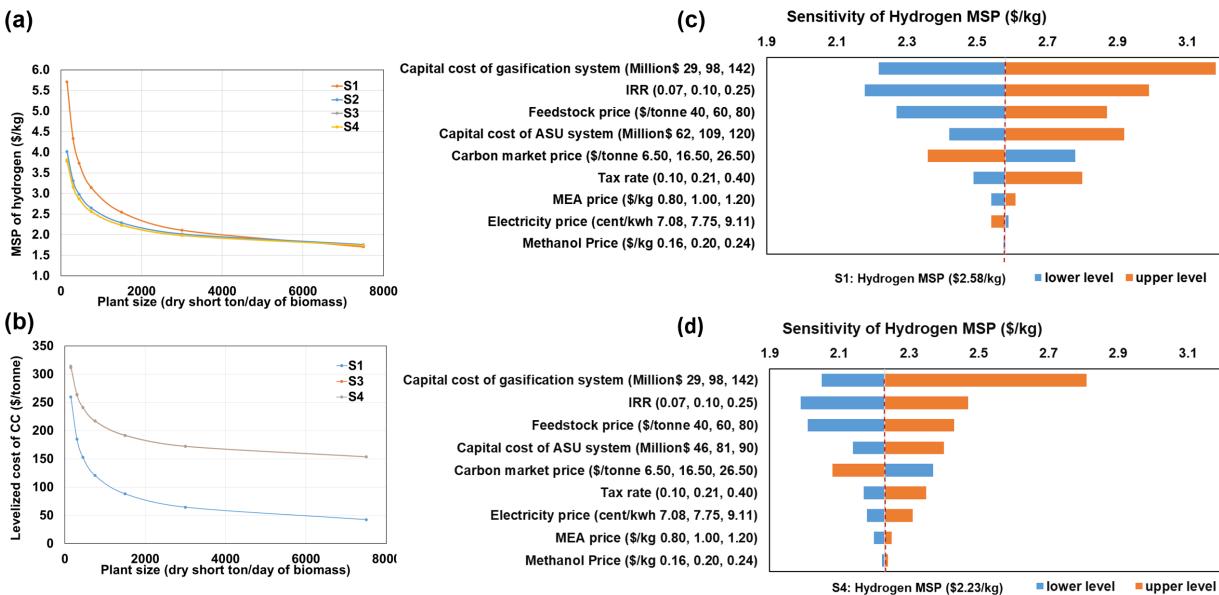
408 Fig. 3 leads to two conclusions. First, forest residue-derived H₂ is economically competitive
409 with current fossil-based H₂ with CC. The MSP of H₂ ranges from \$1.52 – 2.92/kg H₂ when the
410 carbon price is \$0–65/tonne of CO₂. Scenarios 3 (Partially Electricity Self-Sufficient) and 4
411 (External Electricity) have similar MSP to coal-based H₂ with CC at a price of \$0 – 19/tonne of
412 CO₂. With a carbon price higher than \$19/tonne of CO₂, Scenarios 3 and 4 are more economically
413 favorable than coal-based H₂ with CC. Scenario 1 (Fully Electricity Self-Sufficient) has a similar
414 MSP with fossil-based systems (SMR and coal gasification) with CC at \$16.5 – 85/tonne of CO₂.
415 The benchmarked CO₂ price range (\$16.5 – 65/tonne of CO₂) is within the CO₂ price range which
416 makes Scenario 1, 3, and 4 economically feasible. When the CO₂ price is higher than \$89/tonne of
417 CO₂, all scenarios are more economically attractive than fossil H₂ with CC. Retrofitting CC from
418 existing fossil-based facilities can be less feasible than newly built plants (Arasto et al., 2013), thus
419 integrating CC into bio-based H₂ production can be practically attractive. Compared to coal
420 gasification without CC, Scenarios 3 and 4 can be economically feasible with a CO₂ price higher
421 than \$18.3/tonne. Scenario 1 needs a higher CO₂ price (\geq \$33/tonne of CO₂) to achieve similar
422 economic feasibility. Compared to SMR without CC, Scenario 1 needs a price higher than
423 \$55/tonne of CO₂, and Scenarios 3 and 4 need a price higher than \$47/tonne of CO₂. These CO₂
424 prices are still within the benchmarked CO₂ price range (\$16.5 – 65/tonne of CO₂).

425 The second conclusion is that CO₂ prices determine the comparative economic competitiveness
426 of three scenarios with CC. Scenario 1 (Fully Electricity Self-Sufficient) is less economically
427 favorable when CO₂ price is low but more attractive when CO₂ price is higher than \$70/tonne of
428 CO₂. The lower production rate of H₂ can explain this in Scenario 1, where syngas is combusted
429 to achieve electricity self-sufficiency and thus a higher CO₂ price is needed to compensate H₂ loss
430 (see Table S4 in SM for the production rate of H₂ and CO₂ in four scenarios). The incorporation
431 of CC increases the hydrogen MSP by 7% by comparing Scenarios 2 (No CC) and 3 (Partially
432 Electricity Self-Sufficient) at a CO₂ price of \$0/kg. However, revenue from CO₂ more than fully
433 offsets the additional cost of CC when the carbon price is greater than \$12/tonne. Fig. 3 also
434 includes a benchmark for electrolyzed H₂ with a much higher price (~\$3.2-7.7/kg H₂) (IEA, 2020;
435 IRENA, 2020). Forest residue-derived H₂ is much more economically feasible based on the MSP
436 shown in Fig. 3, compared to the current cost of electrolyzed H₂.

437

Fig. 3. Effect of the carbon price on the Minimum Selling Price (MSP) of hydrogen.

442 3.2.3. Sensitivity analysis


443 The sensitivity analysis focuses on understanding the effects of plant sizes and financial
 444 parameters with variations in this TEA. These parameters include financial assumptions that
 445 significantly impact the economic feasibility of biomass conversion technologies in general (Lan
 446 et al., 2021a), and prices of material and energy inputs, as listed in Table S3 in SM.

447 Fig. 4 (a-b) shows the hydrogen MSP and levelized cost of cost when the plant size varies from
 448 150-7500 dry short ton/day of biomass for all scenarios. The levelized cost of CC was estimated
 449 as detailed in Section S7 of SM (Keith et al., 2018), which is the cost required for building and
 450 operating the CC units to the physical amount of CO₂ captured from the given point of hydrogen
 451 plant (IEA, 2021; Roussanaly, 2019; Roussanaly et al., 2021). The CAPEX of different plant sizes
 452 was estimated using a scaling factor of 0.6, the most commonly used value for chemical
 453 engineering unit operations (Tribe and Alpine, 1986). The OPEX components such as materials
 454 cost, waste streams, utilities, maintenance (OPEX except for labor), and production rate have been
 455 assumed proportional to the size of the plant and linearly adjusted based on the plant capacity. The
 456 labor cost was re-calculated for each case by using the empirical relationship between labor and
 457 plant capacity, process section number and operating hours of the plant (Peters, et al., 2003)
 458 (documented in Section 5 in SM). Fig. 4 (a) shows the MSP of hydrogen as a function of the plant
 459 capacity, where the carbon price is fixed at \$16.5/tonne. The slope for plant's capacities between
 460 150 and 2000 dry short ton/day is steep, resulting in a significant decrease in the MSP of hydrogen.
 461 For a plant size beyond 2,000 dry short ton/day, the MSP of hydrogen continues to drop but at a

462 slower rate. On the other hand, increased size requires more biomass feedstock, which may be
 463 limited in some regions. In conclusion, the results show that it may not be optimal to build such
 464 BECCS biorefineries larger than 2,000 dry short ton/day from an economies of scale point of view.

465 Similar trends are observed in Fig. 4(b) where hydrogen price is fixed at the market price of
 466 \$1.26/kg (SMR w/o CC). Economies of scale have a more significant impact on CC cost at smaller
 467 sizes (150 and 1,000 dry ton/day), as shown in Fig. 4 (b). Although CC has a relatively low
 468 contribution (9%) to the total CAPEX, CO₂ is a primary product whose production increases in a
 469 greater proportion than the increase in its cost at smaller sizes. The comparisons among four
 470 scenarios show different trends in Fig. 4 (a-b). In Fig. 4(a), Scenario 1 (Fully Electricity Self-
 471 Sufficient) has the highest hydrogen MSP, and the differences between Scenario 1 and other
 472 scenarios are diminished as plant size increases. However, the opposite trend is observed in Fig.
 473 4(b), where Scenario 1 shows a lower leveledized cost of CC than Scenario 3 (Partially Electricity
 474 Self-Sufficient) and 4 (External Electricity) (Scenario 2 is not included due to the exclusion of
 475 CC), and the differences between Scenario 1 and others increase as plant sizes increases. The
 476 different trends in Fig. 4 (a) and (b) can be explained by different product focuses. When the
 477 product focus is H₂, Scenario 1 is less favorable due to lower H₂ production (Table S4 in SM); on
 478 the contrary, when the product focus is CO₂, scenario 1 is more favorable given lower utility costs
 479 (as demonstrated in Fig. 2.b).

480

481

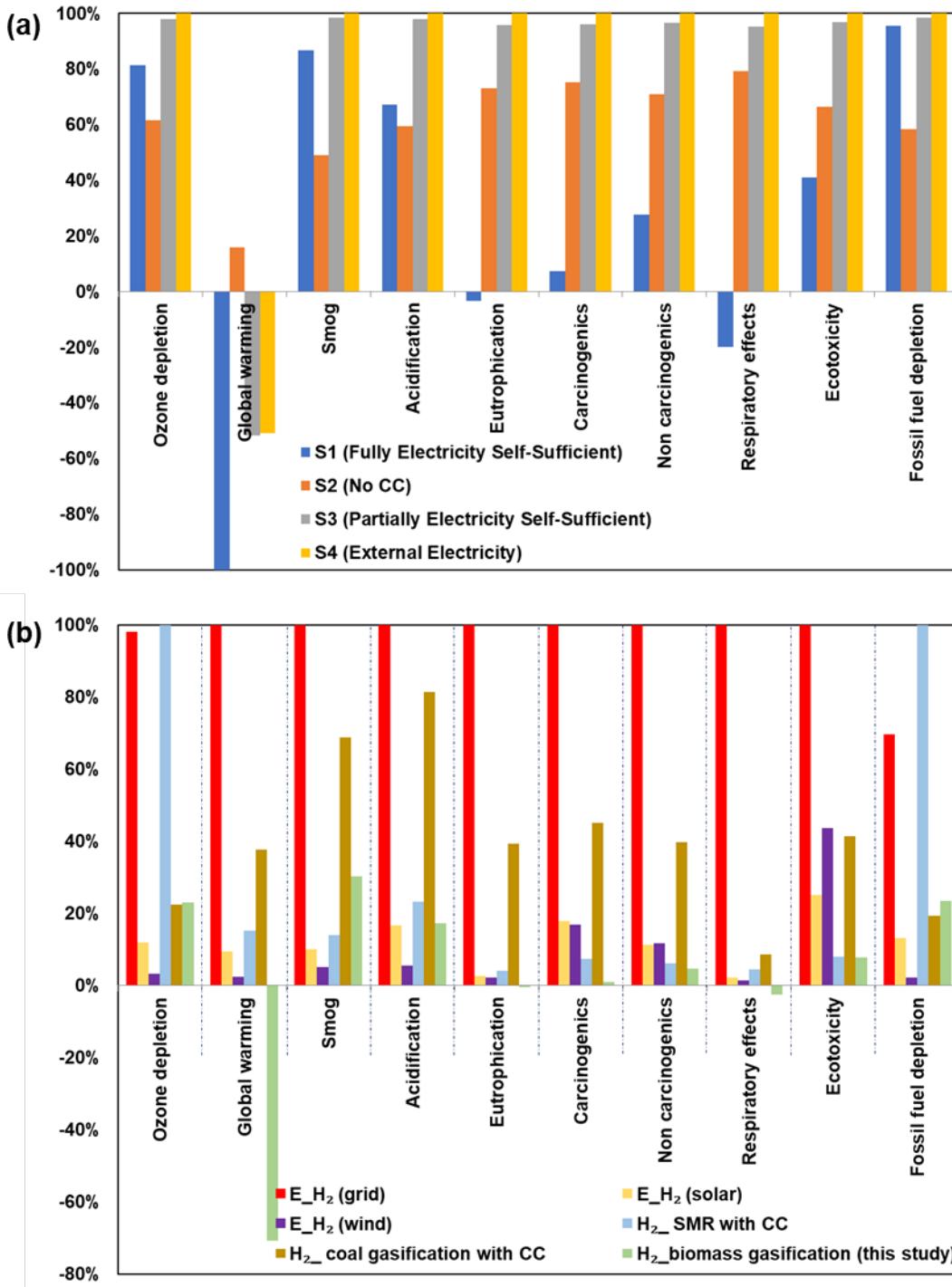
482

483 **Fig. 4.** Effect of plant size on the MSP of hydrogen (a) and the leveledized cost of CC (b);
 484 Sensitivity (considering maximum and minimum values) of key parameters in Scenario 1 (Fully
 485 Electricity Self-Sufficient) (c) and Scenario 4 (External Electricity) (d). References for the
 486 uncertainty range of parameters are in Table S2 and Table S9 in SM.
 487

488 Results from the sensitivity analysis of key parameters are presented in Fig. 4 (c) and (d) for
489 the two extreme cases – Scenario 1 (electricity self-sufficient) and Scenario 4 (all electricity
490 externally supplied). The uncertainty range of each parameter is based on the data points collected
491 from the literature (Table S2 for gasification price data, Table S9 for other parameters). Only
492 parameters with significant impacts on the results are shown (lead to > 0.1% variation of the
493 results). The two scenarios have similar ranks for most parameters except electricity price that has
494 opposite effects in Scenarios 1 and 4. Electricity price affects the revenue of selling surplus
495 electricity in Scenario 1, therefore increasing electricity price decreases hydrogen MSP as shown
496 in Fig. 4 (c). As electricity is purchased externally in Scenario 4, increasing electricity price raises
497 hydrogen MSP, as demonstrated by Fig. 4(d). When more electricity is internally produced
498 (Scenario 1), the biorefinery is more resilient to the electricity price fluctuations, although internal
499 electricity production has higher hydrogen MSP at fixed and moderate electricity prices than other
500 scenarios (discussed in Section 3.2.2 for Fig. 3.). It also indicates that hydrogen economics of
501 Scenario 4 will likely be more sensitive to renewable energy access given its high sensitivity to
502 electricity price. The gasification system can be of the greatest uncertainty due to the wide range
503 of gasifier cost estimates from different literature (Table S2 in SM). The MSP of hydrogen is also
504 sensitive to feedstock price, which is influenced by regional supply and demand, e.g., demand for
505 alternative uses of forest residues such as for electricity and fuel production (Daioglou et al., 2016).
506 The risk of volatilities in the feedstock price can be limited by developing partnerships with
507 biomass suppliers (e.g., forest management corporations, communities) and establishing reliable
508 logistic infrastructure for a steady cost. Following feedstock price, the MSP of hydrogen is also
509 sensitive to CAPEX of ASU. With technology improvement, CAPEX could decrease and improve
510 the economic feasibility of hydrogen. The substantial impacts of CO₂ prices have already been
511 demonstrated in the previous section when CO₂ prices have large variations. Finally, the IRR
512 (discount rate) has a significant impact on the MSP of hydrogen, this is due to the contribution of
513 CAPEX, which directly connects to profitability. The tax rate and prices of chemicals such as
514 MEA and methanol have minor influences on the MSP of hydrogen.

515 3.3. LCA Results

516 3.3.1. Life cycle impact assessment results of hydrogen production pathways


517 Fig. 5 presents the LCA results of four scenarios of biomass gasification and the comparison
518 with alternative hydrogen pathways (hydrogen from electrolysis and fossil fuels with CC) based
519 on the functional unit of 1 kg of H₂. The LCA results of scenarios with 1 kg of CO₂ as the functional
520 unit are shown in SM Fig. S2. Across four scenarios in Fig 5 (a), Scenario 1 has the lowest
521 environmental impacts on GWP, eutrophication, human health impacts (including carcinogenics
522 and non-carcinogenics, and respiratory effects), and ecotoxicity. LCA results with 1 kg of CO₂ show
523 similar trends (see SM Fig. S2). For the other environmental impact categories (i.e., ozone
524 depletion, smog, acidification, and fossil fuel depletion), Scenario 2 without CC is the lowest.
525 Excluding Scenario 1, Scenario 2 has the lowest results across all environmental impact categories
526 compared to Scenario 3 and 4. The higher environmental impacts of Scenarios 3 and 4 are caused
527 by increased energy and chemical (e.g., solvent) consumption, which are further discussed in
528 Section 3.3.2. This observation concludes that implementing CC in gasification increases

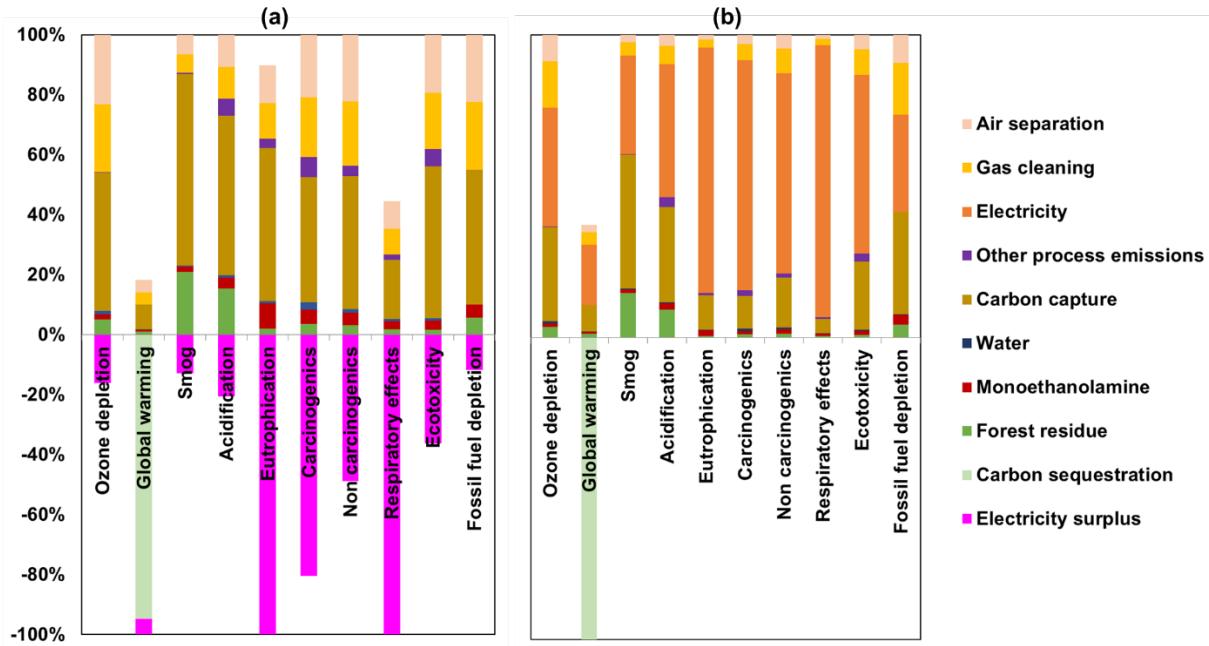
529 environmental impacts in general, however, some increased impacts can be substantially mitigated
530 by self-sufficient energy design.

531 As Scenario 4 relies on imported electricity, environmental impacts could be much lower in
532 the future if the electricity grid is deeply decarbonized or have a high degree of energy generated
533 from renewable and low carbon sources. To explore the impact of renewable energy access, two
534 additional cases were analyzed for Scenarios 1 and 4 by changing the electricity source from the
535 current grid to solar and wind. The results are shown in SM Fig. S5 and S6. The results show that
536 the electricity self-sufficiency design in Scenario 1 is no longer preferable when the biorefinery
537 has access to solar and wind in Scenario 4. These results highlight the need to consider renewable
538 energy access in biorefinery energy design. Future research can investigate the impacts of different
539 grid decarbonization scenarios (Phadke et al., 2020; United States Department of State, 2021) on
540 the optimal energy design of BECCS.

541 The life cycle GWP of Scenario 2 (No CC) is 2.99 kg CO₂ equivalent per kg of hydrogen
542 produced (see LCIA results in Table S6). The life cycle GWP results in other scenarios are negative
543 (-18.8, -9.71 and -9.56 kg CO₂ equivalent per kg of hydrogen produced for S1, S3 and S4,
544 respectively), which are attributed to carbon sequestered by biomass and captured by CC.
545 Scenario 1 has more negative GWP than Scenario 3 and 4 since electricity is self-sustained instead
546 of importing from the grid and CO₂ emissions from internal electricity generation in Scenario 1
547 are also captured. This result highlights the climate benefits of self-sufficient energy design for
548 forest residue-based BECCS.

549

551 **Fig. 5.** Comparisons of LCA results of 1 kg of hydrogen (a) from biomass gasification in four
552 scenarios. (b) from biomass gasification in Scenario 1, electrolysis (E represents electrolysis),
553 and fossil-based routes.


554 Currently, hydrogen can be made from different sources, including SMR, coal gasification,
555 and electrolysis from different electricity sources (grid, solar, and wind). In Fig. 5 (b), the life cycle
556 environmental profiles of different hydrogen production alternatives based on harmonized

557 literature data (Al-Qahtani et al., 2021) are compared at the same functional unit, 1 kg of hydrogen.
558 The result shows that forest residue-derived H₂ has the greatest decarbonization potential
559 compared to other alternative technologies. BECCS is the only pathway that provides carbon-
560 negative hydrogen. Compared to fossil-based H₂, forest residue-derived H₂ has the lowest impacts
561 across all categories, except ozone depletion, smog, and fossil fuel depletion, where BECCS has
562 slightly higher results than SMR/coal gasification with CC, indicating the co-benefits of BECCS
563 in decarbonizing and reducing environmental impacts of current hydrogen production. Compared
564 to H₂ relying on grid electricity, forest residue-derived H₂ has lower impacts across all categories.
565 Compared with H₂ using wind and solar, BECCS has advantages in GWP, eutrophication,
566 ecotoxicity, and human health impacts, including carcinogenics, non-carcinogenics, and
567 respiratory effects. However, these advantages do not hold for the other environmental impact
568 categories (ozone depletion, smog, acidification, and fossil fuel depletion). Note that electrolyzed
569 H₂ is much more expensive (3.2-7.7\$/kg H₂) than other options, and the significant cost reduction
570 needs to come from electrolyzer and electricity (IRENA, 2020), which are challenging to achieve
571 in the near term. Therefore, BECCS is still a promising option for clean H₂ in the near term.

572 *3.3.2. Contribution analysis*

573 Contribution analysis of life cycle environmental impacts is presented in Fig. 6 (a) and (b) for
574 the two extreme cases – Scenario 1 (electricity self-sufficient) and Scenario 4 (all electricity
575 externally supplied), respectively. CC is the most significant contributor to all impacts in Scenario
576 1 due to its direct emissions (e.g., the solvent MEA evaporation, wastewater generation) and
577 intensive energy and solvent consumption. For Scenario 4, electricity is the largest contributor,
578 and this contribution can be reduced using renewable energy such as solar and wind (SM Fig. S3
579 and S4). Other than CC and electricity, gas cleaning and air separation make significant
580 contributions to the results in both scenarios. The impacts of biomass feedstock production (shown
581 as “Forest residue” in Fig. 6) are two-fold. On the one hand, it accounts for a favorable
582 decarbonization contribution (i.e., negative percentage) due to CO₂ sequestration during biomass
583 growth. On the other hand, biomass production has a relatively high contribution to smog
584 formation and acidification that can be caused by machinery energy consumption (e.g., diesel) at
585 the landing system where the forest residues are preprocessed (e.g., chipping) and logging residue
586 are extracted (Ranius et al., 2018).

587
588
589

591 **Fig. 6.** Contribution analysis for the life cycle environmental impacts of S1 Fully Electricity
592 Self-Sufficient (a) and S4 External Electricity (b).

593 **3.4. Trade-offs and Co-Benefits between economics and environmental impacts**

595 The different options for designing biomass gasification as a BECCS pathway result in trade-
596 offs and co-benefits between economics and environmental impacts. Incorporating CC into
597 biomass gasification increases environmental impacts, CAPEX, and OPEX; however, it improves
598 H₂ economics, depending on the CO₂ prices. Energy self-sufficiency allows for maximum
599 decarbonization and mitigates the increase in environmental burdens of the BECCS system caused
600 by the CC section. It also reduces CC costs. These are co-benefits of energy self-sufficiency in
601 carbon economics and environmental impact. However, energy self-sufficiency worsens H₂
602 economics due to the reduced H₂ production, and this is a trade-off. Decision-makers could use
603 these results to support the economic mechanisms for shared investments in CC and hydrogen
604 production, considering carbon price, hydrogen and electricity market, and environmental
605 regulations.

606 More recently in 2022, the U.S. government published the Inflation Reduction Act of 2022
607 that presents the modified credit for carbon dioxide capture in section 45Q and credit for producing
608 clean hydrogen in section 45V, although two credits cannot be used simultaneously (The U.S.
609 Government Publishing office, 2022). Based on 45Q, carbon credits can be as high as \$85/ton CO₂
610 which can bring the MSP of H₂ to \$1.2/kg in S1, \$1.4/kg in S3 and S4 as shown in Fig. 3 (estimated
611 in 2018 \$). Based on 45Q future section in 2023, H₂ credits can be up to \$3.00 for life cycle GHG
612 emissions less than 0.45 kg CO_{2e}/kg H₂, \$1.00 for 0.45–1.5 kg CO_{2e}/kg H₂, \$0.75 for 1.5–2.5 kg
613 CO_{2e}/kg H₂, and \$0.60 for 2.5–4.0 kg CO_{2e}/kg H₂ (The U.S. Government Publishing office, 2022).
614 Hence, in this study, the potential credit is \$3.00 for S1, S3, and S4 (life-cycle GWP for S1, S3,

615 and S4 is -18.8, -9.71, -9.56 kg CO_{2e}/kg H₂, respectively, see Section 3.3.1), and is \$0.60 for S2
616 (no CCS) (life-cycle GWP 2.99 kg CO_{2e}/kg H₂). In this way, even without CO₂ credit (CO₂ price
617 equals \$0 in Fig. 3), the MSP of hydrogen can be profitable. Hence, in the future, with 45V credit,
618 hydrogen production with BECCS has huge potential economic advantage over current fossil fuel-
619 based hydrogen. This also highlights the importance of biomass gasification hydrogen plant to
620 meet the life-cycle GWP requirement of 0.45 kg CO_{2e}/kg H₂ for securing hydrogen credits.

621

622 4. Conclusion

623 This study evaluated the techno-economic feasibility and environmental impacts of
624 gasification-based BECCS using forest residues. Different scenarios of incorporating CC and
625 energy supply strategies were investigated and compared. Specifically, this study used the
626 integrated TEES framework to quantify the economic and environmental impacts of such a
627 biorefinery for its full decarbonization potential at the process level. The production cost profiles
628 (CAPEX and OPEX) were built based on the mass and energy balance results from process
629 simulations. While it is evident that the gasifier and ASU are the major CAPEX contributors, the
630 inclusion/exclusion of ASU has different impacts on CAPEX and OPEX given its complex
631 interactions with other process units in the biorefinery, highlighting the need for future research
632 focusing on integrated system design instead of separated components.

633 CC incorporation increases the CAPEX and decreases the OPEX, yet resulting in an overall
634 higher cost of hydrogen under current carbon prices. However, with increasing interest in
635 decarbonization, CC incorporation is attractive and economically competitive with fossil-based
636 routes with CC. Electricity supply is a crucial factor in determining OPEX. When electricity self-
637 sufficiency is fully reached, the OPEX is lower than other cases. However, this benefit is not
638 sufficient to fully offset CAPEX contribution to the overall economics when the carbon price is
639 lower than \$70/tonne of CO₂.

640 The economic competitiveness of forest residue-derived H₂ depends on CO₂ prices and H₂
641 price benchmarks. For example, the MSP of H₂ are \$1.52 – 2.92/kg H₂ with carbon prices of \$0–
642 65/tonne of CO₂. Compared to fossil-based H₂ with CC, BECCS with a self-sufficient electricity
643 supply provides competitive H₂ at price higher than \$16.5/tonne of CO₂; while BECCS with partial
644 or no internal electricity supply has similar MSP of H₂ with coal gasification at low carbon prices
645 \$0–19/tonne of CO₂ and MSP of H₂ with SMR at higher carbon prices (\$19–89/tonne of CO₂).
646 Compared to fossil-based routes without CC, higher CO₂ prices are needed for BECCS to be
647 economically competitive, but these prices are still within the benchmarked CO₂ price range (\$16.5
648 – 65/tonne of CO₂). In a conclusion, with the benchmarked CO₂ prices, forest residue-derived H₂
649 is economically competitive compared with fossil-based H₂.

650 The H₂ from BECCS is more cost-effective than current electrolyzed H₂ regardless of CO₂
651 prices. The sensitivity analysis shows that a plant size of 2,000 dry short ton/day can be the upper
652 threshold to take advantage of the economies of scale. Establishing a reliable logistic infrastructure
653 of feedstock supply is essential since hydrogen MSP is highly sensitive to forest residue price.

654 The LCA shows that implementing CC in gasification increases environmental impacts in
655 general. Such increases can be mitigated by the self-sufficient energy design, although the self-
656 sufficient design is no longer preferable when the biorefinery has access to solar and wind. The
657 environmental impacts are dominated by electricity consumption and CC process. Hydrogen
658 production via BECCS is a promising option in the near term in terms of economics and the co-
659 benefits of decarbonizing and reducing environmental impacts in categories such as human health
660 impacts (including carcinogenics, none-carcinogenics, and respiratory effects), comparing to
661 fossil-based and electrolysis routes for hydrogen production. The complex trade-offs in technical,
662 economic, and environmental aspects highlight that the deployment of this BECCS approach
663 requires endeavors from multi-players from analytics, sustainable biomass supply, chemistry and
664 engineering, business, and policies.

665 This study has several limitations. CO₂ transportation and storage are not included in this study,
666 but the LCA and TEA results can lay the foundation for future research comparing BECCS with
667 other CO₂ removal technologies. Another limitation is the exclusion of hydrogen transportation
668 that needs to be determined based on hydrogen end use. Risks associated with the handling, storage
669 and transportation of both H₂ and CO₂ (e.g., hydrogen safety and gas transportation infrastructure
670 issues) should be considered in future research. It should also be noted that other carbon capture
671 technologies exist and can be used in combination with gasification (e.g., chemical looping).
672 Although this study only includes MEA given its high technology maturity, the integrated
673 modeling approaches presented in this work can be applied to gasification coupled with other
674 carbon capture technologies. Besides, this study uses process-based TEA and attributional LCA,
675 therefore economic constraints related to market supply and demand, as well as competing uses of
676 these biomass are not considered. Future research can include resource constraints and market
677 effects using ecological-economic models and consequential LCA. Moreover, this study focuses
678 on the Pacific Northwest, BECCS systems built in other regions may have different environmental
679 and economic performance due to differences in biomass characteristics and background
680 processes. The geographic variations should be considered when applying the conclusions of this
681 study to other regions. Similar to previous LCAs of forest residue utilization (Lan et al., 2022,
682 2021b), the impacts of forest residue removal on forest ecosystems, e.g., biodiversity, forest fires,
683 and soil carbon, are not included due to the lack of quantitative data. Recent studies (Dale et al.,
684 2017; James et al., 2021; Kenderdine et al., 2022) show potential benefits/risks of removing
685 excessive forest residues, which should be explored in future LCA and TEA.

686

687

688 **Declaration of Competing Interest**

689 The authors declare no competing financial interests to affect the work reported in this paper.

690

691 **Acknowledgments**

692 The authors acknowledge the funding support from Carbon Containment Lab at Yale
693 University and the U.S. National Science Foundation. The authors thank Dean Takahashi,
694 Anastasia O'Rourke, Isabella Akker and Alec Wallace for the initial study conceptualization and
695 their support of data collection. The authors also thank SunGas Renewables and ThermoChem
696 Recovery International Inc. for providing gasification data and information in support of this study.
697 This material is based upon work supported by the National Science Foundation under Grant No.
698 2038439. Any opinions, findings, and conclusions or recommendations expressed in this material
699 are those of the author(s) and do not necessarily reflect the views of the National Science
700 Foundation.

701

702 **Supplementary materials**

703 Supplementary material associated with this article is available.

704 **References**

705 Ahmed, T.Y., Ahmad, M.M., Yusup, S., Inayat, A., Khan, Z., 2012. Mathematical and
706 computational approaches for design of biomass gasification for hydrogen production: A
707 review. *Renew. Sustain. Energy Rev.* 16, 2304–2315.
708 <https://doi.org/10.1016/j.rser.2012.01.035>

709 Al-Qahtani, A., Parkinson, B., Hellgardt, K., Shah, N., Guillen-Gosálbez, G., 2021. Uncovering
710 the true cost of hydrogen production routes using life cycle monetisation. *Appl. Energy* 281,
711 115958. <https://doi.org/10.1016/j.apenergy.2020.115958>

712 AlNouss, A., McKay, G., Al-Ansari, T., 2020. A comparison of steam and oxygen fed biomass
713 gasification through a techno-economic-environmental study. *Energy Convers. Manag.* 208,
714 112612. <https://doi.org/10.1016/j.enconman.2020.112612>

715 Andre, Y., Zhao, Z., Yoshida, A., Abudula, A., Guan, G., 2020. Small-scale biomass gasification
716 systems for power generation (< 200 kW class): A review. *Renew. Sustain. Energy Rev.*
717 117, 109486. <https://doi.org/10.1016/j.rser.2019.109486>

718 Andrea Corti, L.L.C.M., 2005. Life cycle assessment (LCA) of an integrated biomass
719 gasification combined cycle (IBGCC) with CO₂ removal. *Energy Convers. Manag.* 46,
720 1790–1808. <https://doi.org/10.1016/j.enconman.2004.08.010>

721 Antonini, C., Treyer, K., Moioli, E., Bauer, C., Schildhauer, T.J., Mazzotti, M., 2021. Hydrogen
722 from wood gasification with CCS-a techno-environmental analysis of production and use as
723 transport fuel. *Sustain. Energy Fuels* 5, 2602–2621. <https://doi.org/10.1039/d0se01637c>

724 Arasto, A., Tsupari, E., Kärki, J., Pisilä, E., Sorsamäki, L., 2013. Post-combustion capture of
725 CO₂ at an integrated steel mill - Part I: Technical concept analysis. *Int. J. Greenh. Gas
726 Control* 16, 271–277. <https://doi.org/10.1016/j.ijggc.2012.08.018>

727 Arnaiz del Pozo, C., Cloete, S., Jiménez Álvaro, Á., 2021a. Carbon-negative hydrogen:
728 Exploring the techno-economic potential of biomass co-gasification with CO₂ capture.
729 *Energy Convers. Manag.* 247. <https://doi.org/10.1016/j.enconman.2021.114712>

730 Arnaiz del Pozo, C., Cloete, S., Jiménez Álvaro, Á., 2021b. Carbon-negative hydrogen:
731 Exploring the techno-economic potential of biomass co-gasification with CO₂ capture.
732 *Energy Convers. Manag.* 247. <https://doi.org/10.1016/j.enconman.2021.114712>

733 Aspen Technology Inc., 2001. Part Number : Aspen Physical Property System 11 . 1 September
734 2001.

735 AspenTech, 2022. AspenONE V11 getting started guide [WWW Document]. URL
736 <https://www.aspentechn.com/en/getting-started-guides>

737 Baker, S.E., Stolaroff, J.K., Peridas, G., Pang, S.H., Goldstein, H.M., Lucci, F.R., Li, W.,
738 Slessarev, E.W., Pett-Ridge, J., Ryerson, F.J., Wagoner, J.L., 2020. Getting to neutral:
739 Options for negative carbon emissions in California.

740 Bhatia, S.C., 2014. Advanced Renewable Energy Systems, (Part 1 and 2), 1st Editio. ed. WPI
741 Publishing, New York. <https://doi.org/https://doi.org/10.1201/b18242>

742 Bisotti, F., Galeazzi, A., Galatioto, L., Masserdotti, F., Bigi, A., Gritti, P., Manenti, F., 2021.
743 Implementing robust thermodynamic model for reliable bubble/dew problem solution in
744 cryogenic distillation of air separation units. *Int. J. Thermofluids* 10, 100083.
745 <https://doi.org/10.1016/j.ijft.2021.100083>

746 Borgert, K.J., Rubin, E.S., 2013. Oxyfuel combustion: Technical and economic considerations
747 for the development of carbon capture from pulverized coal power plants. *Energy Procedia*
748 37, 1291–1300. <https://doi.org/10.1016/j.egypro.2013.06.004>

749 Bui, M., Zhang, D., Fajardy, M., Mac Dowell, N., 2021. Delivering carbon negative electricity,

750 heat and hydrogen with BECCS – Comparing the options. *Int. J. Hydrogen Energy* 46,
751 15298–15321. <https://doi.org/10.1016/j.ijhydene.2021.02.042>

752 Burr, B., Lyddon, L., 1998. A COMPARISON OF PHYSICAL SOLVENTS FOR ACID GAS
753 REMOVAL Barry Burr and Lili Lyddon Bryan Research & Engineering, Inc. Bryan, Texas,
754 U.S.A. Water.

755 Cao, L., Yu, I.K.M., Xiong, X., Tsang, D.C.W., Zhang, S., Clark, J.H., Hu, C., Ng, Y.H., Shang,
756 J., Ok, Y.S., 2020. Biorenewable hydrogen production through biomass gasification: A
757 review and future prospects. *Environ. Res.* 186, 109547.
758 <https://doi.org/10.1016/j.envres.2020.109547>

759 Cheng, F., Small, A.A., Colosi, L.M., 2021. The levelized cost of negative CO₂ emissions from
760 thermochemical conversion of biomass coupled with carbon capture and storage. *Energy*
761 *Convers. Manag.* 237, 114115. <https://doi.org/10.1016/j.enconman.2021.114115>

762 Congressional Research Service, 2021. The Tax Credit for Carbon Sequestration (Section 45Q).

763 Connelly, E., Penev, M., Milbrandt, A., Roberts, B., Gilroy, N., Melaina, M., Connelly, E.,
764 Penev, M., Milbrandt, A., Roberts, B., Gilroy, N., Melaina, M., 2020. Resource Assessment
765 for Hydrogen Production Resource Assessment for Hydrogen Production.

766 Daioglou, V., Stehfest, E., Wicke, B., Faaij, A., van Vuuren, D.P., 2016. Projections of the
767 availability and cost of residues from agriculture and forestry. *GCB Bioenergy* 8, 456–470.
768 <https://doi.org/10.1111/gcbb.12285>

769 Dale, V.H., Parish, E., Kline, K.L., Tobin, E., 2017. Forest Ecology and Management How is
770 wood-based pellet production affecting forest conditions in the southeastern United States ?
771 *For. Ecol. Manage.* 396, 143–149. <https://doi.org/10.1016/j.foreco.2017.03.022>

772 Deutz, S., Bardow, A., 2021. swing adsorption. *Nat. Energy* 6, 203–213.
773 <https://doi.org/10.1038/s41560-020-00771-9>

774 Donnison, C., Holland, R.A., Hastings, A., Armstrong, L.M., Eigenbrod, F., Taylor, G., 2020.
775 Bioenergy with Carbon Capture and Storage (BECCS): Finding the win–wins for energy,
776 negative emissions and ecosystem services—size matters. *GCB Bioenergy* 12, 586–604.
777 <https://doi.org/10.1111/gcbb.12695>

778 Ebrahimi, A., Meratizaman, M., Reyhani, H.A., Pourali, O., Amidpour, M., 2015. Energetic,
779 exergetic and economic assessment of oxygen production from two columns cryogenic air
780 separation unit. *Energy* 90, 1298–1316. <https://doi.org/10.1016/j.energy.2015.06.083>

781 Ebrahimi, A., Ziabasharhagh, M., 2017. Optimal design and integration of a cryogenic Air
782 Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and
783 economic analyses. *Energy* 126, 868–885. <https://doi.org/10.1016/j.energy.2017.02.145>

784 Echeverria, D., Venditti, R., Jameel, H., Yao, Y., 2021. A general Life Cycle Assessment
785 framework for sustainable bleaching: A case study of peracetic acid bleaching of wood
786 pulp. *J. Clean. Prod.* 290, 125854. <https://doi.org/10.1016/j.jclepro.2021.125854>

787 EPA, 2022. Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts
788 (TRACI) [WWW Document]. URL <https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci>

789 Fajardy, M., Koberle, A., Mac Dowell, N., Fantuzzi, A., 2019. BECCS deployment: a reality
790 check. *Grantham Inst.* 28, 1–14.

791 Fajardy, M., Mac Dowell, N., 2018. The energy return on investment of BECCS: Is BECCS a
792 threat to energy security? *Energy Environ. Sci.* 11, 1581–1594.
793 <https://doi.org/10.1039/c7ee03610h>

794 Fernanda Rojas Michaga, M., Michailos, S., Akram, M., Cardozo, E., Hughes, K.J., Ingham, D.,

796 Pourkashanian, M., 2022. Bioenergy with carbon capture and storage (BECCS) potential in
797 jet fuel production from forestry residues: A combined Techno-Economic and Life Cycle
798 Assessment approach. *Energy Convers. Manag.* 255, 115346.
799 <https://doi.org/10.1016/j.enconman.2022.115346>

800 Galik, C.S., 2020. A continuing need to revisit BECCS and its potential. *Nat. Clim. Chang.* 10,
801 2–3. <https://doi.org/10.1038/s41558-019-0650-2>

802 García-Labiano, F., Gayán, P., de Diego, L.F., Abad, A., Mendiara, T., Adánez, J., Nacken, M.,
803 Heidenreich, S., 2016. Tar abatement in a fixed bed catalytic filter candle during biomass
804 gasification in a dual fluidized bed. *Appl. Catal. B Environ.* 188, 198–206.
805 <https://doi.org/10.1016/j.apcatb.2016.02.005>

806 Ghiat, I., Mahmood, F., Govindan, R., Al-Ansari, T., 2021. CO₂ utilisation in agricultural
807 greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture
808 systems within the energy, water and food Nexus. *Energy Convers. Manag.* 228, 113668.
809 <https://doi.org/10.1016/j.enconman.2020.113668>

810 Gonzalez-diaz, A., Sánchez Ladrón de Guevara, J.C., Jiang, L., Gonzalez-diaz, M.O., Díaz-
811 herrera, P., Font-palma, C., 2021. Techno-environmental analysis of the use of green
812 hydrogen for cogeneration from the gasification of wood and fuel cell. *Sustain.* 13, 1–14.
813 <https://doi.org/10.3390/su13063232>

814 Göransson, K., Söderlind, U., He, J., Zhang, W., 2011. Review of syngas production via biomass
815 DFBGs. *Renew. Sustain. Energy Rev.* 15, 482–492.
816 <https://doi.org/10.1016/j.rser.2010.09.032>

817 Haarlemmer, G., 2015. Simulation study of improved biomass drying efficiency for biomass
818 gasification plants by integration of the water gas shift section in the drying process.
819 *Biomass and Bioenergy* 81, 129–136. <https://doi.org/10.1016/j.biombioe.2015.06.002>

820 Hanssen, S. V., Daioglou, V., Steinmann, Z.J.N., Doelman, J.C., Van Vuuren, D.P., Huijbregts,
821 M.A.J., 2020. The climate change mitigation potential of bioenergy with carbon capture and
822 storage. *Nat. Clim. Chang.* 10, 1023–1029. <https://doi.org/10.1038/s41558-020-0885-y>

823 Huang, F., Jin, S., 2019. Investigation of biomass (pine wood) gasification: Experiments and
824 Aspen Plus simulation. *Energy Sci. Eng.* <https://doi.org/10.1002/ese3.338>

825 Humbird et al., 2011. *Process Design and Economics for Biochemical Conversion of
826 Lignocellulosic Biomass to Ethanol.*

827 IEA, 2021. Levelised cost of CO₂ capture by sector and initial CO₂ concentration, 2019 [WWW
828 Document]. URL <https://www.iea.org/data-and-statistics/charts/levelised-cost-of-co2->
829 <https://www.iea.org/data-and-statistics/charts/levelised-cost-of-co2-concentration-2019>

830 IEA, 2020. Global average levelised cost of hydrogen production by energy source and
831 technology, 2019 and 2050 [WWW Document]. URL <https://www.iea.org/data-and->
832 [charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-](https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-)
833 [and-technology-2019-and-2050](https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050)

834 International Energy Agency Greenhouse gas R&D Programme, 2008. Co-Production of
835 Hydrogen and Electricity By Coal Gasification With CO₂ Capture-Updated Economic
836 Analysis 528.

837 International Organization for Standardization, 2006. Environmental management — Life cycle
838 assessment — Requirements and guidelines [WWW Document]. URL
839 <https://www.iso.org/standard/38498.html>

840 IPCC, 2021. *Climate Change 2021 The Physical Science Basis Summary for Policymakers*
841 Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental

842 Panel on Climate Change, Climate Change 2021: The Physical Science Basis.
843 IRENA, 2020. Green Hydrogen Cost Reduction,
844 <https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis---Biomass-for-Power-Generation>.
845 IRS, 2022. Tax rate [WWW Document]. URL <https://www.irs.gov/publications/p542>
846 James, J., Page-dumroese, D., Busse, M., Palik, B., Zhang, J., Eaton, B., Slesak, R., Tirocke, J.,
847 Kwon, H., Mountain, R., Service, U.S.F., 2021. Forest Ecology and Management Effects of
848 forest harvesting and biomass removal on soil carbon and nitrogen : Two complementary
849 meta-analyses. *For. Ecol. Manage.* 485, 118935.
850 <https://doi.org/10.1016/j.foreco.2021.118935>
851 Jones, S., Meyer, P., Snowden-Swan, L., Susanne, K.J., Pimphan, M., Snowden-SwanLesley,
852 Asanga, P., Eric, T., Abhijit, D., Jacob, J., Cafferty, Jones, S., Meyer, P., Snowden-Swan,
853 L., 2013. Process design and economics for the conversion of lignocellulosic biomass to
854 hydrocarbon fuels: Fast pyrolysis and hydrotreating bio-oil pathway. *Energy* 97.
855 Kather, A., Kownatzki, S., 2011. Assessment of the different parameters affecting the CO₂
856 purity from coal fired oxyfuel process. *Int. J. Greenh. Gas Control* 5, S204–S209.
857 <https://doi.org/10.1016/j.ijggc.2011.05.025>
858 Keith, D.W., Holmes, G., St. Angelo, D., Heidel, K., 2018. A Process for Capturing CO₂ from
859 the Atmosphere. *Joule* 2, 1573–1594. <https://doi.org/10.1016/j.joule.2018.05.006>
860 Kenderdine, M., Green, T., Kaufman, A., Britton, N., Butler, J., 2022. Surveying the BECCS
861 Landscape.
862 Kohl and Nielsen, 1997. Gas purification, Elsevier.
863 Lan, K., Ou, L., Park, S., Kelley, S.S., English, B.C., Yu, T.E., Larson, J., Yao, Y., 2021a.
864 Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis
865 biorefineries with blended feedstocks in the southeastern United States. *Renew. Sustain.*
866 *Energy Rev.* 143, 110881. <https://doi.org/10.1016/j.rser.2021.110881>
867 Lan, K., Ou, L., Park, S., Kelley, S.S., Nepal, P., Kwon, H., Cai, H., Yao, Y., 2021b. Dynamic
868 life-cycle carbon analysis for fast pyrolysis biofuel produced from pine residues:
869 implications of carbon temporal effects. *Biotechnol. Biofuels* 14, 1–17.
870 <https://doi.org/10.1186/s13068-021-02027-4>
871 Lan, K., Zhang, B., Yao, Y., 2022. Article Circular utilization of urban tree waste contributes to
872 the mitigation of climate change and eutrophication Circular utilization of urban tree waste
873 contributes to the mitigation of climate change and eutrophication. *One Earth* 5, 944–957.
874 <https://doi.org/10.1016/j.oneear.2022.07.001>
875 Li, G., Cui, P., Wang, Y., Liu, Z., Zhu, Z., Yang, S., 2020. Life cycle energy consumption and
876 GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen
877 process. *Energy*. <https://doi.org/10.1016/j.energy.2019.116588>
878 Martín-Gamboa, M., Iribarren, D., Susmozas, A., Dufour, J., 2016. Delving into sensible
879 measures to enhance the environmental performance of biohydrogen: A quantitative
880 approach based on process simulation, life cycle assessment and data envelopment analysis.
881 *Bioresour. Technol.* 214, 376–385. <https://doi.org/10.1016/j.biortech.2016.04.133>
882 Meramo-Hurtado, S.I., Puello, P., Cabarcas, A., 2020. Process analysis of hydrogen production
883 via biomass gasification under computer-aided safety and environmental assessments. *ACS*
884 *Omega* 5, 19667–19681. <https://doi.org/10.1021/acsomega.0c02344>
885 Motta, I.L., Miranda, N.T., Maciel Filho, R., Wolf Maciel, M.R., 2018. Biomass gasification in
886 fluidized beds: A review of biomass moisture content and operating pressure effects.
887

888 Renew. Sustain. Energy Rev. 94, 998–1023. <https://doi.org/10.1016/j.rser.2018.06.042>

889 National Renewable Energy Laboratory, 2012. U.S. Life Cycle Inventory Database." [WWW
890 Document]. URL <https://www.lcacommmons.gov/nrel/search>

891 National Research Council, 2004. The Hydrogen Economy, The Hydrogen Economy.
<https://doi.org/10.17226/10922>

892 Neubauer, Y., Liu, H., 2013. Biomass gasification. Biomass Combust. Sci. Technol. Eng. 106–
894 129. <https://doi.org/10.1533/9780857097439.2.106>

895 New Energy and Industrial Technology Development Organization, 2021. Biomass Carbon
896 Removal and Storage (BiCRS).

897 Nguyen, T. Van, Clausen, L.R., 2019. Techno-economic analysis of polygeneration systems
898 based on catalytic hydrolysis for the production of bio-oil and fuels. Energy Convers.
899 Manag. 184, 539–558. <https://doi.org/10.1016/j.enconman.2019.01.070>

900 Nunes, L.J.R., 2022. Biomass gasification as an industrial process with effective proof-of-
901 concept: A comprehensive review on technologies, processes and future developments.
902 Results Eng. 14, 100408. <https://doi.org/10.1016/j.rineng.2022.100408>

903 OECD, 2021. Carbon Pricing in Times of COVID-19 WHAT HAS CHANGED IN G20
904 ECONOMIES? [WWW Document]. URL https://read.oecd-ilibrary.org/view/?ref=1113_1113772-m02sbpd0to&title=Carbon-Pricing-in-Times-of-
905 COVID-19-What-Has-Changed-in-G20-Economies

906 Oreggioni, G.D., Singh, B., Cherubini, F., Guest, G., Lausselet, C., Luberti, M., Ahn, H.,
907 Strømmann, A.H., 2017. Environmental assessment of biomass gasification combined heat
908 and power plants with absorptive and adsorptive carbon capture units in Norway. Int. J.
909 Greenh. Gas Control. <https://doi.org/10.1016/j.ijggc.2016.11.025>

910 Pala, L.P.R., Wang, Q., Kolb, G., Hessel, V., 2017. Steam gasification of biomass with
911 subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus
912 model. Renew. Energy 101, 484–492. <https://doi.org/10.1016/j.renene.2016.08.069>

913 Parkinson, B., Balcombe, P., Speirs, J.F., Hawkes, A.D., Hellgardt, K., 2019. Levelized cost of
914 CO 2 mitigation from hydrogen production routes. Energy Environ. Sci. 12, 19–40.
915 <https://doi.org/10.1039/c8ee02079e>

916 Parthasarathy, P., Narayanan, K.S., 2014. Hydrogen production from steam gasification of
917 biomass : Influence of process parameters on hydrogen yield e A review. Renew. Energy
918 66, 570–579. <https://doi.org/10.1016/j.renene.2013.12.025>

919 Peters, M.S., Timmerhaus, K.D., and West, R.E., 2003. Plant design and economics for chemical
920 engineers, (Vol. 4). ed. McGraw-Hill, New York.

921 Phadke, A., Paliwal, U., Abhyankar, N., McNair, T., Paulos, B., Wooley, D., O'Connell, R.,
922 2020. The 2035 report (Plummeting Solar, Wind, and Battery Costs Can Accelerate our
923 Clean Electricity Future).

924 Prakash Rao, Michael Muller, 2007. Industrial Oxygen: Its Generation and Use. 2007 ACEEE
925 Summer Study Energy Effic. Ind. 124–135.

926 Ranius, T., Hämäläinen, A., Egnell, G., Olsson, B., Eklöf, K., Stendahl, J., Rudolphi, J., Sténs,
927 A., Felton, A., 2018. The effects of logging residue extraction for energy on ecosystem
928 services and biodiversity: A synthesis. J. Environ. Manage. 209, 409–425.
929 <https://doi.org/10.1016/j.jenvman.2017.12.048>

930 Rhodes, J.S., Keith, D.W., 2005. Engineering economic analysis of biomass IGCC with carbon
931 capture and storage. Biomass and Bioenergy.
932 <https://doi.org/10.1016/j.biombioe.2005.06.007>

934 Rosa, L., Sanchez, D.L., Mazzotti, M., 2021. Assessment of carbon dioxide removal potential:
935 Via BECCS in a carbon-neutral Europe. *Energy Environ. Sci.* 14, 3086–3097.
936 <https://doi.org/10.1039/d1ee00642h>

937 Roussanaly, S., 2019. Calculating CO₂ avoidance costs of Carbon Capture and Storage from
938 industry Calculating CO₂ avoidance costs of Carbon Capture and Storage from industry.
939 *Carbon Manag.* 10, 105–112. <https://doi.org/10.1080/17583004.2018.1553435>

940 Roussanaly, S., Berghout, N., Fout, T., Garcia, M., Gardarsdottir, S., Nazir, S.M., Ramirez, A.,
941 Rubin, E.S., 2021. Towards improved cost evaluation of Carbon Capture and Storage from
942 industry. *Int. J. Greenh. Gas Control* 106, 103263.
943 <https://doi.org/10.1016/j.ijggc.2021.103263>

944 Salkuyeh, Y.K., Saville, B.A., MacLean, H.L., 2018. Techno-economic analysis and life cycle
945 assessment of hydrogen production from different biomass gasification processes. *Int. J.*
946 *Hydrogen Energy*. <https://doi.org/10.1016/j.ijhydene.2018.04.024>

947 Sanchez, D.L., Kammen, D.M., 2016. A commercialization strategy for carbon-negative energy.
948 *Nat. Energy* 1, 1–4. <https://doi.org/10.1038/nenergy.2015.2>

949 Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K., 2017. Recent advances in the development
950 of biomass gasification technology : A comprehensive review 72, 363–384.
951 <https://doi.org/10.1016/j.rser.2017.01.038>

952 Schweitzer, D., Albrecht, F.G., Schmid, M., Beirow, M., Spörl, R., Dietrich, R.U., Seitz, A.,
953 2018. Process simulation and techno-economic assessment of SER steam gasification for
954 hydrogen production. *Int. J. Hydrogen Energy* 43, 569–579.
955 <https://doi.org/10.1016/j.ijhydene.2017.11.001>

956 Shahbaz, M., AlNouss, A., Ghiat, I., Mckay, G., Mackey, H., Elkhalifa, S., Al-Ansari, T., 2021.
957 A comprehensive review of biomass based thermochemical conversion technologies
958 integrated with CO₂ capture and utilisation within BECCS networks. *Resour. Conserv.*
959 *Recycl.* 173, 105734. <https://doi.org/10.1016/j.resconrec.2021.105734>

960 Spath, P., Ringer, M., 2005. Biomass to Hydrogen Production Detailed Design and Economics
961 Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier. Nrel.

962 Spath, P.L., Mann, M.K., 2004. Biomass Power and Coventional Fossil Systems with and
963 without CO₂ Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions
964 and Economics. Contract 30, 38.

965 Ståhl et al., 2004. Industrial processes for biomass drying and their effects on the quality
966 properties of wood pellets. *Biomass and Bioenergy* 27, 621–628.
967 <https://doi.org/https://doi.org/10.1016/j.biombioe.2003.08.019>

968 Susmozas, A., Iribarren, D., Zapp, P., Linßen, J., Dufour, J., 2016. Life-cycle performance of
969 hydrogen production via indirect biomass gasification with CO₂ capture. *Int. J. Hydrogen*
970 *Energy* 41, 19484–19491. <https://doi.org/10.1016/j.ijhydene.2016.02.053>

971 Svoboda, K., Martinec, J., Pohořelý, M., Baxter, D., 2009. Integration of biomass drying with
972 combustion/gasification technologies and minimization of emissions of organic compounds.
973 *Chem. Pap.* 63, 15–25. <https://doi.org/10.2478/s11696-008-0080-5>

974 Taheri, M., Dai, C., Lei, Z., 2018. CO₂ capture by methanol, ionic liquid, and their binary
975 mixtures: Experiments, modeling, and process simulation. *AIChE J.* 64, 2168–2180.
976 <https://doi.org/10.1002/aic.16070>

977 The U.S. Government Publishing office, 2022. Inflation Reduction Act of 2022.

978 The world bank, 2022. Carbon pricing [WWW Document]. URL
979 <https://carbonpricingdashboard.worldbank.org/what-carbon-pricing>

980 Torvanger, A., 2019. Governance of bioenergy with carbon capture and storage (BECCS). *Clim.*
981 *Policy* 19, 329–341.

982 Tribe, M.A., Alpine, R.L.W., 1986. Scale economies and the “0.6 rule.” *Eng. Costs Prod. Econ.*
983 10, 271–278. [https://doi.org/10.1016/0167-188X\(86\)90053-4](https://doi.org/10.1016/0167-188X(86)90053-4)

984 Trinks, A., Mulder, M., Scholtens, B., 2020. An Efficiency Perspective on Carbon Emissions and
985 Financial Performance. *Ecol. Econ.* 175, 106632.
986 <https://doi.org/10.1016/j.ecolecon.2020.106632>

987 U.S. DOE, 2022. Department of Energy’s Bioenergy Office Achieves Major Biofuel Technology
988 and Production Milestone [WWW Document]. URL
989 <https://www.energy.gov/eere/bioenergy/articles/department-energys-bioenergy-office-achieves-major-biofuel-technology-and>

990 U.S. DOE, 2020a. Department of Energy Hydrogen Program Plan, U.S. Department of Energy.

991 U.S. DOE, 2020b. DOE Technical Targets for Hydrogen Production from Electrolysis [WWW
992 Document]. URL <https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis>

993 United States Department of State, 2021. The Long-Term Strategy of the United States:
994 Pathways to Net-Zero Greenhouse Gas Emissions by 2050. United States Dep. State United
995 States Exec. Off. Pres. 1–63.

996 US bureau of labor statistics, 2022. Producer Price Indexes [WWW Document]. URL
997 <https://www.bls.gov/ppi/>

998 Valente, A., Iribarren, D., Gálvez-Martos, J.L., Dufour, J., 2019. Robust eco-efficiency
999 assessment of hydrogen from biomass gasification as an alternative to conventional
1000 hydrogen: A life-cycle study with and without external costs. *Sci. Total Environ.*
1001 <https://doi.org/10.1016/j.scitotenv.2018.09.089>

1002 Wang, B., Gebreslassie, B.H., You, F., 2013. Sustainable design and synthesis of hydrocarbon
1003 biorefinery via gasification pathway: Integrated life cycle assessment and technoeconomic
1004 analysis with multiobjective superstructure optimization. *Comput. Chem. Eng.* 52, 55–76.
1005 <https://doi.org/10.1016/j.compchemeng.2012.12.008>

1006 Wang, Y., Li, G., Liu, Z., Cui, P., Zhu, Z., Yang, S., 2019. Techno-economic analysis of
1007 biomass-to-hydrogen process in comparison with coal-to-hydrogen process. *Energy* 185,
1008 1063–1075. <https://doi.org/10.1016/j.energy.2019.07.119>

1009 Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. The
1010 ecoinvent database version 3 (part I): overview and methodology. *Int. J. Life Cycle Assess.*
1011 21, pp.1218–1230.

1012 Wilk, V., Hofbauer, H., 2013. Influence of fuel particle size on gasification in a dual fluidized
1013 bed steam gasifier 115, 139–151. <https://doi.org/10.1016/j.fuproc.2013.04.013>

1014 Wood, M., Branch, P., 1986. Wood gas as engine fuel.

1015 Wu, N., Demchuk, Z., Voronov, A., Pourhashem, G., 2021. Sustainable manufacturing of
1016 polymeric materials: A techno-economic analysis of soybean oil-based acrylic monomers
1017 production. *J. Clean. Prod.* 286. <https://doi.org/10.1016/j.jclepro.2020.124939>

1018 Young, A.F., Villardi, H.G.D., Araujo, L.S., Raptopoulos, L.S.C., Dutra, M.S., 2021. Detailed
1019 Design and Economic Evaluation of a Cryogenic Air Separation Unit with Recent Literature
1020 Solutions. *Ind. Eng. Chem. Res.* 60, 14830–14844. <https://doi.org/10.1021/acs.iecr.1c02818>

1021 Yu, C.H., Lin, Y.J., Wong, D.S.H., Bruno, J.C., Chen, C.C., 2021. Modeling fluid phase
1022 equilibria of carbon dioxide-methanol binary system. *Fluid Phase Equilib.* 529, 112866.
1023 <https://doi.org/10.1016/j.fluid.2020.112866>

1024

1025

1026 Zhang, Z., Delcroix, B., Rezazgui, O., Mangin, P., 2021. Simulation and techno-economic
1027 assessment of bio-methanol production from pine biomass, biochar and pyrolysis oil.
1028 Sustain. Energy Technol. Assessments. <https://doi.org/10.1016/j.seta.2021.101002>

1029 Zimmermann, A.W., Wunderlich, J., Müller, L., Buchner, G.A., Marxen, A., Michailos, S.,
1030 Armstrong, K., Naims, H., McCord, S., Styring, P., Sick, V., Schomäcker, R., 2020.
1031 Techno-Economic Assessment Guidelines for CO₂ Utilization. Front. Energy Res. 8, 1–23.
1032 <https://doi.org/10.3389/fenrg.2020.00005>

1033