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Abstract. We investigate the adaptive robust control framework for portfolio optimization and loss-based hedg-
ing under drift and volatility uncertainty. Adaptive robust problems offer many advantages but
require handling a double optimization problem (infimum over market measures, supremum over
the control) at each instance. Moreover, the underlying Bellman equations are intrinsically multi-
dimensional. We propose a novel machine learning approach that solves for the local saddle-point
at a chosen set of inputs and then uses a nonparametric (Gaussian process) regression to obtain
a functional representation of the value function. Our algorithm resembles control randomization
and regression Monte Carlo techniques but also brings multiple innovations, including adaptive ex-
perimental design, separate surrogates for optimal control and the local worst-case measure, and
computational speed-ups for the sup-inf optimization. Thanks to the new scheme we are able to
consider settings that have been previously computationally intractable and provide several new
financial insights about learning and optimal trading under unknown market parameters. In partic-
ular, we demonstrate the financial advantages of adaptive robust framework compared to adaptive
and static robust alternatives.
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1. Introduction. Stochastic control formulations have been a core tool in financial mathe-
matics for over 40 years. One fundamental challenge in applying stochastic models to practice
is the issue of model risk, i.e. calibrating system dynamics to real life. In this article by
“model risk” we mean uncertainty about the underlying probability measure QQ represent-
ing the mis-specification between the assumed dynamics and the true probabilistic structure.
More precisely, the uncertainty concerns some parameters 6, so that we have the parameter-
ization Q = Q. Parameter uncertainty arises in any application, since the required model
calibration necessarily leaves some residual inference error about the true parameter values.
For example, in problems involving risky assets such as stocks, asset return p and volatility o
are the two main parameters 6 = (u, o) driving the investment decisions, but are notoriously
difficult to calibrate.

As one remedy, there have been recently multiple proposals on robust extensions for the
underlying stochastic control formulation. The basic strategy is to take a worst-case view
among a collection of potential Q?’s. In the financial context, this conservative perspective
stemming from unknown parameters is tempered by the idea of learning the dynamics. His-
torical data about the risky asset evolution can often be used to improve estimates about its
drift and/or volatility. Combining these two concepts of robustness and learning, we adopt
the adaptive robust framework recently proposed in Bielecki et al. [9]. This paradigm elegantly
connects static robust approaches that do not allow belief updating with adaptive control that
fully incorporates the latest estimate within a fixed-parameter setup. Because adaptive con-
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trol ignores dynamic updating, it is time-inconsistent. However, adaptive robust control also
presents formidable numerical challenges as it features an expanded, multi-dimensional state
space and non-trivial nonlinear optimization to find the optimal feedback control u*(¢,x) and
the value function V (¢, ). As a result, closed form solutions are ruled out, and standard PDE
methods are not feasible beyond the most simple settings.

In this paper we propose and develop a novel algorithm for adaptive robust control. Our
approach belongs to the class of Regression Monte Carlo (RMC) and Control Randomization
(CR) strategies [10, 5, 12, 14, 26]. The key idea is to recursively construct a functional ap-
proximation V(t,-) to V/(t,-) which is then evaluated over a stochastic (non-gridded) mesh.
However, in the context of robust control, existing techniques run into the double challenge of:
(i) strong path-dependence of optimal state (X;) on the control, preventing direct application
of Regression Monte Carlo (see Section 4); (ii) the nested optimization due to considering
multiple Q’s is computationally intensive and requires proper approximation architecture to
extract the optimal control u*(¢t,z). We employ machine learning techniques to overcome
the above challenges, by constructing a non-parametric value function approximation [21, 7].
Specifically, we leverage tools from statistical emulation in Stochastic Simulation [11, 6] (and
more broadly the Design and Analysis of Computer Experiments field [25]) by recasting the
task of solving the Bellman equation as a statistical learning problem of fitting a surrogate
(i.e. a statistical model) for @ — V/ (¢, ) [23, 18]. Our framework resembles recent results for
Monte Carlo based solvers of Hamilton-Jacobi-Bellman equations [16, 2, 13]. However, unlike
the above references that propose to apply Deep Neural Networks (DNN) for the function ap-
proximation step, we rather rely on Gaussian Process (GP) surrogates. GPs is a core machine
learning technique which is well-suited for cases where simulation is expensive and therefore
efficient surrogate training is needed (in contrast, DNNs are best suited for high-dimensional
problems where maximum flexibility is needed and a lot of training data is available). Related
use of GPs is in [3, 18].

Utilizing our numerical algorithm, we provide an extensive investigation into the adaptive
robust approach to optimal investment and nonlinear hedging. These are two fundamental
problems in financial modeling, yet few fully numerical algorithms have ever been available.
Our analysis provides new insights into the interplay between robustifying beliefs, learning
and investing/hedging. In particular, we investigate the dependence of the controls and the
terminal wealth on risk- and robustness-level parameters.

The rest of the paper is organized as follows. The rest of Section 1 sets up the adaptive
robust formulation and lays out the associated discrete-time Bellman recursions. Section 2
develops our numerical methodology and the Gaussian Process surrogate-based algorithm.
The second half of the paper illustrates the algorithm on an Optimal Investment (Section 3)
and Hedging (Section 4) case studies. Finally, Section 5 provides discussion on the numerical
aspects and concludes with a list of additional enhancements.

1.1. The Adaptive Robust Bellman Equation. Let (€,§) be a measurable space and
T > 0 a fixed time horizon. Let T = {t;, : k =0,1,2,..., K, tx = T} be the discrete time
set and © C R? be a non-empty set, which plays the role of the global parameter space, so
that for each § € © there is a probability measure Q? on (Q,F). We write Eg to denote the
expectation operator corresponding to QY. We consider a controlled stochastic Markov state
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process Y = {Y;ﬁ, t € T} taking values in the state space Y C R?. We postulate that this
process is observed, and we denote by F = (F;,t € T) its natural filtration. The optimization
problem involves the family A of admissible feedback control processes, which are F-adapted
processes 4 = {uy, t € T} defined on (Q,§) with u; taking values in a measurable space U
and being the feedback control applied at time t.

Consider the objective of maximizing a reward functional

K-1
C(a) == Z g(tk’y;fzvutk) + G(qu),
k=0

with running rewards g(t,y,u) : T x Y x U — R and terminal reward G(y) : J — R which
are both measurable, square-integrable functions. In the two financial motivations we have
g(t,y,u) = 0, but since our algorithm is of independent interest, we continue with this slightly
more general setup. In the classical setup, the dynamics of Y are described through a proba-
bility measure P and dynamic optimization of V(to, yo) = supze 4 EF [C(@)|Yo = o] is reduced
to the classical dynamic programming Bellman equation

(1.1) V(tr,y) = sup {g(tk, y,u) + By, V(g Yf,;l)} (y)} ,
u
with V(T,y) = G(y) and B} [](y) = EP[|¥;, = y].

The pervasive challenge of prescribing P-dynamics implies model mis-specification for de-
termining the maximizer v* in (1.1). Robust control injects consideration of multiple models
directly into the optimization step via a generic min-max formulation. Therefore, the single P
is replaced with many QQ’s. In the parametric setup we consider, model uncertainty is indexed
via 0 € © whose effect is through the dynamics

(12) Y;fq:_,'_l = T(Y)(tkankvu79a€tk+1)-

The mapping T{y captures the joint effect of the initial condition y, the control u applied at
epoch tj, the parameterized measure QY, the stochastic shock €t;,., and the time-dependence
tr. Note that (1.2) postulates that we may re-write the evolution of Y in terms of external,
model-independent stochastic shocks; in the common setting we consider, €, are independent
and identically distributed random variables (without loss of generality taken to be standard
Gaussian in some RY).

For each (tg,y,u,0) € T x R x U x ©, define a probability measure on R%:

Q(B | tk>y7U79) = Qe (T(Y)(tkaya U,9,€) € B) )

for any Borel measurable set B C R%. For every control process @ € A, every Yy = yo, and

every sequence 0= {6, €0O, k=0,..., K —1}, let Qgge be the “pasted” probability measure
on the canonical space XkKZO]Rd defined by:

K
QZ(}Q(BO X o0 X BK) - /; o /B H Q (dytk ’ tkfbytk_lvutk_l;ek*l) 5y0(dy)7
0

K k=1
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where 0 is the Dirac measure. We restrict 0, € ©) € F;, to certain adapted time-dependent

—

subsets of © detailed below and define the set QZO = {Qgée, 0 € O, k=0,...,K —1}.
The robust control setup then considers the dynamic optimization problem in the following
form:

V(to,yo) = sup inf EQ[C(@) | Yo = yo),
e AQeQy,

which, for each t; € T, admits the one-step Bellman representation

— ; Q u
(13) Vg =swp it {o(tey0) + BV, Vi)l 0) |

(1.4) = sup inf {g(tk,y,u) +

V(tk’—i—l) T(Y) (tka Y, u, 0, Z))fe(z)dz )
ueU 9€®k

Ra
where the second line follows from (1.2), f(-) is the density of the random variable ¢, , ,, and
M(©y,) is the family of probability measures on Q corresponding to the adversarial parameter
set O. The expression (1.3) can be seen as a min-max game between nature that picks Q% and
the controller who counteracts with her control v = u;, . In information-theoretic language,
(1.3) is a game against the adversary who selects QY among the Knightian uncertainty set
M(©y,) [15]. Note that Oy is understood to be dynamic, and in particular can depend on Y3, .

The adaptive robust control as developed by Bielecki et al. [9], couples the Bayesian up-
dating procedure to the set of measures in (1.3). Specifically, we consider

Ok = O(ty, 0y,),

for a given measurable O(+,-) : T xRP — B(RP) interpreted as the robustified belief set defined
by the sufficient statistic étk. As a canonical example, @(tk,étk) is the posterior credible
interval at some level v (say the 95% CI) centered around the unbiased point estimate 6y, .
This interpolates dynamic adaptive control, where M; = Q' = 0 = {étk} & a =05
(no uncertainty but learning), with the robust versions that do not allow for learning, My =
{Q% : 0 € B} & O = O independent of ¢. (We should also mention the myopic adaptive
formulation where one plugs-in étk into the static model that treats 6 as a parameter. This is
in fact the most common applied usage which myopically separates learning from control.)

The learning algorithm is meant to reduce the uncertainty about the true probabilistic
structure driving Y. If one assumes that there exists  such that Y;, v = Ty (ks ys 0, ¢, 1)
for all k£ and the learning and estimation are asymptotically perfect, étk — # as k — oo then it
is also reasonable to expect O — {é} and the adaptive robust method brings a consistently
conservative extension of Bayesian adaptive control. However, the framework can also handle
more general situations, such as when O, never converges to a singleton, or when no 0 exists.
Thus, the adaptive robust can handle non-stationary models where the dynamics change over
time (as might be imagined happens in real markets, leading to a process é(tk)), in such
settings étk represents the best current guess about é(tk) So the size of O need not go to
Zero.

Returning to the control objective, since ;, now affects the inner optimization in (1.4), it
is augmented to the system state

X = (Y3, 0;) with state space X =) x © C R4P.
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The dynamics of (X;,) = { X, t € T} consist of the autonomous dynamics of (1, ), as well as
the filtering equations that govern the evolution of (6, ). We summarize them by the mapping

Xx’u == T(tk,$,u,0,6tk+1)7 T = (y’ 6_) € X’

let1

which aggregates the previous dynamics T{y) of the state process with the filtering equations
for 6, + 6, ,,. Note that those joint dynamics are degenerate since a single noise term
€t),, simultaneously drives both Y3, and . - As a result, there is a strong dependence
between Y;, and 0y, , and more generally ©y, , which is to be contrasted with the static robust
framework where Y;, and © are independent. The resulting adaptive robust Bellman equation
which is the main object of analysis in this article is then

(1.5) V(tg,z) =sup inf  E|[g(te,y,uw) + V (g1, T(tp, z,u,0,€,,,))] -

ueld 0€O(ty,0t,)

Note that E now simply denotes expectation over €, € R? which is the sole stochastic,
model-independent component above; the parameter dependence and model risk are encoded

in T. The solution entails applying backward induction over ¢ = tx_1,...,0 to compute
V(t,-).

1.2. Solving the Bellman Equation. To implement the adaptive robust framework, we
must solve (1.5) which practically reduces to (1.4) with the state-dependent uncertainty set
O(tg,-). If we define the operators #, # via

Mty = (y,0))[F] :=sup inf F(u,0;ty,x)
ueU 0€®(tk79)

F (u, 0; tg, )[V] := E [g(tr, y,u) + V(trgr, T(tr, 2, u,0,€,,,))]

then the Bellman recursion is V(tx,z) = A (tg,x) o F (-, -, tk,x)[V]. F is the propagation
operator that computes the continuation value based on taking conditional expectations of
step-ahead value function. .Z is the optimization operator that computes the optimal control

t (ty,z), recording the optimizers (6" (tx, ), u*(ty, z)) = argsup,ey infocg(, g{-}- 0" (tk, )
is the worst-case parameter (i.e. beliefs) for the model dynamics given (t,y, ) and u*(t, )
is the robustified feedback control in state z. The difference 6*(t, (y,0)) vs 0 is precisely the
precaution taken by the controller against model mis-specification.

Three challenges must be handled to solve (1.5):

e Continuous state space: because the state space X of X is continuous and multi-
dimensional, some discretization is required to handle it computationally. This dis-
cretization however implies that V (¢, -) (i.e. Z (-, ;tx, z)[V]) will not be computed for
all potential x, but only for some finite subset. Therefore, space discretization must
be accompanied by interpolation in order to be able to evaluate V (¢, x) for arbitrary
x € X in subsequent steps.

e Integration: the integral over ¢, , in (1.4) requires approximation given that the
integrand is not analytically available. This 1mphes that the true conditional operator
E is to be replaced with an approximation E i.e. Z is replaced with F.

e Optimization: finding the optimizers 6*(tx,z) and u*(tx,z) is generally not possible
analytically, so another approximation is required to carry out these optimizations
numerically. This implies that we replace .# with an approximation M.
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In low dimensions, the standard technique for Bellman equations are PDE-based solvers
that discretize X. However, the augmentation of beliefs # to the Y-state necessarily leads to
multi-dimensional setups, essentially ruling out PDE-based strategies that are practical only
in dimension < 3. At the same time, simulation-based strategies from conventional regression
Monte Carlo are also difficult to apply to (1.5):

e The control #; intrinsically affects the evolution of the state (¥;%) and hence prevents
direct simulation of the overall (X;) as is done in the standard RMC paradigm.

e Parametric representation of an approximate value function V (¢,-) (e.g. in terms of
polynomials in z) is challenging in dimension d + p > 2 and brings the concern of
overfitting/underfitting;

e Because we face the additional step of inner optimization over , the representation of
@ +— V(ty, ) is critical to yield financially reasonable/accurate estimates of 6* (¢4, z),
which is another limitation of classical parametric approximations;

e One usually learns 1% by constructing a grid of z-values (akin to finite-difference ap-
proaches for PDEs); however such gridding is extremely inefficient for d + p > 2 and
essentially impossible for d + p > 4.

As a result, fully numerical approaches to robust stochastic control have been tradition-
ally viewed as intractable and there remains a large gap in actual use of robust models for
financial modeling. In this article we resolve these challenges, making contributions along two
directions. On the algorithmic side, we propose a new, machine-learning-inspired algorithm
for (1.4). The key concept is to employ a non-parametric value function approximation strat-
egy [21, 7], namely a Gaussian process surrogate. In addition, we borrow concepts from the
Design and Analysis of Computer Experiments field [25] to construct the underlying stochas-
tic meshes. This methodology is quite general, and could also be easily modified to tackle
other robust control formulations (e.g strong robust), and other contexts (e.g robust optimal
stopping). Moreover, it mitigates the issue of scalability to higher dimensions. Related ex-
tensions would be treated in separate sequels, and we see a lot of further potential for such
blending of RMC and machine learning. On the finance side, we present two detailed case
studies of using adaptive robust paradigm in optimal investment and loss-based hedging. In
particular, the latter problem, see (4.5) below, was essentially out of reach until now. Employ-
ing our algorithm, we are able to give a comprehensive investigation of the resulting strategy
and its sensitivity to different model parameters. We also demonstrate that the adaptive ro-
bust framework outperforms the common (simpler) alternatives of static robust and adaptive
control.

1.3. Motivation: Adaptive Robust Optimal Investment. The problem of optimal in-
vestment in risky financial instruments dates back to Markowitz and Merton and has been
extensively studied over the past 50 years. Asset return p and volatility o are the two main pa-
rameters driving the investment decisions, but are notoriously difficult to calibrate. Therefore,
there is strong interest in methods that explicitly take into account parameter uncertainty,
while allowing one to partially learn asset dynamics.

Let r be the constant risk-free interest rate. We assume a fixed time grid £ = tg + kAt.
The excess log-return of a risky asset S between t;, and t;y; is Gaussian with mean pAt and
variance 02At. Both p and o are treated as unknown, yielding the framework of (1.3) with
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6 = (u,0). Thus, the dynamics of the controlled wealth process Y% under Q*° are given by

(1.6) Y =Y, (l+rAt+ (e STV AL T1)), e, ~N(0,1) Lid,
where u € [0, 1] =: U is the proportion of portfolio wealth invested in the risky asset. Above

we restrict the investor from shorting v < 0 or leveraging w > 1 her risky position. The
objective is to maximize expected utility of terminal wealth

E [U(Yﬁ)} — max

for a utility function U(-). The augmented state z is three-dimensional: x = (y, fi,5) and the
Bellman equation for V (tx, z) is

(1.7) Vitr,x) = Uy);

1.8 V(ty,z) = su inf E |\ V(tper, T(tg, z,u, (p,0),€
(1.9 o) = sup B[Vt Ttk (100, )]

where the expectation is over the standard Gaussian increment e, , ~ N (0, 1).

To specify the transition map T, we recall the learning of the asset dynamics. Given
past observations of Y, the respective MLE estimators of the drift p and the volatility o are
denoted by 0;, = (i, , 1, ) and under Q* satisfy for k = 0, 1,... the recursions [8]

_ k+1_ 1 o
(1.9) P = gl + g Ut gt

_ kE+1_ k+1 _ — 2
(110) Jt2k+1 = k_'_?a-?k + (k+2)2 ((/J’tk _lu’) At—aetk+l)

Note that the above are time-dependent, capturing the idea that learning slows over time as
the information set grows. As k increases, the weight of the prior (fis,, 6y, ) rises and the role
of the latest shock €, , declines.

In sum, the dynamics of x¢, = (v, fit,, 0, ) under Q*7 are prescribed by (1.6)-(1.9)-
(1.10), all driven by the 1-D exogenous factor €, ,. They are summarized by the map

(L11) T(tr, (g, 1, 5), 1w, (11, ), 2) = (y(1 4 At 4 u(erAtFoVAE AL 1)),

k+1_ 1 o k+1_,,  k+1 A
P _ At — 2

where pu, o are treated as external parameters.

Assuming there is a true 6, the uncertainty set O(t,-) is described through the (1-a)-
confidence region for 6 for some confidence level o € (0,1). In the case where only the drift 4
is uncertain and o is given, O (tg, fir, ) is an interval centered on i, ,

)

(1.12) Ou(ty, fir, ) =

g g
[ . T [0 ) [ +7 [0
Mty /7(k+1)Atq /2 iy, /7(/€+1)Atq /2
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where ¢, denotes the a-quantile of a standard normal distribution. In the 2-D case where
both p and o are uncertain, it is shown in [8] that the (1 — «)-confidence region for (f,5) at
time tj is an ellipsoid given by

o k+ 1At _ k+1 B
(113)  Oalty, fity, 0r,) = {<u,o—>eR2 : (02)<u—utk>2+ 551 <02—ai>2sﬂ},
t tr

where & is the (1 — a)-quantile of the y?(2) distribution with two degrees of freedom.

When the utility function is of the CRRA power type, U(y) = yll_%, then the problem

(1.7)-(1.8) is separable with respect to the current wealth y: V(t,y, i, &) = y* 'V (ty, fi, 52)

with the dimension-reduced recursion V (tx, fi, g) = ﬁ, and for 0 <k <K -1

(1.14) V(tg,p,6%) = sup inf  E[(1 4 rAt+u(ertToVB UL A 1)) %
u€[0,1] (1,0)€O(ty,f2,5)
- k+1_ 1 o E+1_, E+1 9
t T o (i — At — .
V( k+1 k+2/J,—|- k+2('u’+ \/Eetk-ﬂ)a k+20 + (k+2)2((ﬂ M)r Uetk+1) )}

We will solve (1.14) in Section 3. Another case study which also relies on 6 = (p,0) is
considered in Section 4.

2. Methodology. In describing our algorithm below, we make use of the following nota-
tional shorthands: true quantities that we wish to approximate, are denoted with a *, e.g. u*
for optimal control or #* for adaptive worst-case parameters; approximations are denoted
with a hat *; intermediate statistical samples that drive the approximations are denoted with
a check * and are indexed with superscript n reflecting the empirical Monte Carlo sample.
We also employ a bit of pseudo-code terminology to denote generic computational building
blocks that are available in high-level modeling environments like R, Matlab or Python.

Our algorithm is based on value function approximation. This is achieved by evaluating
the right hand side of (1.5) at a collection of inputs w%kN and then constructing a statistical
surrogate r — V(tk, -). At a high level, the solver consists of a fit—predict—optimize loop
over time based on the recursion

2.1 V(ty,x) = inf tey, ) + B |V (thrr, Ty, ,u, 0, )| ¢,
(2.1) (tr, x) ilelzl,){ee@l&,étk){g(kyu) (ter1, T(t, 7, u ))H

where predict is needed to evaluate the V(tri1,-)’s and fit to construct V(t,-). For
the latter, we use the machine learning tool of a Gaussian Process surrogate [22]. This is
achieved by selecting an experimental design D = (:c%kN ) and then evaluating the right
hand side of (2.1) at :L‘;glkN which yields values vtlliN , interpreted as pointwise estimates of
the value function at respective 7, , vy, =~ V(tk,x’fk). To compute vy, the expectation in
(1.14) is approximated with a quantized sum, and the inner saddle-point is computed lo-
cally using a nonlinear optimization algorithm. More precisely, we use a numerical quadra-
ture representation E of the integral over €, ,, and a nested optimize call to get uj, :=
arg sup,,cy info{g(tx, y,u) + E[V(tkH,T(x?k, u,0,€))]} which is interpreted as the estimated
optimal control at zy, .
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Because the training data (:E%kN ,U%I;N ) is based on multiple approximations, including
approximating the true E[-], approximating the true saddle-point, approximating the true
V(tgs1,), we treat them as noisy versions of V(tk,m?k) and thus the surrogate fitting step
includes smoothing, rather than solely interpolation. Similarly, we view ;' as pointwise
samples from the feedback control map u(tx,z) that is also obtained via (an independent)
surrogate fitting.

Our algorithm returns the fitted surrogates {V (tx,-)} and {a(ty,-)} for each time step.
The interpretation of V(tk,x) is as the value function of the underlying adaptive robust
control problem. However, for practical purposes we typically wish to know the strategy and
resulting utility based on a fixed measure Q'*!, while (1.3) assumes that the parameters are
dynamically and adversarially drawn from © at each time-step. To this end, we concentrate
on the outputted feedback control surrogate w(ty,-). To evaluate the resulting utility we
rely on forward Monte Carlo, i.e. we generate out-of-sample forward paths by drawing Yy, . -
realizations based on Q!*! that induces the controlled trajectories Xg): , and then evaluate
the Monte Carlo estimate

es 1
V0, m0) = = Y Ok

Observe that V(0,z() can be written as an expectation, under the path-dependent, “pasted”
measure Q* which is defined in terms of the worst-case beliefs 6*(tx, Xy, ) at each time step
and does not admit a simple interpretation. Indeed, the expectation of V (tx41, T(tx, Xt,,-))
is carried out with respect to QY (s X1) which depends on Xj, . For this reason, the rep-
resentation V'(0,x0) = EQ" [3, gty Y, u*(tr, Xy,)) + G(Y;)] is generally not practically
relevant.

Remark 2.1. During forward simulation one could revert to computing the actual minimizer
U(tk, z) that is obtained by calling predict to evaluate V(tk_H,T(tk,x,u,ﬁ,etkﬂ)) and then
optimizing. However, optimization is expensive and so we rather utilize the surrogate-based
U(tg, x) that is obtained from a statistical prediction and is much faster to evaluate. Both
U(ty, z) and (ty, x) are defined based on V (tyi1,-) and hence will necessarily differ from the
true optimal feedback u*(tg,x) due to error back-propagation.

Remark 2.2. When the optimization over u is over a compact space such as [0,1], an
alternative to generic gradient-free solvers, such as fminbnd or optim in Matlab, is to employ
direct search over a discrete candidate set such as {0, Au,2Au,...,1}. This is faster but of
course introduces a fixed discretization error relative to the true optimum. Conversely, the
surrogate can output the gradient 8V/8x that could be combined with the chain rule to enable
gradient-based optimization.

Before proceeding to discuss the details of operationalizing the above method, we summa-
rize the original proposal of Bielecki et al. [9] that relied on a Control Randomization (CR) +
Regression approach. Bielecki et al. started with a Monte Carlo-based paradigm that works
with trajectories of (X3, ) and exploited the fact that the underlying state (Y3,) is an autono-
mous process. In their approach, one begins by generating N trajectories of Y;, . In addition,
one fixes a measure Q° and uses the above N trajectories to construct the corresponding
filtered posterior estimates 6y, as in (1.9)-(1.10). Note that QU is picked arbitrarily and serves
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as a “baseline” probability measure like in the CR method [1, 17]. Next, the Bellman equation
(1.3) is solved pathwise along the above :x%kN = (ytl,;N, 0N as follows. Given (tg, Yy, , fik, 0k )

one solves for V(tk, -) by replacing the integral with a weighted sum

E[V(tk-f-lvx)uv )] §:/V(tk+1,T(tk,IE,U,Q,Z))fG(Z)dZ

J
(2.2) ~ > Vitepr, T(tr, 2, u,0,eD7))w®
=1

where the Gaussian quadrature recipe specifies the appropriate knots ¢(?-7 and corresponding

quadrature weights w7, The latter (), w®) are optimized to minimize a certain global
criterion [4, 20]. Since the noise distribution €, , ~ N(0,1) is fixed throughout, the optimal
quadrature recipe is pre-computed and stored offline. In the second sub-step, the one-step-
ahead values V(tk+1,T(tk,3},u,Q,G(i)’j)) are approximated—since they will not fall on the
mesh V (41, m,}kf ,)—through linear interpolation of the training collection {V (tey1, a:%kﬂy D}

The above recipe has several limitations that our new proposal overcomes. First, the use
of a pre-specified Q° leads to a non-adaptive experimental design, which puts étl];N potentially
very far from the likely values of étk (depending on whether Q° is “good” or not). By breaking
up the path-based construction, we are able to adaptively build better designs, which in
particular leverage the structure of u*. Second, linear interpolation of V(tk+17 :c%kﬁ’ ,)’s brings
three restrictions: (i) it poorly scales in dimension d, because the interpolation requires sorting
of all the N sites a:tlkN to identify nearest neighbors; (ii) it implies that V(tg41,-) is piecewise
linear which is a restrictive approximation architecture (in particular non-smooth which may
cause problems when solving for @); (iii) it takes the estimated values of V(tx41,-) as ezact,
providing no ability to smooth previous approximations. Third, the procedure only outputs
the pointwise estimates {u(ty, = )}; there is no simple way to obtain u(ty, ) for arbitrary
Ty, essentially ruling out out-of-sample estimation under any other measure than Q. Fourth,
the approach has no way to avoid extrapolation when using (2.2); linear extrapolation is prone
to significant errors that are likely to back-propagate. Fifth, pre-simulation under QU requires
to use the same mesh size N across all time steps.

2.1. Gaussian Process Surrogates. Gaussian process models is a popular choice for flex-
ible statistical models. They allow a consistent treatment of interpolation and regression with
very few tunable hyperparameters. The idea of GPs is to view the function to be approx-
imated as a realization of a Gaussian random field with covariance kernel K(-,-). Training
the model then reduces to applying the Gaussian conditional equations, i.e. evaluating the
distribution of the random field given the data. The Gaussian structure implies that the con-
ditional process is still Gaussian, so its distribution is summarized through the posterior mean
m. () and posterior (co-)variance s.(-,-), interpreted as the model-predicted approximation
V(tk, -) and the corresponding posterior uncertainty or “standard error”.

Intuitively, the GP offers a methodology to put a smooth surface through the data labelled
generically as (x,v) = (2N, v"V). For numerical stability, we introduce the “nugget” n?, so
that rather than exactly interpolating the given v™’s, the surrogate also smoothes. Namely,
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the nugget is equivalent to assuming
vy, = V(tg, zp, ) +€" with €” ~ N(0,7?).

In our context, adding €™’s is justified via the errors coming from quantization and numerical
optimization and we use = 10~°. The predicted V (¢, z+) = m4(z) at any input z, is given
by

(2.3) me(,) = k(2 ) [K + 71

with corresponding posterior covariance s (2, x})

(2.4) 5000, 2L) = K (0, 21) — k() [K + 771 k()

with the N x 1 vector k(x,) and N x N matrix K defined by

(2.5) k(2y) = K(24,%) = [K(2s,2"),..., K(2s,2")], and K;;:= K(z',27).

Above Iis a N x N identity matrix and 7°I is the noise matrix.

To construct a GP surrogate requires selecting a kernel family and the corresponding
hyper-parameters. The latter step is typically done through Maximum Likelihood Estimation,
i.e. a nonlinear optimization problem involving the respective likelihood of observations. A
common kernel family we use is the Matern-5/2,

d+p
(2.6) Ky(z,2') =72 H < \fr 3PZ ) exp (- \/5r> , = oy — a2l

Pi

where the lengthscales p; and the process variance 72 are estimated via maximum likelihood.

Specifically, we use the GPML Matlab package to obtain the MLE for the hyperparameters
¥ = (0,7, P1:(d4+p))- Another kernel is the squared-exponential

(2.7) Ky(z, 2/ :—T2Hexp< xl_$)2>.

2,02

The GP predictive surface x, — my(x,) is akin to kernel regression in the sense that the
prediction (2.3) at x, is always a weighted average of the v™’s, with the weights driven by the
spatial covariance structure encoded in K(-,-). In particular, if the spatial correlation decays
quickly, the surface will tend to be more “bumpy”, while for very strong spatial correlation
the surface will be nearly flat/linear. The differentiability of the predictive surface m.(-) is
driven by the properties of K(-,-). Under the Matern-5/2 choice (2.6), the resulting m, € C?
is twice-differentiable, while for (2.7) it is C*°. In both families, the lengthscales p; determine
the spatial “wiggliness” of the fitted surface in the respective coordinate. Note that different
lengthscales (anisotropy) in different coordinates allow for V to be, say, more flat in .S, but
more flexible in ji.

For the propagation operator .% showing in the Bellman equation we proceed as in (2.2),
approximating the integral over a standard normal distribution by a J-points optimal quantizer
E i.e. a discrete sum over J quadrature points ()7 ,i=1,.
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Remark 2.3. In CR-RMC [1, 17], solving the Bellman equation

v(tk, ) = sup {E [v(tkH,X;‘m)] (w)}

is handled by defining the g-value q(ty,z,u) = E[v(tp1, X{;, )|(z) across u € U, building
a surrogate (x,u) — {(tg,x,u) and then finding u(ty,x) as the analytic mazimizer of u —
G(tg, x,u). In contrast, in our approach, we first fiz x and mazximize F at x to obtain u(ty,x),
then fit a surrogate U(ty, ), effectively reversing the order of optimization and emulation.

2.2. Experimental Design. The quality of the regression estimates is critically linked
to the choice of the simulation design D = x%kN . Specifically, accuracy of the GP-based

V(tg, x«) at some given input x, is directly related to the density of the design Dy around
Z4. This is the localization property of the GP and matches the intuition of constructing an
interpolant for the training data (:1:1:N J ol ): the interpolated prediction would be good in
the neighborhoods of x™’s, and progressively worse far away. In particular, as x, gets far from
the training inputs x, the GP prediction m,(z,) is driven by the chosen asymptotes of V(tk, )
reflecting extreme extrapolation. Specifically, for GPs we have that m.(z.) — m(z.) reverts
to its prior mean.

Based on the above discussion, the design Dy, should concentrate on the region of interest.
In our context, the latter is driven by the pairs (fi, , 0t ) that are likely to be encountered
by the controller at step k. In addition, since the key output we seek is the investment
strategy u*(tg, ) € [0, 1], the hardest learning task is to identify the optimal control when
the constraints are not binding. Therefore, we wish to set our time-dependent training region
I%tk, i.e. the domain of approximation, to be the states x that are likely to be visited by the
optimally controlled X,}f: and where 0 < u*(tg, ) < 1. Of course, the precise geometry of this
ideal region of interest is a priori unknown.

Another problem that requires attention is extrapolation in estimating the surrogate
V(tk, -). Extrapolation tends to lead to large estimation errors in approximating the true
conditional expectation operator E. With this in mind, we need to select the design Dy
so that extrapolation is minimized. In order to compute ‘A/(tk,y{;,étrz), we must consider

A A

EV (tg1, T(tr, o} u, 0, €, ,,))] at any 6 within ©(ty, 6} ). This, in turn, means that we need
good estimation of V(tk+1, T(tg, xf, u, 0, €®)),i=1,...,3, where recall that €*) comes from
Gaussian quantization. Figure 2.1 displays the relationship between Dj and the set of all
next-step locations {z. € T(ty, 2} ,u, O(t, 07),€D)),n =1,...,N;e) € Quantizers}. These
are the locations where we must evaluate V(tk+17 x) and hence highlights to what extent the
method requires extrapolation. On the right panel we compare all needed predictive sites 6,
against the étlkf , used for training V(tk+1, ).

There are two main concepts to go from a domain of approximation ]?itk to a discrete train-
ing set Dy. The first idea is a “density-based” approach that aims to make Dj mimic the distri-
bution of X;, under Q'*'. Recall that X;, includes the exogenous Y;, and the path-dependent
f:,. One method to handle this path-dependency is based on Control Randomization [1, 17]
which was also the motivation for generating the path-simulations in Bielecki et al. [9]. We
first pick some Q¥ and generate paths under Q. In other words, we pick some “true” model
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parameters (e.g. using the prior mean estimates éto) that are used to generate Y}/k,étk. A
collection of N such independent “pilot” paths can be then used to set Dy := {(y},, 7{2)}

The second concept is to apply space-filling schemes which aim to yield a “uniform” sample
from the region of interest Rtk- This approach is similar to classical maximin/max-entropy
experimental designs in statistics. Space filling is achieved by specifying an input domain
(usually some polyhedral or rectangular bounding box) and then a space-filling sequence. A
popular choice are Quasi Monte Carlo (QMC) sequences that are used as a variance reduc-
tion tool to ensure that Dj does not contain any “holes” that might degrade estimation in
their neighborhoods. A QMC sequence offers a deterministic way to sequentially fill the unit
hypercube and can be straightforwardly scaled and clipped to fill any polyhedral domain. For
example, Sobol QMC sequences offer a discrete Dy, of any size N.

In Figure 2.1, we show an adaptive “mixture” design Dy that we utilize for the portfolio
optimization problem with unknown (u,o). It is obtained in three steps. In the first step,
we simulate N” = 250 forward paths under a pre-specified Q° that yield (it , 07 ). We then
utilize these “pilot” paths to obtain a convex hull R;k. In the second step, we utilize the Sobol
QMC sequence to fill the respective R with N’ = 200 sites. Finally, in the third step, we
augment with another N = 56 sites based on Ry, = {af, e, 2f,,) € (0,1)}, Le. add
new sites where the control was non-trivial in the previous time-step.

0.05 0.05
0.04 . 0.04 |
. 0‘00. ° ¢: .k...'
~o‘o'0 ."... :.. S 2 : , .
0.03 0% % %0, e e tae 0.03 P R e St s
. ee ® g, o o o o g 1 o te e
% A ol A -
. . % e ®. ® ° 9 PR .
° . ° ° o, (]
002f ®e ....'.... I 0.02f ‘o, (R LY P B
o.. .'. ° o .'..f{ ... .‘0.‘ ° "'I...'.’..
° ° P ° ° ' o o e . M
001F °*% e ® o L ee®’. 0.01F1 o '&*&""uo.:
e o o o ‘ e 2% .o o,%; 00.0.. o
® L0 00 o S . o. P S E ] ® o
«® % o e o° [ o te® o®
o e ° o ..'. . . ° 0 e °° o ’9‘... * —o ,
-0.1 0 0.1 0.2 0.3 -0.1 0 0.1 0.2 0.3
fu fur

Figure 2.1: Constructed simulation design Dy = {a"*",5"N} for the portfolio optimization
case study. There are a total of 256 sites: Sobol QMC based (200 blue); adaptive based on
Uy, , along pilot paths (56 black). The right panel shows the predictive locations V' (t41,-)
used from Dy, with the blue dots indicated the respective Dy to highlight inter- and extra-
polation.

Remark: Given the complexity of (1.5) which requires solving a min-max problem at
each design site x7, , it is not computationally feasible to have thousands of z"’s. Already for
a rather small design like in Figure 2.1, we are looking at more than a million of predict
calls to the GP surrogate each time step (J = 100 for each integral, multiplied by about 60
optimization steps to converge to the min-max optimal value, multiplied by |D| = N = 256
design sites). This is a principal reason why we advocate Gaussian Process surrogates which
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excel in learning from small-to-moderate designs. Note that GPs are still computationally
intensive and their speed is very sensitive to NN, which is the reason for all the above care
in building a good experimental design. While a linear surrogate that utilizes ordinary least
squares regression with a pre-specified set of basis functions is much faster, its rigid structure
performs terribly for learning «*; in our experience success of the algorithm hinges on having
enough degrees of freedom. Other alternatives for value function approximation besides GPs
are left for future research.

2.3. Algorithm. Algorithm 2.1 summarizes our procedure. It further makes a slight ex-
tension to allow for time-dependent design size Ni. The second Algorithm 2.2 evaluates the
performance and strategy of the controller under some test measure Q% utilizing a forward
Monte Carlo average over N’ fresh paths. The actual simulations are under Q?" where 6" can
vary across paths or even across time. For example, if we take 6" ~ ©¢ uniformly, then we
mimic the static robust setup. The resulting out-of-sample estimator V is guaranteed to be
a lower bound for V' (0, z¢) since it is directly based on the suboptimal strategy (-, -) and its
only error is the Monte Carlo averaging due to the finiteness of N’.

To summarize, the proposed framework organically integrates the construction of V and
4 with the paradigm of Design and Analysis of Computer Experiments that views the inter-
mediate step as inference of an expensive black-box function. The adaptive D’s target the
learning of the optimal control, while the GP setup captures the spatial borrowing of infor-
mation to predict @(t, x) without directly optimizing. Their combination improves efficiency,
scalability, and interpretability, and should be contrasted to the conventional implementation
where D is a grid and the approximation architecture A is a linear interpolant (piecewise
linear V) Our algorithm is also highly modular, allowing additional ways of approaching
the aforementioned sub-problems of numerical integration and numerical optimization. Intu-
itively, the computation revolves around repeated optimization, and our framework achieves
substantial gains by leveraging already obtained solutions of similar optimization problems,
in analogy to parametric optimization. To our knowledge, we are the first article to propose
this strategy for robust stochastic control.

Remark 2.4. In the case studies below we have U = [0, 1] and the GP surrogate U tends to
over-smooth in regions where u(tg,x) ~ 0 or u(tg,z) ~ 1 as it does not like flat responses.
We regularize the constraint u € [0,1] by carrying out optimization of Fa(u,x) over a larger
domain v € U D U. The relazed mazimizer @(z) is then fed into the GP i representation
of the optimal control, and the resulting prediction is projected as Py(a) € [0,1]. This
reqularization makes sure that the data uy, used to build the surrogate are smooth and do not

have the non-smooth cut-offs at 0 and 1. In the first example below we take U = [—0.2,1.2].

2.4. Algorithm Stability. The overall algorithm complexity can be broken down into the
overhead of fitting the surrogates and the cost of calling predict during the Bellman recur-
sions. With a GP surrogate, the complexity of model fitting is O(N}) at each time step,
so O(3, N?) total. Each GP prediction requires O(N?) effort and is employed J times
during each evaluation of the conditional expectation F and in turn is called Noptim times
(which is state-dependent) by the nested optimizer that is solving for @#. Overall, we obtain
O(T X Noptim X Y_5(NZ)) complexity for Algorithm 2.1. Similarly we have O(}", NZ x N’)
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Algorithm 2.1 Backward Recursion to learn V and .

Require: Design sizes N
1: Initialize with terminal condition V (tx,z) = G(y) V.
2: for k=K —1,...,1do B
3:  Create a design Dy = (Y7, 0}) = x%kN’“ that will be used to estimate V' (t,, ).

4: forn=1,2,...,N. do
5: Using an optimal Gaussian quantizer with J terms set
3
(2.8) Fo(u, gp;‘k) = inf Z V (tps1, T(ts, x?k,% 0, 6(1),3))w(z)73'
001y, 07, ) “—
6: Let
(2.9) vy, = sup Fa(u; 7, ).

uel

Record the estimated optimal control uf, < argsup Fa(u;xy, ).
Record the driving worst-case parameters corresponding to ' :

J
. ) . 3 53 )7
0y < arg ugf g 1 V(t;H_l,T(tk,x?k,u?k,ﬁ,e(l) ))w(z) .
P

9: end for

10:  Build a GP model V (t, ) for the link between (xikN’“) and (vtl];N’“); this is the functional
representation of the value function at step k.

11:  Build a GP model 4(tg,-) for the link between (xikN’“) and (aika), this is a (separate)
functional representation of the optimal adaptive robust feedback control map

12: end for

complexity for generating N’ forward paths to obtain the out-of-sample evaluation of V in
Algorithm 2.2.

Note that while the main loop in Algorithm 2.1 is deterministic, in practice running the
algorithm twice will generate slightly different solutions. This occurs because our simulation
designs Dy, are dependent on the random pilot paths, so that the training z™’s, and hence the
GP surrogates, would vary from run to run. Moreover, many of the nonlinear optimizers that
are necessary for surrogate fitting rely on internal randomization. Algorithm variance would
be amplified if also the conditional expectation is approximated via Monte Carlo rather than
Gaussian quadrature.

In this vein, the design size Nj plays a double role of (i) decreasing the above macro-
replication variance through Law of Large Numbers with respect to the randomized aspects of
x{N; (i) increasing accuracy (i.e. reducing bias) by raising the fidelity of @& and V (i.e. reducing
functional approximation error between the surrogate and the true minimizers/value function).
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Algorithm 2.2 Forward Monte Carlo to evaluate performance of u* under Q!

Require: No. of simulations N’ no. of time-steps K, initial (X, 0y, )-
1: Initialize 07 < by, ] < @4y, n=1,... N’
2: Set 6" which is the parameter set (possibly time-dependent) for the n-th forward path (so
simulated under Q%").
for k=0,..., K —1do
Draw iid. ¢, ~N(0,1),n=1,...,N’
Using the GP surrogate compute the control uf, « (t,,z, ).
(Optional) Evaluate (using prediction from the surrogate or a direct evaluation of the
optimizer) the worst-case parameters éfk which are functions of z7 ;
7. Compute the realized payoff g(tx,y ,ur,); update the cumulative C}' <

k
> i1 9(te, Yk, up);
8:  Update the states according to a;?kH +«~ T (tk, xy s ug, 0", e?kﬂ) .

9: end for
10: Return V (0, o) := 7 Zflvzl Cr

Figure 2.2 displays a boxplot of 4 across algorithm macro-replications when using N, = 100
vs N = 250. As expected, a larger design reduces overall variance, as well as the bias.
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Figure 2.2: Comparison of Monte Carlo standard errors as a function of design size N = NiVk.
Left: Ten empirical predictions @(t, fit, , o, ) at tp = 0.8, 5t2k = 0.01 as a function of fi, to
illustrate the intrinsic fluctuations of our algorithm. We show both low-budget (in purple)
and high-budget (in grey) runs. Right: boxplot for @(tg, fit,,0.01) at three different fi, .

A detailed error analysis of Algorithm 2.1 is beyond the scope of this work. We note that
the scheme makes several approximations that all interact with each other and moreover back-
propagate over the Bellman recursion in t;’s. Indeed, the solution quality is impacted by the
surrogate quality of V (¢, -) and of @(ty,-) (that can be viewed as a 2-layer approximation),
with the latter also linked to the optimization and quantization errors in (2.9). Thus, there
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r=0.02, T =1, At=0.05
a=01, y=4, J=100, N = 250

Table 3.1: Parameters for the portfolio optimization case study.

are 3 major sources of error: (i) how well do the GPs match the true underlying input-output
relationships (which links to the experimental design Dy and Ny as well); (ii) how close are
uf™N and vtlliN’“ to the true V (tg, xtlka) and u*(ty, :L‘%ka) and (iii) how well does the quantized
sum on the right-hand-side of (2.8) approximate the conditional expectation of V(tji1,-).
Unraveling the interaction between the errors already embedded in V(tkH, -) and the saddle-

point computation that yields 4 is one of the many thorny challenges to investigate.

3. Adaptive Robust Utility Maximization. In this section we illustrate our algorithm
from Section 2.3 for the task of portfolio optimization under uncertain drift and volatility.
The full list of parameters is given in Table 3.1. We present two different case studies.

In this setting, we can simplify the computation of %3 in (2.8) by dimension reduction.
Namely, by monotonicity we take the 1-dimensional infimum in the unknown parameters u, o
just over the boundary 9O of the parameter space. Let ji(zf, ), 5 (zf, ) denote the parameters
achieving the infimum of .%;,. Switching to polar coordinates it suffices to find and record the
corresponding angle ¢y, using the map

(3.1) fig, = fig, + \//-;kflﬁti cos(¢y, );
(3.2) (67.)? = (67 )*(1+ V2 - sk~ Tsin(p},)) V 0.
The minimization defining %3 (and hence ¢}, ) is then done over ¢ € [0, 27| using the default

fminbnd algorithm in Matlab with a tolerance threshold of 1076, Similarly, we use fminbnd
to minimize .% over the scalar control domain U = [0, 1] = [Umin, Umax]-

3.1. Static Investment and Hedging. It is instructive to consider the one-period, aka
static version of the optimal investment problem. In this simplified setting, the terminal
controlled wealth Y7 under Q*“ is given by

(3.3) Y7 = Yy (14 r(T — to) + (T oVToer 1 _ (T — ),

where t( is the date that trade happens. Above ep is standard Gaussian in R and due to the
scaling of the power utility function, we may take without loss of generality Y;, = 1. The
static optimal investment problem is

1—y
r

(3.4) V(to, i1,0) = sup inf EHe ]
-

u€0,1] (1,0)€O([1,5 b0, k)

with the uncertainty set

k 1 k 1
(3.5) e(u,a,to,fc):{(u,a)ew:(f;<u—u>2+ g; <U2_0-2>2§H}.
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Observe that due to the one-period feature, the role of i, is purely to determine the
set of Qs that are being considered. Moreover, without loss of generality we may take the
horizon T — ty = 1 to be fixed, whereby the size of ©(n,d,to, k) is controlled by the ratio
o' = k/(ko + 1) which is interpreted as the measure of robustness. As o/ — 0, ©(0) — {0},
and o' is the “radius” of adversity.

To solve (3.4) it suffices to evaluate the map (u, pu, o) — E*° [W] and then find its
saddle point (i.e. the sup — inf location) over the constrained domain u € U and (p,0) € ©.
Due to the concavity of the utility preferences, this map is increasing in g and decreasing
in . Consequently, the infimum over the robustified beliefs will always be achieved in the
NW quadrant, so that ji(ig,0) < i@ and &(fz,0) > . Therefore we can again switch to
polar coordinates reducing to a 2-dimensional function F'(u, ¢) of the control u and the angle
¢ € [r/2,m]. For example, ¢ = m means taking the minimum possible drift.
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Figure 3.1: Left: F(u,p) for the static portfolio optimization case study for a fixed f,a.
The red line denotes the profile minimizers u — ¢(u). The red dot denotes the saddle point
(u*, *) identified via u* = argmax,c(o 1) F'(u, p(u)). Right: u* € [0,1] as a function of i,
for two different robustness levels k = 4.61 (red), k = 1.39 (blue) and ko = 10.

The left panel in Figure 3.1 shows F(u, ) for a representative pair of initial beliefs f, &
in the range u € [0,1],¢ € [2.8,7]. For a fixed investment level u > 0, F(u,-) is a convex
function with a minimizer ¢(u). However note that when v = 0, Y7 is independent of the
S-dynamics, i.e. F(0,-) is constant in ¢. The respective infimum is then undefined and there
is no ¢(0). The saddle-point is the maximum arg max, F'(u, ¢(u)) and is indicated by the red
dot on the left panel, where u — F(u,®(u)) is visualized by the red line. In this particular
case, u*(f1,0) ~ 0.669 and ¢*(f1,7) ~ 2.998.

The right panel of Figure 3.1 displays u* as a function of the initial beliefs i, 5 for two
different robustness levels. As « decreases, © gets larger and therefore the worst-case (inner
infimum) becomes worse. Consequently, the controller acts more conservatively, i.e. u* in-
creases in a. Otherwise, u* has the familiar shape of increasing in i (asset returns being more
favorable) and decreasing in & (asset risk rising). Note that when returns are not sufficiently
high and/or volatility is too large, the optimal action is u* = 0, i.e. to invest only in the
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risk-free bond. This happens in particular when O(fi,,to, k) (YR? # () intersects with the
negative half-plane, i.e. the investor believes that negative returns p < 0 are possible.

The left panel of Figure 3.2 visualizes the structure of the robustified beliefs (u*,o*) as
a function of (fi,5). Recall that ¢* = 7 (quivers pointing to the West) corresponds to the
worst-case making p* as negative as feasible. This is the robustified belief in the middle and
top of the state space. In the bottom-right (very high g and very low &), the worst-case
trades off reduced returns against increased risk. Finally, in the left half of the plot we have
u* = 0, so that there is no ¢* (no quivers displayed) since F'(0, ) is constant. In that case the
consistent interpretation is to keep u* = p,0* = ¢ unchanged.
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Figure 3.2: Left panel: quiver plot showing the relative position of (fi,d) relative to (f,d).
The angle of the quivers is the robustified belief angle ¢* and the length is proportional to
u*; no quiver is shown when u* = 0. Right: optimal investment fraction u* as a function of
[i, & using unconstrained optimization over R.

Finally, the right panel of Figure 3.2 addresses the question of trading constraints. Typ-
ically we find that v — F(u,®(u)) is convex, i.e. has a unique global maximum. In that
case we may find the unconstrained global maximum wj,. and then constraints of the form
U € [Umin, Umax] translate into u’,, = umin V u,. A Umax. The plot reveals several useful
insights. First, we observe the “shrinkage to zero” effect: robust control implies that a risky
position will be assumed only if there is a clear understanding regarding p. Therefore, if | —r|
is small, the robust solution is to take u* = 0. In that sense, u* shrinks the non-robust control
Uy $0 zerO. Because the size of O(tg, ) is influenced by 6 the amount of this shrinkage grows
in & as observed in the plot. Second, we observe that for a fixed & u* is essentially piecewise
linear in ji, capturing the original Merton intuition that u* is linear in asset returns. Third,
we note that leverage and short-selling remain feasible with adaptive robust control provided
that the adversarial set is far enough to one side of the half-plane. Thus, we observe u* < 0
in the bottom-left corner (strongly negative Sharpe ratio) and v* > 1 in the bottom-right
corner (very high Sharpe ratio). Fourth, we stress that the plot is (roughly) symmetric about
[ = 7 which is the risk-free alternative.

3.2. Multi-period Optimal Investment. We now return to the original multi-period set-
ting with K = 20 time-steps, i.e. ty = tog + kAt and T = tx. This setup is very similar to
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the previous section, except that w(ty,x) is now time-dependent. Figure 3.3 illustrates this
dependence by showing a contour-plot of (fi.,d.) — (-, i, ) for two different time steps ty.
Recall that at early epochs ©y is larger so ceteris paribus the investor is more conservative
and @ tends to increase in tx. This is indeed observed in the figure, matching the intuition
of “learning-as-you-go”. We note that there are competing effects, in particular due to the
time-dependence in the dynamics of 6;, (learning slows over time) and the time-dependent
effective risk-aversion (the value function becomes less concave as T' — ¢ increases).

Structure of Optimal Control: The left panel of Figure 3.3 shows the estimated
optimal feedback control surface (i, ) — 4(tx, ). We observe that u(ty,x) = 0 when f is
low and monotonically increases as the posterior mean asset return fi;, rises. Eventually for
high enough fi, , 4(tg, z) = 1. This structure suggests that we can concentrate the statistical
modeling efforts in the intermediate region R where u(tg,z) € (0,1) since otherwise the
corresponding feedback control surface is completely flat and therefore easy to interpolate.
The latter fact also implies that even extrapolation is feasible since we just need to ensure
that the surrogate is set such that the respective asymptotes in i are 0 to the left and +1 to
the right.
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Figure 3.3: Left: Optimal investment strategy from the GP surrogate, (tg,x) at tp = to +
15A¢. Right: time-dependency of u(ty,-): comparing k = 15 (cyan) and k = 10 (blue).

Structure of Robustified Beliefs: We recall that the angle ¢(tx,x) is only well-
defined when u(tx, z) # 0, since otherwise the investor is not exposed to returns uncertainty.
Therefore, ¢(ty, x) only exists for fi;, high enough and &;, low enough (the SE corner of the
state space). In the latter region, we find that the principal effect is to decrease the drift
rather than to increase volatility, so that ¢ ~ 7. In the multi-period context, low oy, would
also hurt the investor, so ¢ > 7 will also occur at the early time steps.

3.3. Distribution of Terminal Wealth. To obtain an out-of-sample performance metric
of the computed investment strategy @ we apply Algorithm 2.2 in Section 2.3. For the test
measure Q! we use Q©9, i.e. static Knightian uncertainty where 6" is drawn from a known
prior O at t = ty and then kept constant through time. To be consistent, we utilize the
initial adversarial set ©¢ = O(to, éto). Specifically, for the forward simulations we sample
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independently and uniformly " for n = 1,..., N’. For the discussion below, we took oo~
N(0.15,0.02%),6™ = 0.1 and 6y, = (0.1,0.08) so the investor starts out under-estimating both
the mean returns and the return volatility.

We recall that the classical Merton solution with fixed (i, o) is time stationary and given
by

n—=r

(¢ =u* = .
() = o) = Ly

Using the above we can compare our adaptive robust solution to the following alternative
strategies:

e Merton strategy based on u*(0(to,0;,)) which is the static robust formulation;

e Merton strategy based on u*(f;, ) which is the adaptive formulation;

e Strategy equivalent to our adaptive robust algorithm with o = 1 (O4 (g, 0, ) = {01, })

which dispenses with robustness.
For the static robust approach, the worst case of asset dynamics corresponds to a low Sharpe
ratio. In particular, for our parameter values, since negative return rate cannot be ruled out
g J(—00,0) xR, # 0, the robust u(S™*) (¢, 2) = 0 for all t € T\{T}, and no investment would
be ever undertaken. This point clearly illustrates why learning is desirable, as it allows the
investor to overcome initial pessimism (or worry about model risk) through gradual collection
of information. If enough favorable information is learned then she will eventually become
optimistic enough to invest. At the other extreme, the adaptive case leads to over-confidence
and hence over-investment. In particular, the adaptive method generates much larger variance,
i.e. risk, in Y7 compared to adaptive robust, as the investor trusts her myopic beliefs too much.
Figure 3.4 shows the distribution of terminal wealth Wpr as we vary the risk aversion

parameter v and the robustness parameter a. As expected, less risk averse investors will
have higher u* and therefore larger E[IWp| accompanied by much larger Var(Wrp). Similarly,
agents that are less conservative (and therefore have smaller O (6;,)) will tend to again invest
more. However, being too “trusting” and not guarding against model mis-specification will
eventually hurt wealth accumulation (compare a = 0.5 to a = 0.2, so that EQ° [Wr] has a
hump shape as a function of «).

4. Adaptive Robust Optimal Hedging. It is of financial and theoretical importance to
study optimal hedging problem in an incomplete market setup under model uncertainty. The
uncertainty issue was addressed, for example, in the paper [19] where the author used Bayesian
estimators in place of the corresponding parameters. We will compare our approach to a
similar method that uses maximum likelihood estimators instead. Another standard method
widely used among banks when dealing with model risk is the so-called conservative or worst-
case approach, and it is in principle the same as the static robust approach.

We denote by S = {S;, t € T} the market price process of the stock and we postulate
that the increments of S are log-normal with parameters pu, o:

(4.1) Stir = St exp (HAL+ 0V, ) ey ~ N0, 1),

Dynamic trading strategies are based on a discount bond and the stock S, and are represented
by a predictable discrete-time process {u,, tx € T'} identified with the number of shares
invested in the stock from t¢; until ¢;4;. The bond investment is then determined from the
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Figure 3.4: Left: Distribution of Wr for different risk aversion parameters . Right: Distri-
bution of Wy for different robustness parameters «.

self-financing constraint. For an admissible % we define the corresponding wealth process W
as

(42) Wtk+1 = Wtk + utk (Stk+1 — Stk) = Wtk + utkStk (6”At+am€tk+l — 1), Wto =w,

where w is the initial endowment, assumed to be fixed and deterministic.

We are interested in dynamic hedging, using an admissible trading strategy, of a European
style option written on the stock S, maturing at time 7" and with the payoff ®(S7), where ® is
a measurable function. To address nonlinear hedging, we define the objective as optimization
of the hedging error H = ®(St) — Wy through [24]

(4.3) E [¢(3(S7) — Wr)] — min!

where £(-) is a positive measurable loss function such that ¢(0) = 0. This setup offers a loss-
based criterion that is applicable both in complete and incomplete markets. The main loss
function we will consider is of the form

(4.4) 0(h) = h* + Ah™,

where the constant A > 0 reflects the relative importance of super- and sub-hedging. When
A = 0 the investor is penalized only for not having enough to cover her liability, while A =1
leads to £(h) = |h| and is the L'-equivalent of the classical quadratic hedging criterion.

We consider adaptive robust hedging in the context of uncertain asset drift and volatility,
leading to a four-dimensional state: x = (W, S, i,d) which under Q*“ has the dynamics
prescribed by (4.1)-(4.2)-(1.9)-(1.10). The Bellman equation becomes

V(T,z) = ((®(S) = W),

(4.5) V(ty,x) = inf sup E [V(tksr, Tt 20,0, €0,4,))] -
UEU 9 (14,0)€O(ty,,1,5)
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r=0, T=1, At=0.1, ko = 150
a=0.1, k=461, =40, N =250
fit, = 0.12, G4 = 0.4, Sy = 100, K = 100

Table 4.1: Parameters for the optimal hedging case study.

We may interpret V' as the robust expected loss, so that V(tx,z) > 0 and lower V implies
better ability to ¢-hedge. For example, in the one-sided example with £(h) = ht, V(t, ) will
be monotone decreasing in both S and W.

This setup is conceptually similar to the previous section but presents a harder compu-
tational challenge due to its higher dimensionality and the non-smooth relationships between
V(tk,-) and the state variables. Moreover, it features the fully endogenous wealth process
W which cannot be reasonably “forward-simulated” without assuming u;, . To overcome this
issue we adopt the Control Randomization approach of selecting a Q° measure to build the
designs Dy.

For illustration, we henceforth consider a European style Call option written on the risky
asset S with strike K, ®(S) = (S — K)*. The investor is short (sold) the Call and aims to
minimize her hedging error starting with initial endowment w.

4.1. Implementation Details. For the hedging problem, z is four-dimensional, and there
is a high correlation between Sy, and fi, , so that the design Dy, has a certain 3-d structure.
Moreover, necessarily there will be a dependence between S, and wealth W;, . To construct Dy,
we use a three-step procedure. First, we generate “pilot” forward paths of X under Q°. The

pilot paths are based on randomized ﬂl}(;N 0, 5t10:N °, as well as initial stock prices Sé:N ., where

Ny = 250. Specifically, given pg, 09, K we sample initial beliefs ﬂtl(;NO, 6,51(;]\]0 uniformly from

[0.5p0, 1.5p0] and [0.60¢, 1.30¢], respectively, as well as Stl(;NO € [0.5KC, 2K] around the strike
price K. Second, we construct a set of augmented pilot sites by adding a few more (f,d)’s
based on the edges of adversarial beliefs (u, o) € 0O (tx, fit, > 01, ). This step helps us reduce

extrapolation when evaluating V(tk+17 T(tg, x,u,0, e(i))) during Gaussian quadrature. Third,
we use a space-filling strategy to fill in “holes”, employing a QMC sequence-based design over
the convex hull of the augmented pilot sites at each t;. This is done by “pulling forward”
the design Dy to the next time-step t;,,, using the map T(tx,zf ,u, </‘7U)76§Z)+1)) with the
empirically sampled €’s and then randomly replacing 100 pilot sites by sites from the respective
QMC (Sobol) sequence in R?. This yields the experimental design (St gV, al:N), N = 250.

Finally, to specify WtIkZN we compute the Black Scholes prices PB(ty, St ;0r ) and inde-
pendently sample W} ~ Unif(0.5P(t, St ), 1.5PB3 (1, St )). This leads to a “tube” in the
(S, W) plane that contains the Black Scholes prices, with the idea that these are the likely
wealth levels (assuming that Wy, ~ PB%(tg, Sy,;0:,)) to be visited.

The algorithm described in Section 2.3 is tailored for applying the adaptive robust frame-
work to the optimal hedging problem. For the hedging problem, monotonicity of

E[V(tk—l-h T(tk, .T?k y Uy (:u’a 0)7 6tk+1))]
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in terms of p or o no longer holds true. Hence, the supremum is not necessarily attained on
the boundary 90 (t, T 6{;). Nevertheless, we continue to take advantage of the elliptical
nature of ©(tx,-) working in the respective polar coordinates (¢, p) representing the angle
and distance from (fi,5). We then discretize ©(t, iy, , o7, ) uniformly in terms of ¢ € [0, 27]
and p € (0,k) and fixing u € U carry out a direct maximization over the discrete set © of
adversarial beliefs. This finally yields the robustified parameters (i, 5):

fit, = [if, + \/Ptk (67,)%/(k + ko) cos(¢t,)

o =0y, \/1 +4/2 - pr, /(k + ko) sin() V 0.

Minimization of the resulting function

hed 0 ¥
(4.6) g ‘ ge( u; b, Q,Wtz, ?k) = sup E[V (tg11, T (tkawgcvw (M?a)?€tk+1))]
(Hva)eg(tkrﬂ?kva'?k)

with respect to u € U is done by using fminbnd in Matlab with a tolerance threshold of 1079,
where we double-check whether the minimum is achieved at the boundaries v € {0,1}. For the
super-hedging loss function ¢(h) = h*, we note that when W > PBS(t, S;0), the expected
loss is numerically zero, so that V' (x, .S, W) is numerically constant and the maximizer @ (ty, x)
of (4.6) is ill-defined. This is the scenario where the option can be super-hedged with very
high probability so it does not matter what the current hedge is. We found that it helps to
detect such cases a priori, setting (¢, x) = 0 for them.
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Figure 4.1: Estimated angle ¢ (quiver direction) and distance p (quiver length) for the ro-

bustified model parameters 6 as a function of current beliefs (fi, ) for the hedging problem

with S, = 100, W, = PB3(t;,100). The quivers are color coded in terms of @(t, ;) (purple is
@(t,0) = 0, yellow is @(t,0) = 1) that is based on a GP surrogate.

Figure 4.1 shows the estimated angle ¢(tx, i, 0) and distance p(tx, i, 7) via a quiver plot
at three different time instances ¢t = kAt. A first observation is that p is not trivial as the
adversarial beliefs are not necessarily on the boundary. Secondly, in this problem ¢ depends
both on the current stock price Sy, and the current wealth W;, . In the plot we consider
at-the-money case S;, = K = 100 and at-the-wealth case W;, = pBS (tk,St,). We observe
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that for early tj, the worst-case adversarial 6 corresponds to maximizing the stock return p,
&(t1,-) = 0, so as to maximize the Call value. Asset volatility begins to play a more important
role as expiration approaches and the Vega/Gamma of the Call increase. As a result, ¢ rotates
counterclockwise and the worst-case  now involves making both y and o larger. Third, the
Figure indicates the impact of tx on u(tk,-): the distribution of @ follows the rotation of ¢.
Time-dependency of @ is also illustrated in Figure 4.2. The optimal strategy is increasing in
W when W is relatively small, and is decreasing when W is large for ¢ = t3. On the other
hand, the hedging strategy in general increases with respect to S at ¢t = tg9. These show the
competition between the two factors ®(S5) and W at different time steps. At early stages W
plays a more important part: small W causes under-hedge and large W leads to over-hedge.
When we approach terminal time, ®(5) is the main driver of the hedging error: higher stock
price implies higher projected option payoff, hence one would invest a larger proportion of the
wealth into the stock to reduce the hedging error. In addition, change in the region of the
contour reflects different experimental designs Dy, for different time steps.
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Figure 4.2: Contour plot of the adaptive robust hedging strategy (tx, S, W, i, &) based on the
GP surrogate within the region {(S, W) : 0.5PB5(t;,S) < W < 1.5PB5(t,,S)} with i = 0.12,
g =0.4,t =ty (blue), t = tg (cyan).

4.2. Comparison to Other Approaches. As comparators to adaptive robust control, we
consider again the myopic adaptive (MA) and static robust (SR) formulations, as well as
a naive adaptive Delta (AD) hedging. The latter buys A(ty, Si, ;0. ) shares at each step
tr, plugging-in the latest parameter estimates into the classical Delta-hedging strategy of
the Black-Scholes model. MA control corresponds to first solving the optimization problem
treating 6 as a parameter, which yields @4 (t;;0). The adopted strategy is then @4 (t;; 0;, )
which, like the adaptive Delta, leads to a purely learning-based approach. The SR formulation
takes O, = ©¢ and then solves the Bellman equations (4.5).

To make the comparison, we compute the distribution of the respective terminal hedging
errors H = ®(S7)—Wr on N’ = 50000 out-of-sample forward paths, using ¢(h) = ht+0.75h".
Figure 4.3 shows the empirical histogram of H from the forward simulations. Better hedging
corresponds to lower average loss E[¢(H)] and in particular should concentrate errors closer



26 TAO CHEN, AND MICHAEL LUDKOVSKI

-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40

Figure 4.3: Histograms of hedging error H = ®(St)— W7 for loss function £(h) = h* +0.75h.
Adaptive robust control (blue); adaptive Black-Scholes A (green). Left: Sy, = 90, Wy = 10;
Center: Sy, = 100, Wy, = 20; Right: S;, = 110, Wy, = 25.

to zero, so that mean(H) ~ 0 and Var(H) small are preferred. We see in Figure 4.3 that
the hedging error of Adaptive Robust strategy is more concentrated around H = 0. In the
out-of-the-money and in-the-money cases, Adaptive Delta leads to significantly larger tail on
the positive side. Hence, AR produces a comparatively better strategy which “super-hedges”
(consistently more negative H) AD. This is not very surprising as the AD recipe is ad hoc
and is not targeting the loss function.

Figure 4.4: Distribution of H = ®(Sr) — Wr: adaptive robust (blue); static robust (red);
myopic adaptive (cyan) for loss function £(h) = ht+0.75h~. Left: out-of-the-money S;, = 90,
Wi, = 10; Center: at-the-money S;, = 100, Wy, = 20; Right: in-the-money (S, Wy,) =
(110, 25).

Figure 4.4 shows that the AR approach frequently performs better than SR and MA
strategies. When taking a two-sided loss function (A = 0.75), the hedging error of AR concen-
trates more around zero and has apparent thinner tails on both sides compared to the other
two. Due to lack of learning, SR strategies are more “conservative” and over-invest in the
underlying asset (see Figure 4.5 below) which increases the variance of ®(S7) — Wp. Myopic
adaptive control is over-optimistic and tends to lead to very high variance, already noted
in [9]. Table 4.2 shows the impact of A on the performances of these three approaches. SR
does better than the other two when A = 0. Note that this corresponds to the super-hedging
objetive, hence it is not surprising that the conservative approach wins as it over-invests in
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A=0 A=0.5 A=0.75
AR SR MA AR SR MA AR SR MA
mean(H) || -6.09 -882 -2.79 | -7.11 -3.34 -0.60 || -6.81 -1.01 -1.26
std(H) 16.06 5.07 21.62 | 524 19.62 25.05 || 5.26 24.09 22.95
qoos(H) | 21.76 -1.04 37.57 || 1.72 33.19 49.81 || 1.86 52.07 43.06
Vo 3.52 008 6.50 | 4.07 844 13.83| 5.70 13.59 14.31

27

Table 4.2: Mean, standard deviation, and 95%-quantile of the hedging error H = ®(Sp)—Wrp,
as well as the mean loss V (o, St,, Wt,) with Sy, = 100, Wy, = 20. We compare the Adaptive
Robust (AR), Static Robust (SR) and Myopic Adaptive (MA) methods and three different
loss functions £(h) in (4.4).

the risky asset. For A\ > 0 where positive hedging error is also penalised, adaptive robust for-
mulation outperforms the other two. Choosing the optimal strategy in these cases are more
delicate, and a method which combines learning and robustness handles the situation better.

4.3. Comparison of Optimal Hedges. Compared to hedging strategies generated by other
approaches, the adaptive robust strategy follows the movement of the underlying S; more
closely. Such behavior can be understood as a better learning of the model than other methods.
Figure 4.5 displays a sample trajectory of S; and corresponding u(tg, St,) across the above
three approaches. When stock price is volatile during the time period, robust strategies
@t (ty,, Sy,,) and @9R(ty, S;, ) are much more stable than the pure learning-based strategies
ﬁMA(tk,Stk) and ﬁAD(tk,Stk,étk). It is also worth mentioning that for the static robust
approach the assumed drift /i corresponding to the worst case model is very high. Namely the
SR worst case is that the Call ends in-the-money and a large positive hedging error H > 0
results. To compensate against this scenario, the static robust strategy @5 over-invests in the
risky asset to ensure that Wr ~ ®(Sr) conditional on Sy > K, which conversely generates
larger risk in other, less adversarial scenarios. This explains why u3%(ty, S, ) > u R (ty, Si,)
in Figure 4.5.

5. Discussion.

5.1. Enhancements. A central feature of our machine learning approach is the rich set
of opportunities to enhance the computations. These concern the ultimate aim of (i) faster
running time; (ii) more stable and accurate estimates of V and @. Practically, we would like
to be able to specify a small simulation budget N; and then obtain good results quickly. We
do note that there is a third dimension of actual running time—if the statistical surrogate
model is too complicated then its overhead can be high even when Ny, is low. For example, we
can propose heuristics for sequential, adaptive designs Dy that would maximize the learning
ability of @ as a function of Ny, but actually slow down the algorithm (hence we deem them
low-priority extensions).

Faster optimization: Generating a single training pair (2, , vy, ) in (2.9) requires solving
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Figure 4.5: Left panel: path of adaptive robust hedge ti — ﬁ,AR(tk, xt,,) (blue) for a European
Call option in comparison to static robust @*%(t;,z;,) (red), myopic adaptive @MA(ty, x4, )
(cyan), and adaptive Delta @D (11, Sy, ;0. ) (green). The respective path of Sy, is shown in
black (recall strike of U = 100). Right: paths of the respective wealth processes W, color-
coded accordingly. The difference between plotted terminal wealth W and ®(S7) ~ 29 (black
dot, option expires in-the-money) is the respective hedging error H.

a nested optimization problem (maximizing over u, minimizing over (u, o)), which is the most
expensive part of the algorithm. Since this is done inside all the loops (over k and over n),
making this step efficient is central to fast performance. In our existing implementation we
utilize off-the-shelf gradient-free optimizers (fminbnd and fminsearch in Matlab) which are
agnostic to the structure of E and V(tkH, -) and operate completely generically. One way to
speed up is through warm-starting the optimizers at the location a(tk+1,$?k)7 i.e. assuming
that the new optimizer is the same as the one from the previous (later) time-step. For .%, in
(2.8)-(4.6) we may warm-start the optimizer at ¢ = m. A further enhancement is to rely on
gradient-descent optimizers which would require to estimate V.%(u). Within the GP setup
we may analytically differentiate the GP kernel to learn V,V which in turn could be converted
into V,.%5.

GP Hyperparameters: A significant portion of the algorithm running time is spent
on fitting the GP surrogates, i.e. inferring (typically by maximum likelihood maximization)
the respective hyperparameters ¥;, . This is a hard nonlinear optimization problem with total
time complexity O(K - N3), with the dependence on K due to the need to fit a surrogate at
each time-step t;. Generally, the hyperparameters zg‘tk are stable over time, so one could use
this for another warm-start in the MLE optimizer, or even directly set @tk = ﬁtk 41, freezing
hyperparameters across (some) time-steps. Because the GP surrogate is data-driven, the final
prediction depends mostly on the training data and less on the precise value of ¥, .

In terms of accuracy, an important piece of building the surrogate are its extrapolation
properties. Recall that for extrapolation the GP prediction reverts to its prior m.(z) — mg(z)
outside of the input domain. For fitting the control surrogate @ in both case studies we take
mo(z) = 0, but other choices would be appropriate depending on the problem/surrogate and
in our experience can play a nontrivial role in ultimate solution quality. (However, note that
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mo(+) is only relevant for extrapolation—within D the prediction is driven by the training
data.)

5.2. True Monte Carlo. The use of numerical quadrature to integrate out V(tk+1, )) is
probabilistically biased in the sense that EQUI([V (t; 1, )](z) # E[V(tgs1,-)](x) so that a
consistent, deterministic error is introduced during this sub-step. A well-known alternative is
to employ Monte Carlo integration, namely replacing the integral with a random sum

J
. 1 .
(5.1) /V(tkH,T(tk,x u,0,2)) fe(z 32 (thor, T(tp, z,u,0, Z;)) = VMO (1),
=1
where Z; ~ N(0,1),7 = 1,...,7 are now i.i.d. Gaussian samples, furthermore independent

across different x™’s. Relative to quadrature, the MC approximation is unbiased, but noisy.
We find that the latter noise makes a Monte Carlo-based scheme much less accurate.

Specifically, for the optimal hedging problem, we computed @MC(t;, ) and a4 (ty, )
using several different quantization/inner-simulation levels J and relying on identical design
(SUN ptN LN W EN) - We find that to achieve comparable accuracy one needs 3-5 times
more MC pomts compared to quadrature points. Given that the computational complexity
of both approaches is the same, it seems much preferable to employ quantization.

5.3. Related Control Formulations. As already demonstrated in the one-period example
of Section 3.1, our numerical tools can be straightforwardly applied to parametric control
problems. In the latter formulation, rather than seeking to optimize/robustify against a
collection of potential 8’s, we simply wish to understand the dependence of the value function
or feedback control on #. The proposed Gaussian process surrogates is a natural tool for that
purpose, allowing the modeler to solve the underlying control problem at several instances
6", n = 1,...,N and then interpolate to obtain V(-;0) and u*(-;#) at arbitrary § € ©. In
particular, such parametric control is relevant for the myopic adaptive problem where one
pre-computes V (-;6) and then plugs-in the latest belief ;.

Secondly, our scheme also immediately nests the dynamic adaptive problem where the
adversarial set ©(0) = {9} is a singleton, so the inner optimization disappears. Indeed, one
can simply take k = 0 to collapse the radius of © to zero, and then run exactly the same
code as for the adaptive robust setting. Third, the scheme can be adapted to handle Bayesian
formulations that replace infg with an integral [,(-)vy, (df) against a distribution v, (df).
Learning becomes encoded as updating the posterior 14, () of 6 over time. In the practically
tractable case, there are finite-dimensional sufficient statistics (such as the posterior mean) 6y,
for £(6*|F,) so the integral over v, (df) can be reduced to a numerical quadrature over the
parametrized posterior distribution. For example, under drift uncertainty and assuming the
setting of trying to learn an unknown fixed fi, £(f1|Fr) is Gaussian with a certain formula for
mean i, and posterior variance V; and integrating against 14, (df) becomes a one-dimensional
Gaussian integral.

Remark 5.1. Our algorithm can also be interpreted as a type of Control Randomization. In
CR, the solution pipeline is of the form depicted below, where a0 s possibly randomized.
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With this interpretation, any experimental design can be viewed as an implicit recipe for
QO°, namely specifying the respective marginal distribution of Xy, . This perspective emphasizes
the fact that the quality of the design is linked to the quality of the ansatz for u(0). It also
implies that the training procedure can be embedded into top-level iterations, whereby better
and better estimates of u* are fed back as new guesses ul™),r = 1,... to generate more and

more targeted simulation designs :L‘;N’(T).

5.4. Conclusion. We have developed a machine learning-based algorithm for adaptive ro-
bust control. Our motivation comes from the multiple desirable features of adaptive control
and aims to mitigate the associated computational challenges, making the adaptive robust
framework numerically feasible. The resulting case studies provide new insights on the inter-
play between learning, controlling for model uncertainty and risk aversion in the context of
the classical Merton problem and the loss-based hedging problem.

The key innovation in our methodology is to build multiple surrogates for different pieces
of the Bellman recursion, in particular not just for the value function but also for the feedback
control map and worst-case parameters. To do so we propose utilization of Gaussian Process
surrogates which check off multiple important computational considerations. The developed
algorithm is certainly of independent interest. Further investigations of non-financial contexts
and of other related control formulations are deferred to future research.
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