
RESEARCH ARTICLE

KrigHedge: Gaussian Process Surrogates for Delta Hedging

Mike Ludkovskia and Yuri Saporitob

aDepartment of Statistics and Applied Probability, University of California, Santa Barbara, USA;
bSchool of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, Brazil

ARTICLE HISTORY

Compiled February 3, 2022

ABSTRACT
We investigate a machine learning approach to option Greeks approximation based on
Gaussian Process (GP) surrogates. Our motivation is to implement Delta hedging in
cases where direct computation is expensive, such as in local volatility models, or can
only ever be done approximately. The proposed method takes in noisily observed option
prices, fits a nonparametric input-output map and then analytically differentiates the
latter to obtain the various price sensitivities. Thus, a single surrogate yields multiple self-
consistent Greeks. We provide a detailed analysis of numerous aspects of GP surrogates,
including choice of kernel family, simulation design, choice of trend function and impact
of noise. We moreover connect the quality of the Delta approximation to the resulting
discrete-time hedging loss. Results are illustrated with two extensive case studies that
consider estimation of Delta, Theta and Gamma and benchmark approximation quality
and uncertainty quantification using a variety of statistical metrics. Among our key take-
aways are the recommendation to use Matérn kernels, the benefit of including virtual
training points to capture boundary conditions, and the significant loss of fidelity when
training on stock-path-based datasets.

KEYWORDS
Gaussian process; hedging; Greeks; data-driven; local volatility; machine learning

1. Introduction

Fundamentally, hedging is about learning the sensitivities of the contingent claim to evolv-

ing market factors. For example, Delta hedging manages risk by controlling for the sen-

sitivity of the financial derivative to the underlying spot price. Theta manages risk by

controlling for the sensitivity of the financial derivative to the passing of time, and so

on. Thus, successful hedging strategies depend on accurately learning such sensitivities.

Unfortunately the related Greeks are rarely available analytically, motivating the large

extant literature (Capriotti et al. 2017; Fu et al. 2012; Jazaerli and Saporito 2017; Ruf

and Wang 2020, 2021) on Greek approximation and computation. The goal of this article

is to contribute to this enterprise by investigating a novel tie-in between machine learn-

ing and hedging. The idea is to develop a non-parametric method that does not require

working with any particular stochastic model class—all that is needed is the data source

CONTACT Yuri Saporito. Email: yuri.saporito@fgv.br

(or a black-box simulator) generating approximate option prices. The training dataset is

used to fit a data-driven input-output mapping and evaluate the respective price sensi-

tivity. Specifically, we propose to use Gaussian Process (GP) surrogates to capture the

functional relationship between derivative contract price and relevant model parameters,

and then to analytically differentiate the fitted functional approximator to extract the

Delta or other desired Greek.

Our specific implementation brings several advantages over competing methods. First,

GPs can handle both interpolation and smoothing tasks, i.e. one may treat training inputs

as being exact or noisy. Therefore, GP surrogates can be applied across the contexts of

(a) speeding up Greek computations when a few exact data samples are available (model

calibration), of (b) utilizing approximate Monte-Carlo-based samples, and of (c) fitting

to real-life data. Second, GPs are well-suited to arbitrary training sets and so naturally

accommodate historical data that is highly non-uniform in the price dimension (namely

based on a historical trajectory of the underlying). Third, GPs offer uncertainty quantifi-

cation so rather than providing a best-estimate of the desired Greek, GPs further supply

a state-dependent confidence interval around that estimate. This interval is crucial for

hedging purposes, since it indicates how strict one ought to be in matching the target

Greek. Fourth, GPs interact well with dynamic training, i.e. settings where the training

sets change over time.

Differently to our approach presented here, GP regression has been applied to other

financial mathematics problems. For instance, in De Spiegeleer et al. (2018), the authors

considered GPs to speed-up pricing of derivatives contracts (including exotic ones) within

reasonable reduction of accuracy. Additionally, they also applied GP regression to inter-

polate implied volatility surfaces and use it for backtesting an option strategy.

Considering a different application, Crépey and Dixon (2019) applied multiple-output

GPs to speed-up mark-to-market of derivative portfolios in the context of credit valuation

adjustment (CVA). Moreover, the authors also use single-output GP to exemplify the

learning of the pricing formula of financial models as the Heston model. Similarly to our

approach, they also mention that GPs provides analytic expression for sensitivities of

derivative prices. However, differently from our approach, they consider only the Black–

Scholes model where the GP regression is trained using the Black–Scholes formula and,

although Greek approximation is considered, the implications to the hedging problem are

not studied. Furthermore, Chataigner et al. (2021) used GPs to fit no-arbitrage constrained

option price surfaces given empirical quotes, while Goudenège et al. (2020) applied them

for value function approximation of American options.

Existing literature on numerical Greeks approximation is generally split between the

noiseless setting (known as curve-fitting or interpolation) and the noisy case (statistical

regression). For interpolation, the state of the art are the Chebyshev polynomials recently

studied in the series of works Gaß et al. (2018); Glau et al. (2019); Glau and Mahlstedt

(2019). For regression many of the best performing methods, such as random forests, are

not even differentiable so do not necessarily possess gradients. In contrast, GPs gracefully

unify in a single framework both the noiseless and noisy settings.

Within this landscape our contribution is to provide a detailed analysis of GP surro-

gates for Greek approximation and Delta hedging. To this end, we investigate the role

and relative importance of various surrogate ingredients, such as kernel family, shape of

2

experimental design, training data size, and propose several modifications that target the

financial application. Moreover, we assess the performance of our Greek approximators

both from the statistical perspective, as well as from the trader’s perspective in terms of

the resulting hedging error. In particular, in Proposition 1 we connect the quality of the

Delta approximation with the resulting hedging loss, providing insights into how errors in

estimating the Greeks translate into the hedging P&L.

The rest of the paper is organized as follows. Section 2 explains our approach of approx-

imating price sensitivities using GP surrogates. Section 4 presents numerical experiments

in the classical Black–Scholes model, while Section 5.1 does the same for a local volatil-

ity model where ground truth is no longer immediately available. Section 5 discusses our

findings and outlines future research directions.

2. Modeling the Option Price Surface

To fix ideas, consider hedging of a European Call contract. The European Call has a given

strike K and maturity T and is written on underlying (St)t≥0. The respective no-arbitrage

option price is given by (we also use P to denote a generic contract price function)

P (t, S) := EQ
[
e−r(T−t)(ST −K)+|St = S

]
, (1)

where we emphasize the dependence on the calendar time t and the current spot price S.

Above Q is a pricing martingale measure, kept generic for now. Any other European-style

financial contract can be similarly considered; we do not make any direct use of the specific

form (or smoothness) of the Call payoff in (1) henceforth.

As a canonical example of hedging, we are interested in finding the Call Delta

∆(t, S) := ∂P (t, S)/∂S,

for arbitrary (t, S). In the most classical setting (such as the Black–Scholes model), one

has an analytical formula for (t, S) 7→ P (t, S) and can then simply differentiate the latter

to obtain the Delta. We rather consider the more common situation where P (t, S) is not

directly known. Instead, we are provided a training set D = {(ti, Si, Yi) : i = 1, . . . , N},
where Yi ' P (ti, Si), and have to use this data to infer or learn (t, S) 7→ ∆̂(t, S). This

problem is motivated by the situation where a pricing model is available but it is compu-

tationally expensive to directly compute P (t, S) each time the option price is needed and

so only a sample of such computations is provided. We distinguish two sub-cases:

(a) Computing P (t, S) exactly is possible, but is challenging/time-consuming. For ex-

ample, it might necessitate solving a partial differential equation. Then D is a collection

of inputs where Yi = P (ti, Si) was evaluated exactly and the goal is to obtain a cheap

representation of the map (t, S) 7→ ∆(t, S) by extrapolating the exact Yi’s.

(b) Option prices are evaluated through a Monte Carlo engine. For a given (ti, Si), the

modeler has access to an empirical average Yi of Ň Monte Carlo samples, with precision

being on the order of O(Ň−1/2). For finite Ň , Yi is a noisy estimate of P (ti, Si). The train-

ing set D is then a collection of such noisy samples that need to be smoothed, interpolated

and differentiated to learn the map (t, S) 7→ ∆(t, S).

3

We note that because the training data is generated by the modeler, there is the related

question of experimental design, i.e. how to choose D wisely to maximize computational

efficiency that we will also explore.

2.1. Surrogate Gradients

In both Setting (a) and Setting (b) above, our aim is to provide an estimate of ∆(t, S) for

arbitrary (t, S) ∈ D′ in some test set D′. This could include in-sample predictions, i.e. for

(t, S) ∈ D (for example obtaining Delta at same inputs used for training), or out-of-sample

predictions, including extrapolation (t, S) outside the convex hull of D which would be

the case if training is confined to the past t < T0 and we want to Delta hedge in the

future, t > T0. Analogously to needing ∆(t, S) in order to hedge the respective risk of the

underlying price moves, the trader is also interested in other Greeks. Two examples that

we will also consider below include the Theta Θ(t, S)—sensitivity to t, and the Gamma

Γ(t, S)—the second derivative of P (t, S) with respect to S.

We emphasize that while the training set contains information about option price

P (ti, Si), our goal is to learn the price sensitivities. We tackle this issue by using the inter-

mediate step of first fitting a statistically-driven non-parametric mapping (t, S) 7→ P̂ (t, S)

called a surrogate or a metamodel. We then set ∆̂(t, S) := ∂P̂ (t, S)/∂S. A key idea is

that the second step of taking derivatives is done analytically, even though P̂ (t, S) is

non-parametric. On the one hand, this strategy reduces the error in ∆̂ since only a single

metamodeling approximation is needed and the differentiation is exact. On the other hand,

it offers precise uncertainty quantification, offering an in-model assessment of the accuracy

of ∆̂ by rigorously propagating the underlying uncertainty in P̂ . In particular, the method

provides credible bands around ∆̂, giving the end-user a clear guidance on how well is the

model learning the Greek. This information is critical for trading purposes, in particular

in the context of no-transaction regions under transaction cost regimes, see for instance

Whalley and Wilmott (1997).

Our data-driven approach is broadly known as curve-fitting. In general, parametric

curve-fitting via constructing a surrogate (t, S) 7→ P̂ (t, S) (e.g. via a spline-based P̂) and

then differentiating it is known to lead to highly unstable estimates for ∆̂ and other gra-

dients. This is because the typical L2 criterion that is driving the fitting of P̂ (t, S) is

completely unaware of the subsequent plan to compute gradients. As a result, differen-

tiating the typical regression fit can lead to nonsensical gradient estimates, see e.g. Jain

and Oosterlee (2015). The machine learning folklore (e.g. in the context of vast Bayesian

optimization literature) suggests that GPs, which can be understood as a type of kernel

regression with smoothness penalties, are often able to mitigate this concern.

2.2. Gaussian Process Regression

We temporarily restrict attention to a single-factor model, viewing P (t, S) as a 2D surface

in the two coordinates of (‘time’) and (‘stock’), encoded as x = (x1, x2) ≡ (t, S), i.e. x 7→
P (x) is a function in Rd with d = 2. We treat the two coordinates in a symmetric manner

for fitting purposes. As a result, the Delta is viewed as one specific instance of the gradient

of P . Multi-factor models (with fully observed factors) would simply correspond to working

4

in higher d > 2.

The curve fitting for P̂ is carried out using a regularized L2 regression framework,

namely finding the best approximator in a given normed space H conditional on the

training set D of size N :

P̂ = arg inf
P∈H

N∑
i=1

|P (xi)− Y i|2 + ‖P‖H. (2)

The last term acts as a regularizer, balancing quality of fit and the prior likelihood of the

approximator.

We propose to use Gaussian Process regression (GPR) for the purpose of learning the

price surface P̂ (x) based on the observation model

Y (x) = P (x) + ε(x). (3)

Above we distinguish between the true price map P (x) and the observed price Y (x) which

may/may not be the same. Gaussian process regression is a flexible non-parametric regres-

sion method (Rasmussen and Williams 2006) that views the map x→ P (x) as a realization

of a Gaussian random field so that (in the abstract metamodel probability space, which is

independent of the probabilistic structure present in asset stochastic dynamics) any finite

collection of {P (x),x ∈ X}, is multivariate Gaussian. For any n ≥ 1 design sites {xi}ni=1,

GPR posits that

(P (x1), . . . , P (xn)) ∼ N (~mn,Kn)

with mean vector ~mn := [m(x1;β), . . . ,m(xn;β)] and n × n covariance matrix Kn com-

prised of κ(xi,xi
′
;β), for 1 ≤ i, i′ ≤ n. The vector β represents all the hyperparameters

for this model. The role of m(·) is to capture the known trends in the response, and the

role of κ(·, ·) is to capture the spatial dependence structure in x 7→ P (x).

Given the training dataset D = {xi, Y i}Ni=1, GPR infers the posterior of P (·) by assum-

ing an observation model (3) with a Gaussian noise term ε(x) ∼ N (0, σ2
ε). Conditioning

equations for multivariate normal vectors imply that the posterior predictive distribution

P (x∗)|{xi, Y i}Ni=1 at any arbitrary input x∗ is also Gaussian with the posterior mean

m∗(x∗) that is the proposed estimator of P (x∗):

m∗(x∗) := m(x∗) +KT (K + σ2
ε I)−1(~y − ~m) = E

[
P (x∗)

∣∣~x, ~y]; (4)

where ~x = [x1, . . . ,xN]T , ~y = [y1, . . . , yN]T ,

KT = [κ(x∗,x
1;β), . . . , κ(x∗,x

N ;β)],

~m = [m(x1;β), . . . ,m(xN ;β)],

and K is N ×N covariance matrix described through the kernel function κ(·, ·;β). Hence-

forth we think of m∗(·) ≡ P̂ (·) as a (smooth) function, even though it is only defined

pointwise via (4).

5

The posterior covariance is

Cov(P (x1
∗), P (x2

∗)) = κ(x1
∗,x

2
∗)−KT

1 [K + σ2
ε I]
−1
K2, (5)

where Ki = [κ(xi∗,x
1;β), . . . , κ(xi∗,x

N ;β)] for i = 1, 2.

The interpretation is that x 7→ m∗(x) is the “most likely” input-output map that is

consistent with the training dataset D and Var(P (x)) is the model uncertainty capturing

the range of other potential input-output maps that could also be consistent (but less

likely) with D.

2.3. Specifying a GP Surrogate

Returning to the curve-fitting perspective, the optimization in (2) is available in closed-

form through the kriging equations (4) and GP fitting in fact corresponds to selecting an

appropriate function space H ≡ Hϑ by optimizing the hyper-parameters ϑ. This is done

in a hierarchical manner, first fixing a kernel family and then using maximum likelihood

optimization to select ϑ.

The GP kernel κ(x,x′) controls the smoothness (in the sense of differentiability) of P̂

and hence the roughness of its gradient. A popular choice for κ(·, ·) is the (anisotropic)

squared exponential (SE) family, parametrized by the lengthscales {`len,k}dk=1 and the

process variance σ2
p :

κSE(x,x′) := σ2
p exp

(
−

d∑
k=1

(xk − x′k)2

2`2len,k

)
. (6)

The SE kernel (6) yields infinitely differentiable fits m∗(·). Besides squared exponential

kernel described above, other popular kernels include Matérn-3/2 (henceforth, M32) and

Matérn-5/2 (M52) (Roustant et al. 2012):

κM52(x,x′) := σ2
p

d∏
k=1

(
1 +

√
5

`len,k
|xk − x′k|+

5

3`2len,k

(xk − x′k)2

)
e
−
√

5

`len,k
|xk−x′k|, (7)

κM32(x,x′) := σ2
p

d∏
k=1

(
1 +

√
3

`len,k
|xk − x′k|

)
e
−
√

3

`len,k
|xk−x′k|. (8)

A Matérn kernel of order k + 1/2 yields approximators that are in Ck. Thus Matérn-3/2

fits are in C1 and Matérn-5/2 fits are in C2.

The mean function is often assumed to be constant m(x;β) = β0 or described using

a linear model m(x;β) =
∑K

k=1 βkφ(x) with φ(·) representing a polynomial basis. The

mean function drives the estimates during extrapolation (far out-of-sample) and also can

strongly impact the gradient. For example, incorporating a convex quadratic prior mean

compared to a flat linear prior mean modifies the curvature/lengthscales of P̂ and therefore

affects the estimated Greek. The overall set of the hyperparameters for the GP surrogate

is β := ({βk}Kk=1, {`len,k}dk=1, σ
2
p, σ

2
ε).

6

Typically one estimates β by maximizing the log-likelihood function using the dataset

{xi, Y i}Ni=1.

2.4. Obtaining the Greek

Given a fitted GP model f∗ ∼ GP (m∗,K∗), its gradient with respect to the coordinate xj
forms another GP, D ∼ GP (g∗,Kg). The respective mean at input x∗ and covariance of

D at x∗,x
′
∗ are specified by

g∗(x∗) :=
∂m∗
∂xj

(x∗) =
∂m

∂xj
(x∗) +

∂κ

∂xj
(x∗, ~x)(K + σ2

ε I)−1(~y − ~m), (9)

Kg(x∗,x
′
∗) =

∂2K∗
∂xj∂x′j

=
∂2κ

∂xj∂x′j
(x∗,x

′
∗)−

∂κ

∂xj
(x∗, ~x)(K + σ2

ε I)−1 ∂κ

∂x′j
(~x,x′∗). (10)

Thus, the gradient estimator is g∗(x∗) in (9) which can be interpreted as formally

differentiating the expression for m∗(·) with respect to xj . Remarkably, the same procedure

yields the posterior variance Vg(x∗) = Kg(x∗,x∗) of g∗(x∗) in (10) and therefore we obtain

analytically the credible bands around g∗(x∗). Namely, the credible band for ∂P
∂xj

(x∗) is

CIα(x∗) :=

[
g∗(x∗)− zα

√
Vg(x∗), g∗(x∗) + zα

√
Vg(x∗)

]
(11)

where zα is the desired quantile of the standard normal distribution, e.g. z0.95 = 1.96 to

obtain 95% CI. The upshot is that once a GP surrogate is fit to option prices, obtaining

Greek estimates and their model-based uncertainty reduces to evaluating the formulas

(9)-(10).

As an example of such calculations we present the analytic expression for g∗(·) for the

three most common kernels discussed in Section 2.3. While these computations are not

new, we also could not find any handy reference for them in the literature. For the SE

kernel (6) we have:

∂κSE
∂xj

(x,x′) = 2
x′j − xj
`len,j

κSE(x,x′), (12)

Vg(x∗) =
2

`2len,j

σ2
p −

∂κSE
∂xj

(x∗,x)(KSE + σ2
ε I)−1∂κSE

∂xj
(x,x∗). (13)

For the Matérn-5/2 kernel (7), we find

∂κM52

∂xj
(x,x′) =

− 5
3`2len,j

(xj − x′j)− 53/2

3`3len,j
(xj − x′j)|xj − x′j |

1 +
√

5
`len,j
|xj − x′j |+

5
3`2len,j

(xj − x′j)2

κM52(x,x′), (14)

Vg(x∗) = − 5

3`2len,j

σ2
p −

∂κM52

∂xj
(x∗,x)(KM52 + σ2

ε I)−1∂κM52

∂xj
(x,x∗), (15)

7

and for the Matérn-3/2 kernel (8):

∂κM32

∂xj
(x,x′) =

 − 3
`2len,j

(xj − x′j)

1 +
√

3
`len,j
|xj − x′j |

κM32(x,x′), (16)

Vg(x∗) = − 3

`2len,j

σ2
p −

∂κM32

∂xj
(x∗,x)(KM32 + σ2

ε I)−1∂κM32

∂xj
(x,x∗). (17)

We emphasize that the above formulas work both for the Delta ∂P/∂x2 and the Theta

−∂P/∂x1, with the GP model yielding analytic estimates of all gradients simultaneously,

without the need for any additional training or computation.

Remark 1. The underlying structure is that differentiation is a linear operator that alge-

braically “commutes” with the Gaussian distributions defining a GP model. Consequently,

one may iterate (by applying the chain rule further on κ(·, ·) and its derivatives, provided

they exist) to obtain analytic expressions for the mean and covariance of higher-order

partial derivatives of f , yielding second-order and higher option sensitivities, for example

the Gamma. Instead of doing so, we implemented a finite-difference estimator for Γ(t, S):

Γ̂fd(t, S; δ) :=
P̂ (t, S + δ)− 2P̂ (t, S) + P̂ (t, S − δ)

δ2
(18)

for a discretization parameter δ > 0. By predicting the GP model on the triplet of sites

{(t, S−δ), (t, S), (t, S+δ)} we obtain the predictive covariance matrix and can use that to

compute the variance of Γ̂fd(t, S; δ) (which is a linear combination of the respective three

P̂ values). Note that the Matérn-3/2 kernel is not twice differentiable, so formally there is

no second sensitivity and we expect numeric instability in applying (18) to a M32-based

model.

2.5. Illustration

Figure 1 shows the GP-based ∆̂(t, ·) for the case of a Call option P (t, S) within a Black–

Scholes model with constant coefficients r = 0.04, σ = 0.22, T = 0.4,K = 50, parametrized

by time-to-maturity τ and spot price S. The model is trained on a two-dimensional 10×10

grid (so that N = 100) Si ∈ {32, 36, . . . , 68}, τ i ∈ {0.04, 0.08, . . . , 0.4}, using for inputs the

exact P (τ i, Si), i = 1, . . . 100 available via the Black–Scholes formula. We then display two

1-D slices of the resulting estimate of the Delta ∆(τ, S) as a function of spot S, keeping

time-to-maturity τ fixed. In the left panel we look at τ = 0.5 which is an extrapolation

relative to the training set, maturity being longer than τ̄ = 0.4. In the right panel we

use τ = 0.2 which is one of the training times-to-maturity, and corresponds to in-sample

interpolation. Note that with GPs the two computations are implemented completely

identically. In Figure 1 we compare ∆̂(τ, ·) to the exact ground truth ∆(τ, ·) and also

display the corresponding 95% posterior credible bands, cf. (11) below. We observe that

the GP fit is excellent, being indistinguishable from the ground-truth for most of the test

locations. While the goodness-of-fit is relatively good in the middle, towards the edges we

have numerical artifacts, such as ∆̂ being outside the interval [0, 1] or not being increasing

8

in S.

τ = 0.5 τ = 0.2

Figure 1. Estimated Delta ∆̂ for a Black–Scholes Call. Left panel extrapolates for longer maturity τ = 0.5; right

panel is an in-sample test set τ = 0.2. We also show the 95% credible bands from (11).

As expected, the credible bands on the right (the interpolation case, where credible

bands are almost invisible in the middle) are narrower than on the left (extrapolation).

For example at S = 55 and t = 0.2 we have ∆̂(t, S) = 0.8681 with a credible band of

[0.8635, 0.8727] (the true Delta actually being 0.8642) while at same S = 55 and τ = 0.5 we

have ∆̂(t, S) = 0.7997 (ground truth being 0.7936) and a credible band of [0.7779, 0.8215]

more than 4 times wider. In other words, this particular GP surrogate is able to estimate

Delta up to ±0.004 in the middle of the training set, but only up to ±0.022 when asked to

extrapolate for longer maturity. This reflects the key feature of GPs that the fitted model

is “self-aware” and more confident in its estimate in regions that are close to training

locations. The latter notion of closeness is algebraically reflected in the fitted covariance

kernel κ, specifically its lengthscale `1. Figure 1 moreover visualizes the dependence of

uncertainty quantification on S: in the middle of the training set S ∈ [40, 60], the bands

are very tight, indicating that the fitted GP has a high confidence regarding ∆(t, S). The

bands get progressively wider at the edges.

To fully explain Figure 1, we need to give the specification of the fitted GP de-

scribed by (4). This includes the GP kernel κ(x,x′), the mean function m(x), and

the respective coefficients or hyperparameters ϑ. In the figure, the mean function is

m(x) = β0 + β1S = −20.04 + 0.58S and the kernel is squared-exponential (6) with

length-scales `1 = 0.626, `2 = 10.00, process variance σ2
p = 239.71 and noise variance

σ2
ε = 1.99 · 10−4. In this example, although the training outputs Y i are exact, for nu-

merical purposes (namely to stabilize matrix inversion), we allow for a strictly positive

observation noise σε in (3). The variance parameter was taken to be an unknown constant

and learned as part of maximum likelihood estimation. The MLE was carried out using

a genetic-based optimizer from package rgenoud in R and the overall GP fitting via the

DiceKriging (Roustant et al. 2012) package.

Remark 2. While the example above considers a very simple payoff, our approach triv-

9

ially generalizes to arbitrary payoff structures, including portfolios of options with varying

maturities and strikes. Since the surrogate construction is completely independent of the

specifics of the price function P (t, S) and samples Y i, going from a Call option above to a

collection of contracts with different (Tj ,Kj), j = 1, . . . , J only requires adjusting the code

that provides the sample Y i while the rest proceeds as-is. Surrogates become attractive

for computing sensitivities of large option portfolios even in analytic models, since they

have a fixed evaluation cost, while the cost of evaluating a single P (t, S) is linear in the

number of contracts J and becomes non-negligible for J large.

2.6. Observation Noise

In the cases where P (t, S) is not available exactly, the associated uncertainty will typically

depend on (t, S). For real-life training datasets this would be due to varying bid-ask spreads

that are driven by contract liquidity. For Monte Carlo based datasets, this would be due

to the heteroskedastic conditional variance of the payoff as a function of S. For example,

for a Call the conditional simulation variance σ2(x) tends to be higher in-the-money, since

out-of-the-money nearly all empirical payoffs would be zero, so that σ2(x) ' 0 for S � K.

GPs are able to straightforwardly handle non-constant σ2(x), this just requires replacing

the term σ2
ε I with a diagonal matrix Σ with Σii ≡ σ2(xi) in (4). For the case where

the training set is model-based Monte Carlo (Setting b), we may estimate σ2(xi) via the

empirical standard deviation that corresponds to the empirical average for Y i:

Y i =
1

Ň

Ň∑
j=1

Φ(Sj,iT), (19)

σ̂2(xi) =
1

Ň − 1

Ň∑
j=1

(
Φ(Sj,iT)− Y i

)2
, (20)

where Sj,iT ∼ ST |S0 = Si are i.i.d samples and Φ(S) = (S−K)+ is the Call payoff function.

Plugging in diag σ̂(xi)I into σ2
ε I in (4)-(5) is known as the Stochastic Kriging approach,

see Ankenman et al. (2010). This plug-in σ̂2 works well as long as Ň is sufficiently large.

The package hetGP (Binois et al. 2018) extends the idea of (20) to simultaneously learn

σ2(·) and P (t, S) during the fitting step.

The baseline alternative is to assume a constant observation noise σε which is augmented

to the GP hyperparameters and estimated as part of MLE optimization. This is also the

recommended approach for noiseless observations, where a small amount of noise (the so-

called “nugget”) is added (learned via MLE) in order to regularize the optimization of the

other hyperparameters.

2.7. Virtual Training Points

The GP model has no a priori information about the properties of P (t, S) and its fit

is fully driven by the training data and the postulated prior mean m(t, S). One way to

improve the fit is by adding virtual observations that reflect the structural properties. In

particular, we can create “boundary” conditions by putting virtual (in the sense of not

10

coming from any data) observations at the edges of the training space; see the right panel

of Figure 2. This ensures more stable and more confident estimates at extreme values of

inputs.

Specifically, in our case studies below we:

• Add virtual points deep-in-the-money to enforce ∆̂(t, S) ' 1 in that region. This is

achieved by adding ỹi = Si − e−r(T−ti)K at two close but distinct, large Si’s.

• Add virtual points deep out-of-the-money to enforce P̂ (t, S) ' 0 and therefore

∆̂(t, S) ' 0. This is achieved by adding ỹi = 0 for two close but distinct, small

Si’s.

• Add virtual points at contract maturity ỹi = (Si−K)+ for ti = T . This enforces the

correct shape of P̂ (t, S) as t → T , in particular the at-the-money kink of the Call

payoff.

Above, we use virtual price observations; it is also possible to add virtual observations

on the gradients of a GP, which however requires a much more involved model fitting.

3. Case Studies

In this section we present the set up of two in-depth case studies, explaining the underlying

stochastic models, implementation, and assessment metrics.

3.1. Black–Scholes

Our first test environment is a Black–Scholes model which provides a ground truth

and hence ability to compute related exact errors. Moreover, we can generate arbitrary

amount/shape of training data and observation noise.

We consider European Call options, priced via the classical Black–Scholes formula that

also yields closed-form expressions for the Delta, Theta and Gamma. For the training data

Y i we use Monte Carlo simulation of size Ň and a plain sample average estimator:

EQ[e−r(T−t)(ST −K)+] ' 1

Ň

Ň∑
n=1

e−r(T−t)(SnT −K)+ =: Y i, (21)

where SnT are i.i.d. samples obtained using the log-normal distribution of ST . While carry-

ing out the Monte Carlo method (which is a proxy for any computationally heavy pricing

engine), we also record the empirical standard deviation of the Ň payoffs to obtain the

plug-in estimator σ̂(xi) for the input-dependent noise variance parameter as in (20).

We use r = 0.04, K = 50, T = 0.4; for out-of-sample Delta hedging we assume asset

P-drift of µ = 0.06 and initialize with S0 ∼ N (50, 2).

3.2. Local Volatility Model

For our second case study we consider a nonlinear local volatility model, where Call price

P (t, S) is available only via Monte Carlo simulation. In this setup there is no direct ground

11

truth and we obtain a pointwise “gold standard” estimate of ∆(t, S) through a large-

scale, computationally expensive Monte Carlo simulation combined with a finite-difference

approximation.

We consider the Local Volatility (LV) model where the dynamics of S under the physical

measure is

dSt = µStdt+ σ(t, St)StdBt, (22)

where B is a Brownian motion. Specifically, in numerical example in Section 5.1, we use

the following piecewise local volatility function, see Figure 2:

σ(t, S) :=

{
0.4− 0.16 e−0.5(T ∗−t) cos(1.25π log S

S∗), if | log S
S∗ | < 0.4,

0.4, if | log S
S∗ | ≥ 0.4,

where S∗ = 50 and T ∗ = 0.4. The risk-free interest rate r is set to 0.05 and the rate of

return of S is µ = 0.13. In order to compute a gold-standard benchmark computation for

the Delta, we use the central finite-difference approximation

∆̂fd(t, S; δ) :=
P̂ (t, S + δ)− P̂ (t, S − δ)

2δ
,

with discretization parameter δ = 0.01S0. The two terms on the right hand side are com-

puted via a Monte Carlo simulation with same stochastic shocks. Namely, we approximate

P (t, S ± δ) by the empirical average over 106 paths simulated from the dynamics of S

described in (22) with an Euler–Maruyama discretization with ∆t = T/100 and with two

different initial values S0 ± δ, and the same sequence of randomly sampled ∆Bti . One

should notice that to implement this benchmark procedure in reality it is necessary to

calibrate the local volatility function to the market data. This step is completely avoided

with our GP methodology.

We again consider a Call option with strike K = 50 and maturity up to T = 0.4.

3.3. Assessing Discrete Delta Hedging

To assess hedging quality, we implement a discrete-time delta hedging strategy which

consists of rebalancing between the stock and the bank account based on a time step ∆t and

the estimated ∆̂(t, St). We start the hedge at t = 0 with the given wealth W0 = P (0, S0)

and update Wt according to

Wtk = Stk∆̂(tk−1, Stk−1
) + (Wtk−1

− Stk−1
∆̂(tk−1, Stk−1

)) · er(tk−tk−1).

Repeating this along a discrete sequence of times 0 = t0 < t1 < . . . < tK = T we finally

compare the payoff Φ(ST) to the terminal wealth WT , recording the resulting hedging

error ET = WT − Φ(ST). Note that due to time discretization, even though the market

is complete in both case studies, we will have ET 6= 0 almost surely and moreover the

distribution of ET is affected by P since Delta hedging is done under the physical measure

(stock drift is µ 6= r).

12

Spot

25
50

75
100

Time

0.0
0.1

0.2
0.3

0.4

Lo
ca

l V
ol

0.25

0.30

0.35

0.40

Figure 2. Left: Local Volatility Surface σ(t, S). Right: the training set (black ·’s) together with the virtual training

points (red diamonds). Total design size is 250, with 200 points generated from a space-filling 2D Halton sequence

on [30, 70]× [−0.01, 0.37] and 50 virtual sites along 3 edges: 20 ITM, 20 OTM and 10 at maturity.

Our primary comparator for hedging performance is the benchmark/true ∆(t, S). With

continuous-time hedging, the latter yields an exact hedge (zero hedging error, almost

surely) since the market is complete. The following proposition describes the hedging

error ET when using ∆̂ at discrete times.

Proposition 3.1. Under the local volatility model (22), the hedging error when imple-

menting the approximator ∆̂ at discrete instants 0 = t0 < t1 < · · · < tK = T is given

by

ET =

K−1∑
k=0

∫ tk+1

tk

(∆(t, St)−∆(tk, Stk))dXt︸ ︷︷ ︸
E

(d)
T

+

K−1∑
k=0

∫ tk+1

tk

(∆(tk, Stk)− ∆̂(tk, Stk))dXt︸ ︷︷ ︸
ÊT

, (23)

where dXt = (µ− r)Stdt+ σ(t, St)StdBt.

Proposition 3.1 shows that the overall hedging error ET can be decomposed into two

parts: the first, denoted E
(d)
T , is solely explained by the discrete-time aspect of the hedging

strategy while the second one, ÊT is driven by the approximation of the Delta, ∆̂. Notice

that ÊT =
∑K−1

k=0 (∆(tk, Stk)−∆̂(tk, Stk))(Xtk+1
−Xtk). Since we are interested in studying

the impact of ∆̂ vs ∆, we focus our analysis on ÊT . Taking the first and second moment, we

have that E[ET] = E[E
(d)
T]+E[ÊT] and Var(ET) = Var(E

(d)
T)+Var(ÊT)+2Cov

(
E

(d)
T , ÊT

)
.

The next Corollary addresses the contribution from ÊT .

13

Corollary 3.2. The mean and variance of ÊT are given by

E[ÊT] = (µ− r)
K−1∑
k=0

∫ tk+1

tk

E
[
(∆(tk, Stk)− ∆̂(tk, Stk))St

]
dt, (24)

Var(ÊT) =

K−1∑
k=0

∫ tk+1

tk

E
[
(∆(tk, Stk)− ∆̂(tk, Stk))2σ2(t, St)S

2
t

]
dt. (25)

Moreover, the covariance between E
(d)
T and ÊT is

Cov(E
(d)
T , ÊT) =

K−1∑
k=0

∫ tk+1

tk

E
[
(∆(t, St)−∆(tk, Stk))(∆(tk, Stk)− ∆̂(tk, Stk))σ2(t, St)S

2
t

]
dt.

The proofs of Proposition 3.1 and Corollary 3.2 can be found in Appendix A.

Remark 3. Suppose ∆̂ is an unbiased estimator of ∆ in the following sense:

E[∆̂(tk, Stk)|Stk] = ∆(tk, Stk), E[(∆(tk, Stk)− ∆̂(tk, Stk))2|Stk] = σ2,

and, for any t ∈ (tk, tk+1] and any bounded Borel-measurable functions φ and ψ,

E[ψ(∆(tk, Stk)− ∆̂(tk, Stk))φ(St)|Stk] = E[ψ(∆(tk, Stk)− ∆̂(tk, Stk))|Stk]E[φ(St)|Stk],

for every k ∈ {0, . . . ,K − 1}. In that case, conditioning on Stk we find

E[ÊT] = 0, Var(ÊT) = σ2E [〈S〉T] and Cov(E
(d)
T , ÊT) = 0.

Thus, for unbiased ∆̂, we expect to see no additional hedging loss and additional hedging

variance that is proportional to the approximation variance. In other words, good ∆ ap-

proximators should not impact expected hedging loss; while the mean-squared error of ∆̂

is a proxy for the variance of the hedging loss.

Remark 4. Under continuous-time Delta hedging, we have E
(d)
T = 0 and ET =∫ T

0 (∆(t, St) − ∆̂(t, St))dXt. Moreover, if the true Delta is known but hedging is done

discretely in time, then ÊT = 0 and ET = E
(d)
T .

Another delta-hedging strategy is the so-called implied Delta hedging which relies on

the Black–Scholes delta with the current implied volatility. Let IV (t, S) denote the implied

volatility satisfying

P (t, S) =: PBS(t, S, IV (t, S)),

where PBS(t, S, σ) is the Black–Scholes formula price for this option with volatility σ.

Then Implied Delta is

∆I(t, S) := ∆BS(t, S, IV (t, S)). (26)

14

Note that the following is true

∆(t, S) = ∆I(t, S) + VBS(t, S, IV (t, S))
∂IV

∂S
(t, S),

where VBS is the Black–Scholes Vega. So the difference between the true and implied

delta is linked to the option Vega and the implied volatility skew. Practically speaking,

the implied volatility is a local average of σ(t, S). For the local volatility case study, the

implied Delta is too low OTM and too high ITM, generating a non-negligible hedging error

as a result. The latter feature demonstrates the importance of properly learning option

sensitivities, rather than just calibrating the immediate implied volatility surface.
In terms of Proposition 3.1 we note that the Implied Delta is not unbiased and the

variance of the approximation part of the hedging error can be written as

Var(ÊI
T) =

K−1∑
k=0

∫ tk+1

tk

E

[
VBS(tk, Stk , IV (tk, Stk))2

(
∂IV

∂S
(tk, Stk)

)2

σ2(t, St)S
2
t

]
dt. (27)

3.4. Performance Metrics

Let us denote by ∆̂(t, S) a given GP-based estimate of ∆(t, S). We define the following

performance metrics to assess the quality of ∆̂(t, S). In all cases, D′ refers to a discrete

test set of size N ′.

Metric I: RIMSE. Assuming that a gold-standard (possibly exact) ∆(t, S) is available,

we compare ∆̂(t, S) to the ground truth ∆(t, S). Our main choice is the root integrated

mean-squared error (RIMSE) defined as:

RIMSE2 :=
1

N ′

∑
(t,S)∈D′

(∆̂(t, S)−∆(t, S))2, (28)

for a test set D′. RIMSE is the standard L2 criterion for judging the quality of ∆̂ over a

region of interest. We can similarly define the RIMSE for greek/sensitivity Θ and for the

option price P itself, denoted as Θ̂Err and P̂Err.

Metric II: PnL. We also measure the quality of ∆̂(t, S) directly through the Delta-

hedging P&L. We report the variance of the terminal P&L EnT = Φ(SnT) −Wn
T . Var(ET)

is available even without a ground truth. Better Delta forecasts should lead to lower

variability of hedging errors, but Var(ET) is always bounded away from zero due to time

discretization.

Metric III: MAD. We observe that the Greek estimators tend to have a few small

regions of large errors around the edges of D′ which inflates RIMSE in (28). To mitigate

this effect, we evaluate the Median Absolute Deviation (MAD) metric

MAD := Median(t,S)∈D′ |∆̂(t, S)−∆(t, S))|, (29)

where the median is over the discrete test set D′. Thus, the L1 approximation error will

be less than MAD at half the test sites.

Metric IV: Coverage. To assess the uncertainty quantification provided by the GP

model, we evaluate the accuracy of the associated credible bands. Specifically, a good

15

model will be close to matching the nominal coverage of its bands, i.e. the ground truth

should be within the 95% credible bands at 95% of the test locations, cf (11):

Cvr :=
1

N ′

∑
(t,S)∈D′

1(∆(t,S)∈CI0.95(t,S)). (30)

A model with Cvr < 0.95 has overly narrow credible bands and a model with Cvr > 0.95

has them too wide.

Metric V: NLPD. The Negative Log Probability Density metric blends the testing of

the posterior mean (via MSE) and of the posterior standard deviation:

NLPD(t, S) :=
(∆(t, S)− ∆̂(t, S))2

Vg(t, S)
+ log Vg(t, S). (31)

where Vg is the posterior variance of the Delta estimator, see Section 2.4. Better models

will have lower NLPD. NLPD can be viewed as combining RIMSE and Coverage.

Metric VI: Bias. To assess whether the estimator tends to consistently over- or under-

estimate the true Greek, we record its statistical bias:

Bias :=
1

N ′

∑
(t,S)∈D′

(∆̂(t, S)−∆(t, S)). (32)

Since our ∆̂ are statistically constructed, we expect minimal bias.

Metric VII: Empirical Moments of ÊT . Reflecting Corollary 3.2 we evaluate the

following two quantities related to the hedging loss:

µE := (µ− r) · T · 1

N ′

∑
(t,S)∈D′′

[∆̂(t, S)−∆(t, S)]SfSt
(S); (33)

VE := T · 1

N ′

∑
(t,S)∈D′′

(∆̂(t, S)−∆(t, S))2σ(t, S)2S2fSt
(S), (34)

where fSt
(·) is the probability density function of St. Thus, µE is an empirical proxy for the

average extra hedging loss E[ÊT] due to ∆̂ and VE is an empirical proxy for the respective

additional hedging variance Var[ÊT]. Good models should have µE ' 0 and low VE .

We generate D′′ by forwarding simulating (St) trajectories which allows us to drop the

fSt
term. In both case we use ∆t = 0.02 to sum over tk in (24)-(25) .

For the Black–Scholes case study we use a test set of N ′ = |D′| = 1600 sites constructed

as a grid on {−0.01, 0.01, . . . , 0.37} × {30, 30.5, . . . , 69.5} and a nominal coverage level of

95% for (30). For the LV case study we use a test set of N ′ = 341 sites with 11 time-steps

t ∈ {0, 0.04, . . . , 0.36, 0.4} and 31 stock price levels S ∈ {29.4, 31.03, . . . , 78.4}. We do

not report running times since those are highly dependent on the hardware used, as well

as N , number of inner Monte Carlo simulations Ň , number of test locations N ′, and the

complexity of the contract (or portfolio of contracts). As a guide, using a R-based prototype

implementation on a 2018-vintage laptop, it takes a dozen of seconds to fit a GP model

16

with N = 200. It then takes another handful of seconds to evaluate the Greeks on the above

test set. For larger training sets with N ' 400, fitting takes a bit over a minute. Significant

hardware and software improvements are feasible for an industrial-grade deployment.

4. Results

In this section we present the experimental results based on the two case studies described

above. We start with the Black–Scholes set up where ground truth is known and training

inputs are noisy due to a Monte Carlo approximation.

4.1. Choice of GP Kernel

We first consider the impact of different GP model components on the quality of the Delta

approximation. We begin with the role of the kernel family which is the most important

choice to be made by the user. To do so, we compare the use of SE, M52 and M32 families,

each of which is fitted in turn via MLE. Recall that these three families imply different

degree of smoothness in P̂ (and hence in the fitted Greeks): squared-exponential kernel

will lead to very smooth fits, while Matérn kernels allow more roughness.

Figure 3 shows the fits and 95% credible bands across the above 3 kernel families and

different Greeks. The results are further summarized in Table 1. While the training is

done jointly in the t and S dimension, we illustrate with one-dim plots that fix t and show

dependence in S only.

The top left panel shows the error P̂ (t, S)− P (t, S) between the fitted and true option

prices and therefore provides an immediate sense of the accuracy of the statistical surro-

gate. We observe that all three GP models perform well out-of-the-money (OTM) and the

largest error is in-the-money (ITM). This phenomenon is driven by the higher conditional

variance of training inputs Y i ITM where Monte Carlo estimates are less accurate. In

essence, the observation noise is proportional to the price and hence estimating the latter

is harder when P (t, S) is higher.

The top right panel displays the resulting ∆̂(t, ·)’s which are simply the gradients of the

respective surrogates P̂ (·, ·) with respect to the second coordinate. In general, all three

kernels perform very well, closely matching the true Delta. We observe the very narrow

credible bands of the SE kernel compared to the M52 and M32 ones, with the latter

having the widest credible band. The general observation (well known in the surrogate

literature) is that the smoother is m∗(·), the tighter the CI. Consequently, all the CIs of

a SE-family GP will always be narrower compared to M52 or M32. The other feature we

see is oscillations of the M32-based Delta deep-ITM, and moreover that all models exhibit

reversion to the prior beyond the edge of the training set, manifested by ∆̂(t, S) < 1 for

S � 70 and ∆̂(t, S) > 0 for S � 30. The virtual training points are critical in avoiding

this issue and enforce ∆̂(t, S) ' 1 around S = 70 and ∆̂(t, S) ' 0 for S ' 30.

The bottom left panel illustrates the fitted Θ̂(t, ·) which uses the exact same GP models

as in the first row of the figure, simply computing the gradient in the other coordinate.

This is one of the advantages of our framework—once fitted, all sensitivities across the

different coordinates are obtained in the same consistent manner. Due to the more complex

shape of the Theta, and in particular higher convexity of P (t, S) in t, the quality of Θ̂

17

Call Price Error Delta ∂P/∂S

Theta −∂P/∂t Gamma ∂2P/∂S2

Figure 3. Estimated sensitivities at t = 0.1 together with their 95% credible bands for a Black–Scholes Call across

three different GP kernel families and using a space-filling experimental design. The Gamma is computed using a

finite difference approximation. Ground truth indicated in dashed black line. Training set of N = 400 inputs and

Ň = 2500 inner MC simulations.

is poorer compared to that of Delta. Both the SE and M52 overestimate the steep peak

of Θ ATM, estimating Θ̂(0.1, 50) ' −5.5 rather than the true −5. We note that the

M52/M32 surrogates are aware of this challenge and provide appropriately wide CI bands

that contain the ground truth (in fact the M32 band is too wide). In contrast, the SE

surrogate overestimates its posterior uncertainty, with the result that its coverage for Θ

is much below the nominal 95% level (i.e. the CI frequently does not contain the ground

truth). Another region where all models exhibit lack of fit is for S ∈ [60, 70].

Finally, the bottom right panel of Figure 3 illustrates the estimation of Γ(t, S). Numer-

ical estimation of second-order sensitivities is extremely challenging, especially through

functional approximators. In that light, the SE and M52 GP surrogates perform quite well

given that they were trained on just 400 noisy observations. We do observe significant os-

cillations in Γ̂ especially for S � 55, which is not surprising since the original P̂ ’s are not

constrained in any way and tend to wiggle or vibrate in the input space. The oscillations

18

Table 1. Effect of the GP kernel family on learning the Delta in a Black–Scholes model. We report 7 metrics for

∆̂, as well as the RIMSE for Θ and option price P (last 2 columns, cf. (28)). All metrics are based on a gridded test

set of |D′| = 80× 20 = 1600 sites.

Kernel RIMSE MAD 95%Cvr Bias NLPD µE VE Θ̂Err P̂Err
SE 0.0134 0.0070 0.7281 0.00043 −6.32 −0.00039 0.0504 0.597 0.028

M52 0.0165 0.0075 0.9550 −0.00004 −7.25 0.00031 0.0484 0.674 0.031

M32 0.0298 0.0124 0.9888 0.00009 −5.58 −0.00024 0.0771 0.753 0.035

are mild for the SE kernel (again, due to the tendency to over-smooth spatially) and are

very severe for M32. We note that mathematically m∗(·) is only C1 for the Matérn-3/2

family, and so there is actually no second-order sensitivity for this surrogate. In the plot

we obtain an approximation through finite differences, cf. (18), which are in fact the reason

for the sharp oscillations.

Table 1 reports the error metrics defined in Section 3.4 for the above three surrogates.

We concentrate on the estimation of ∆ (where we report 7 different metrics), as well as

report the RIMSE for Θ and for option price itself, P . The surrogate utilizing a SE kernel

appears to be best in terms of integrated mean squared error and also has slightly lower

median absolute deviation and lower bias. However, it also has poor coverage suggesting

that it is overconfident and reports too narrow credible bands. This is confirmed by the

NLPD score that is worse than that for M52-based surrogate. The latter also beats SE

in terms of RIMSE for Θ and essentially yields the same RIMSE for the price P . The

M32-based surrogate is worst across the board, and also overestimates uncertainty (its

coverage is much higher than 95%).

To summarize, there are two key take-aways. On the one hand, the SE kernel (6) tends

to over-smooth and therefore has trouble reproducing the spatial non-stationarity one

observes for most option payoffs (namely high convexity ATM and almost linear deep

ITM and deep-OTM). It also underestimates posterior uncertainty. On the other hand,

the Matérn-3/2 kernel tends to give CIs that are too wide and by its nature is a very

poor choice for second order sensitivities, like Gamma. In light of above, we recommend

to use the Matérn-5/2 kernel which provides the best compromise in terms of maximizing

RIMSE and MAD, minimizing NLPD, and matching coverage.

4.2. Size of Training Set

Next, Table 2 shows how the size N of the experimental design affects the fit. Naturally,

a larger training set D provides more information and hence should yield a better fit.

Consequently, larger N should imply lower error metrics across the board (apart from the

Coverage statistic that should converge to its nominal 95% level).

This pattern is generally observed in Table 2; we find a roughly O(N−1/2) rate for

RIMSE and MAD (both for Delta, as well as for Theta and Price, see the last two columns).

The above trend is quite noisy because learning is not necessarily monotone in N since

the estimated GP hyperparameters change across datasets. As a result it is possible that

a surrogate with higher N has worse performance, compare N = 200 and N = 240 in

Table 2. This occurs because the estimation errors in GP surrogates tend to arise via

19

Table 2. Effect of training set size on learning the Delta and other Greeks in a Black–Scholes model. We report 8

metrics for ∆̂, as well as the RIMSE for Θ and option price P (last 2 columns). All metrics are based on a gridded

test set of 80× 20 = 1600 sites, {S0 : 30, 30.5, . . . , 69.5} × {t : −0.01, 0.01, . . . , 0.37}. Training is based on (21) with

Ň = 2500 inner simulations, plus 50 virtual training points, and the GP surrogates have Matérn-5/2 kernel, linear

trend function and estimated constant σε. The reference hedging variance V ar(ET) (7th column) using exact Delta

is 0.265.

N RIMSE MAD 95%Cvr Bias NLPD V ar(ET) µE VE Θ̂Err P̂Err

80 0.0318 0.0136 0.9212 −0.00044 −5.884 0.321 0.00079 0.0759 0.753 0.054
120 0.0183 0.0092 0.9900 −0.00039 −6.911 0.307 0.00004 0.0541 0.653 0.034
160 0.0157 0.0077 0.9869 −0.00078 −7.193 0.300 −0.00022 0.0490 0.670 0.032
200 0.0150 0.0075 0.9856 0.00030 −7.278 0.301 −0.00015 0.0491 0.659 0.032
240 0.0192 0.0099 0.9338 0.00057 −6.919 0.311 −0.00030 0.0616 0.677 0.034
280 0.0175 0.0086 0.9650 0.00053 −7.113 0.306 −0.00021 0.0570 0.671 0.033
320 0.0154 0.0070 0.9812 0.00091 −7.352 0.299 −0.00027 0.0520 0.676 0.031
360 0.0150 0.0067 0.9794 0.00052 −7.410 0.300 −0.00033 0.0528 0.661 0.030
400 0.0142 0.0059 0.9800 0.00030 −7.504 0.299 −0.00017 0.0517 0.663 0.028

small spurious oscillations in the predicted response in regions with sparse training data.

As D expands, those oscillations can shift abruptly as the MLE optimizer finds new local

maxima for the hyperparameters.

One very reassuring finding is that all surrogates are unbiased in their estimates of ∆,

even for very low N . Another feature we observe is that learning Θ is more challenging, with

the respective RIMSE converging quite slowly. This is linked to the spatial nonstationarity,

namely the fact that S 7→ Θ(t, S) changes rapidly ATM but slowly ITM/OTM, and

moreover goes to −∞ at-the-money at maturity.

Another important observation is that the patterns in all the considered metrics (be-

yond NLPD/Coverage) are broadly similar and therefore RIMSE is a good overall proxy

for approximation quality. In that sense, the standard mean squared error is sufficient

for assessment of the point predictions for the Greeks; NLPD is a good complement for

assessing uncertainty quantification.

4.3. Simulation Design

The GP surrogate is a data-driven spatial model and consequently is sensitive to the

geometry of the training set. Therefore, we analyze the impact of the shape of D, whose

choice is entirely up to the modeler, on the quality of the Greeks approximation.

The spatial covariance structure driven by κ(·, ·) implies that for a given (t, S), ∆̂(t, S)

is primarily determined by the training points in its vicinity. Consequently, to ensure a

good average approximation quality, it is desirable to spread the training points, namely D
should reflect the test set D′. The respective concept of a space-filling experimental design

can be achieved in multiple ways. One obvious candidate is a gridded design, putting

{ti, Si} on a two-dimensional lattice. A gridded D can however interfere with fitting of a

Gaussian process model, because only a few values of distances |xj−x′j | used within κ(x,x′)

are then observed, making learning of the lengthscales more difficult. On the flip side, a

gridded D makes K of (4) a Kronecker matrix, which can be exploited for computational

speed-ups (Flaxman et al. 2015; Wilson and Nickisch 2015).

As an alternative to a training grid, one can utilize space-filling sequences, either deter-

20

Figure 4. Left: Impact of simulation design: root integrated mean squared error as a function of design size N and

number of inner MC simulations Ň . Right: Comparing Delta approximation based on a space-filling design with 320

inputs to one based on 16 paths (∆t = 0.02, 320 training inputs) and 32 paths (640 training inputs). All designs

are for the Black–Scholes Call case study and are augmented with additional 50 virtual training points.

ministic low-discrepancy sequences, such as the (scrambled) Sobol and Halton sequences

used widely in the Quasi Monte Carlo (QMC) literature (Lemieux 2009) or Latin Hyper-

cube Sampling (LHS). LHS yields randomized designs that is effectively variance-reduced

i.i.d. Uniform sampling. Both approaches allow to specify a training set D of arbitrary

size. We find that the choice of how to space-fill plays limited role in overall performance

and generically employ Halton sequences in subsequent experiments. Space-filling also

generalizes to higher dimensions where gridding becomes infeasible.

A related aspect concerns the impact of simulation noise on learning the Greeks. A

natural question is whether it is better to train on a few highly-accurate data points, or on

many low-precision inputs. This corresponds to the trade-off between design size N = |D|
and the number of MC samples Ň in (19) (see also (21)). Figure 4 visualizes RIMSE of ∆̂ as

we vary N, Ň . We observe limited gains from increasing Ň , so the spatial effect dominates

and the quality of the Delta approximation depends primarily on having a large (in terms

of many different S-values) training set. We also note the large improvement in fit quality

when the GP model switches from smoothing + interpolation to pure interpolation (the

case where training inputs are exact). Indeed we see that using N = 100 exact training

points is better than training with N = 500 inputs observed in slight noise Ň = 16, 000.

4.4. Quality of Delta Hedging

Recall from Section 3.3 that we may decompose the total hedging loss ET into a component

E
(d)
T due to time discretization, and a component ÊT due to the Delta approximation

error. Taking the representative M52 model from Figure 3 for the Black–Scholes case

study, and using n = 1, . . . , 2500 scenarios (Snt)t∈[0,T], with 20 hedging periods ∆t = 0.02

and S0 ∼ N (50, 22), we find that the resulting hedging error has Ave(ET) = 0.0163 and

21

Var(ET) = 0.2980. In comparison, hedging with the exact Black–Scholes ∆ on the same

set of paths we estimate E[E
(d)
T] = 0.0145 and Var(E

(d)
T) = 0.2650. Thus, in both cases

hedging errors are effectively mean-zero and there is no additional bias from ∆̂. Moreover,

as expected errors in ∆̂ increase the variance of the hedging error; in this example they

add about 3 cents of standard deviation (StDev(E
(d)
T) = 0.5148, StDev(ET) = 0.5459) or

about 6% of the original. Finally, we obtain VE = 0.0483 and µE = −3.1 · 10−4 which is

quite consistent with Corollary 1 and (33)-(34), namely that Var(ET) ' Var(E
(d)
T)+VE . As

hedging quality increases, we observe the strongest effect on the tail of ET . For example,

in Table 2 we report the one-sided L1 hedging loss for the Call option. We observe strong

improvements as training set gets larger and surrogate quality improves. On the other

hand, very limited gains would be recorded if we report the L1 or L2 norm of ET .

5. Path-Based Training

A further motivation for the task of estimating the Greeks based on a sparse set of price

data is the case where the training set D is the history of the contract price Yi = P (ti, Sti)

along trajectories of the underlying St0 , St1 , . . . , Stn . The latter is interpreted as histori-

cal observations, i.e. a model-free paradigm where one directly uses data to learn price

sensitivities. In this setting the training set D is fixed and depends on how much data

the modeler was able to collect. Clearly, a single trajectory would be insufficient for good

inference; one typically would consider expired options with same strike, indexing data by

time-to-maturity τ = T − t of the contract. (Under additional assumptions, one may also

switch from asset price S to log-moneyness S/K that allows to simultaneously consider

options with multiple strikes.) The resulting training sample is limited by the fact that

asset time series tend to be non-stationary over long periods. This setting naturally sug-

gests the possibility of dynamically updating D as more historical data is collected, see

Section 5.2 below.

Path-based training makes D to have an irregular pattern in the S dimension. In the

right panel of Figure 4 we investigate the resulting impact on Greek approximation quality,

by training our GP surrogate on a collection of (St)-paths, sampled at some fixed time

frequency ∆t. The plot shows Deltas fitted on two different datasets: one generated on a

grid of (t, S) values as in the previous section, and another sampled at a regular sequence

of t’s, but along paths of (St). In the latter case D = {(tji , S
j
i∆t) : tji = i∆t} for j = 1, . . . J

with (Sj·) being J i.i.d. paths of S started at pre-specified initial locations Sj0.

We observe that training using paths is significantly inferior relative to training using

a space-filled design. The path-based D tends to have a lot of “holes” where the model is

unable to accurately “see” the gradient. This leads to worse estimates of the GP hyperpa-

rameters β, as well as in wider credible bands. We find that without a lot of fine-tuning

(such as setting up judicious bounds on β and carefully selecting the observation noise

which must be bounded away from zero), the GP optimizer is unable to find a reasonable

fit as far as the Greeks are concerned. Instead, path-based design causes the GP surrogate

to generate unstable and strongly oscillatory ∆̂ and Θ̂, making them practically unusable.

This outcome is almost unavoidable for low N , but also manifests itself even with several

hundred training points. Overall, we need to more than double the training set size in or-

der to make path-based experimental design comparable to a space-filling one. Moreover,

22

with an irregular path-based design, the GP model has a difficulty distinguishing signal

from noise. Thus, increasing Ň has only minor effect on learning Delta, instead the GP

surrogate consistently overestimates the noise. This over-smoothes the data and removes

most benefit of more precise inputs (higher Ň in the experiment).

Table B1 in the Appendix contains the full summary statistics as we vary the design

size. Table B1 considers two different sampling frequencies in time which translate into

different rectangular shapes for the training D. We observe a clear trade-off in the quality

of ∆̂ versus quality of Θ̂: if we have more paths and lower sampling in time then the

Delta estimation is better and Theta is worse. Conversely, training on fewer paths but

with more frequent sampling in t has adverse effect on ∆̂. This pattern is intuitive for a

data-driven method where quality of the approximation is explicitly linked to how much

relevant information is provided in the training set. Other things being equal, we conclude

that to learn Delta it is essential to have longer history rather than higher-frequency data.

5.1. Results for the Local Volatility Model

To illustrate path-based training we take up the local volatility (LV) case study, where we

train on an irregular grid obtained by generating 25 trajectories of (St), saved at frequency

∆t = 0.04, for a total of 250 training (tn, Snt) pairs. Figure 5 shows the resulting Delta,

Theta and Gamma approximatiors across three GP kernel families. As in the BS case

study, the SE kernel has much too narrow credible bands, while the M32 kernel yields

bands that are too wide. Unlike the first study, where SE-based model overcame the poor

uncertainty quantification to yield the lowest RIMSE, here the SE kernel has clear trouble

in providing a good fit, see the significant error in estimating all three Greeks at both edges,

especially for S � 60. This is confirmed by Table 3 which shows that the SE kernel gives

the worst fit among the three. We highlight the very high NLPD and very low coverage

(i.e. dramatic underestimation of posterior variance). The M52 and M32 kernels perform

similarly for Delta, but M52 clearly outperforms both for Theta (where the credible band

of the M32 model is absurdly wide) and for Gamma (where M32 is unstable, as expected).

Table B2 in the Appendix shows the impact of design size N on the approximation quality.

Overall, we thus again find Matérn-5/2 to be the most appropriate kernel family.

For assessing Delta hedging, because we do not have the exact Delta instead of reporting

(33)-(34) in Tables 3-B2 we report the variance of terminal hedging loss ET = WT−Φ(ST).

Lower ET indicates better hedging; in Table 3 this is achieved with a M32 kernel. We note

that in this case study, the approximation variance overestimates the impact on hedging

variance because there is a positive correlation between surrogate squared error (∆̂−∆)2

(which is largest far from the strike K) and the specific form of σ(t, St) which is also largest

away from K. As a result, in the context of Remark 3 we obtain Var(ET) < Var(E
(d)
T)+VE .

We next use this LV case study to test further variations of the GP surrogates that are

concerned with (i) role of the virtual training points; (ii) learning the observation noise;

(iii) checking alternative GP regression tools. To do so, we construct several alternative

GP models with results reported in Table 4. Our base case is a training set based on 20

paths (200 inputs), reinforced with 50 virtual points (20 deep ITM, 20 deep OTM, 10 at

maturity) for a total training size of |D| = 250. The base GP uses a linear mean function

m(x) = β0 + β1S, a Matérn-5/2 kernel, and a constant observation noise that is fitted via

23

Delta Theta Gamma

Figure 5. Fitted Greeks vs benchmark Greeks for the local volatility Call case study and three different kernel

families and t = 0.08. All models trained with 250 path-based inputs plus 50 virtual training points and include a

linear trend function and constant estimated observation noise σ2
ε .

MLE. Henceforth, it is labeled as model M1. We then consider the following variants:

• M2: same setup but with no virtual points at all (training set of size 200).

• M3: same setup, but only with 30 virtual points (10 deep ITM, 10 deep OTM, 10 at

maturity). The alternatives M2/M3 test the impact of virtual points, namely using

fewer of them relative to the base M1.

• M4: uses the given location-dependent observation noise σ̂(xn) from the MC samples

instead of a constant σε.

• M5: constant mean function m(x) = β0 only.

• M6: pre-specified de-trending using a reference Black-Scholes model. Specifically,

we de-trend by subtracting a Black-Scholes Call price based on a constant σ =

0.3, utilizing the known maturity and spot. The GP surrogate is then fit to the

“residual”. M5/M6 illustrate the impact of the trend m(·) on the results. m(·) affects

the hyperparameters of the surrogate and consequently has (an ambiguous) indirect

effect on approximation quality.

• M7: hetGP solver that non-parametrically learns non-constant observation noise σ2(·)
based on Binois et al. (2018) and the corresponding hetGP package in R. The alterna-

tives M4 and M7 test the role of observation noise. M4 replaces constant model-based

observation noise σε with a user-specified one; M7 nests M1 by using a more sophis-

ticated GP approach.

24

Table 3. Effect of GP kernel family on learning the Delta in a local volatility model. We report 6 metrics for ∆̂,

as well as the RIMSE for Θ and option price P (last 2 columns, cf. (28)). All metrics are based on a gridded test

D′ of 31 · 11 = 341 sites, {S0 : 29.4, 31.03, . . . , 78.4} × {t : 0, 0.04, . . . , 0.36, 0.4}. Training set D is of size 250 + 50

virtual points.

Kernel RIMSE MAD 95%Cvr Bias NLPD V ar(ET) Θ̂Err P̂Err
SE 0.0400 0.0042 0.6246 0.00238 124.201 1.316 1.382 0.080

M52 0.0283 0.0018 0.9003 0.00250 79.095 0.915 0.905 0.046

M32 0.0293 0.0021 0.9677 0.00288 −2.248 0.718 0.858 0.038

Table 4. Alternative GP surrogates for the local volatility case study. See main body for definitions of M1-M7.

We report 7 metrics for ∆̂, as well as the RIMSE for Θ and option price P . All metrics are based on a test set of

341 gridded sites, {S0 : 29.4, 31.03, . . . , 78.4} × {t : 0, 0.04, . . . , 0.36, 0.4}.

Model RIMSE MAD 95%Cvr Bias NLPD µE VE Θ̂Err P̂Err
M1 0.0274 0.0024 0.9501 0.00018 62.26 0.0005 0.681 0.870 0.048

M2 0.2465 0.0183 0.5982 0.08722 2.37 0.0395 19.578 3.621 1.611

M3 0.0377 0.0043 0.9501 −0.00257 60.86 0.0004 0.702 1.189 0.146

M4 0.0371 0.0097 0.9677 0.00025 −3.91 0.0004 1.075 1.327 0.093

M5 0.0318 0.0038 0.9531 0.00019 47.56 0.0005 0.699 1.117 0.099

M6 0.0067 0.0021 0.8944 0.00010 −2.89 0.0000 0.029 1.497 0.026

M7 0.0294 0.0027 0.9531 0.00014 52.59 0.0004 0.694 0.896 0.075

The following observations can be made regarding Table 4. First, the addition of virtual

points has a very strong positive effect. Without them (case M2), the surrogate performs

very poorly. Thus, this is a “zero-order” feature of our approach. Moreover, the model

strongly benefits from having plenty of virtual points (M3 vs M1) which are necessary

to enforce the 0/1 gradient of the price surface at the edges of the domain in the asset

coordinate. Second, specifying state-dependent observation noise degrades performance

by introducing high-order fluctuations into the surrogate. Similarly, a more sophisticated

GP method targeting heteroskedasticity is not beneficial; there is no observed gain from

adding complexity and the simpler base model wins out (M1 vs M4 or M7). Third, we

observe that there are gains from having a reasonable trend function, in particular to

capture the dominant trend in the asset coordinate. Such de-trending helps with spatial

stationarity that GPs rely on. Thus, M5, which uses m(x) = β0, performs worse than M1,

while M6, which provides a highly accurate de-trending, helps the fit.

5.2. Pathwise Hedging and Online Training

The left panel of Figure 6 illustrates using ∆̂ to carry out Delta hedging along a sample

trajectory of (St) as would be done in practice. We consider the local volatility case study;

in this scenario S0 = 44.70 and ST = 41.66, so the Call ends up OTM and terminal payoff

and Delta are zero. We plot the benchmark ∆(tk, Stk) (red circles) and the GP-based

∆̂(tkStk) (blue diamonds) along the 10 time-steps tk = k∆t with ∆t = 0.04. We note

that at the latter stages we have St ' 35 where the GP approximation is not so good

(confirmed by the wide credible band of ∆̂), however this has little effect on the hedging

25

strategy since by that point Delta is almost zero anyway. On this particular path, we start

with initial wealth of W0 = P (0, S0) = 1.418 and end up with the benchmark wealth of

WT = ET = −0.078 (this error is driven by discrete hedging periods) and GP-based error

of ÊT = −0.006, i.e. a difference of about 7 cents, in particular the GP strategy coming

ahead.

Figure 6. Left: a sample path showing Delta hedging in the local volatility model with 10 discretization periods

(∆t = 0.04). Red circles indicate the benchmark Delta; the blue vertical lines (resp. blue diamonds) indicate the

95% posterior bands (resp. posterior mean) of the estimated GP Delta ∆̂(tk, Stk) based on 200+50 training inputs.

Right: Illustrating online learning of Delta along a high-frequency sampled price path. We plot the estimation error

(relative to the ground truth ∆) of the original ∆̂(tk, Stk) (in red) and of the recursively updated ∆̂online(tk, Stk)

(in blue), along with the respective 95% credible intervals.

Remark 5. The outputted uncertainty quantification (11) for ∆̂ can be used to implement

a “sticky” hedge, where portfolio rebalancing is done only if there is a substantial trade

needed, so as to save on transaction costs. Specifically, one could assume that rebalancing

is carried out only when the old hedging position is outside the credible band CIα of

∆̂(tk, Stk). In Figure 6, this would imply no trading in the last 4 periods (t > 0.24), where

∆̂(tk, Stk) ' 0.

To aid in such Delta-hedging along a path, GP models are amenable to fast updating in

the context of augmenting with new data. Namely, the matrix form of the GP predictive

equations (4) can be exploited to facilitate adding new observations to improve the fit.

At the initial stage, the GP surrogate is trained on N historical stock paths. Then one

wishes to Delta hedge “in real-time” along a new (St)-trajectory. To do so, we sequentially

collect (k∆t, Sk∆t, Pk∆t) values at regular intervals and then simultaneously estimate the

“in-sample” ∆̂(k∆t, Sk∆t) in order to find the new amount of shares to hedge with. In

other words, at each hedging time instance we augment our training with the just-observed

data and immediately estimate the Delta at the latest (t, St) values. Such dynamic hedging

mimics the online calibration that practitioners often carry out and amounts to recursively

updating the original GP surrogate.

Adding a new training point (xn+1, yn+1) to an existing GP model corresponds to

augmenting the kernel matrix K with an extra row/column and analogously augmenting

the other terms in the GP predictive equations. This can be done very efficiently through

the so-called rank-1 update if the GP hyperparameters are kept fixed, and requires just

O(N2) effort compared to O(N3) effort to invert the full covariance matrix K in (4).

26

The right panel of Figure 6 illustrates dynamic hedging through the above GP surrogate

updating. We start with 20 historical paths sampled at ∆t = 0.04 and then sequentially

augment with high-frequency real-time trajectory sampled at ∆t = 0.004 (reflecting the

idea that the trader is now closely monitoring the option compared to originally down-

loading a fixed dataset). In Figure 6 we compare the initial ∆̂ based on the 20 original

paths versus the “online” ∆̂, demonstrating how the quality of the fit improves thanks to

data fusion. Online learning of the Delta makes the estimation errors smaller (closer to

zero in the figure) and furthermore narrows the posterior credible bands, hence doubly

improving model fit: lower bias and higher credibility.

Remark 6. One can of course proceed by brute force by simply re-estimating the entire

GP surrogate as more data becomes available. That will likely give a slightly better fit. In

comparison, online updating is more elegant conceptually and moreover is lightning fast

since we do not need to keep re-running the MLE optimizer for the hyperparameters β.

5.3. Extending to Real-life Options Data

Our method is directly applicable to dealing with observed option data since it requires

no calibration beyond fitting the GP surrogate and is predicated on training using option

prices, a quantity that is readily available in real life. To do so, one would switch to time-

to-maturity τ parametrization, using historical data about options that already expired

to generate a training set in the (τ, S) coordinates. Nevertheless, multiple challenges must

be addressed before operationalizing this idea.

First, one must decide what does an “option price” mean, distinguishing between quotes,

executed transactions and the issue of associated non-synchronous time stamps (e.g. a

market close price might not actually be a price that is directly relevant at any given fixed

time of day). Moreover, quoted prices have bid/ask spreads which could be viewed as

upper/lower bounds for P (t, S). A related issue is the traded volume/open interest which

could be interpreted as a proxy for quote quality.

There are several ways to match these features with the GPR setting:

• Take σ(x) to be proportional to the bid/ask spread (probabilistically ensuring that

the fitted P̂ is within the spread)

• Take σ(x) to be a function of Traded Volume/Order Imbalance to ensure that price

of more liquid options are given more weight;

• Modify the Gaussian likelihood in (3) to account for the bid/ask spread. For example

the GPML Matlab package implements a Beta likelihood that is appropriate for “range

regression”.

• Use a cut-off criterion to separate liquid contracts (where prices have to be matched

either exactly or within bid/ask) and illiquid ones, where observations are treated

only as “vague” suggestions.

We remark that taking non-constant σ(x) is statistically equivalent to a weighted least-

squares criterion, i.e. penalizing fitting errors more (resp. less) when σ(x) is small

(resp. large).

Second, one would have to contend with the irregular time series of financial data, with

gaps due to weekends, holidays, missing data, etc. Of note, GPR is perfectly suited for

27

that purpose since it does not assume or require any specific shape of the training set. At

the same time, as demonstrated above in the context of irregular grid in the S-coordinate,

irregular shapes can materially worsen the quality of the GP surrogate and its Greek

estimators.

Finally, the described procedure so far assumed that time-to-maturity τ and asset price

S are sufficient statistics for determining the option price P . For historical data, such as

SPX options, we do observe strong time dependence that can be termed “VIX effects”:

for essentially same (τ, S) pairs the historical prices will be quite different (i.e. different

implied vol) on different days, indicating the presence of a further latent factor. As a first

step, one would need to include calendar time as another covariate, working with the triple

(t, S, T) as postulated in a local volatility model. Another way to handle temporal non-

stationarity would be to use a weighted regression, putting more weight on more recent

data and discounting old data, which might minimize model mis-specification. A more

complex extension would be to directly input VIX or other (stochastic volatility) factors

when fitting the surrogate.

6. Conclusion and Open Problems

To conclude, we presented a framework of constructing GP surrogates for the purpose of

learning option price sensitivities. Our method is completely statistical and fully generic,

requiring simply a training set of (noisy) option prices. The GP surrogate is able to si-

multaneously provide estimates of Delta and Theta, along with their rigorously defined

posterior uncertainty. Our case studies suggest that it is important to pick an appropri-

ate kernel family, with the Matérn-5/2 striking the best compromise across the numerous

performance metrics we considered. A GP M52 approximation offers a twice-differentiable

surrogate for the option price that is smooth enough for Greek computation and flexible

enough to capture the price surface. Our analysis further highlights the importance of

boundary conditions (specifically the gains provided by including virtual training points)

and careful noise modeling (in particular letting the algorithm estimate observation vari-

ance). Another striking feature we observed is the significant impact of training set shape

on quality of the Greeks approximation, including the benefit of space-filling.

An open problem is how to handle the several well-known no-arbitrage constraints for

the option price and its sensitivities. For example, a Call price must be convex monotone

increasing in S (∆ ≥ 0,Γ ≥ 0), with slope less than unity (∆ ≤ 1). It is also mono-

tone decreasing in t, Θ̂ ≤ 0. To incorporate such features into a GP surrogate, one may

consider monotonic GPs (see e.g. Riihimäki and Vehtari (2010)) who make use of virtual

GP-gradient observations, or finite-dimensional shape-constrained GPs (Chataigner et al.

2021). Extending our R implementation to cover these is left for future research. Another

related work on incorporating gradient observations into a GP model is by Chen et al.

(2013).

A different comparator to the GP methodology are neural networks. In this framework,

one runs a neural network (NN) regression to build a surrogate for the option price and

then applies auto-differentiation to get the Greeks, see e.g. (Chataigner 2021, Ch 2). The

latter step is available as a native function call for any NN architecture (i.e. no analytic

derivations necessary) in modern machine learning suites such as TensorFlow. Based on

28

our preliminary experiments, NN-based Greeks tend to be unstable for small training sets

(N � 500) as considered here, but perform very well for N ≥ 1000. Full investigation of

NN Greek approximators and respective uncertainty quantification for Delta hedging is

left to future research.

Acknowledgement:

We are grateful to anonymous referees for helpful comments on earlier versions of the

article. ML is partially supported by NSF DMS-1821240.

Appendix A. Proofs

Proof of Proposition 3.1. Under the physical measure, we are assuming

dSt = µStdt+ σ(t, St)StdBt,

where B is a Brownian motion. We denote the price of a vanilla derivative with maturity

T by P (t, S). The Delta hedging strategy perfectly replicates the derivative and can be

described as

dP (t, St) = ∆(t, St)dSt + r(P (t, St)−∆(t, St)St)dt. (A1)

Let us consider an approximated Delta ∆̂. The hedging error in continuous time follows

the dynamics

dEt = dP (t, St)− ∆̂(t, St)dSt − r(P (t, St)− ∆̂(t, St)St)dt,

with E(0) = 0. By the Delta-hedging replication Equation (A1), we find

dEt = dP (t, St)− ∆̂(t, St)dSt − r(P (t, St)− ∆̂(t, St)St)dt

= ∆(t, St)dSt + r(P (t, St)−∆(t, St)St)dt

− ∆̂(t, St)dSt − r(P (t, St)− ∆̂(t, St)St)dt

= (∆(t, St)− ∆̂(t, St))(dSt − rStdt)

= (∆(t, St)− ∆̂(t, St))dXt,

where

dXt = dSt − rStdt = (µ− r)Stdt+ σ(t, St)StdBt.

Then

ET =

∫ T

0
(∆(t, St)− ∆̂(t, St))dXt.

29

Under discrete-time delta hedging, we have

∆̂(t, S) =

K−1∑
k=0

∆̂(tk, Stk)1[tk,tk+1)(t)

and we find

ET =

K−1∑
k=0

∫ tk+1

tk

(∆(t, St)− ∆̂(tk, Stk))dXt.

Adding and subtracting ∆(tk, Stk) yields the result.

Proof of Corollary 3.2. The result follows from conditioning on Stk and using the first

two moments of X.

Appendix B. Additional Tables

Table B1. Effect of training set size on estimated Delta in a Black–Scholes model with learning based on S-paths.

We report 8 metrics for ∆̂, as well as the RIMSE for Θ and option price P (last 2 columns, cf. (28)). All metrics

are based on a gridded test set of 1600 sites, {S0 : 30, 30.5, . . . , 69.5} × {t : −0.01, 0.01, . . . , 0.37}. GP model with

Matérn-5/2 kernel, linear trend function and constant estimated σε; all designs augmented with 50 additional virtual

training points.

N RIMSE MAD 95%Cvr Bias NLPD V ar(ET) µE VE Θ̂Err P̂Err
Paths with ∆t = 0.04: N/10 training paths

100 0.0663 0.0239 0.9762 0.0115 −4.28 0.827 0.0168 0.604 2.958 0.433

150 0.0680 0.0347 0.9356 0.0138 −4.35 0.744 0.0104 0.542 2.228 0.387

200 0.0626 0.0293 0.9331 0.0107 −4.50 0.653 0.0055 0.461 2.384 0.353

250 0.0602 0.0308 0.9281 0.0117 −4.55 0.616 0.0055 0.415 2.148 0.327

300 0.0588 0.0284 0.9331 0.0100 −4.60 0.592 0.0034 0.394 2.142 0.309

350 0.0554 0.0243 0.9381 0.0116 −4.72 0.499 −0.0011 0.292 2.010 0.286

400 0.0518 0.0213 0.9381 0.0108 −4.87 0.460 −0.0007 0.244 1.851 0.239

450 0.0501 0.0245 0.9525 0.0134 −4.93 0.464 0.0009 0.246 1.993 0.261

Paths with ∆t = 0.02: N/20 training paths

100 0.1348 0.0376 0.9419 0.0062 −3.14 0.629 0.0096 0.353 1.314 0.491

150 0.0786 0.0410 0.9525 0.0083 −4.05 0.507 0.0103 0.242 1.370 0.339

200 0.0857 0.0379 0.9219 0.0058 −3.95 0.529 0.0127 0.264 1.551 0.333

250 0.1141 0.0388 0.8619 0.0050 −3.38 0.693 0.0145 0.419 1.191 0.389

300 0.0856 0.0287 0.8750 0.0056 −4.09 0.519 0.0109 0.264 1.083 0.334

350 0.0571 0.0314 0.9419 0.0058 −4.74 0.449 0.0069 0.205 1.223 0.235

400 0.0586 0.0311 0.9312 0.0118 −4.69 0.442 0.0069 0.193 1.213 0.271

450 0.0569 0.0302 0.9194 0.0120 −4.73 0.428 0.0061 0.182 1.225 0.267

30

Table B2. Effect of training set size N = |D| on learning the Delta in the local volatility case study. We report 6

metrics for ∆̂, as well as the RIMSE for Θ and option price P (last 2 columns, cf. (28)). All metrics are based on a

gridded test set D′ of 31 · 11 = 341 sites, {S0 : 29.4, 31.03, . . . , 78.4}× {t : 0, 0.04, . . . , 0.36, 0.4}. The GP model uses

Matérn-5/2 kernel, a linear trend function and estimated constant σ2
ε .

N RIMSE MAD 95%Cvr Bias NLPD V ar(ET) Θ̂Err P̂Err
80 0.0375 0.0085 0.9589 0.00203 0.414 1.258 1.104 0.099

120 0.0304 0.0052 0.9619 0.00200 9.752 1.063 1.043 0.088

160 0.0290 0.0060 0.9560 0.00201 44.797 1.068 0.989 0.087

200 0.0279 0.0028 0.9501 0.00213 62.243 1.024 0.909 0.082

240 0.0282 0.0019 0.9032 0.00247 76.653 0.916 0.914 0.047

280 0.0282 0.0018 0.8886 0.00249 100.673 0.918 0.895 0.047

320 0.0283 0.0018 0.8651 0.00245 116.404 0.904 0.884 0.047

360 0.0283 0.0017 0.8534 0.00264 113.659 0.959 0.898 0.044

400 0.0282 0.0012 0.8182 0.00264 152.908 0.967 0.895 0.045

References

Ankenman, B., B. L. Nelson, and J. Staum (2010). Stochastic kriging for simulation metamodeling.

Operations Research 58 (2), 371–382.

Binois, M., R. B. Gramacy, and M. Ludkovski (2018). Practical heteroskedastic Gaussian process

modeling for large simulation experiments. Journal of Computational and Graphical Statis-

tics 27 (4), 808–821.

Capriotti, L., Y. Jiang, and A. Macrina (2017). AAD and least-square Monte Carlo: Fast

Bermudan-style options and XVA Greeks. Algorithmic Finance 6 (1-2), 35–49.

Chataigner, M. (2021). Some contributions of machine learning to quantitative finance: volatility,

nowcasting, CVA compression. Ph. D. thesis, Université Paris-Saclay.

Chataigner, M., A. Cousin, S. Crepey, M. Dixon, and D. Gueye (2021). Beyond surrogate modeling:

Learning the local volatility via shape constraints. working paper.

Chen, X., B. E. Ankenman, and B. L. Nelson (2013). Enhancing stochastic kriging metamodels

with gradient estimators. Operations Research 61 (2), 512–528.

Crépey, S. and M. Dixon (2019). Gaussian Process regression for derivative portfolio modeling and

application to CVA computations. arXiv preprint arXiv:1901.11081 .

De Spiegeleer, J., D. B. Madan, S. Reyners, and W. Schoutens (2018). Machine learning for

quantitative finance: fast derivative pricing, hedging and fitting. Quantitative Finance 18 (10),

1635–1643.

Flaxman, S., A. Wilson, D. Neill, H. Nickisch, and A. Smola (2015). Fast Kronecker inference

in Gaussian processes with non-Gaussian likelihoods. In International Conference on Machine

Learning, pp. 607–616.

Fu, H., X. Jin, G. Pan, and Y. Yang (2012). Estimating multiple option Greeks simultaneously

using random parameter regression. Journal of Computational Finance 16 (2), 85.

Gaß, M., K. Glau, M. Mahlstedt, and M. Mair (2018). Chebyshev interpolation for parametric

option pricing. Finance and Stochastics 22 (3), 701–731.

Glau, K., P. Herold, D. B. Madan, and C. Pötz (2019). The Chebyshev method for the implied

volatility. Journal of Computational Finance 23 (3).

Glau, K. and M. Mahlstedt (2019). Improved error bound for multivariate Chebyshev polynomial

interpolation. International Journal of Computer Mathematics 96 (11), 2302–2314.

31

Goudenège, L., A. Molent, and A. Zanette (2020). Machine learning for pricing American options in

high-dimensional Markovian and non-Markovian models. Quantitative Finance 20 (4), 573–591.

Jain, S. and C. W. Oosterlee (2015). The stochastic grid bundling method: Efficient pricing of

Bermudan options and their Greeks. Applied Mathematics and Computation 269, 412 – 431.

Jazaerli, S. and Y. F. Saporito (2017). Functional Itô calculus, path-dependence and the compu-

tation of Greeks. Stochastic Processes and their Applications 127 (12), 3997–4028.

Lemieux, C. (2009). Monte Carlo and quasi-Monte Carlo sampling. Springer Science & Business

Media.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine Learning. The

MIT Press.

Riihimäki, J. and A. Vehtari (2010). Gaussian processes with monotonicity information. In Proceed-

ings of the thirteenth international conference on artificial intelligence and statistics (AISTATS),

pp. 645–652.

Roustant, O., D. Ginsbourger, and Y. Deville (2012). Dicekriging, DiceOptim: Two R packages for

the analysis of computer experiments by kriging-based metamodeling and optimization. Journal

of Statistical Software 51 (1), 1–55.

Ruf, J. and W. Wang (2020). Neural networks for option pricing and hedging: a literature review.

Journal of Computational Finance 24 (1), 1–46.

Ruf, J. and W. Wang (2021). Hedging with linear regressions and neural networks. Journal of

Business & Economic Statistics (just-accepted), 1–33.

Whalley, A. E. and P. Wilmott (1997). An asymptotic analysis of an optimal hedging model for

option pricing with transaction costs. Mathematical Finance 7 (3), 307–324.

Wilson, A. and H. Nickisch (2015). Kernel interpolation for scalable structured Gaussian processes

(KISS-GP). In International Conference on Machine Learning, pp. 1775–1784.

32

Supplementary Materials: KrigHedge Demo

Mike Ludkovski & Yuri Saporito

2/2/2022

This short RMarkdown file presents an illustrative use of Gaussian Process surrogates for estimation of option
sensitivities. We directly embed R code snippets to showcase the straightforward use of the methodology.

Training Dataset

set.seed(101)
xTest <- seq(27,73,by=1); tTest = 0.1; # test set to be plotted
r <- 0.04 # interest rate

We consider learning the Greeks of a Call option within a Black–Scholes model. The Call has strike
K = 50 and maturity T = 0.4. To do so, we employ a training set of 450 total training locations, with 400
actual inputs plus another 50 “virtual” inputs to capture the boundary conditions. Our task is to learn the
Delta/Theta/Gamma of a Call as a function of current stock price St (henceforth the spot) and time t. The
inputs themselves are in the rectangle [30, 70]× [−0.01, 0.38].

The 400 training input-output tuples are constructed by sampling 400 locations via the space-filling Halton
sequence (available in randtoolbox package) and then running Monte Carlo approximation of the respective
option price through a plain Monte Carlo draw of 2500 i.i.d. samples based on the log-normal law of S(T)
(the simulation engine is viewed as a black-box for the modeler).
N_tr <- 450
hltn <- halton(400, dim=2)
simDsgn <- cbind(t=c(-0.01+.38*hltn[,1],rep(0,50)),

spot=c(30+40*hltn[,2],rep(50,50)),
price=rep(0,N_tr), noise=rep(0,N_tr))

for (i in 1:(N_tr-50)) {
mcPrice <- BS_mc(2500,K=50,r=0.04, sigma=0.22,

T=0.4-simDsgn[i,"t"], S0=simDsgn[i,"spot"])
simDsgn[i,"price"] <- mcPrice$mean
simDsgn[i,"noise"] <- mcPrice$sd

}

The next snippet creates 50 additional “virtual” training points at the edges, namely 20 deep in-the-money
(S ∈ {71, 72}), 20 deep out-of-the-money S ∈ {28, 29}) and 10 at maturity to capture the final payoff shape.
The Figure below visualizes the overall training set, including the 400 MC-based inputs (in black) and the 50
virtual training points (in red).
simDsgn[(N_tr-39):(N_tr),"t"] <- rep(seq(0,0.36,len=10), 4)
simDsgn[(N_tr-49):(N_tr),"noise"] <- 0
simDsgn[(N_tr-9):(N_tr),"price"] <- 71-exp(-r*(0.4-simDsgn[(N_tr-9):(N_tr),"t"]))*50
simDsgn[(N_tr-9):(N_tr),"spot"] <- 71

1

simDsgn[(N_tr-19):(N_tr-10),"price"] <- 72-exp(-r*(0.4-simDsgn[(N_tr-19):(N_tr-10),"t"]))*50
simDsgn[(N_tr-19):(N_tr-10),"spot"] <- 72

simDsgn[(N_tr-29):(N_tr-20),"price"] <- 0
simDsgn[(N_tr-29):(N_tr-20),"spot"] <- 28

simDsgn[(N_tr-39):(N_tr-30),"price"] <- 0
simDsgn[(N_tr-39):(N_tr-30),"spot"] <- 29

simDsgn[(N_tr-49):(N_tr-40),"spot"] <- seq(32,68,len=10)
simDsgn[(N_tr-49):(N_tr-40),"price"] <- pmax(0, simDsgn[(N_tr-49):(N_tr-40),"spot"]-50)
simDsgn[(N_tr-49):(N_tr-40),"t"] <- 0.4

30 40 50 60 70

0.
0

0.
1

0.
2

0.
3

0.
4

Underlying S

Ti
m

e
t

Training the GP surrogate
With the training set of approximate option prices constructed, we are ready to train a GP surrogate. Below
we employ the DiceKriging package and select the Matern-52 kernel family, linear trend function, estimated
constant observation noise (nugget) and genetic-algorithm optimizer for maximum likelihood estimation of
the GP hyperparameters.
gpModel <- km(formula = y ~ 1 + spot, # linear trend function

design =simDsgn[,1:2], response=simDsgn[,"price"],
nugget.estim=TRUE, # lear
alternatively: use the estimated simulation noise
#noise.var=pmax(1e-7, simDsgn[,"noise"]),
covtype="matern5_2", # can also try "gauss" or "matern3_2"
optim.method="gen",
estim.method = "MLE",
lower=c(0.1,8), upper=c(2,50), # bounds on lengthscales
the "control" parameters below handle speed versus risk of
converging to local minima. See "rgenoud" package for details

2

control=list(max.generations=100,pop.size=100,
wait.generations=8,
solution.tolerance=1e-5,
maxit = 1000, trace=F

))
print(coef(gpModel))

$trend1
[1] -15.58528
##
$trend2
[1] 0.5031343
##
$range
[1] 0.8441864 15.3521758
##
$shape
numeric(0)
##
$sd2
[1] 9.081037
##
$nugget
[1] 0.006124068

Getting the Greeks
The next code generates the posterior mean/variance of the gradients of gpModel. For the Price this is just
a predict command. For Delta and Theta, we utilize the helper gpDerivative function that implements
formulas (2.14)-(2.15) in the paper for the Matern-5/2 kernel.
testSet <- data.frame(t=rep(tTest,length(xTest)),spot=xTest)
Delta: gradient with respect to x_2
DeltaTest <- gpDerivative(fit=gpModel, testSet,i=2)

Theta -- gradient with respect to x_1
ThetaTest <- gpDerivative(fit=gpModel,testSet,i=1)

Price itself
PriceTest <- predict(gpModel,newdata=testSet,type="UK")

To compute second order sensitivity, specifically option Gamma, we employ finite differences:

∂2P

∂S2 (t, S) ' P (t, S + h)− 2P (t, S) + P (t, S − h)
h2 .

Below we set h = 0.01.
dx <- 0.01 # h for finite-differencing
GammaTest <- xTest # evaluate one predictive site at a time
for (jj in 1:length(xTest)) {

GammaTriple <- data.frame(spot=c(xTest[jj]-dx,xTest[jj],xTest[jj]+dx),
t=c(tTest,tTest,tTest))

triple <- predict(gpModel,newdata=GammaTriple,type="UK")$mean
GammaTest[jj] <- (triple[3]-2*triple[2]+triple[1])/dx^2 # Gamma approximation

}

3

We can now plot the Greeks and their posterior uncertainty (credible bands, shown at 95% level). This is
equivalent to the plots in Figure 3 of the article.

par(mar = c(4,4,1,1),oma = c(1, 1, 1, 1))
plot(xTest,BScall(t=tTest,T=0.4,S=xTest,K=50,r=0.04,q=0,sigma=0.22,isPut=0)$Theta,

col="black",type="l", lwd=4, lty=2,
xlab='Underlying S', ylab='Call Theta', bty='n', ylim=c(-6.2,0.7))

lines(xTest,ThetaTest$m, lwd=4, col="orange")
lines(xTest,ThetaTest$m+1.96*ThetaTest$covmat, col="orange",lwd=2,lty=2)
lines(xTest,ThetaTest$m-1.96*ThetaTest$covmat, col="orange",lwd=2,lty=2)

30 40 50 60 70

−6
−5

−4
−3

−2
−1

0

Underlying S

C
al

l T
he

ta

30 40 50 60 70

0.
0

0.
4

0.
8

Underlying S

C
al

l D
el

ta

30 40 50 60 70

0.
00

0.
05

0.
10

Underlying S

C
al

l G
am

m
a

4

