
Received 30 December 2020; Revised 12 July 2021; Accepted 5 September 2021

DOI: xxx/xxxx

RESEARCH

Adaptive Batching for Gaussian Process Surrogates with
Application in Noisy Level Set Estimation

Xiong Lyu | Michael Ludkovski*

1Department of Statistics and Applied
Probability, University of California at Santa
Barbara, Santa Barbara, CA 93106-3110,
USA Email: lyu@pstat.ucsb.edu

Correspondence
Michael Ludkovski, Department of Statistics
and Applied Probability, University of
California at Santa Barbara, Santa Barbara,
CA 93106-3110, USA Email:
ludkovski@pstat.ucsb.edu

We develop adaptive replicated designs for Gaussian process metamodels of stochastic
experiments. Adaptive batching is a natural extension of sequential design heuristics
with the benefit of replication growing as response features are learned, inputs concen-
trate, and the metamodeling overhead rises. Motivated by the problem of learning the
level set of the mean simulator response, we develop five novel schemes: Multi-Level
Batching (MLB), Ratchet Batching (RB), Adaptive Batched Stepwise Uncertainty
Reduction (ABSUR), Adaptive Design with Stepwise Allocation (ADSA) and Deter-
ministic Design with Stepwise Allocation (DDSA). Our algorithms simultaneously
(MLB, RB and ABSUR) or sequentially (ADSA and DDSA) determine the sequen-
tial design inputs and the respective number of replicates. Illustrations using synthetic
examples and an application in quantitative finance (Bermudan option pricing via
Regression Monte Carlo) show that adaptive batching brings significant computa-
tional speed-ups with minimal loss of modeling fidelity.

KEYWORDS:
GP surrogates, level set estimation, stochastic simulation, design of experiments, stepwise uncertainty

reduction

1 INTRODUCTION

Metamodels offer a cheap statistical representation of complex and/or expensive stochastic simulators that arise in applications
ranging from engineering to environmental science and finance [32]. Gaussian process (GP) frameworks have emerged as the
leading family of metamodels thanks to their flexibility, analytical tractability and superior empirical performance. However, for
GP metamodels to be fast, it is imperative to keep the respective design size || manageable. In particular, unless the simulator
is truly expensive or the input domain is vast, the typical recommendation is to restrict to hundreds of inputs, ||≪ 103. This
creates a major tension as frequently the stochastic simulator has low signal-to-noise ratio or a complex noise structure. A
prototypical example is where the simulator Y (x) = F (X[0,Δt])|X0=x involves functionals of a continuous-time Markov chain or
stochastic differential equation solution (Xt), whereby the stochasticity tends to dominate the trend/drift term for short Δt, and
moreover simulation noise is non-Gaussian and state-dependent (heteroskedastic).

A natural solution is to employ batching, known in the stochastic simulation community as nested Monte Carlo. Re-using the
same input to generate multiple outputs allows for a Law of Large Numbers (LLN) averaging which can be analytically combined
with the GP predictive equations to keep the computational complexity as a function of k (number of unique inputs) rather than
of the capital-N (number of simulator calls). The seminal technique of stochastic kriging [1] shows that these computational
savings are exact assuming the GP hyperparameters, in particular the noise variance �2, are known. Such batching becomes

2 LYU and LUDKOVSKI

critical in the use of GP models in our motivating application of solving optimal stopping problems via Regression Monte Carlo,
where tens of thousands of simulations are called for.

In the classical setup, the metamodeling objective is to learn the mean response over the entire domain [21, 22, 11], whereby,
modulo heteroskedastic noise, one expects to utilize the same batching level across all inputs, i.e. splitting the total budget
N = k × r into k batches of r replicates at locations x̄1,… , x̄k. See [1] for a discussion of how to pick k for a given budget N ,
as well as some proposals for handling non-constant �2(x). We are interested in more targeted objectives, where the picture
is much less clear. As two canonical examples we recall Bayesian Optimization (finding the maximum mean response) and
Level Set Estimation (determining the input sub-domain where the mean response exceeds a given threshold). In both settings
GP metamodels have been shown to especially shine, not least because they organically match the sequential adaptive designs
typically utilized; the respective Expected Improvement schemes form a major feature of the GP ecosystem. Since these objectives
imply preferentially sampling a small portion of the input space—the neighborhood of the maximum, or the neighborhood of the
desired contour—the exploration-exploitation paradigm leads to increasingly concentrated designs. Such concentration suggests
to adaptively determine the amount of batching. Intuitively, replication should be low for more exploratory sites and should rise
in the neighborhood of interest, where we replicate to achieve computational savings. Indeed, the intrinsic cost of replication is
linked to the variability of the response at the respective inputs, which will be minimal if the inputs are very close together. From
a different perspective, replication trades off costly, precise outputs (large r) vis-a-vis cheap outputs with low signal-to-noise
ratio (low r).

The above motivates adaptively batched designs, where r is input-dependent. While this idea was investigated for Bayesian
Optimization [20, 30] and for Integrated Mean Squared Error (IMSE) minimization [1, 8], neither of these fully reveal the
underlying tension between exploration (replicate less, larger metamodel overhead) and exploitation (replicate more, generate
computational savings). In this article we propose several schemes that explicitly focus on this issue. To evaluate them we
concentrate on the problem of level set estimation where the contour is adaptively learned through the sequential design but
retains a spatial structure (unlike Bayesian Optimization where convergence to the single input yielding the global maximum is
desired). Consequently, we expect a complex interaction between the selection of inputs and the respective replication amounts.
In this context, our main contribution is to extend the paradigm of Expected Improvement to include sequential selection of
both the input locations xn and the replication counts rn. We benchmark the proposed algorithms and show that they provide
significant savings compared to the naive fixed-batching approach. In particular, we are able to obtain schemes that reduce
N ≃ 105 simulations to efficient replicated designs of just a few hundred unique inputs.

Beyond benchmarking the developed algorithms on several synthetic examples, we also implement and extend them to
heteroskedastic modeling for the motivating application of valuation of Bermudan options. In the latter context, the Regression
Monte Carlo (RMC) paradigm is used to provide a simulation-based algorithm that hinges on recursive estimation of certain level
sets that correspond to the so-called stopping boundaries. Building upon the successful use of GP surrogates for RMC [24, 27],
we demonstrate that adaptive batching significantly speeds up this approach, making it more scalable and efficient. In particular
while in [24] sequential design was typically too slow to be useful, adaptively batched models beat basic implementation on both
speed and memory requirements. We note that there are other important applications of level set estimation, from quantifying the
reliability of a system or its failure probability [5], to ranking pay-offs from several available actions in dynamic programming
[16].

The rest of the paper is organized as follows. Section 2 formalizes the GP model and the contour-learning objective. Section 3
develops heuristics for sequential designs that jointly optimize over the new input and replication level. Section 4 takes a different
tack and explores dynamic replication through allocating new simulations to existing inputs. Section 5 benchmarks the proposed
schemes on three synthetic case studies and Section 6 on two more examples from Bermudan option pricing. Section 7 concludes.

2 STATISTICAL MODEL

Consider a latent f ∶ D → ℝ which is a continuous function over a d-dimensional input space D ⊆ ℝd . We wish to identify the
contour)S, where, without loss of generality, S is the zero level set

S = {x ∈ D ∶ f (x) ≥ 0}. (1)

LYU and LUDKOVSKI 3

Thus, our metamodeling objective is equivalent to learning the sign of f (x) for any x ∈ D. For any xi ∈ D, we have access to a
simulator Y (xi) that generates noisy outputs of f (xi):

Y (xi) = f (xi) + �i, (2)

where �i’s are realizations of independent, mean zero random variables with variance �2. To describe replication, we distinguish
between simulation inputs xi, some of which may be identical, and unique inputs x̄i. Let y(j)i be the jtℎ output of ri ≥ 1 replicates
observed at x̄i and let ȳi ∶=

1
ri

∑ri
j=1 y

(j)
i be the average over these replicates. This notation follows the “unique-n/full-N”

formulation in [8].
The inference of)S proceeds by building a metamodel f̂ , which induces Ŝ = {x ∈ D ∶ f̂ (x) > 0}, and evaluating its error

rate , i.e. the integral over the symmetric difference between Ŝ and true S weighted by a given measure �(⋅):

(S, Ŝ) = ∫
x∈D

I(sign f̂ (x) ≠ sign f (x))�(dx) = �(SΔŜ), (3)

where SΔŜ ∶= (S ∩ Ŝc)
⋃

(Sc ∩ Ŝ). S can also be defined using Vorob‘ev expectation [12] or conservative probability estimate
[9, 3].

Reconstructing S via a metamodel can be divided into two aspects: the construction of the response model x → Y (x), and
the development of the design of experiments (DoE) for efficiently selecting the inputs x̄1, x̄2,…. To account for the second
aspect, we use n to denote the rounds of sequential DoE, kn to denote the number of unique inputs x̄’s sampled by step n and
Nn =

∑kn
i=1 r

(n)
i the respective number of simulator calls made. The superscript on ri allows the replicate counts to evolve over n

as well, see Section 4. The metamodel training set by step n consists of n =
{

(x̄i, r
(n)
i , ȳi), 1 ≤ i ≤ kn

}

.
The Gaussian process paradigm treats f as a random function whose posterior distribution is determined from its prior and

the training set(s) n. We view f (⋅) ∼ GP (m(⋅), K(⋅, ⋅)) as a realization of a Gaussian process specified by its mean function
m(x) ∶= E[f (x)] and covariance function K(x, x′) ∶= E[(f (x) −m(x))(f (x′) −m(x′))]. The noise distribution is � ∼ (0, �2);
and thus the observation ȳ also follows a normal distribution. For simplicity we take m(x) = 0. The conditional distribution
f |n is another Gaussian process, with posterior mean f̂ (n)(x∗) and covariance v(n)(x∗, x′∗) at arbitrary inputs x∗, x′∗ given by

f̂ (n)(x∗) = k(x∗)[K + �2R(n)]−1ȳ1∶kn , (4)

v(n)(x∗, x′∗) = K(x∗, x
′
∗) − k(x∗)[K + �

2R(n)]−1k(x′∗)
T , (5)

with the 1 × kn vector k(x∗) = K(x∗, x̄1∶kn), the kn × 1 vector ȳ1∶kn = {ȳi, 1 ≤ i ≤ kn}, the kn × kn matrix K given by
Kij = K(x̄i, x̄j), and the kn × kn diagonal matrix R(n) given by R(n)ii ∶=

1
r(n)i

. The posterior mean f̂ (n)(x∗) is treated as a point

estimate of f (x∗), and the posterior standard deviation s(n)(x∗) ∶=
√

v(n)(x∗, x∗) as the uncertainty of this surrogate.

Remark 1. It is also common in practice that the simulators exhibit input-dependent noise, calling for a heteroskedastic
metamodel. Given the noise distribution �i ∼ (0, �(xi)2) with a known �(⋅), the conditional distribution f |n is given by

f̂ (n)(x∗) = k(x∗)[K + R̃(n)]−1ȳ1∶kn ,
v(n)(x∗, x′∗) = K(x∗, x

′
∗) − k(x∗)[K + R̃

(n)]−1k(x′∗)
T ,

with the diagonal matrix R̃(n) given by R̃(n)ii ∶=
�(xi)2

r(n)i
. All the batching algorithms proposed in Section 3 and 4 naturally extend

to the heteroskedastic context if we replace �2R(n) with R̃(n). The main challenge is then to handle estimation of the unknown
conditional variance �(⋅), see e.g. [1, 7]. The algorithms proposed below have been ported to work with the R hetGP library [7]
that provides an efficient way to jointly learn the mean and variance response surfaces under replicated designs.

3 ADAPTIVE DESIGNS

3.1 Level Set Estimation
An adaptive DoE approach is needed to select x̄1, x̄2,… sequentially since the level-set S is defined in terms of the unknown
f . The standard framework of DoE is to add new inputs one-by-one at each round, using an acquisition function n(x) to pick
x̄n+1. The acquisition function quantifies the value of information from running a new simulation at x conditional on an existing

4 LYU and LUDKOVSKI

training set n, and picks x̄n+1 as the myopic maximizer of n:

x̄n+1 = arg sup
x∈D

n(x). (6)

Building upon the seminal Expected Improvement criterion [18], various level-set sampling criteria were proposed by Bichon
et al. [6], Picheny et al. [29], Bect et al. [5] and Ranjan et al. [31]. Further instances of (x) can be found in Chevalier et al.
[13 12], Azzimonti et al. [2 4], and Bolin and Lindgren [9]. The basic idea in sequential level-set estimation is to assess the
information gain from new simulations, targeting the learning of the contour. Most of the above criteria were originally proposed
for deterministic experiments with no simulation noise, or cases with known �2. We refer to Lyu et al. [27] for a summary of
level set estimation in stochastic experiments with heteroskedastic �2(x), which can be seen as the counterpart of the earlier
study in Jalali et al. [17] for Bayesian Optimization with stochastic simulators.

In this section we construct a sequential batched DoE to jointly select (x̄n+1, rn+1). At each DoE round we pick a new input
x̄n+1 and the associated replication amount rn+1; thus by round n there are n unique inputs. In our first proposal, we formulate
this task as balancing the trade-off between accuracy and cost. A small number of replicates is cheap to simulate but yields
inaccurate information about)S; querying with many replicates is expensive but accurate. An imperfect analogy can be made
to multi-fidelity Bayesian Optimization [19, 30]. As a second proposal, we relate replication to simulation and model fitting
overhead costs, leading to maximization of the information gain (x, r) per unit cost [20, 28].

Remark 2. Another meaning of batched DoE refers to selecting multiple new inputs x̄k in parallel, see Chevalier et al. [12]. In
this article, batching always refers to using replicates; we add (at most) one new input at each DoE round.

To begin, we repurpose two existing acquisition functions well suited to our needs. In our first proposal, we formulate the
choice of input xn+1 and its replicate count rn+1 as two separate steps, which implies that n is only based on the existing
information. The first acquisition function is Contour Upper Confidence Bound (cUCB) [27] which stems from the Upper
Confidence Bound (UCB) strategies proposed by Srinivas et al. [33] for Bayesian Optimization. cUCB blends the minimization
of |f̂ (n)(x)| (exploitation) with maximization of the posterior uncertainty s(n)(x) (exploration):

cUCB
n (x) ∶=

{

−|f̂ (n)(x)| + �(n)s(n)(x)
}

�(x), (7)

where �(n) is a sequence of UCB weights, and � is a probability measure on the Borel �-algebra (D) (e.g., � = LebD the
Lebesgue measure on D). Thus, cUCB targets inputs with high response uncertainty (large s(n)(x)), and close to the contour
)Ŝ (small |f̂ (n)(x)|). See Lyu et al. [27] on the choice of the UCB weight sequence �(n). Maximizing cUCB

n (⋅) yields xn+1; see
Sections 3.2 and 3.3 on various ways to select the corresponding rn+1.

In the second proposal, we jointly pick xn+1 and rn+1 in a single step, utilizing a look-ahead criterion. The gradient Stepwise
Uncertainty Reduction (gSUR) criterion focuses on the local empirical error En defined by

En(x) ∶= Φ
(

−
|f̂ (n)(x)|
s(n)(x)

)

. (8)

We interpret En(x) as the local probability of misclassification of {x ∈ S}, see Bichon et al. [6], Echard et al. [15], Lyu et al.
[27] and Ranjan et al. [31]. gSUR aims to select the input which produces the greatest reduction between the current En(x) given
n and the expected En+1(x) conditional on the one-step-ahead design, n+1 = n ∪ (x̄n+1, rn+1, ȳn+1). To do so, gSUR ties the
selection of x̄n+1 to the look-ahead standard deviation s(n+1)(x, r) at x conditional on n and sampling r times at x. The latter is
proportional to the current standard deviation s(n)(x) with the proportionality factor linked to r [14]:

s(n+1)(x, r)2

s(n)(x)2
=

�2

r
�2

r
+ s(n)(x)2

, (9)

since the replicated outputs y(j)n+1 are i.i.d.. Based on (9) and using the fact that EȲ (x)[f̂ (n+1)(x)] = f̂ (n)(x), the gSUR metric
approximates the effect of Ȳ (x) on the look-ahead local empirical error En+1(x):

gSUR
n (x, r) ∶=

{

Φ
(

−
|f̂ (n)(x)|
s(n)(x)

)

− Φ
(

−
|f̂ (n)(x)|
s(n+1)(x, r)

)}

�(x) (10)

≃
{

En(x) − EȲ (x)
[

En+1(x)
]}

�(x).

We note that gSUR
n (x, r) = 0 for x ∈)Ŝ (n) (i.e. when f̂ (n)(x) = 0) so that the gSUR metric naturally enforces some exploration

by sampling close to, but not exactly at, the estimated contour.

LYU and LUDKOVSKI 5

Algorithm 1 Multi-Level Batching (MLB)

Input: rL, �, k0, r0
k0 ← {(x̄i, r0, ȳi), 1 ≤ i ≤ k0}, (f̂ (k0), s(k0))← f |k0 ,
 ← Ave(s(0)(x̄1∶k0)).
Nk0 ← r0 × k0.
for n = k0, k0 + 1,… do

x̄n+1 ← argmaxx∈D cUCBn (x).
while s(n+1)(x̄n+1, r1) <
 ⊳ Check if need to lower threshold do

 ← � ×
 .
end while
rn+1 ← max{r ∈ rL ∶ s(n+1)(x̄n+1, r) ≥
}.
ȳn+1 ←

1
rn+1

∑rn+1
j=1 y

(j).
Update n+1 ← n ∪ {(x̄n+1, rn+1, ȳn+1)}.
Obtain (f̂ (n+1), s(n+1))← f |n+1.
Nn+1 ← Nn + rn+1.

end for

3.2 Multi-Level Batching
Having determined x̄n+1 via the cUCB criterion cUCBn (7), we turn to the task of picking rn+1. The most basic batching strategy
is Fixed Batching (FB):

rn+1 ≡ r0
for some pre-specified batching level r0. To improve upon FB, we select rn+1 from a discrete set rL ∶= {r1,… , rL}, interpreted
as representing L different sampling levels. Query at x on the l-th level implies using rl replicates to generate observations
y(j), j = 1,… , rl yielding the average ȳ. The cost of the l-th level is proportional to rl .

In our context, we rely on the look-ahead standard deviation s(n+1)(x̄n+1, ⋅) in (9). Our Multi-Level Batching (MLB) Algorithm 1
aims to match s(n+1)(x̄n+1, rn+1) with a given threshold
n which acts as the target level for the next-step standard deviation.
Intuitively, 1∕
n controls the credibility of the model; it is progressively raised as the input space is explored. Recall that
r → s(n+1)(x̄n+1, r) is monotone decreasing in (9); MLB chooses the highest level rn+1 ∈ rL for which s(n+1)(x̄n+1, rn+1) >
n.
If s(n+1)(x̄n+1, r) >
n for all r ∈ rL then we use the highest rn+1 = rL; if s(n+1)(x̄n+1, r) <
n for all r ∈ rL then we lower the
threshold by multiplying
n by a reduction factor � < 1, and try to identify rn+1 again, cf. [19].

3.3 Ratchet Batching
By construction, the MLB Algorithm 1 will step back and forth between different replication levels rl . Since intuitively the design
should concentrate as n grows, we expect rn to grow over time which is achieved through the decreasing
n. By enforcing that
n → rn is monotonically non-decreasing (in line with the intuition that replication becomes increasingly beneficial as n grows) we
can simplify the choice of rn+1 and reduce algorithmic overhead. The resulting Ratchet Batching (RB) scheme picks rn+1 among
just two replication levels (compared to L levels in MLB) and is summarized in Algorithm 2. Let r↑n = min{r ∈ rL ∶ r > rn}
be the next level. Then RB either keeps rn+1 = rn if s(n+1)(x̄n+1, rn) ≥
n > s(n+1)(x̄n+1, r↑n) or increments to rn+1 = r↑n if
s(n+1)(x̄n+1, rn) > s(n+1)(x̄n+1, r↑n) ≥
n. In the third case where s(n+1)(x̄n+1, rn) <
n we lower the threshold
n as in MLB. For RB,
the reduction factor � for
 should be close to 1, to avoid excessive ratcheting up. If � is not large enough, there is a risk to skip
levels in rL and to end up with excessive replication relative to number of simulation calls, leading to insufficient exploration.

3.4 Adaptively Batched Stepwise Uncertainty Reduction
The FB, MLB and RB schemes all pick x̄n+1 first and then rn+1. We next propose a procedure to pick both through a joint
criterion optimization. The main idea is to tie the choice of rn+1 to cost, namely to maximize the ratio of the information gain and
the cost of generating r outputs, plus the optimization overhead. The inclusion of the overhead in n comes from [35, 20, 28] in
Bayesian Optimization problems, where the authors treated the total cost as the sum of query cost Tsim and the GP metamodeling
overhead covℎ. Stroh et al. [34] discussed estimating a probability of exceeding a threshold in a multi-fidelity stochastic simulator,

6 LYU and LUDKOVSKI

Algorithm 2 Ratchet Batching (RB)

Input: rL, �, k0, r0
k0 ← {(x̄i, r0, ȳi), 1 ≤ i ≤ k0}, (f̂ (k0), s(k0))← f |k0 ,
 ← s(k0).
Nk0 ← r0 × k0.
for n = k0, k0 + 1,… do

x̄n+1 ← argmaxx∈D cUCBn (x).
while s(n+1)(x̄n+1, rn) <
 do ⊳ Check if need to lower threshold

 ← � ×
 .
end while
r↑n ← min{r ∈ rL ∶ r > rn}
rn+1 ← rn ⋅ 1{s(n+1)(x̄n+1,r↑n)<
} + r

↑
n ⋅ 1{s(n+1)(x̄n+1,r↑n)≥
}

ȳn+1 ←
1
rn+1

∑rn+1
j=1 y

(j).
Update n+1 ← n ∪ {(x̄n+1, rn+1, ȳn+1)}.
Obtain (f̂ (n+1), s(n+1))← f |n+1.
Nn+1 ← Nn + rn+1.

end for

where the input x̄n+1 and the fidelity are estimated in a sequential way. We develop an analogue for level-set estimation via a
gSUR-based acquisition function

ABSURn (x, r) ∶=
gSURn (x, r)
c(r) + covℎ(n)

, (11)

where covℎ(n) is the overhead and c(r) = r ⋅ Tsim is the cost of r evaluations, linear in r. Combining (11) and (10), we obtain

ABSURn (x, r) ∶=
Φ
(

− |f̂ (n)(x)|
s(n)(x)

)

− Φ
(

− |f̂ (n)(x)|
s(n)(x)

√

rs(n)(x)2+�2

�

)

r ⋅ Tsim + covℎ(n)
. (12)

The resulting ABSUR Algorithm 3 myopically maximizes ABSUR over x ∈ D and r ∈  = [r, r̄]. Intuitively, similar to the
gSUR, ABSUR also targets the neighborhood of the zero contour)S and the value of rn+1 is controlled by s(n)(x)2 and covℎ(n);
more replication results when s(n)(x)2 is small (neighborhood of the zero contour)S) or covℎ(n) is large (at a later stage of active
learning). One could replace the numerator in (12) with other similar metrics that target reduction of contour uncertainty [27].

Algorithm 3 Adaptive Batched SUR (ABSUR)

Input:  = [r, r̄], k0, r0, Tsim, overhead cost function n → covℎ(n)
k0 ← {(x̄i, r0, ȳi), 1 ≤ i ≤ k0}, (f̂ (k0), s(k0))← f |k0
Nk0 ← r0 × k0
for n = k0, k0 + 1,… do

(x̄n+1, rn+1)← arg supx∈D,r∈ ABSURn (x, r).
ȳn+1 ←

1
rn+1

∑rn+1
j=1 y

(j).
Update n+1 ← n ∪ {(x̄n+1, rn+1, ȳn+1)}.
Obtain (f̂ (n+1), s(n+1))← f |n+1.
Nn+1 ← Nn + rn+1.

end for

There are four hyperparameters in ABSUR: the simulation cost Tsim, the overhead cost function covℎ(n) and the lower/upper
bounds of replication [r, r̄]. For covℎ(n) we follow the recipe in [28], modeling it as a quadratic function of n to reflect the
prediction complexity of GPs:

covℎ(n;�) = �0 + �1n + �2n2, (13)

LYU and LUDKOVSKI 7

where � are fitted empirically. Alternatively Klein et al. [20] kept covℎ(n) as a constant. The constant Tsim represents the cost of
obtaining each observation, measured in the same units as covℎ(n) (up to rescaling �, we can assume Tsim = 1). If simulations are
cheap, we would like to replicate more, and indeed lower Tsim leads to larger rn’s and therefore smaller designs. This feature
implies that ceteris paribus Tsim should be set larger when input spaces are more voluminous, e.g. in higher-dimensional settings.

4 ADAPTIVE DESIGN WITH STEPWISE ALLOCATION

The four strategies (FB, MLB, RB and ABSUR) discussed in Section 3 visit each input site x̄n+1 only once. Consequently, the
respective replicate count rn+1 is determined at step n+1 and then remains the same throughout the latter steps. As an alternative,
one can sequentially allocate new simulations across existing designs, thereby gradually growing r(n)i . Namely, the algorithm
identifies existing “informative” inputs and augments their replicate counts, without changing the number of unique inputs kn
across the sequential design rounds n. In our context, we pair this augmentation with the option of expanding the design set itself.
This choice is similar to the classical exploitation (do not change kn) versus exploration (increase kn). The resulting Adaptive
Design with Stepwise Allocation (ADSA) approach resembles Stepwise Approximate Optimal Design (SAO), an IMSE-based
sequential design strategy proposed by Chen and Zhou [11] for mean response prediction.

At each step n of the ADSA strategy we are given a budget of Δr(n) additional simulations, and the main decision is to
determine whether we should choose a new input x̄kn+1 that then receives all these Δr(n) replicates, or we should allocate the
Δr(n) new simulator calls across the existing inputs x̄1∶kn . In the latter case, we aim to minimize the global look-ahead integrated
contour uncertainty (n+1) where the metric (n) is defined by

(n) ∶=
M
∑

j=1
!(n)j f̂

(n)(xj,∗) = (!(n))T f (n)∗ ≃ ∫
D

Φ(−f̂ (x)∕s(n)(x))f̂ (n)(x)�(dx), (14)

where x∗ = x1,∗,… , xM,∗ is a test set of size M , f (n)∗ ≡ f̂ (x∗) is the vector of predicted responses at x∗, and !(n)j ≡
!(xj,∗)�(xj,∗) = Φ(−f̂ (n)(xj,∗)∕s(n)(xj,∗))�(xj,∗) are the weights that target the level-set region of interest (compare to the
targeted integrated mean square error (tIMSE) criterion proposed by Picheny et al. [29]).

For allocation purposes, we approximate the look-ahead (n+1) as a linear combination of the M predictions f̂ (n+1)(xj,∗) with
fixed weights !(n), whereby our goal is to minimize the variance of (!(n))T f (n+1)∗ conditional on the extra allocations Δr(n)i at each
input x̄i. Since the covariance matrix of f (n+1)∗ given replication counts R(n+1) is

C(n+1) = k(x∗, x∗) − k(x∗, x̄1∶kn)(K + �2R(n+1))−1k(x∗, x̄1∶kn)
T (15)

the objective becomes the quadratic program that minimizes

SAO((Δri)
kn
i=1) = (!

(n))TC(n+1)!(n) (16)

under the constraint
∑

iΔr
(n)
i = Δr(n).

Define the kn × kn matrix �(n) = K + �2R(n) and the M × kn matrix K∗ ∶= K(x∗, x̄1∶kn). The next proposition, proven in
Appendix A, explains how to pick Δr(n)i ’s to minimize (16).

Proposition 4.1. Let ΔR(n) ∶= R(n) −R(n+1) be a kn × kn diagonal matrix with elements ΔR(n)ii =
Δr(n)i

(r(n)i +Δr
(n)
i)r

(n)
i
= [r(n)i]

−1 − (r(n)i +

Δr(n)i)
−1, i = 1,… , kn. Assume maxi=1,…,kn ΔR

(n)
ii ≪ 1. The optimal allocation rule that minimizes (16) is to assign Δr(n)i to each

x̄i such that

r(n)i + Δr(n)i ∝ U(n)i , (17)

where

U(n) = (�(n))−1KT
∗!

(n). (18)

After obtaining the allocations Δr(n)1,…,kn
, we compute the resulting look-ahead tIMSE metric:

(n)−allSAO ∶=
M
∑

j=1
s̃(n+1)(xj,∗)2!

(n)
j , (19)

8 LYU and LUDKOVSKI

Algorithm 4 Adaptive Design with Stepwise Allocation (ADSA)

Input: x̄∗, x̄1∶k0 , k0, r0, cbt
k0 ← {(x̄i, r0, ȳi), i = 1, ..., k0}. (f̂ (k0), s(k0))← f |k0 , N0 ← r0 × k0.
for n = k0, k0 + 1,… do

Δr(n) ← cbt
√

n.
Calculate allocations Δr(n)i , 1 ≤ i ≤ kn with Algorithm 5 (see Appendix B).
x̄kn+1 ← argmaxx∈D cUCBn (x,Δr(n)).
Calculate (n)−allSAO ,(n)−newSAO in (21) and (19).
Case 1:

New ȳkn+1 ←
1

Δr(n)
∑Δr(n)
j=1 y

j(x̄kn+1).
Update n+1 ← n ∪ {(x̄kn+1,Δr

(n), ȳkn+1)}.
Nn+1 ← Nn +

∑

iΔr
(n)
i (May not be exactly Δr(n)).

kn+1 ← kn + 1.

Case 2:

For i = 1, ..., kn, update ȳi ←
ȳi×r

(n)
i +

∑Δr(n)i
j=1 yj (x̄i)

r(n)i +Δr
(n)
i

, r(n+1)i ← r(n)i + Δr(n)i
Update n+1 ← {(x̄i, r

(n+1)
i , ȳi)}i=1,…,kn .

Nn+1 ← Nn +
∑kn
i=1Δr

(n)
i

kn+1 ← kn
Obtain (f̂ (n+1), s(n+1))← f |n+1.
ADSA: Do Case 1 if (n)−allSAO > (n)−newSAO , otherwise do Case 2
{FDSA variant:} Do Case 2.
{DDSA variant:} Do Case 1 if n is odd, Case 2 if n is even.

end for

where the look-ahead variance s̃(n+1)(⋅)2 is based on the new replicate counts r(n+1)i = r(n)i + Δr(n)i , i = 1,… , kn, see proof in
[14, 16]:

s̃(n+1)(x∗)2 = s(n)(x∗)2 − k∗(�(n))−1ΔR(n)(�(n))−1kT∗ . (20)

The alternative to allocating over existing x̄1∶kn is to pick a new input xkn+1 and assign it Δr(n) simulations. To do so, we use
the cUCB criterion to make it consistent with FB, MLB and RB. (Other acquisition functions can also be used and experiments
suggest that the algorithm is not sensitive to this choice.) Then we evaluate the resulting (n)−newSAO :

(n)−newSAO ∶=
M
∑

j=1
s(n+1)(xj,∗,Δr(n))2!

(n)
j , (21)

s(n+1)(xj,∗,Δr(n))2 = s(n)(xj,∗)2 −
v(n)(xj,∗, x̄kn+1)

2

�2

Δr(n)
+ s(n)(x̄kn+1)

2
.

The sums in (19)-(21) are used as approximations of the underlying integrals over x ∈ D. Finally, we compare (n)−newSAO and
(n)−allSAO to determine whether to sample at the new x̄kn+1 or to allocate to existing x1∶kn , picking the maximum of the two tIMSE
metrics.

For FB, MLB, RB and ABSUR, as we select one new input at each step, we have kn = n. However, for ADSA we either select
a new input or re-allocate, so that the resulting design size satisfies kn < n. Thus, relative to the earlier schemes, in ADSA the
size of n and the number of DoE rounds n are no longer deterministically linked and the number of unique inputs is endogenous
to the particular algorithm run.

A major goal of all our schemes is for kn to grow sub-linearly in n, i.e. new inputs are added less frequently as more simulations
are run. There are two reasons for this: (1) As kn grows, the input space is better explored and one should favor exploitation
more and more; (2) the GP overhead increases in kn so that each decision becomes more costly and therefore large batches are
preferable. Put another way, kn ∝ n and constant Δr(n) is equivalent to fixed batching r̄ = Nn∕kn and we wish for rn to grow

LYU and LUDKOVSKI 9

TABLE 1 Parameters for the 2-D modified Branin-Hoo and the 6-D modified Hartman experiments.

PARAMETER 2-D Branin-Hoo 6-D Hartman
Simulation budget NT 2000 6000
Initial design size k0 20 60
Initial replicates r0 10 10
ADSA test set in (14) M 500 1000

Replication levels rL
[5, 10, 15, 20, 30, 40, 50, 60, 80,

100, 140, 180, 240, 300]
ABSUR replication range  [5, 200] [5, 300]
ABSUR simulation cost Tsim 0.01 0.05
ABSUR overhead cost in (13) covℎ(n) � = [0.137, 8.15 × 10−4, 1.99 × 10−6]
ADSA batch factor cbt 10 3.33

(at least on average) in n. In ADSA, we organically prefer re-allocation over adding inputs as n grows. The user can further
enhance this situation by making the batches Δr(n) also grow in n. Specifically, we have found a good heuristic in taking Δr(n) to
be proportional to

√

n (see proportionality constant cbt in Algorithm 4), which is faster compared to constant batch sizes and
more accurate than making Δr(n) linear in n which is overly aggressive.

Deterministic DSA. In practice we observe that the ADSA scheme tends to alternate roughly equally between re-allocation and
addition of new inputs. To save computational overhead, we consider the simplified Deterministic Design with Stepwise Allocation
(DDSA) scheme that deterministically alternates between re-allocation and adding inputs, making kn = k0 + ⌈(n − k0)∕2⌉ also
deterministic. Observe that DDSA no longer needs to evaluate the expensive (n)−allSAO and (n)−newSAO .

5 RESULTS

5.1 Synthetic Experiments and Computational Implementation Details
In this section we benchmark the schemes on three synthetic case studies, employing rescaled Branin-Hoo (d = 2) and Hartman
(d = 6) functions. We make linear transformations to the standard setups in order to rescale the output to [−1, 1] and have the zero-
contour “in the middle” of the input space. For the Branin-Hoo case, we further restrict and rescale the original domain to make
f monotone along x1 and to generate a single zero-contour curve. Full specifications are provided in the Online Supplement, see
also [27]. The 2-D case studies with the Branin-Hoo response function employ two noise settings: (i) Gaussian � ∼ (0, 1); and
(ii) heteroskedastic Student-t where the distribution of � is input-dependent: �(x) ∼ t6−4x1(0, (0.4(4x1 +1))2). The latter setting is
to test the influence of noise mis-specification. The third case study is in 6-D using the Hartman response and noise � ∼ (0, 1).

The squared-exponential kernel

Kse(x, x′) ∶= �2se exp
(

−
d
∑

i=1

(xi − x′i)2

2l2i

)

is used throughout as the GP covariance function. The covariance hyperparameters # = {l1,… ,ld , �2se} are estimated via MLE
using the fmincon optimizer in MATLAB. We re-fit # every five DoE steps and otherwise treat it as fixed across n. The noise
variance is taken to be known (i.e. � = 1) in the first and third case studies. It is fitted (as an unknown constant) along with # for
the experiments with Student-t simulation noise.

For the 2-D case study the metrics , (n)−allSAO , and (n)−newSAO are computed as an equally weighted average over test points
constructed using Latin Hypercube Sampling over the entire input space. In the 6-D case study we pick 80% of the test points
from the region {x ∈ D ∶ |f (x)| < 0.7} that is close to the zero-contour and the remaining 20% from the rest of the input space;
the respective weights to compute the metrics are based on the volume of the former region. The same setup was used in [27];
see also [12] for a detailed comparison between different sampling methods.

We use FB with batch size r ≡ 10 as a baseline, and compare the performance of MLB, RB, ABSUR, ADSA and DDSA.
Performance is based on the error rate  in (3), i.e. evaluating (numerically, using a test set of sizeM) the symmetric difference

10 LYU and LUDKOVSKI

between the true and estimated level set. This is done at a fixed simulation budget NT , i.e. each scheme is run for kT rounds
until NkT = NT the budget is exhausted. Note that the resulting number of DoE rounds kT will vary scheme-by-scheme and
potentially run-by-run. We index Nn, kn by the DoE sequential iterations, while NT , kT are indexed by total budget consumed.
Table 1 provides further details about the parameters specific to each scheme. To optimize the various  acquisition functions
we use a global, gradient-free, genetic optimization approach as implemented in the ga function in MATLAB, with tolerance of
10−3 and 200 generations.

We fit all the Gaussian Process surrogates using the GPstuff suite in MATLAB [36]. For easier reproducibility, our
supplementary material contains R code, including the adaptive batching heuristics, to reproduce Figure 6 below. We are happy
to provide the MATLAB codes upon request.

The proposed adaptive batching strategies are not limited to the vanilla GP setup. Other metamodels can be straightforwardly
substituted as long as they allow to efficiently evaluate the n criteria and the batch look-ahead variance s(n+1)(x, r). As an
illustration, motivated by the non-Gaussian simulation noise in the second case study and the option pricing application in
Section 6, we implement a GP metamodel with Student-t observation noise (henceforth t-GP). In the t-GP formulation �i in (2) is
taken to be t-distributed with variance �2 and � > 2 degrees of freedom. Lyu et al. [27] showed that t-GP is a good choice in the
face of noise misspecification. Appendix C provides details of using a t-GP metamodel via a Laplace approximation approach.
Our schemes are moreover ported to work with the hetGP [7] in R, see Table 3 below.

5.1.1 Algorithm Tuning Parameters
In this section we briefly describe the various tuning parameters associated with the proposed algorithms. For the UCB weight
sequence �(n) in cUCB, we follow the recipe in [27] and set �(n) = IQR(f̂ (n))∕3Ave(s(n)) which keeps both terms in (7)
approximately stable as n changes. For MLB, we initialize
 as the average standard deviation Ave(s(k0)(x̄1∶k0)) and take the
reduction factor � = 0.5. For RB we use the same initial
 but decrement it slower, � = 0.8. Higher � increases the overall design
size kT and therefore computation time. For MLB, � ∈ [0.5, 0.7] leads to the lowest error rate ; for RB, we recommend
� ∈ [0.7, 0.9]. For the replication levels rL used in MLB and RB, we manually construct a “ladder” of rl’s with spacing that
increases roughly proportionally. In our experience, the choice of spacings (i.e. number of levels L) does not play a major role,
with the most important parameter of rL being its upper bound rL. If rL is too low, the gains from replication are limited; if rL is
too high we observe over-exploitation with a design that does not have enough unique inputs.

For ABSUR, we recommend minimal replication level r of 5 or 10, and maximum replication of r̄ = 0.05NT , i.e. 5% of the
total budget NT . Table D1 in Appendix D shows the impact of varying r̄ from 1% to 100% of NT . Unsurprisingly, increasing r̄
decreases the design size kT and computation cost t. Note that because the scheme tries to optimize actual rn in the interval [r, r̄],
for very large r̄ that constraint is not binding and so the impact is minimal, see last few rows in Table D1 . In the middle of its
range, the role of r̄ is similar to that of rL for MLB and RB.

The coefficients � in the quadratic overhead function covℎ(n) in (13), as well as the simulation cost Tsim are pre-tuned via a
linear least squares regression with the given simulator and hardware setup. Thus, they are not really tuning parameters, but
reflect the relative computational effort between regression and simulation. Nevertheless, to provide some intuition, the right
panel of Table D1 shows the impact of changing Tsim for one of our experimental setups. Higher Tsim encourages exploration.
Thus, to avoid too much exploitation and very high rn’s we recommend not to make Tsim too small; in our experiments this
translates to Tsim ∈ [0.01, 1].

For the batch factor in ADSA and DDSA we take cbt = 20∕d, which favors more exploration in higher-dimensional problems
with larger input domains. Table D2 in Appendix D shows the effect of changing cbt ∈ [10∕d, 80∕d]. For both algorithms
the design size kT decreases as cbt increases. However, the change in kT , as well as in the error rate  for DDSA is more
significant than for ADSA, especially when simulation noise is low. DDSA achieves lower  with a smaller cbt, while ADSA
has a lower error rate with cbt lower than 20∕d.

A benefit of working with simulation batches is that the related computation is trivially parallelizable. Like all sequential
methods, our schemes cannot be run fully in parallel, since the choice of xn+1 must be done one-by-one. Nevertheless, assuming
that most time is spent on simulation, distributing the generation of y(j)i , j = 1,… , rn across computing cores will generate
substantial savings that are not possible without batching. To maximally leverage this, one should set rn to be a multiple of the
available number of cores. In the examples below we do not employ any parallelization.

LYU and LUDKOVSKI 11

TABLE 2 Scheme performance across the two synthetic case studies. Results are means (± standard deviations) from 50 runs of
each combination of a metamodel and batching scheme.

DESIGN ERROR RATE T TIME/S AVE kT
2-D Branin-Hoo WITH � ∼ (0, 1)

FB 0.019 ± 0.005 118.89 200.00
ABSUR 0.021 ± 0.007 10.32 35.20
RB 0.021 ± 0.008 8.30 38.72
MLB 0.018 ± 0.008 8.63 38.44
ADSA 0.020 ± 0.008 14.11 34.42
DDSA 0.022 ± 0.007 7.92 37.00

6-D Hartman WITH � ∼ (0, 1) AND NT = 6000

FB 0.030 ± 0.004 1934.51 600.00
ABSUR 0.070 ± 0.015 289.52 159.80
RB 0.058 ± 0.014 104.68 143.40
MLB 0.037 ± 0.008 294.49 240.62
ADSA 0.043 ± 0.007 198.82 171.74
DDSA 0.050 ± 0.009 101.59 142.00

6-D Hartman WITH � ∼ (0, 1) AND NT = 30000

FB rn = 50 0.015 ± 0.002 1654.32 600.00
FB rn = 100 0.016 ± 0.002 461.57 330.00
FB rn = 200 0.029 ± 0.006 152.21 195.00
ABSUR 0.022 ± 0.003 757.18 325.25
RB 0.024 ± 0.005 227.01 237.05
MLB 0.022 ± 0.006 240.61 242.95
ADSA 0.016 ± 0.002 995.57 373.80
DDSA 0.017 ± 0.002 522.00 350.00

5.2 Algorithm Performance
Our main goal with adaptive batching is improved computational performance. Of course, a faster algorithm generally requires
to sacrifice predictive accuracy. As such, direct comparison of schemes is not possible but must be considered through the above
trade-off. Figure 1 and Table 2 show the link between the error rate  from (3) and the running time across the proposed
schemes. Since we desire fast and accurate schemes, there is a Pareto frontier going from top-left to bottom-right. In the 2-D
case study (shown in the left panel in Figure 1), we see that the most accurate scheme is t-GP with FB, while the fastest is GP
with DDSA. Another Pareto-efficient scheme is t-GP with MLB which is arguably the best (the second fastest among t-GPs, and
the second most accurate). In 6-D ABSUR works poorly, probably due to under-performance of the gSUR criterion; see [27]
who showed that cUCB appears to be empirically better for this 6-D Hartman function. Another reason is that gSUR converges
in a slower rate, see the middle panel in Figure 2 : gSUR takes NT ≃ 30000 simulations to achieve a comparably small error
rate . However, in Figure 1 , NT = 6000 for 6-D experiments.

Looking at the running times, we see that there are major gains from adaptive batching; the baseline FB scheme takes almost
10 times longer to run than designs with adaptive ri’s. Fixed batching generally performs well in terms of  (as it ends up being
more exploratory) but practically those gains are crowded out by the huge cost in computational efficiency. Overall, among the
five proposed schemes the recommended choice is MLB and ADSA which tend to produce low  with a significant reduction
in computational time.

As mentioned in the Introduction, the benefit of replication is inextricably tied to simulation noise. To this end, in Appendix D
we investigate the role of the signal-to-noise ratio (SNR) on algorithm’s performance by varying the noise variance �2 in the

12 LYU and LUDKOVSKI

2-D Branin-Hoo 6-D Hartman FB Comparison

FIGURE 1 Running time and ultimate error rate T across different schemes. Left panel: 2-D Branin-Hoo with heteroskedastic
noise and budget NT = 2000. Middle panel: 6-D Hartman function with Gaussian noise and NT = 6000. Right panel: 6-D
Hartman function with Gaussian noise for FB with different values of r. The Pareto frontiers are highlighted for GP (solid line)
and t-GP (dashed line).

2-D case study with Gaussian noise. Figure D1 shows that as �2 increases, designs become smaller (kT decreases, except for
ADSA). The performance metrics are reported in Tables D1 and D2 in Appendix D. As expected, lower SNR increases T
and algorithms should be tuned depending on the level of noise. For example, for ADSA and DDSA, one should increase cbt if
SNR is low; for ABSUR one should increase r̄. Some intuition can also be gleaned from Table 2 and Table 3 : the second
experiment with t-distributed noise has much lower SNR compared to the first one with � ∼ (0, 1). Lower simulation noise
means that less replication is needed, which implies reducing r̄ and rL and tends to advantage MLB compared to ADSA and
ABSUR. Consistent with conclusions in [27], t-GP performs better than plain GP in such a setup where noise is heavy-tailed.

To further investigate the impact of noise on different schemes, as well as to showcase the use of alternative GP metamodels,
Table 3 shows results for the 2D Branin-Hoo experiment with heteroskedastic noise � ∼ t6−4x1(0, (0.4(4x1 + 1))2). In this
experiment we test both the different batching schemes, as well as two other metamodel familiies: t-GP and hetGP. t-GP extends
the GP paradigm to allow for t-distributed observations, see Appendix C. hetGP, implemented in the eponymous R library [7],
non-parametrically learns not just the mean response but also the input-dependent observation noise surface �2(⋅).

Using the hetGP library we further compare our adaptive batching to the cIMSPE algorithm described in Section 4.2 of [7].
cIMSPE is similar in spirit to ADSA except that it allocates simulations one-by-one. At each step, cIMSPE uses a criterion n to
decide whether to add a new unique input, or increase by one the replicate count at an existing input. The comparison is based on
the expected value of n and is replication-biased by comparing not just one-step-ahead but over a horizon of ℎ. We use the
cUCB criterion cUCB and a horizon of ℎ = 3. While cIMSPE offers a strong motivation for sequential construction of replicated
designs, it is extremely slow because it has as no intrinsic batching and therefore requires N sequential steps to allocate N
simulations. Consequently, it is only feasible when N is small and takes orders of magnitudes more time in our setting with
N = 2000. This limitation of the cIMSPE was one of the motivations for explicitly incorporating batching (rather than simply
accommodating replication) in our approaches.

Several observations can be gleaned from Table 3 : (1) In terms of metamodels, t-GP and hetGP perform better than plain GP
in this context with heteroskedastic noise. (2) In terms of adaptive batching schemes, their accuracy () is generally quite
similar. DDSA runs the fastest and yields better-than-average error rates. (3) The comparator schemes yield similar error rates
but are not competitive in terms of running times: cIMSPE is about 100 times slower and generates over a 1000 unique inputs
compared to less than 50 for our schemes. FB is also slow (∼ 6 times slower), although in combination with t-GP it does achieve
the overall lowest error rate .

To give some intuition about how the replication level should depend on the total budgetNT , the right panel of Figure 1 shows
the performance of FB as we vary r and NT . As expected, lower r generally leads to lower error rate  but longer running
time. This indicates the intrinsic necessity to explore the input space adequately which introduces a lower bound regarding the
number of unique inputs kT = NT ∕r for FB. However, for very low r (e.g. r < 20 for NT = 6000) there is essentially no gain
from additional exploration implying that one can safely agglomerate simulations into batches without sacrificing accuracy.
The resulting J-shape in the Figure implies that there is an "optimal" r∗(N) that minimizes  without needless performance
degradation: r∗(6000) ≃ 10, r∗(2 ⋅ 104) ≃ 50, r∗(5 ⋅ 104) ≃ 100. This feature showcases both the strength and the weakness of

LYU and LUDKOVSKI 13

TABLE 3 Scheme performance in the 2-D heteroskedastic synthetic case study with 2-D Branin-Hoo response and noise
�(x1, x2) ∼ t6−4x1(0, 0.16(4x1+1)2). Results are means (± standard deviations) from 50 runs of each combination of a metamodel
and batching scheme. Note that the running times for GP and t-GP, which are from MATLAB, and for hetGP, which is from R, are
not comparable.

DESIGN ERROR RATE T TIME/S AVE kT
PLAIN GP IN MATLAB

FB 0.034 ± 0.029 106.37 200.00
ABSUR 0.037 ± 0.039 15.50 39.14
RB 0.039 ± 0.035 10.93 39.92
MLB 0.041 ± 0.041 11.61 42.26
ADSA 0.033 ± 0.042 18.20 34.82
DDSA 0.034 ± 0.043 9.67 37.00

t-GP IN MATLAB

FB 0.024 ± 0.010 192.44 200.00
ABSUR 0.036 ± 0.014 29.55 35.00
RB 0.032 ± 0.014 23.65 39.66
MLB 0.030 ± 0.018 22.88 39.72
ADSA 0.031 ± 0.013 26.26 30.68
DDSA 0.034 ± 0.018 15.30 37.00

HETGP IN R

FB 0.035 ± 0.010 36.93 200.00
ABSUR 0.031 ± 0.011 5.38 46.40
RB 0.035 ± 0.010 1.45 48.10
MLB 0.034 ± 0.017 1.31 49.10
ADSA 0.035 ± 0.010 2.98 41.75
DDSA 0.030 ± 0.010 1.51 36.00
CIMSPE 0.032 ± 0.016 2.47 HRS 1028.20

fixed batching: in principle excellent performance is possible if r ≃ r∗ is fine-tuned; however such fine-tuning is very difficult and
without it FB can be highly inefficient. The proposed adaptive batching schemes aim to automatically fine-tune rn sequentially
removing this limitation.

Another goal of adaptive batching is to enable an organic way to grow designs as NT changes (while for FB r necessarily must
be pre-chosen in terms of NT). A good algorithm is able to efficiently improve its accuracy as NT grows, avoiding excessive
exploration or exploitation. The left panel of Figure 2 shows the log error rate  as a function of NT for FB, ABSUR, RB,
MLB, ADSA and DDSA for the 6-D Hartman experiments, respectively. For FB, we stopped at NT = 6000 due to prohibitive
running times for designs. We observe that while all schemes perform somewhat similarly, MLB reduces the error rate  at
the fastest rate when Nn < 600, and otherwise, ADSA is the fastest. ADSA shines in the later stage of sequential development
of DoE, since it needs enough “candidate inputs" to calculate the allocation rule. In terms of computational efficiency, we are
concerned not with  in terms of NT but in terms of running time—i.e. how much predictive accuracy can be achieved within
a given time budget. The respective relationship is shown in the middle and right panels of Figure 2 where the x-axis is now in
terms of t seconds. We observe that all the adaptive schemes reduce the error rate  at a faster rate than a scheme with fixed
replication level. In the early stage, RB and DDSA are the fastest, and ABSUR is the slowest. However, as NT or t continues to
rise, ADSA keeps reducing the error rate  and eventually achieves a smaller  than other algorithms. However, ADSA
usually takes slightly longer time. In conclusion, ADSA is the most accurate algorithm given a large enough cost t or simulator
calls NT , and MLB is the most accurate algorithm when NT is small. Results are consistent with those observed in Figure 1 .

14 LYU and LUDKOVSKI

FIGURE 2 Log Error rate log t as a function of simulator calls Nt for FB (r = 10), ABSUR, RB, MLB, ADSA and DDSA
and 6-D experiments (left panel). Log error rate log t as a function of running time t for the 6-D case study with Gaussian
noise (middle panel) with NT = 60000 and for the 2-D case study with heteroskedastic noise (right panel) with NT = 2000. The
FB algorithm is stopped at Nt = 6000 since computation is too slow.

FIGURE 3 The design size kn as a function of simulator calls Nn. Left: 2-D case study with heteroskedastic noise; Right: 6-D
case study with Gaussian noise.

Recall that GP model fitting complexity is (k3n) (driven by the matrix inversion K−1), so that the design size kn = |n| is the
primary driver of computational efficiency. In the baseline FB scheme, r(n) ≡ r is constant so that kn = Nn∕r grows linearly
in simulator budget Nn. This is precisely the reason that a constant r becomes impossible to maintain as Nn grows and why
we had to abandon FB in the left panel of Figure 2 . A key aim of adaptive batching is to achieve sub-linear growth of kn
i.e. kn∕Nn → 0 as n grows so that r(n) keeps getting larger as we develop the DoE. Figure 3 plots kn as a function of Nn for
2-D and 6-D experiments. As desired, we observe a generally concave shape, which is approximately of square-root shape. The
stair-case shape of kn for ADSA is due to the adaptive re-allocation of new simulations which allow to increase Nn without
changing kn at some steps. We note that RB and ADSA achieve the most concave shape and hence would be the fastest for very
large Nn which can be seen indirectly in Figure 2 as well.

5.3 Comparing Designs
To drill down into the designs obtained from different approaches, Figure 4 visualizes the adaptively batched designs produced
for the 2-D Branin-Hoo experiment with heteroskedastic Student-t noise. The left panel displays the resulting design size kT with
simulation budget of NT = 2000. Recall that besides FB and DDSA, design sizes of all other schemes vary across algorithm
runs (i.e. kT depends on the particular realizations y1∶NT

), so that kT is a random variable; in the plot we visualize its boxplot
across 50 runs of each scheme. The smallest designs are obtained from ADSA (31-39 unique inputs). DDSA produces exactly
kT = 37 unique inputs. Recall that DDSA alternates between adding a new site and re-allocating to existing sites, while ADSA

LYU and LUDKOVSKI 15

does the same adaptively; in this case we find that slightly more than half the time re-allocation is preferred. The design size kn
for ABSUR is slightly larger at 34-42. The value of kT for RB varies from 37 to 45, while for MLB has the greatest number of
unique inputs, ranging from 34 to 50. Given NT = 2000 the above implies that the schemes average about Ave(r(n)) =40-60
replicates per site. The middle panel of Figure 4 shows the replication level r(n) as a function of design size kn for a typical
run of schemes from Section 3.4, illustrating how replication is increased sequentially. Methods that raise r(n) faster end up
with smaller design size kT . ABSUR increases r(n) the fastest, with MLB having a similar pattern. With RB r(n) grows slower,
implying that RB builds designs with more unique inputs.

design size kn

35 40 45 50

ABSUR

RB

MLB

ADSA

DDSA

kn

0 10 20 30 40

r(
n
)

0

20

40

60

80

100

120

140

160

180
GP: ABSUR
GP: RB
GP: MLB

inputs 7x
5 10 15 20 25 30 35

re
p
li
ca

te
s
r(n

)
i

0

20

40

60

80

100

120

140

160

180

5

10

15

20

25

30

FIGURE 4 Visualizing adaptive batching for the 2-D case study with heteroskedastic noise. Left panel: distribution of design
size kT corresponding to NT = 2000 across 50 algorithm runs. Middle: number of replicates r(n) as a function of algorithm step
kn for the schemes of Section 3. Right: evolution of r(n)i for ADSA designs x̄1∶kn . The total r(N)i is decomposed into Δr(n)i for
n = 1,… , kT with each Δr color-coded by round n.

The right panel of Figure 4 visualizes the replication of a representative ADSA run which has the option to add new inputs or
re-allocate to existing ones. We show the sequential growth of r(n)i through a stack histogram: the x-axis represents the unique
inputs xi as picked by the algorithm and the vertical stacks represent Δr(n)i , color-coded by the round n when they were added.
We observe that only 10 out of the n0 = 20 original inputs are revisited, and generally about half of the inputs are used in more
than one round. At the same time, some inputs, such as x̄13, x̄20, x̄25 are visited in numerous rounds.

Figure 5 shows the estimated zero-contour)Ŝ with its 95% posterior credible band at NT = 2000 in the 2-D test case with
heteroskedastic noise. The volume of the credible band)Ŝ (±0.95), defined as

)Ŝ (±0.95) =
{

x ∈ D ∶
(

f̂ (NT)(x) + 1.96s(NT)(x)
) (

f̂ (NT)(x) − 1.96s(NT)(x)
)

< 0
}

, (22)

captures inputs x whose sign classification remains ambiguous and quantifies the uncertainty about the estimated zero-contour
)Ŝ. Numerically, we obtain)Ŝ (±0.95) and)Ŝ by predicting the GP surrogate on a fine 2D grid and then invoking the built-in
contour-plotting commands. As expected, all schemes start by exploring the input space using a few replicates and then primarily
sample in the target region around the level set, with increasing replication. Another feature that can be seen is that all methods
favor the upper-left and bottom-right corners, which are regions that are simultaneously close to the edge of the input space
(hence larger posterior sn(⋅)) and close to the zero contour. In particular, highest replication occurs in the upper-left region.

Comparing the first four plots, we find that the ABSUR is more efficient than RB and MLB, concentrating at the zero-contour
faster and simultaneously ramping up r(n) quicker. In the plot, this happens already after just half-a-dozen steps. In contrast,
RB takes about a dozen steps to explore with correspondingly low r(n)’s. Although MLB also ramps up rn quickly, it then
steps back and forth between low and high replication levels, resulting in a slightly larger kT than ABSUR. ADSA and DDSA
perform similarly. One observation is that they select similar inputs to allocate the extra simulator calls. For example the initial
inputs close to the left and top edge all get more replicates rn via reallocation in ADSA and DDSA. Across the DoE rounds,
ADSA chooses to reallocate budget in approximately 54% of them, so that kT = 0.54NT ∕Δr. Therefore, the value of kT is
approximately the same for ADSA and DDSA.

Some of the design differences can be attributed to the different behavior of the underlying heuristics cUCB and gSUR. Indeed,
cUCB tends to over-emphasize sampling around the zero-contour, while gSUR is more exploratory and tends to place a few

16 LYU and LUDKOVSKI

inputs right at the edge of the input domain (upper left corner and lower right corner in the plot with ABSUR). The aggressiveness
of cUCB generates more accurate estimates)Ŝ even if the posterior uncertainty is higher (wider CI band) sometimes.

In sum, it is possible in principle to fine-tune rn such that the respective fixed-batch FB scheme performs as well as all the
proposed algorithms. However, the “optimal" value of rn is sensitive to the problem setting, and moreover depends on NT .
Adaptive batching designs resolve these practical challenges by automatically and sequentially picking rn. Among the proposed
schemes, DDSA and RB are the most efficient in terms of running time and producing compact designs. ADSA is a bit slower
but tends to offer higher accuracy. Between ADSA and DDSA, the latter does better when kT turns out to be large (e.g. large NT
or high SNR). ADSA is thus the recommended general-purpose scheme, being more robust to the choice of hyperparameters and
offering a stable performance across all experiments.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

20

40

60

80

100

120

140

160

180

FB: kn = 200 (r = 10)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14
15

20

40

60

80

100

120

140

160

180

ABSUR: kT = 34

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15
16

17

18

19

20

21

20

40

60

80

100

120

140

160

180

RB: kT = 40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2
 3

 4

 5

 6
 7

 8
 9

10

11

12

13

14

15

16

17

18

19

20

20

40

60

80

100

120

140

160

180

MLB: kT = 39

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 4

 5

 6

 8 9

11
13

15

17

21

24

26

31
20

40

60

80

100

120

140

160

180

ADSA: kT = 33

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14
15

16

1718

20

40

60

80

100

120

140

160

180

DDSA: kT = 37

FIGURE 5 GP fits f |kT and designs for 2-D case study with heteroskedastic noise. The dashed lines are the estimated
posterior zero-contours {x ∶ f̂ (N)(x) = 0} to be compared to the true contour (solid line). The dotted lines are the corresponding
95% credible intervals. The initial design (same across all panels) are the blue unlabelled dots. The labels indicate the order of
the inputs x̄i, i = 1,… kn and the respective color/size are proportional to the replication level r(n). Design sizes kT vary across
the schemes.

6 APPLICATION TO OPTIMAL STOPPING

As a fourth and final case study, we consider an application of contour finding for determining the optimal exercise policy
of a Bermudan financial derivative [24]. The underlying simulator is based on a d-dimensional geometric Brownian motion

LYU and LUDKOVSKI 17

TABLE 4 Parameters for the 2-D Basket Put Option and 3-D Max Call Option.

2-D Basket Put 3-D Max-Call

Option
Parameters

 = 40,Δt = 0.04, T = 1
r = 0.06, � = 0.2, X0 = [40, 40]

 = 100,Δt = 1∕3, T = 3
r = 0.05, � = 0.2, X0 = [90, 90, 90]

Budget NT = 2000, k0 = 20, r0 = 20 NT = 30, 000, k0 = 300, r0 = 30
FB r = 20 r = 30

MLB/RB rL = {20, 30, 40, 50, 60, 80, 120, 160} rL = {20, 30, 40, 50, 80, 160, 240, 320, 480, 640}
ABSUR  = [20, 160], Tsim = 0.01  = [20, 640], Tsim = 0.01

ADSA cbt = 10 cbt = 6.67

(Z t) = (z1t ,… , zdt) that represents prices of d assets and follows the log-normal dynamics

Z t+Δt = Z t exp
(

(r − 1
2
diag�)Δt +

√

Δt�ΔW t

)

, (23)

where r is the interest rate, � is the d × d covariance matrix and ΔW t ∼ (0, Id) are the Gaussian stochastic stocks. Let ℎ(t, z)
be the option payoff from exercising when Z t = z. We assume that exercising is allowed every Δt time units, up to the option
maturity T . The overall goal is to determine the stopping regions {St ∶ t = Δt, 2Δt,… , T −Δt} to maximize E[ℎ(�,Z�)], where
� = min{t ∶ Z t ∈ St} is the exercise strategy. The dynamic programming principle implies that St can be recursively computed
as the zero level set of the timing function z → f (t, z) = ℎ(t, z) − E[ℎ(�t,Z�t)] where the latter term is the continuation value
based on the exercise strategy from the forward-looking {Ss, s > t}. Numerically, this yields a simulator of f (t, z) through
pathwise reward over one-step-ahead simulations of Z t+Δt.

In this setting, the underlying distribution of Z t at time t is log-normal since logZ t is multivariate normal. To reflect this fact
which dictates the importance of correctly identifying whether x ∈ St or not (since option exercising decisions are made along
trajectories of Z, conditional on the given initial value Z0 = z0), we employ log-normal weights �(dz) = pZ t

(⋅|z0) in (3). We
further use � to weigh the respective n criteria when optimizing for new inputs. In line with the problem context, we assess
performance using the ultimate estimated option value. The latter is evaluated via an out-of-sample Monte Carlo simulation that
averages realized payoffs along a database of M ′ = 105 forward paths z1∶M ′

0∶T :

V̂ (0, z0) =
1
M ′

M ′
∑

m=1
ℎ(�m0 , z

(m)
�m0
), (24)

with �m0 ∶= min{t ∶ z
(m)
t ∈ Ŝt} ∧ T . Since our goal is to find the best exercise value, higher V̂ ’s indicate a better approximation

of {St}. To allow a direct comparison, we set parameters matching the test cases in [24] (cf. Table 4):

2-D average Put option: ℎPut(t, z) = e−rt( − z1 − z2)+;
3-D Max-Call option: ℎCall(t, z) = e−rt(max(z1, z2, z3) −)+.

These settings have very low signal-to-noise ratio, and non-Gaussian heteroskedastic noise, so NT ≫ 103 is imperative. We use
plain GP and t-GP metamodels (refitted every ten steps) with a constant noise variance �2 to model the timing function f (t, z).
All the adaptive algorithms combined with homoskedastic and heteroskedastic GP (t-GP) surrogates are publicly available as
part of the mlOSP library in R [25].

Table 5 shows the performance of different designs/models. In the 2-D setting the best performing scheme is DDSA. We
obtain savings of 80% in computation time compared to the baseline FB scheme. For the 3-D Max Call, DDSA achieves the
highest payoff, and at a fraction (∼ 1∕20th) of time. RB and MLB lead to slightly smaller payoff than DDSA, but with a saving
of 60% in computation cost. ADSA leads to basically the same payoff as DDSA and takes approximately twice as much time
compared with DDSA. ABSUR takes half the time of ADSA, leading to a lower payoff. In both 2-D and 3-D settings, ADSA
and DDSA lead to a higher payoff and have a more stable performance than the other adaptive batch designs. In terms of design
size kT , ABSUR yields the largest kT , while DDSA yields the most compact designs.

18 LYU and LUDKOVSKI

TABLE 5 Performance of GP metamodels with FB, MLB, RB, ABSUR, ADSA and DDSA designs in the 2-D Average Put and
3-D Max Call examples. Results are averages from 20 runs of each scheme.

DESIGN MODEL PAYOFF TIME/S T INPUTS kT
2-D AVERAGE PUT

FB GP 1.451± 0.002 29.82 100.00
RB GP 1.443± 0.004 5.42 35.85
MLB GP 1.440± 0.004 4.92 33.97
ABSUR GP 1.446± 0.004 11.40 53.80
ADSA GP 1.445 ± 0.003 11.76 32.87
DDSA GP 1.445 ± 0.003 5.42 34.00

FB t-GP 1.449 ± 0.002 63.11 100.00
RB t-GP 1.445 ± 0.004 11.36 36.39
MLB t-GP 1.443 ± 0.004 10.52 35.35
ABSUR t-GP 1.443 ± 0.004 26.13 49.79
ADSA t-GP 1.447 ± 0.003 19.00 44.83
DDSA t-GP 1.446 ± 0.003 11.31 34.00

3-D MAX CALL

FB GP 11.26 ± 0.01 2239.10 1000.00
RB GP 11.23 ± 0.01 37.42 342.39
MLB GP 11.24 ± 0.01 38.17 342.07
ABSUR GP 11.23 ± 0.01 109.81 407.90
ADSA GP 11.25 ± 0.01 194.05 460.33
DDSA GP 11.26 ± 0.01 94.58 381.00

Figure 6 shows the GP fits f̂ (t, z) for ABSUR and ADSA for the 2-D Put case study at t = 0.6. The desired zero-level contour
goes from NW to SE and due to the chosen setting should be symmetric about the z1 = z2 line. We see that both strategies
select inputs around the contour; consistent with the results shown in Figure 5 , ABSUR is somewhat more exploratory and
yields wider credible intervals for the exercise boundary {f̂ (kT) = 0} in regions close to the edge of the input space, especially
at the NW and SE corners. ABSUR uses slightly more design sites kT (ABSUR) = 40 > kT (ADSA) = 37 and has a flatter
distribution of replication counts. In contrast, ADSA uses up to maxn r(n) = 188 replicates. We also observe that several initial
designs repeatedly receive more replications (up to 50 counts) in ADSA.

7 CONCLUSION

We have proposed and investigated five different schemes for adaptive batching in metamodeling of stochastic experiments. All
schemes explicitly address the shifting exploration-exploitation trade-off by capturing the intuition of increasingly beneficial
replication as sequential design is constructed. Our presentation focused on the plain Gaussian Process paradigm but as shown
are straightforwardly extended to alternatives, such as t-GP and hetGP. The key step is to construct an approximation of the
batch look-ahead variance s(n+1)(x, r). Our results demonstrate that adaptive batching offers a simple mechanism to extract
significant computational gains through building more compact designs and taking advantage of the symbiotic relationship
between GPs and replication. Thus, compared with using a constant value for replicates r over all inputs like in FB, we are able
to gain more than an order-of-magnitude speed-up with minimal loss of metamodeling fidelity. Among the proposed adaptive
batching schemes, we advocate the use of ADSA and DDSA (the latter being essentially a faster heuristic). While they lead to
similar results in lower dimensional experiments, ADSA is observed to be more accurate in complex settings, such as higher
dimension or low signal-to-noise ratio.

LYU and LUDKOVSKI 19

25

35

45

25 35 45
z1

z 2

50

100

150

0.0

0.5

1.0

1.5

ABSUR: kT = 40

25

35

45

25 35 45
z1

z 2

50

100

150

0

1

ADSA: kT = 37

FIGURE 6 GP fits f (kT)(t, ⋅) and designs  for 2-D average put option example at t = 0.6 and NT = 2000. Left panel: ABSUR;
right: ADSA. The solid lines are the estimated exercise boundary f̂ (kT)(t, z) = 0 and the dashed lines are the corresponding 95%
credible intervals. The scatter plot is the design kT color-coded by replicate counts ri, i = 1,… , kT .

Our focus has been on adaptive batching in the context of level-set estimation. Related problems such as evaluating the
probability of failure, or evaluating a tail risk measure, would benefit from the same ideas and will be investigated in follow-up
projects. Another extension is to tackle �-softened optimization, i.e., target the region of �-optimal inputs for a given � > 0. Such
objective might be desirable to practitioners who simultaneously optimize over several (potentially non-quantitative) factors. This
entails replacing the zero level set with f (x) = 0 with f (x) =Mn where Mn is an estimator for maxx f (x)|n. For instance,
one could obtain Mn similar to the computation of the Expected Improvement criterion in Bayesian Optimization. Another
important problem that is beyond the scope of the present work is theoretical analysis about the asymptotic complexity of the
proposed schemes such as ADSA, for example to establish the long-run growth rate of kn in order to quantify the asymptotic
complexity of the GP metamodel as Nn →∞.

Acknowledgements. We thank the anonymous reviewers for their helpful comments that helped to improve on earlier versionss
of the manuscript; we are also grateful to Mickael Binois for useful discussions and help in porting our algorithms from MATLAB
to R. Both authors were partially supported by NSF DMS-1521743. ML is additionally supported by NSF DMS-1821240.

APPENDIX

A ALLOCATION RULE

Proof of Proposition 4.1. Because the unique inputs are unchanged during the allocation step, comparing C(n+1) = K(x∗, x∗) −
K∗(�(n+1))−1KT

∗ to C(n) = K(x∗, x∗) −K∗(�(n))−1KT
∗ , the only term that changes is �(n+1). Minimizing eq. (16) therefore reduces

to maximizing

(!(n))TK∗(K + �2R(n+1))−1KT
∗!

(n) (A1)

Decompose ΔR(n) =∶ B(n)B(n). Using the Woodbury Identity,

(�(n+1))−1 = (K + �2(R(n) − ΔR(n)))−1 ≃ (�(n))−1 + �2(�(n))−1ΔR(n)(�(n))−1, (A2)

20 LYU and LUDKOVSKI

where the last expression is obtained by dropping the term B(n)[K + �2R(n)]−1B(n) ≃ 0 due to maxiΔR
(n)
ii ≪ 1. Therefore,

maximizing (A1) subject to
∑kn
i=1Δr

(n)
i = Δr(n) is equivalent to maximizing

̃SAO(ΔR) = �2 ⋅ (!(n))TK∗(�(n))−1ΔR(n)(�(n))−1KT
∗!

(n) + �

(

Δr(n) −
kn
∑

i=1
Δr(n)i

)

, (A3)

where � is a Lagrange multiplier. The first-order optimality conditions are

)̃SAO
)Δr(n)i

= −
�2 ⋅ (!(n))TK∗(�(n))−1(�(n))−1KT

∗!
(n)

(r(n)i + Δr(n)i)2
− � = 0 (A4)

which leads to r(n)i + Δr(n)i ∝ [(�(n))−1KT
∗!

(n)]i, 1 ≤ i ≤ kn as in (18).

Following Liu and Staum [23], we use a pegging procedure [10] to obtain integer-valued Δr(n)i , see Algorithm 5 in the
Appendix. Note that due to the rounding, the added number of replicates

∑kn
i=1Δr

(n)
i is not exactly Δr(n). Moreover, there are

several approximations in Proposition 4.1 that render Δr(n)i and (17) suboptimal: (1) we assume that maxi=1,…,kn ΔR
(n)
ii ≪ 1; (2)

we freeze the weights in (16) rather than using !(n+1); (3) we round off to integer Δr(n)i .

Remark 3. Similar results about minimizing the look-ahead GP variance of a linear combination !T f appear in [1, 11, 23, 26].
Relative to Ankenman et al. [1] and Chen and Zhou [11], we get rid of all integrals, making (17) computationally efficient. The
algorithm proposed by Ludkovski and Risk [26] relied on in-sample test set x∗ = x̄1∶kn while our test set is different from the
existing inputs.

Proposition 4.1 can be extended to the heteroskedastic setting by replacing the constant value �2 in equations (A1), (A2), (A3)
and (A4) by a diagonal matrix S where Sii = �2(xi), 1 ≤ i ≤ kn. Solving eq. (A4) leads to r(n)i + Δr(n)i ∝ �2(xi)U

(n)
i , 1 ≤ i ≤ kn.

B PEGGING ALGORITHM FOR ADSA

Algorithm 5 Pegging Algorithm

Input: I0 = {1,… , kn}, r =
∑kn
i=1 r

(n)
i , U(n) from eq. (18)

j ← 0.
for all i ∈ Ij do

Δr(n)i ←
U(n)i

∑kn
j=1 U

(n)
j
× r − r(n)i

if Δr(n)i ≥ 0 for all i ∈ Ij then
break

else
Ij+1 ← {i ∈ Ij ∶ Δr

(n)
i > 0}

Δr(n)i = 0 for i ∉ Ij+1
r← r −

∑

i∈Ij ,i∉Ij+1
r(n)i

j ← j + 1
end if

end for
Round all Δr(n)i , i = 1, .., kn to the nearest integer.
(If

∑kn
i=1Δr

(n)
i = 0, round maxkni=1Δr

(n)
i up to the next integer)

LYU and LUDKOVSKI 21

C GP WITH STUDENT T -NOISE

The marginal likelihood of ȳ1∶kn with a t-GP is (with f ∶= f1∶kn = (f (x1),… , f (xkn)))

ptGP
(

ȳ1∶kn
|

|

|

x̄1∶kn , r
(n)
1∶kn

, f
)

=
kn
∏

i=1

Γ((� + 1)∕2)
√

r(n)i

Γ(�∕2)
√

���

(

1 +
r(n)i (yi − fi)

2

��2

)−(�+1)∕2

, (C5)

where Γ(⋅) is the incomplete Gamma function. To integrate (C5) against the Gaussian prior p(f |#) we use Laplace
approximation [37]. Specifically, we use a second-order Taylor expansion of the log-likelihood around its mode, f̃ (n)tGP ∶=
argmaxf ptGP(f |x̄1∶kn , ȳ1∶kn), to obtain a Gaussian approximation to the posterior f (x∗)|n ∼ (f̂ (n)tGP(x∗), s

(n)
tGP(x∗)

2) with

f̂ (n)tGP(x∗) = k(x∗)K
−1f̃ (n)tGP, (C6)

v(n)tGP(x∗, x
′
∗) = K(x∗, x

′
∗) − k(x∗)

(

K + (W(n)
tGP)

−1
)−1

k(x′∗), (C7)

= K(x∗, x′∗) − k(x∗)(�
(n)
tGP)

−1k(x′∗)

whereW(n)
tGP is diagonal with

W (n)
tGP,ii = −∇

2 log ptGP(ȳi|f̃
(n)
i , x̄i) = (� + 1)

� �2

r(n)i
− (ȳi − f̃

(n)
i)2

(� �2

r(n)i
+ (ȳi − f̃

(n)
i)2)2

, (C8)

since the likelihood factorizes over observations. Note that � is treated as part of the GP hyperparameters and fitted via MLE.
Lyu et al. [27] then calculated the approximate step-ahead variance of t-GP:

s(n+1)tGP (xkn+1, r
(n)
kn+1

)2 ≃ s(n)tGP(xkn+1)
2 ⋅

�2

r(n)kn+1

�+1
�−1

�2

r(n)kn+1

�+1
�−1

+ s(n)tGP(xkn+1)
2
. (C9)

We replace Eq. (9) with (C9) to obtain the acquisition functions for t-GP.
Allocation Rule for t-GP: To implement ADSA and DDSA for t-GP we need (i) the analogue of Proposition 4.1 for the

allocation rule Δr(n)1∶kn over the existing inputs x̄1∶kn ; (ii) the look-ahead variance s(n+1),new(x∗) conditional on adding a new input;

(iii) look-ahead variance s(n+1),all(x∗) conditional on allocating Δr(n)1∶kn . For all these tasks, the non-Gaussian likelihood (C5)
underlying t-GP calls for further approximations provided in the following three Lemmas.

Lemma 1 (Allocation Rule). The allocation Δr(n)1∶kn is like in Proposition 4.1 but relies on

Ũ(n)tGP = (�̃
(n)
tGP)

−1KT
∗!

(n), with �̃
(n)
tGP ∶=

(

K + � + 1
� − 1

�2R(n)
)

. (C10)

Proof of Lemma 1. For t-GP, the noise matrix �2R(n) in eq. (5) is replaced with (W (n)
tGP)

−1. To calculate the ADSA/DDSA
allocation rule with a t-GP metamodel we substitute (ȳi− f̃

(n)
tGP(x̄i))

2 ≃ �2

r(n)i
and f̃ (n)tGP(x̄i) ≃ f̃

(n+1)
tGP (x̄i) in eq. (C8) to obtain (cf. Lyu

et al. 27)

W (n)
ii = (� + 1)

� �2

r(n)i
− (ȳi − f̃

(n)
i)2

(� �2

r(n)i
+ (ȳi − f̃

(n)
i)2)2

≃ (� + 1)
� �2

r(n)i
− �2

r(n)i
(

�2

r(n)i
+ � �2

r(n)i

)2
=
(� − 1)r(n)i
(� + 1)�2

∶= W̃ (n)
ii .

22 LYU and LUDKOVSKI

Hence, (W (n)
tGP)

−1 ≃ (̃W
(n)
tGP)

−1 = �+1
�−1
�2R(n) and the covariance matrix C(n)tGP of f (x∗) is approximated as

C(n)tGP = K(x∗, x∗) −K∗
(

K + (W(n)
tGP)

−1
)−1

KT
∗

≃ k(x̄∗, x̄∗) − k∗
(

K + � + 1
� − 1

�2R(n)
)−1

kT∗

≃ K(x̄∗, x̄∗) −K∗(�̃
(n)
tGP)

−1KT
∗ , (C11)

where �̃
(n)
tGP matches eq. (C10). The rest of the proof proceeds exactly like for the regular GP model in Proposition 4.1, after

boosting �2 up by a constant ratio to (� + 1)∕(� − 1)�2. Then we obtain Ũ
(n)
tGP as defined in (C10).

Next, we need to approximate the next-stepW (n+1)
tGP . Unlike in the Gaussian case where �(n+1) depends only on R(n+1), for t-GP

W (n+1)
tGP depends on ȳ1∶kn (because it depends on f̃tGP). We therefore need an approximation Ŵ

(n+1)
tGP (the notation is to emphasize

that it is different from the previous approximation W̃
(n)
tGP to W (n)

tGP).

Lemma 2 (Look-Ahead t-GP Variance). The look-ahead variance at x∗ conditional on allocating Δr(n) simulations to a new
input x̄kn+1 is approximately given by

s̃(n+1),newtGP (x∗)2 ≃ s
(n)
tGP(x∗)

2 −
v(n)tGP(x∗, x̄kn+1)

2

(�+1)�2

(�−1)Δr(n)
+ s(n)tGP(x̄kn+1)

2
. (C12)

Finally, to obtain (n),allSAO we define

Ŵ (n+1)
ii ∶= (� + 1)

� �2

r(n+1)i
− (ȳ(n)i − f̃ (n)tGP(x̄i))

2

(

(ȳ(n)i − f̃ (n)tGP(x̄i))
2 + � �2

r(n+1)i

)2
, (C13)

based on the approximation (ȳ(n+1)i − f̃ (n+1)tGP (xi))2 ≃ (ȳ
(n)
i − f̃ (n)tGP(xi))

2. This yields

Lemma 3 (Look-ahead t-GP variance after batch allocation).

s̃(n+1),alltGP (x∗) ≃ K(x∗, x∗) −K∗
(

K + (Ŵ(n+1)
tGP)

−1
)−1

KT
∗ . (C14)

D TUNING PARAMETERS FOR ABSUR AND ADSA

References

[1] Ankenman, B., B. L. Nelson, and J. Staum, 2010: Stochastic kriging for simulation metamodeling. Operations research, 58,
no. 2, 371–382.

[2] Azzimonti, D., J. Bect, C. Chevalier, and D. Ginsbourger, 2016: Quantifying uncertainties on excursion sets under a
Gaussian random field prior. SIAM/ASA Journal on Uncertainty Quantification, 4, no. 1, 850–874.

[3] Azzimonti, D. and D. Ginsbourger, 2018: Estimating orthant probabilities of high-dimensional Gaussian vectors with an
application to set estimation. Journal of Computational and Graphical Statistics, 27, no. 2, 255–267.

[4] Azzimonti, D., D. Ginsbourger, C. Chevalier, J. Bect, and Y. Richet, 2021: Adaptive design of experiments for conservative
estimation of excursion sets. Technometrics, 63, no. 1, 13–26.

[5] Bect, J., D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, 2012: Sequential design of computer experiments for the
estimation of a probability of failure. Statistics and Computing, 22, no. 3, 773–793.

[6] Bichon, B. J., M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland, 2008: Efficient global reliability analysis for
nonlinear implicit performance functions. AIAA Journal, 46, no. 10, 2459–2468.

LYU and LUDKOVSKI 23

TABLE D1 Varying r̄ (left panel) and Tsim (right panel) for ABSUR. We report the mean error rate T , running time t (in
seconds) and the design size kT for the 2-D synthetic case studies with Gaussian noise � ∼ (0, �2) and budget NT = 2000. All
other hyperparameters are set as in Table 1 . Results are based on 20 macroreplications of each scheme.

r̄ T t kT

�2 = 0.01

0.01NT 0.21% 54.1 111.5
0.025NT 0.24% 28.2 59.2
0.05NT 0.23% 20.9 43.5
0.1NT 0.30% 15.3 38.6
0.25NT 0.31% 13.7 36.0

NT 0.58% 9.0 30.1

�2 = 0.25

0.01NT 1.26% 48.0 110.9
0.025NT 1.31% 22.0 57.6
0.05NT 1.18% 13.5 40.9
0.1NT 1.29% 9.7 34.7
0.25NT 1.41% 9.9 33.1

NT 1.64% 8.2 29.8

�2 = 1

0.01NT 2.05% 46.1 110.8
0.025NT 2.01% 21.1 57.5
0.05NT 1.78% 12.4 40.8
0.1NT 1.93% 9.7 34.3
0.25NT 2.03% 9.2 32.9

NT 2.24% 9.2 30.8

Tsim T t kT

�2 = 0.01

0.0001 2.16% 11.4 31.0
0.001 0.27% 12.5 31.9
0.01 0.30% 15.2 38.6
0.1 0.21% 23.6 60.4
1 0.19% 34.5 100.1
10 0.23% 31.6 115.1

�2 = 0.25

0.0001 1.45% 9.6 30.1
0.001 1.44% 9.0 30.4
0.01 1.29% 10.1 34.7
0.1 1.38% 16.8 53.8
1 1.29% 31.6 97.7
10 1.30% 37.2 128.6

�2 = 1

0.0001 2.27% 8.4 30.0
0.001 2.46% 8.8 30.4
0.01 1.93% 9.5 34.3
0.1 1.89% 16.5 53.9
1 1.98% 31.5 100.6
10 2.10% 44.3 141.9

[7] Binois, M. and R. B. Gramacy, 2021: hetGP: Heteroskedastic Gaussian process modeling and sequential design in R.
Journal of Statistical Software, 98, no. 13, 1–44, doi:10.18637/jss.v098.i13.
URL https://www.jstatsoft.org/v098/i13

[8] Binois, M., J. Huang, R. B. Gramacy, and M. Ludkovski, 2019: Replication or exploration? Sequential design for stochastic
simulation experiments. Technometrics, 61, no. 1, 7–23.

[9] Bolin, D. and F. Lindgren, 2015: Excursion and contour uncertainty regions for latent Gaussian models. Journal of the
Royal Statistical Society: Series B: Statistical Methodology, 85–106.

[10] Bretthauer, K. M., A. Ross, and B. Shetty, 1999: Nonlinear integer programming for optimal allocation in stratified sampling.
European Journal of Operational Research, 116, no. 3, 667–680.

[11] Chen, X. and Q. Zhou, 2017: Sequential design strategies for mean response surface metamodeling via stochastic kriging
with adaptive exploration and exploitation. European Journal of Operational Research, 262, no. 2, 575–585.

[12] Chevalier, C., J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet, 2014: Fast parallel kriging-based stepwise
uncertainty reduction with application to the identification of an excursion set. Technometrics, 56, no. 4, 455–465.

[13] Chevalier, C., D. Ginsbourger, J. Bect, and I. Molchanov, 2013: Estimating and quantifying uncertainties on level sets using
the Vorob’ev expectation and deviation with Gaussian process models. mODa 10–Advances in Model-Oriented Design and
Analysis, Springer, 35–43.

https://www.jstatsoft.org/v098/i13

24 LYU and LUDKOVSKI

TABLE D2 Mean error rate T , computation cost t (in seconds) and the design size kT for ADSA and DDSA with variable
cbt for the 2-D synthetic case studies with Gaussian noise and budget NT = 2000. All other hyperparameters are the same as in
Table 1 . Results are based on 20 macroreplications of each scheme.

ADSA DDSA

�2 = 0.01

cbt T t kT T t kT

0.5 0.54% 204.2 25.4 0.21% 139.0 226
1 0.67% 125.3 23.4 0.23% 58.0 133

2.5 0.57% 62.8 23.9 0.20% 24.1 73
5 0.72% 37.2 23.1 0.20% 13.8 51
10 0.83% 22.2 22.4 0.25% 7.6 37
20 1.03% 11.9 21.3 0.39% 4.1 30
40 1.07% 6.5 20.8 2.04% 2.3 25
80 1.42% 3.8 20.5 1.21% 1.3 23

�2 = 0.25

cbt T t kT T t kT

0.5 1.45% 211.9 29.6 1.20% 147.9 226
1 1.37% 125.7 26.3 1.21% 64.5 133

2.5 1.50% 66.3 23.9 1.26% 25.5 73
5 1.38% 38.7 23.3 1.19% 13.5 51
10 1.41% 22.5 22.8 1.32% 7.5 37
20 1.48% 12.8 22.2 1.43% 4.4 30
40 1.71% 6.8 21.7 1.55% 2.4 25
80 1.76% 3.7 21.0 1.76% 1.4 23

�2 = 1

cbt T t kT T t kT

0.5 1.94% 358.8 256.0 1.70% 146.9 226
1 1.94% 172.0 134.0 1.80% 63.7 133

2.5 1.91% 76.0 69.0 1.89% 27.0 73
5 1.95% 42.8 45.9 1.90% 15.6 51
10 1.97% 24.2 33.2 1.99% 8.0 37
20 2.04% 13.3 27.3 2.26% 4.5 29
40 2.03% 7.0 24.2 2.71% 2.3 25
80 2.63% 4.0 22.3 3.13% 1.3 23

[14] Chevalier, C., D. Ginsbourger, and X. Emery, 2014: Corrected kriging update formulae for batch-sequential data assimilation.
Mathematics of Planet Earth, Springer, 119–122.

[15] Echard, B., N. Gayton, and M. Lemaire, 2010: Kriging based Monte Carlo simulation to compute the probability of failure
efficiently: AK-MCS method. 6emes Journées Nationales de Fiabilité, 24–26 mars, Toulouse, France.

[16] Hu, R. and M. Ludkovski, 2017: Sequential design for ranking response surfaces. SIAM/ASA Journal on Uncertainty
Quantification, 5, no. 1, 212–239.

[17] Jalali, H., I. Van Nieuwenhuyse, and V. Picheny, 2017: Comparison of Kriging-based algorithms for simulation optimization
with heterogeneous noise. European Journal of Operational Research, 261, no. 1, 279–301.

LYU and LUDKOVSKI 25

-5 -4 -3 -2 -1 0 1 2
20

25

30

35

40

45

50

55

ABSUR
RB
MLB
ADSA
DDSA

FIGURE D1 Design size kT as a function of noise variance �2 at �2 = {4−3, 4−2, 4−1, 1, 4} in the 2-D experiment with
� ∼ (0, �2) and budget NT = 2000. Hyperparameters are set the same as in Table 1 .

[18] Jones, D. R., M. Schonlau, and W. J. Welch, 1998: Efficient global optimization of expensive black-box functions. Journal
of Global Optimization, 13, no. 4, 455–492.

[19] Kandasamy, K., G. Dasarathy, J. B. Oliva, J. Schneider, and B. Póczos, 2016: Gaussian process bandit optimisation with
multi-fidelity evaluations. Advances in Neural Information Processing Systems, 992–1000.

[20] Klein, A., S. Falkner, S. Bartels, P. Hennig, and F. Hutter, 2017: Fast Bayesian optimization of machine learning
hyperparameters on large datasets. Artificial Intelligence and Statistics, PMLR, 528–536.

[21] Koehler, J., A. Puhalskii, and B. Simon, 1998: Estimating functions evaluated by simulation: A Bayesian-analytic approach.
Annals of Applied Probability, 8, no. 4, 1184–1215.

[22] Le Gratiet, L. and J. Garnier, 2015: Asymptotic analysis of the learning curve for Gaussian process regression. Machine
Learning, 98, no. 3, 407–433.

[23] Liu, M. and J. Staum, 2010: Stochastic kriging for efficient nested simulation of expected shortfall. Journal of Risk, 12, no.
3, 3.

[24] Ludkovski, M., 2018: Kriging metamodels and experimental design for Bermudan option pricing. Journal of Computational
Finance, 22, no. 1, 37–77.

[25] — 2020: mlOSP: Towards a unified implementation of regression Monte Carlo algorithms. arXiv preprint arXiv:2012.00729.

[26] Ludkovski, M. and J. Risk, 2018: Sequential design and spatial modeling for portfolio tail risk measurement. SIAM Journal
on Financial Mathematics, 9, no. 4, 1137–1174.

[27] Lyu, X., M. Binois, and M. Ludkovski, 2021: Evaluating Gaussian process metamodels and sequential designs for noisy
level set estimation. Statistics and Computing, 31, no. 4, 1–21.

[28] McLeod, M., M. A. Osborne, and S. J. Roberts, 2017: Practical Bayesian optimization for variable cost objectives. arXiv
preprint arXiv:1703.04335.

[29] Picheny, V., D. Ginsbourger, O. Roustant, R. T. Haftka, and N.-H. Kim, 2010: Adaptive designs of experiments for accurate
approximation of a target region. Journal of Mechanical Design, 132, no. 7, 071008.

[30] Poloczek, M., J. Wang, and P. Frazier, 2017: Multi-information source optimization. Advances in Neural Information
Processing Systems, 4288–4298.

26 LYU and LUDKOVSKI

Nomenclature

n Sequential design step, indexes most quantities below

 Design set

D Input space

d Dimension of input space

Y (⋅) Response

X Design

k Number of unique inputs

N Total budget

r Replicate count

x̄ Design location

� Noise variance

f Latent function

S Level set

� Noise

ȳ Average response

 Error rate

K(⋅, ⋅) Covariance function

f̂ (⋅) Posterior mean

v(⋅) Posterior variance

s(⋅) Posterior standard deviation

(⋅) Acquisition function

� cUCB weight

�(⋅) Lebesgue measure

E Local empirical error

 Standard deviation threshold

� Reduction factor

L Number of replication levels

covℎ Optimization overhead

Tsim Computation time

 Look-ahead integrated contour uncertainty

! Level set contour weights

cbt Batch factor

l Length-scale

�se Function variance

M Test set size

[31] Ranjan, P., D. Bingham, and G. Michailidis, 2008: Sequential experiment design for contour estimation from complex
computer codes. Technometrics, 50, no. 4, 527–541.

[32] Santner, T. J., W. I. Notz, and B. J. Williams, 2003: The Design and Analysis of Computer Experiments. Springer.

[33] Srinivas, N., A. Krause, S. M. Kakade, and M. W. Seeger, 2012: Information-theoretic regret bounds for Gaussian process
optimization in the bandit setting. IEEE Transactions on Information Theory, 58, no. 5, 3250–3265.

[34] Stroh, R., S. Demeyer, N. Fischer, J. Bect, and E. Vazquez, 2017: Sequential design of experiments to estimate a probability
of exceeding a threshold in a multi-fidelity stochastic simulator. 61th World Statistics Congress of the International
Statistical Institute (ISI 2017).

[35] Swersky, K., J. Snoek, and R. P. Adams, 2013: Multi-task Bayesian optimization. Advances in neural information processing
systems, 2004–2012.

[36] Vanhatalo, J., J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari, 2013: GPstuff: Bayesian modeling with
Gaussian processes. Journal of Machine Learning Research, 14, no. Apr, 1175–1179.

[37] Williams, C. K. and D. Barber, 1998: Bayesian classification with Gaussian processes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20, no. 12, 1342–1351.

	Adaptive Batching for Gaussian Process Surrogates with Application in Noisy Level Set Estimation
	Abstract
	Introduction
	Statistical Model
	Adaptive Designs
	Level Set Estimation
	Multi-Level Batching
	Ratchet Batching
	Adaptively Batched Stepwise Uncertainty Reduction

	Adaptive Design with Stepwise Allocation
	Results
	Synthetic Experiments and Computational Implementation Details
	Algorithm Tuning Parameters

	Algorithm Performance
	Comparing Designs

	Application to Optimal Stopping
	Conclusion
	Appendix
	Allocation Rule
	Pegging Algorithm for ADSA
	GP with Student t-Noise
	Tuning Parameters for ABSUR and ADSA
	References

