
TPLP 22 (5): 658–677, 2022. c© The Author(s), 2022. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068422000205 First published online 1 July 2022

658

FOLD-RM: A Scalable, Efficient, and Explainable
Inductive Learning Algorithm for Multi-Category

Classification of Mixed Data

HUADUO WANG, FARHAD SHAKERIN and GOPAL GUPTA
The University of Texas at Dallas, Richardson, USA

(e-mails: huaduo.wang@utdallas.edu, farhad.shakerin@utdallas.edu, gupta@utdallas.edu)

submitted 15 May 2022; accepted 08 June 2022

Abstract

FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (nu-
merical and categorical) data. It generates an (explainable) answer set programming (ASP) rule
set formulti-category classification tasks while maintaining efficiency and scalability. The FOLD-
RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms
such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM
algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets,
particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.

KEYWORDS: explainable AI, data mining, inductive logic programming, machine learning

1 Introduction

Dramatic success of machine learning has led to an avalanche of applications of artificial

intelligence (AI). However, the effectiveness of these systems is limited by the machines’

current inability to explain their decisions to human users. That is mainly because sta-

tistical machine learning methods produce models that are complex algebraic solutions

to optimization problems such as risk minimization or geometric margin maximization.

Lack of intuitive descriptions makes it hard for users to understand and verify the un-

derlying rules that govern the model. Also, these methods cannot produce a justification

for a prediction they arrive at for a new data sample. The problem of explaining (or jus-

tifying) a model’s decision to its human user is referred to as the model interpretability

problem. The subfield is referred to as explainable AI (XAI).

The inductive logic programming (ILP) learning problem is the problem of searching

for a set of logic programming clauses from which the training examples can be deduced.

ILP provides an excellent solution for XAI. ILP is a thriving field and a large number of

such clause search algorithms have been devised as described by Muggleton et al. (2012)

and Cropper and Dumancic (2020). The search in these ILP algorithms is performed

either top down or bottom up. A bottom-up approach builds most-specific clauses from

the training examples and searches the hypothesis space by using generalization. This

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068422000205
https://orcid.org/0000-0002-2118-5425
mailto:huaduo.wang@utdallas.edu
mailto:farhad.shakerin@utdallas.edu
mailto:gupta@utdallas.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000205&domain=pdf
https://doi.org/10.1017/S1471068422000205

FOLD-RM 659

approach is not applicable to large-scale datasets, nor it can incorporate negation-as-

failure (NAF) into the hypothesis, as explained in the book by Baral (2003). A survey

of bottom-up ILP systems and their shortcomings has been compiled by Sakama (2005).

In contrast, top-down approach starts with the most general clauses and then specializes

them. A top-down algorithm guided by heuristics is better suited for large-scale and/or

noisy datasets, as explained by Zeng et al. (2014).

The FOIL algorithm by Quinlan is a popular top-down ILP algorithm that learns

a logic program. The FOLD algorithm by Shakerin et al. (2017) is a novel top-down

algorithm that learns default rules along with exception(s) that closely model human

thinking. It first learns default predicates that cover positive examples while avoiding

covering negative examples. Then it swaps the covered positive examples and negative

examples and calls itself recursively to learn the exception to the default. It repeats

this process to learn exceptions to exceptions, exceptions to exceptions to exceptions,

and so on. The FOLD-R++ algorithm by Wang and Gupta (2022) is a new scalable ILP

algorithm that builds upon the FOLD algorithm to deal with the efficiency and scalability

issues of the FOLD and FOIL algorithms. It introduces the prefix sum computation and

other optimizations to speed up the learning process while providing human-friendly

explanation for its prediction using the s(CASP) answer set programming system (ASP)

of Arias et al. (2018). However, all these algorithms focus on binary classification tasks,

and cannot deal with multi-category classification tasks. Note that a binary classification

task checks whether a data record is a member of a given class or not, for example, does

a given creature fly or not fly? In multi-category classification, there can be multiple

membership classes, for example, a given creature’s habitat can be predicted to be one of

desert, mountain, plain, salt water, or fresh water (see the textbook by Bishop (2006)).

In this paper we propose a new ILP learning algorithm called FOLD-RM for multi-

category classification that builds upon the FOLD-R++ algorithm. FOLD-RM also pro-

vides native explanations for prediction without external libraries or tools. Our experi-

mental results indicates that the FOLD-RM algorithm is comparable in performance to

traditional, popular machine learning algorithms such as XGBoost by Chen and Guestrin

(2016) and multi-layer perceptrons (MLP) described in the book by Aggarwal (2018).

In most cases, FOLD-RM outperforms them in execution efficiency. Of course, neither

XGBoost nor MLP are interpretable.

Note that the term model in the field of machine learning and logic programming have

different meanings. We use the term model in this paper in machine learning sense. Thus,

the answer set program generated by our FOLD-RM algorithm is the model that we learn

in the sense of machine learning. We use the term answer set in this paper to refer to

stable models of answer set programs, where a model means assignment of truth values

to program predicates that make the program true. Note also that we use the terms

clause and rule interchangeably in this paper.

2 Background

2.1 Inductive logic programming

ILP as described in Muggleton (1991) is a subfield of machine learning that learns models

in the form of logic programming clauses comprehensible to humans. This problem is

formally defined as:

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

660 H. Wang et al.

Given

1. A background theory B, in the form of an extended logic program, that is, clauses

of the form h ← l1, ..., lm, not lm+1, ..., not ln, where h, l1, ..., ln are positive literals

and not denotes NAF as described in Baral (2003). For reasons of efficiency, we

restrict B to be stratified (stratified logic programs are explained in the book by

Gelfond and Kahl (2014)).

2. Two disjoint sets of ground target predicates E+, E− known as positive and nega-

tive examples, respectively.

3. A hypothesis language of function free predicates L, and a refinement operator ρ

under θ-subsumption described in Plotkin (1971) (for more details, see the paper

by Cropper and Dumancic (2020)). The hypothesis language L is also assumed to

be stratified.

Find a set of clauses H such that:

1. ∀e ∈ E+, B ∪H |= e.

2. ∀e ∈ E−, B ∪H �|= e.

3. B ∧H is consistent.

The target predicate is the predicate whose definition we want to learn as a stratified

normal logic program. The positive and negative examples are grounded target predi-

cates, that is, suppose we want to learn the concept of which creatures can fly, then

we will give positive examples E+ = {fly(tweety), fly(sam), ...} and negative ex-

amples E− = {fly(kitty), fly(polly), ...}, where tweety, sam, . . . , are names of

creatures that can fly, and kitty, polly, . . . , are names of creatures that cannot fly.

Note that the reason for restricting to stratified normal logic programs is that we

can realize a simple and efficient ASP interpreter in the FOLD-RM system code for

the training process. If we allowed for non-stratified programs, the training process will

have to invoke a full-fledged ASP interpreter during the training and testing process,

resulting in significant inefficiency. Considering non-stratified programs is part of our

future research plan. We restrict ourselves to function-free predicates, that is, we allow

only datalog rules, again, for reasons of efficiency.

2.2 Default rules

Default logic proposed by Reiter (1980) is a non-monotonic logic to formalize common-

sense reasoning. A default D is an expression of the form

A : MB

Γ
,

which states that the conclusion Γ can be inferred if pre-requisite A holds and B is

justified. MB stands for “it is consistent to believe B” as explained in the book by

Gelfond and Kahl (2014). Normal logic programs can encode a default quite elegantly.

A default of the form:

α1 ∧ α2 ∧ · · · ∧ αn : M¬β1,M¬β2 . . .M¬βm

γ
,

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 661

can be formalized as the following normal logic program rule:

γ :- α1, α2, . . . , αn, not β1, not β2, . . . , not βm.

where α’s and β’s are positive predicates and not represents NAF (under the stable

model semantics as described in Baral (2003)). We call such rules default rules. Thus,

the default bird(X):M¬penguin(X)
fly(X) will be represented as the following ASP-coded default

rule:

fly(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to the default conclusion that X

can fly, as the default part of the rule, and not penguin(X) as the exception part of the

rule.

Default rules closely represent the human thought process (i.e. frequently used in com-

monsense reasoning). FOLD-R and FOLD-R++ learn default rules represented as answer

set programs. Note that the programs currently generated are stratified normal logic pro-

grams, however, we eventually hope to learn non-stratified answer set programs too as

in the work of Shakerin and Gupta (2018) and Shakerin (2020). Hence, we continue to

use the term answer set program for a normal logic program in this paper. An advan-

tage of learning default rules is that we can distinguish between exceptions and noise as

explained by Shakerin et al. (2017) and Shakerin (2020). The introduction of (nested)

exceptions, or abnormal predicates, in a default rule increases coverage of the data by

that default rule. A single rule can now cover more examples which results in reduced

number of generated rules. The equivalent program without the abnormal predicates will

have many more rules if the abnormal predicates calls are fully expanded.

2.3 Classification problems

Classification problems are either binary or multi-category.

1. Binary classification is the task of classifying the elements of a set into two groups

on the basis of a classification rule. For example, a specific patient (given a set of

patients) has a particular disease or not, or a particular manufactured article (in a

set of manufactured articles) will pass quality control or not. Details can be found

in the book by Bishop (2006).

2. Multi-category or multinomial classification is the problem of classifying instances

into one of three or more classes. For example, an animal can be predicted to have

one of the following habitats: sea water, fresh water, desert, mountain, or plains.

Again, details can be found in the book by Bishop (2006).

3 The FOLD-R++ algorithm

The FOLD-R++ algorithm by Wang and Gupta (2022) is a new ILP algorithm for bi-

nary classification that is built upon the FOLD algorithm of Shakerin et al. (2017). Our

FOLD-RM algorithm builds upon the FOLD-R++ algorithm. FOLD-R++ increases the

efficiency and scalability of the FOLD algorithm. The FOLD-R++ algorithms divides

features into two categories: categorical features and numerical features. For a categorical

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

662 H. Wang et al.

Algorithm 1 FOLD-R++ Algorithm: Information Gain function

Input: tp, fn, tn, fp: the number of Etp, Efn, Etn, Efp implied by literal

Output: information gain

1: function F(a, b)

2: if a = 0 then

3: return 0

4: end if

5: return a · log2(a
a+b)

6: end function

7: function IG(tp, fn, tn, fp)

8: if fp+ fn > tp+ tn then

9: return −∞
10: end if

11: return 1
tp+fp+tn+fn ·(F(tp, fp) + F(fp, tp) + F(tn, fn) + F(fn, tn))

12: end function

feature, all the values in the feature would be considered as categorical values even though

some of them are numbers. For categorical features, the FOLD-R++ algorithm only gen-

erates equality or inequality literals. For numerical features, the FOLD-R++ algorithm

would try to read all the values as numbers, converting them to categorical values if con-

version to numbers fails. FOLD-R++ additionally generates numerical comparison (≤
and >) literals for numerical values. For a mixed type feature that contains both cate-

gorical values and numerical values, the FOLD-R++ algorithm treats them as numerical

features.

The FOLD-R++ algorithm employs information gain (IG) heuristic to guide literal se-

lection during the learning process. It uses a simplified calculation process for IG by using

the number of true positive, false positive, true negative, and false negative examples that

a literal can imply. The IG for a given literal is calculated as shown in Algorithm 1.

The goal of the ILP algorithm is to find an answer set program whose answer set has

all the positive examples and none of the negative examples. Our algorithm incremen-

tally learns this program using the IG heuristic. The IG heuristic allows us to refine

our program incrementally, that is, the answer set of the program after each refine-

ment step has more and more positive examples included and fewer and fewer of the

negative ones.

The comparison between two numerical values or two categorical values in FOLD-R++

is straightforward, as commonsense would dictate, that is, two numerical (resp. categor-

ical) values are equal if they are identical, else they are unequal. However, a different

assumption is made to compare a numerical value and a categorical value in FOLD-R++.

The equality between a numerical value and a categorical value is always false, and the

inequality between a numerical value and a categorical value is always true. Additionally,

numerical comparison (≤ and >) between a numerical value and a categorical value is al-

ways false. An example is shown in Table 1 (left), while an evaluation example for a given

literal, literal(i, >, 4), based on the comparison assumption is shown in Table 1 (right).

Given E+ = {1, 2, 2, 4, 5, x, x, y}, E− = {1, 3, 4, y, y, y, z}, and literal(i, >, 4), the true

positive example Etp, false negative examples Efn, true negative examples Etn, and false

positive examples Efp implied by the literal are {5}, {1, 2, 2, 4, x, x, y}, {1, 3, 4, y, y, y, z},

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 663

Table 1. Left: Comparisons between a numerical value and a categorical value. Right:

Evaluation and count for literal(i, >, 4).

comparison evaluation
5 = ‘k’ False
5 �= ‘k’ True
5 ≤ ‘k’ False
5 > ‘k’ False

ith feature values count
E+ 1 2 2 4 5 x x y 8
E− 1 3 4 y y y z 7

Etp(i,>,4) 5 1
Efn(i,>,4) 1 2 2 4 x x y 7
Etn(i,>,4) 1 3 4 y y y z 7
Efp(i,>,4) Ø 0

Ø respectively. Then, the IG of literal(i, >, 4) is calculated IG(i,>,4)(1, 7, 7, 0) = −0.647

through Algorithm 1.

The FOLD-R++ algorithm starts with the clause p(...) :- true., where p(...) is

the target predicate to learn. It specializes this clause by adding literals to its body during

the inductive learning process. It selects a literal to add that maximizes IG. The literal

selection process is summarized in Algorithm 2. In line 2, pos and neg are dictionaries

that hold, respectively, the numbers of positive and & negative examples for each unique

value. In line 3, xs and & cs are lists that hold, respectively, the unique numerical and

categorical values. In line 4, xp and & xn are the total number of, respectively, positive

and negative examples with numerical values; cp and cn are the same for categorical

values. In line 11, the IG of literal(i,≤, x) is calculated by taking the parameters pos[x]

as the number of true positive examples, xp− pos[x]+ cp as the number of false negative

examples, xn− neg[x] + cn as the number of true negative examples, and neg[x] as the

number of false positive examples. After computing the prefix sum in line 6, pos[x] holds

the total number of positive examples that has a value less than or equal to x. Therefore,

xp−pos[x] represents the total number of positive examples that have a value greater than

x. cp, the total number of positive examples that have a categorical value, is added to the

number of false negative examples because of the assumption that numerical comparison

between a numerical value and a categorical value is always false. The negative examples

that have a value greater than x or a categorical value would be evaluated as false by

literal(i,≤, x), so xn − neg[x] is added as true negative parameter. And, cn, the total

number of negative examples that has a categorical value, is added to true negative

parameter. The expression neg[x] means the number of negative examples that have the

value less than or equal to x; neg[x] is added as false positive parameter because the

evaluations of these examples by literal(i,≤, x) are true. The IG calculation processes

of other literals also follows the comparison assumption mentioned above. Finally, the

best info gain function returns the best score on IG and the corresponding literal

except the literals that have been used in current rule-learning process. For each feature,

we compute the best literal, then the find best literal function returns the best literal

among this set of best literals.

Example 1

Given positive and negative examples in Table 2, E+, E−, with mixed type of values on

ith feature, the target is to find the literal with the best IG on the given feature. There

are 8 positive examples, their values on ith feature are [1, 2, 2, 4, 5, x, x, y], and the values

on ith feature of the 7 negative examples are [1, 3, 4, y, y, y, z].

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

664 H. Wang et al.

Algorithm 2 FOLD-R++ Algorithm, Find Best Literal function

Input: E+: positive examples, E−: negative examples, Lused: used literals

Output: best lit: the best literal that provides the most information

1: function Best info gain(E+, E−, i, Lused)

2: pos, neg ← count classification(E+, E−, i)
3: xs, cs ← collect unique values(E+, E−, i)
4: xp, xn, cp, cn ← count total(E+, E−, i)
5: xs ← couting sort(xs)

6: for j ← 1 to size(xs) do � compute prefix sum for E+ & E− numerical values

7: pos[xsj] ← pos[xsj] + pos[xsj−1]

8: neg[xsj] ← neg[xsj] + neg[xsj−1]

9: end for

10: for x ∈ xs do

11: lit dict[literal(i,≤, x)] ← IG(pos[x], xp−pos[x]+ cp, xn−neg[x]+ cn, neg[x])

12: lit dict[literal(i, >, x)] ← IG(xp−pos[x], pos[x]+ cp, neg[x]+ cn, xn−neg[x])

13: end for

14: for c ∈ cs do

15: lit dict[literal(i,=, x)] ← IG(pos[c], cp− pos[c] + xp, cn− neg[c] + xn, neg[c])

16: lit dict[literal(i, �=, x)] ← IG(cp− pos[c] + xp, pos[c], neg[c], cn− neg[c] + xn)

17: end for

18: best, l ← best pair(lit dict, Lused)

19: return best, l � return the best info gain and its corresponding literal

20: end function

21: function Find best literal(E+, E−, Lused)

22: best ig, best lit ← −∞, invalid

23: for i ← 1 to N do � N is the number of features

24: ig, lit ← best info gain(E+,E−,i,Lused)

25: if best ig < ig then

26: best ig, best lit ← ig, lit

27: end if

28: end for

29: return best lit

30: end function

With the given examples and specified feature, the number of positive examples and

negative examples for each unique value are counted first, which are shown as pos, neg on

right side of Table 2. Then, the prefix sum arrays are calculated for computing heuristic

as psum+, psum−. Table 3 shows the IG for each literal, the literal(i,=, x) has been

selected with the highest score.

4 The FOLD-RM algorithm

The FOLD-R++ algorithm performs binary classification. We generalize the FOLD-R++

algorithm to perform multi-category classification. The generalized algorithm is called

FOLD-RM. The FOLD-R++ algorithm is summarized in Algorithm 3. The FOLD-R++

algorithm generates an ASP rule set, in which all the rules have the same rule head.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 665

Table 2. Left: Examples and values on ith feature. Right: positive/negative count and

prefix sum on each value

ith feature values
E+ 1 2 2 4 5 x x y
E− 1 3 4 y y y z

value 1 2 3 4 5 x y z
pos 1 2 0 1 1 2 1 0

psum+ 1 3 3 4 5 N/A N/A N/A
neg 1 0 1 1 0 0 3 1

psum− 1 1 2 3 3 N/A N/A N/A

Table 3. The info gain on ith feature with given examples

Info Gain

value 1 2 3 4 5 x y z
≤ value −∞ −0.655 −0.686 −0.688 −0.672 N/A N/A N/A
> value −0.667 −∞ −0.682 −0.647 −∞ N/A N/A N/A
= value N/A N/A N/A N/A N/A −0.598 −∞ −∞
�= value N/A N/A N/A N/A N/A −∞ −0.631 −0.637

An example covered by any rule in the set would imply the rule head is true. The

FOLD-R++ algorithm generates a model by learning one rule at a time. Ruling out the

already covered example in line 9 after learning a rule would help select better literal

for remaining examples. In the rule-learning process, the best literal would be selected

according to the useful information it can provide for current training examples (line

17) till the literal selection fails. If the ratio of false positive examples to true positive

examples drops below the threshold ratio in line 22, it would next learn exceptions by

swapping residual positive and negative examples and calling itself recursively (line 26).

Any examples that cannot be covered by the selected literals would be ruled out in line

20, 21. The ratio in line 22 represents the upper bound on the number of true positive

examples to the number of false positive examples implied by the default part of a rule.

It helps speed up the training process and reduces the number of rules learned.

Generally, avoiding covering negative examples by adding literals to the default part of

a rule will reduce the number of positive examples the rule can imply. Explicitly activating

the exception learning procedure (line 26 in Algorithm 3) could increase the number of

positive example a rule can cover while reducing the total number of rules generated. As

a result, the interpretability is increased due to fewer rules being generated.

The FOLD-RM algorithm performs multi-category classification. It generates rules

that it can learn for each category. If an example cannot be implied by any rule in

the learned rule set, it means the model fails to classify this example. The FOLD-RM

algorithm, summarized in Algorithm 4, first finds a target literal that represents the

category with most examples among the current training set (line 4). It next splits the

training set into positive and negative examples based on the target literal (line 5). Then,

it learns a rule to cover the target category (line 6) by calling the learn rule function of

the FOLD-R++ algorithm. The already covered examples would be ruled out from the

training set in line 11, and the rule head would be changed to the target literal in line

12. However, there is a difference between the outputs of FOLD-RM and FOLD-R++.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

666 H. Wang et al.

Algorithm 3 FOLD-R++ Algorithm

Input: E+: positive examples, E−: negative examples

� Global Parameters: target, B: background knowledge, ratio: exception ratio

Output: R = {r1, ..., rn}: a set of defaults rules with exceptions

1: function fold rpp(E+, E−, Lused) � Lused: used literals, initially empty

2: R ← Ø

3: while |E+| > 0 do

4: r ← learn rule(E+, E−, Lused)

5: EFN ← covers(r, E+, false) � EFN : false negative examples implied by rule r

6: if |EFN | = |E+| then
7: break

8: end if

9: E+ ← EFN � rule out the already covered examples

10: R ← R ∪ {r}
11: end while

12: return R

13: end function

14: function learn rule(E+, E−, Lused)

15: L ← Ø

16: while true do

17: l ← find best literal(E+, E−, Lused)

18: L ← L ∪ {l}
19: r ← set default(r, L) � set default part of rule r as L

20: E+ ← covers(r, E+, true)

21: E− ← covers(r, E−, true)

22: if l is invalid or |E−| ≤ |E+| ∗ ratio then

23: if l is invalid then

24: r ← set default(r, L \ {l}) � remove the invalid literal l from rule r

25: else

26: AB ← fold rpp(E−, E+, Lused + L) � learn exception rules for r

27: r ← set exception(r, AB) � set exception part of rule r as AB

28: end if

29: break

30: end if

31: end while

32: return r � the head of rule r is target

33: end function

Unlike FOLD-R++, the output of FOLD-RM is a textually ordered answer set program,

which means a rule is checked only if all the rules before it did not apply. The FOLD-RM

system is publicly available at https://github.com/hwd404/FOLD-RM.

Note that for learning each rule, FOLD-RM (Algorithm 4) chooses the target predicate

by finding the label value with the most examples in the remaining training examples

and sets it as the target predicate for this rule. In other words, the target predicate is the

“most popular” label value. The names of the predicates are the names of features in the

data. The head predicate and predicates in rule body each have exactly two arguments.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://github.com/hwd404/FOLD-RM
https://doi.org/10.1017/S1471068422000205

FOLD-RM 667

The first argument is a reference to the data record itself. For the target predicate, the

second argument is the predicted label for that record, while for predicates in the body,

the second argument is used to extract the appropriate feature value for that record. The

abnormal predicates only take one argument, namely, the data record itself. For example,

consider:

class(X,2) :- condition(X, s), not ab5(X).

ab5(X) :- not steel(X,r), not enamelability(X,2).

The first rule says that the predicted class of data record X is ‘2 if the condition feature

of X has value ‘s, and abnormal case ab5 does not apply. ab5(X) is an abnormal case

predicate and has only one argument. It says that the record X should not be predicted

to have class value ‘2, if the value of steel feature is not ‘r, and the value of enamelability

feature is not ‘2.

4.1 Algorithmic complexity

Next, we analyze the complexity of the FOLD-RM algorithm. If M is the number of

examples and N is the number of features, it is easy to see that the time complexity of

finding the best literal (Algorithm 2) is O(NM). We assume that counting sort (com-

plexity O(M)) with a pre-sorted list is used at line 5 in Algorithm 2. The worst case

in the FOLD-RM algorithm arises when each generated rule only covers one example

and each literal only excludes one non-target example. Therefore, in the worst case there

will be O(M2) literals chosen in total. The worst case time complexity of the FOLD-RM

algorithm (Algorithm 4) can be calculated to be O(NM3). However, this is a theoret-

ical upper bound. The actual learning process is really efficient because the heuristics

we employ helps select very effective literals, reducing the number of iterations in the

algorithm.

One can also prove that the FOLD-RM algorithm always terminates. The fold rm

function calls the learn rule function to induce a rule that can cover at least one ‘most

popular’ remaining example till all the examples have been covered or the learned rule

fails to cover any ‘most popular’ example. The loop in the fold rm function iterates at

most |E| times while excluding the already covered examples. The learn rule function

refines the rule with a given target by adding the best literal to the rule body. By

adding literals to the rules, the numbers of true positive and false positive examples

the rule implies can only monotonically decrease. The learned valid literal excludes at

least one false positive example that the rule implies. So, the loop in the learn rule

function iterates at most |E−| times. When the |E−| < |E+| ∗ ratio condition is met, the

fold rpp function is called to learn exception rules for the current default rule. Similar to

the fold rm function, the fold rpp function iterates at most |E+| times. Also, there are

only finite for-loops inside the find best literal function. Therefore, we can conclude

that the FOLD-RM algorithm will always terminate.

4.2 An illustrative example

We illustrate FOLD-RM, next, with a simple example.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

668 H. Wang et al.

Algorithm 4 FOLD-RM Algorithm

Input: E: examples, B: background knowledge, ratio: exception ratio

Output: R = {r1, ..., rn}: a set of defaults rules with exceptions

1: function fold rm(E)

2: R ← Ø

3: while |E| > 0 do

4: l ← most(E) � l: most popular target literal as the learning target

5: E+, E− ← split by literal(E, l)

6: r ← learn rule(E+, E−, Ø)

7: EFN ← covers(r, E+, false)

8: if |EFN | = |E+| then
9: break

10: end if

11: E ← E+ ∪ EFN � rule out the already covered examples

12: r ← add head(r, l)

13: R ← R ∪ {r}
14: end while

15: return R

16: end function

17: function most(E) � find the most popular target literal

18: for e ∈ E do

19: count[labele] ← count[labele] + 1

20: end for

21: labelmost ← find most(count)

22: return literal(indexlabel,=, labelmost)

23: end function

24: function split by literal(E, l)

25: E+, E− ← Ø, Ø

26: for e ∈ E do

27: if evaluate(e, l) is true then

28: E+ ← E+ ∪ {e}
29: else

30: E− ← E− ∪ {e}
31: end if

32: end for

33: return E+, E−

34: end function

Example 2

The target is to learn rules for habitat using the FOLD-RM algorithm. B,E are back-

ground knowledge and training examples, respectively. There are 3 classifications: two

explicit ones (land and water), and one implicit one (neither land, nor water).

B: mammal(kitty). cat(kitty).

mammal(john). whale(john).

mammal(smoky). bear(smoky).

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 669

mammal(charlie). dog(charlie).

fish(nemo). clownfish(nemo).

E: habitat(charlie,land). habitat(john,water).

habitat(smoky,land). habitat(nemo,water).

habitat(kitty,land).

For the first rule, the target predicate {habitat(X,land):- true} is specified at line

4 in Algorithm 4 because ‘land’ is the majority label. The find best literal function

selects literal mammal(X) as result and adds it to the clause r = {habitat(X,land):-
mammal(X)} at line 17 in Algorithms 3 because it provides the most useful information

among literals {cat,whale,bear,dog,fish,clownfish}. Then the training set rules out

covered examples at line 20–21 in Algorithm 3, E+ = Ø, E− ={john,nemo}. The default
learning is finished at this point because the candidate literal cannot provide any further

useful information. Therefore, the fold rpp function is called recursively with swapped

positive and negative examples, E+ ={john,nemo}, E− = Ø, to learn exceptions. In this

case, an abnormal predicate {ab1(X):-whale(X)} is learned and added to the previously

generated clause as r = {habitat(X,land):- mammal(X), not ab1(X)}. And the ex-

ception rule {ab1(X):- whale(X)} is added to the answer set program. FOLD-RM next

learns rules for target predicate {habitat(X,water):- true} and two rules are gener-

ated as {habitat(X,water):- fish(X)} and {habitat(X,water):- whale(X)}. The
generated final answer set program is:

habitat(X,land):- mammal(X), not ab1(X).

habitat(X,water):- fish(X).

habitat(X,water):- whale(X).

ab1(X):- whale(X).

The program above is a logic program, which means rules are not mutually exclusive.

For correctness, a rule should be checked only if all the earlier rules result in failure.

FOLD-RM generates further rules to make the learned rules mutually exclusive. The

program above is transformed as shown below.

habitat(X,land):- habitat 1(X).

habitat(X,water):- habitat 2(X), not habitat 1(X).

habitat(X,water):- habitat 3(X), not habitat 2(X), not habitat 1(X).

habitat 1(X):- mammal(X), not ab1(X).

habitat 2(X):- fish(X).

habitat 3(X):- whale(X).

ab1(X):- whale(X).

5 Experimental results

In this section, we present our experiments on standard UCI benchmarks. The XGBoost

classifier is a well-known classification model and used as a baseline model in our ex-

periments. The settings used for XGBoost classifier is kept simple without limiting its

performance. MLP is another widely used classification model that can deal with generic

classification tasks. However, both XGBoost model and MLP cannot take mixed type

(numerical and categorical values in a row or a column) as training data without pre-

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

670 H. Wang et al.

processing. For mixed type data, one-hot encoding—as explained in the book by Aggarwal

(2018)—has been used for data preparation. For binary classification, we use accuracy,

precision, recall, and F1 score as evaluation metrics. For the multi-category classifica-

tion tasks, following convention, we use accuracy, weighted average of Macro precision,

weighted average of Macro recall, and weighted average of Macro F1 score to compare

models as explained by Grandini et al. (2020). The average numbers of generated rules

are also reported for the FOLD-R++ and FOLD-RM algorithms in Tables 4, 6, and 7,

some of them are not integers because of being averaged over a number of repeated

experiments.

Both FOLD-R++ and FOLD-RM algorithms do not need any encoding for training.

After specifying the numerical features, they can deal with mixed type data directly, that

is, no one-hot encoding is needed. Even missing values are handled and do not need to

be provided. We implemented both algorithms with Python. The hyper-parameter ratio

is simply set as 0.5 for all the experiments. And all the learning processes have been

run on a desktop with Intel i5-10400 CPU @ 2.9 GHz and 32 GB RAM. To have good

performance test, we performed 10-fold cross-validation test on each dataset and average

classification metrics and execution time are shown. The best performer is highlighted in

boldface.

The XGBoost classifier utilizes decision tree ensemble method to build model and

provides good performance. Performance comparison of FOLD-R++ and XGBoost is

shown in Table 4. The FOLD-R++ algorithm is comparable to XGBoost classifier for

classification, but it is more efficient in terms of execution time, especially on datasets

with many unique feature values.

For multi-category classification experiments, we collected 15 datasets for comparison

with XGBoost and MLP. The drug consumption dataset has many output attributes, we

perform training on heroin, crack, and semer attributes. The size and label distribution

of the datasets used is shown in Table 5: number of rows indicates the number of data

records, while the number of columns indicates the number of features. We first compare

the performance of FOLD-RM and XGBoost in Table 6. XGBoost performs much better

on datasets avila and yeast, and FOLD-RM performs much better on datasets ecoli, dry-

bean, eeg, and weight-lifting. After analyzing these dataset, FOLD-RM seems to perform

better on more complicated datasets with mixed type values. XGBoost seems to perform

better on the datasets that have limited information. However, for those datasets for

which FOLD-RM has similar performance with XGBoost, FOLD-RM is more efficient

in terms of execution speed. In addition, FOLD-RM is explainable/interpretable, and

XGBoost is not.

The comparison with MLP is presented in Table 7. For most datasets, FOLD-RM can

achieve equivalent scores, similar to the comparison with XGBoost, FOLD-RM performs

much better on datasets ecoli, dry-bean, eeg, and weight-lifting, while MLP performs

much better on datasets avila and yeast. MLP takes much more time for training than

XGBoost because of its algorithmic complexity. Like the XGBoost classifier, for complex

datasets with mixed values, MLP also suffers from pre-processing complications such as

having to use one-hot encoding.

RIPPER algorithm by Cohen (1995) is a popular rule induction algorithm that

generates conjunctive normal form (CNF) formulas. Eight datasets have been used for

comparison between RIPPER and FOLD-RM. We did not find the RIPPER algorithm

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

F
O
L
D
-R

M
671

Table 4. Comparison of XGBoost and FOLD-R++ on various Datasets

DataSet XGBoost.Classifier FOLD-R++

Name #Rows #Cols Acc Prec Rec F1 T(ms) Acc Prec Rec F1 T(ms) #Rules

acute 120 7 1 1 1 1 35 0.99 1 0.99 0.99 1.6 2.6
autism 704 18 0.97 0.98 0.98 0.97 76 0.95 0.96 0.97 0.97 47 24.3
breast-w 699 10 0.95 0.97 0.96 0.96 78 0.96 0.97 0.96 0.97 24 10.2
cars 1728 7 1 1 1 1 77 0.98 1 0.97 0.98 38 12.2
credit-a 690 16 0.85 0.83 0.83 0.83 368 0.84 0.92 0.79 0.84 66 10.0
ecoli 336 9 0.76 0.76 0.62 0.68 165 0.96 0.95 0.94 0.95 19 11.4
heart 270 14 0.80 0.81 0.83 0.81 112 0.79 0.79 0.83 0.81 24 11.7
ionosphere 351 35 0.88 0.86 0.96 0.90 1,126 0.92 0.93 0.94 0.93 214 12.0
kidney 400 25 0.98 0.98 0.98 0.98 126 0.99 1 0.98 0.99 19 5.0
kr vs. kp 3196 37 0.99 0.99 0.99 0.99 210 0.99 0.99 0.99 0.99 223 18.4
mushroom 8124 23 1 1 1 1 378 1 1 1 1 314 8.0
voting 435 17 0.95 0.94 0.95 0.94 49 0.95 0.94 0.94 0.94 17 10.5
adult 32561 15 0.86 0.88 0.94 0.91 274,655 0.84 0.86 0.95 0.90 2,546 16.7
rain in aus 145460 24 0.83 0.84 0.95 0.89 285,307 0.78 0.87 0.84 0.85 21,868 40.5

https://doi.org/10.1017/S1471068422000205 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068422000205

672 H. Wang et al.

Table 5. The size and label distribution of UCI datasets

Dataset #Rows #Cols Distribution

anneal 898 39 ‘3’: 684, ‘U’: 40, ‘1’: 8, ‘5’: 67, ‘2’: 99
avila 20867 11 ‘A’:8572,‘F’:3923,‘H’:1039,‘E’:2190,‘I’:1663,‘Y’:533

‘D’:705,‘X’:1044,‘G’:893,‘W’:89,‘C’:206,‘B’:10
coli 336 9 ‘cp’:143,‘im’:77,‘imS’:2,‘imL’:2,‘imU’:35,‘om’:20,‘omL’:5,

‘pp’:52
drug-heroin 1885 13 ‘CL0’:1605,‘CL1’:68,‘CL2’:94,‘CL3’:65,‘CL5’:16,‘CL6’:13,

‘CL4’:24
drug-crack 1885 13 ‘CL0’:1627,‘CL1’:67,‘CL2’:112,‘CL3’:59,‘CL5’:9,‘CL4’:9,

‘CL6’:2
drug-semer 1885 13 ‘CL0’: 1877, ‘CL2’: 3, ‘CL3’: 2, ‘CL4’: 1, ‘CL1’:2
dry-bean 13611 17 ‘SEKER’: 2027, ‘BARBUNYA’: 1322, ‘BOMBAY’: 522

‘CALI’: 1630, ‘HOROZ’: 1928, ‘SIRA’: 2636,
‘DERMASON’: 3546

eeg 14980 15 ‘0’: 8257, ‘1’: 6723
intention 12330 18 ‘FALSE’: 10422, ‘TRUE’: 1908
nursery 12960 9 ‘recommend’: 2, ‘priority’: 4266

‘not recom’: 4320, ‘very recom’: 328, ‘spec prior’: 4044
pageblocks 5473 11 ‘1’: 4913, ‘2’: 329, ‘4’: 88, ‘5’: 115, ‘3’: 28
parkinson 756 754 ‘1’: 564, ‘0’: 192
pendigits 10992 17 ‘8’: 1055, ‘2’: 1144, ‘1’: 1143, ‘4’: 1144, ‘6’: 1056

‘0’: 1143, ‘5’: 1055, ‘9’: 1055, ‘7’: 1142, ‘3’: 1055
wine 178 14 ‘1’: 59, ‘2’: 71, ‘3’: 48
weight-lift 4024 155 ‘E’: 1370, ‘A’: 1365, ‘D’: 276, ‘B’: 901, ‘C’: 112
yeast 1484 10 ‘MIT’: 244, ‘NUC’: 424, ‘CYT’: 463, ‘ME1’: 44,

‘EXC’: 35, ‘ME2’: 51
‘ME3’: 163, ‘VAC’: 30, ‘POX’: 20, ‘ERL’: 5, ‘0.18’: 2,
‘0.16’: 2, ‘0.37’: 1

wall-robot 5456 25 ‘Slight-Right-Turn’: 826, ‘Sharp-Right-Turn’: 2097
‘Move-Forward’: 2205, ‘Slight-Left-Turn’: 328

flags 194 10 ‘2’: 36, ‘6’: 15, ‘1’: 60, ‘0’: 40, ‘5’: 27, ‘3’: 8, ‘4’: 4, ‘7’: 4
glass 214 10 ‘1’: 70, ‘2’: 76, ‘3’: 17, ‘5’: 13, ‘6’: 9, ‘7’: 29
optidigits 3823 65 ‘0’: 376, ‘7’: 387, ‘4’: 387, ‘6’: 377, ‘2’: 380

‘5’: 376, ‘8’: 380, ‘1’: 389, ‘9’: 382, ‘3’: 389
shuttle 58000 10 ‘2’: 50, ‘4’: 8903, ‘1’: 45586, ‘5’: 3267, ‘3’: 171, ‘7’: 13,

‘6’: 10

implementation with multiclass classification. Therefore, we have collected the accuracy

data reported by Asadi and Shahrabi (2016) and performed the same experiment with

the same datasets with the FOLD-RM algorithm. Two-thirds of the dataset was used for

training by Asadi and Shahrabi (2016) and the remaining one-third used as the test set.

We follow the same convention. For each dataset, this process was repeated 50 times.

The average of accuracy is shown in Table 8. Both algorithms have similar accuracy on

most datasets, though FOLD-RM outperforms on nursery dataset. Ripper is explainable,

as it outputs CNF formulas. However, the CNF formulae generated tend to have large

number of literals. In contrast, FOLD-RM rules are succinct due to use of NAF and they

have an operational semantics (that aligns with how humans reason) by virtue of being

a normal logic program.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 673

Table 6. Comparison of FOLD-RM and XGBoost on UCI Datasets

FOLD-RM XGBoost

Dataset Acc Prec Rec F1 Rules T(ms) Acc Prec Rec F1 T(ms)

anneal 0.99 1 0.99 0.99 17.9 63 0.99 0.99 0.99 0.99 295
avila 0.33 0.49 0.33 0.39 33.6 3,540 1 1 1 1 4,897
ecoli 0.80 0.82 0.80 0.80 42.3 41 0.42 0.79 0.42 0.50 806
drug-heroin 0.84 0.74 0.84 0.78 12.0 136 0.84 0.77 0.84 0.79 1,266
drug-crack 0.85 0.75 0.85 0.80 17.6 145 0.85 0.76 0.85 0.81 1,116
drug-semer 0.99 0.99 0.99 0.99 10.3 43 1 0.99 1 0.99 393
dry-bean 0.91 0.91 0.91 0.91 185.7 13,415 0.29 0.87 0.29 0.37 3,458
eeg 0.78 0.78 0.78 0.77 164.5 3,914 0.50 0.70 0.50 0.54 340
intention 0.90 0.89 0.90 0.90 78.3 1,621 0.90 0.89 0.90 0.89 114,161
nursery 0.97 0.97 0.97 0.96 59.8 643 0.88 0.93 0.88 0.89 24,100
pageblocks 0.97 0.97 0.97 0.96 72.3 929 0.95 0.94 0.95 0.94 81,416
parkinson 0.81 0.80 0.81 0.79 15.9 8,503 0.84 0.84 0.84 0.83 527
pendigits 0.96 0.96 0.96 0.96 219.2 2,447 0.91 0.92 0.91 0.91 54,102
wine 0.94 0.97 0.94 0.95 7.6 17 0.93 1 0.93 0.96 49
weight-lift 1 1 1 1 14.0 1,879 0.51 0.81 0.51 0.57 224,140
yeast 0.08 0.15 0.08 0.10 8.7 146 0.45 0.5 0.45 0.45 8,629
wall-robot 0.99 0.99 0.99 0.99 30.5 2,402 0.99 0.99 0.99 0.99 403

Table 7. Comparison of FOLD-RM and MLP on UCI Datasets

FOLD-RM MLP

Dataset Acc Prec Rec F1 Rules T(ms) Acc Prec Rec F1 T(ms)

anneal 0.99 1 0.99 0.99 17.9 63 0.99 0.99 0.99 0.99 462
avila 0.33 0.49 0.33 0.39 33.6 3,540 0.90 0.90 0.90 0.90 73,610
ecoli 0.80 0.82 0.80 0.80 42.3 41 0.52 0.91 0.52 0.61 411
drug-heroin 0.84 0.74 0.84 0.78 12.0 136 0.82 0.77 0.82 0.79 1,093
drug-crack 0.85 0.75 0.85 0.80 17.6 145 0.84 0.77 0.84 0.80 1,061
drug-semer 0.99 0.99 0.99 0.99 10.3 43 1 0.99 1 0.99 518
dry-bean 0.91 0.91 0.91 0.91 185.7 13,415 0.57 0.92 0.57 0.66 11,292
eeg 0.78 0.78 0.78 0.77 164.5 3,914 0.49 0.68 0.49 0.54 5,946
intention 0.90 0.89 0.90 0.90 78.3 1,621 0.84 0.76 0.84 0.78 218,087
nursery 0.97 0.97 0.97 0.96 59.8 643 0.91 0.94 0.91 0.91 943
pageblocks 0.97 0.97 0.97 0.96 72.3 929 0.93 0.91 0.93 0.92 6,452
parkinson 0.81 0.80 0.81 0.79 15.9 8,503 0.82 0.82 0.82 0.81 1,416
pendigits 0.96 0.96 0.96 0.96 219.2 2,447 0.99 0.99 0.99 0.99 6,732
wine 0.94 0.97 0.94 0.95 7.6 17 0.97 1 0.97 0.98 189
weight-lift 1 1 1 1 14.0 1,879 0.54 0.89 0.54 0.58 52,643
yeast 0.08 0.15 0.08 0.10 8.7 146 0.41 0.49 0.41 0.38 3,750
wall-robot 0.99 0.99 0.99 0.99 30.5 2,402 0.88 0.88 0.88 0.88 8,141

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

674 H. Wang et al.

Table 8. Comparison of RIPPER and FOLD-RM on UCI Datasets

Dataset RIPPER Acc FOLD-RM Acc Dataset RIPPER Acc FOLD-RM Acc

ecoli 0.80 0.80 flags 0.61 0.58
glass 0.63 0.63 nursery 0.72 0.96
optidigits 0.90 0.90 pageblocks 0.97 0.96
pendigits 0.95 0.95 shuttle 0.99 1

6 Prediction and justification

The FOLD-RM algorithm generates rules that can be interpreted by the human user to

understand the patterns and correlations that are implicit in the table data. These rules

can also be used to make prediction given new data input. Thus FOLD-RM serves as

a machine learning algorithm in its own right. However, making good predictions is not

enough for critical tasks such as disease diagnosis and loan approval. FOLD-RM comes

with a built-in prediction and justification facility. We illustrate this justification facility

via an example.

Example 3

The “annealing” UCI dataset is a multi-category classification task which contains 798

training examples and 100 test examples and their classes based on features such as steel,

carbon, hardness, condition, strength, etc. FOLD-RM generates the following answer set

program with 20 rules for 5 classes, which is pretty concise and precise:

classes(X,’3’) :- not surface_quality(X,’?’), not ab1(X),
not ab2(X), not ab3(X), not ab4(X).

classes(X,’2’) :- condition(X,’s’), not ab5(X).
classes(X,’3’) :- not carbon(X,’00’), not ab6(X).
classes(X,’5’) :- family(X,’tn’).
classes(X,’u’) :- steel(X,’a’), not ab7(X).
classes(X,’2’) :- thick(X,N32), N32>0.8, not ab8(X),

not ab9(X), not ab10(X).
classes(X,’3’) :- not steel(X,’s’), not ab11(X), not ab6(X).
classes(X,’1’) :- family(X,’?’).
classes(X,’1’) :- family(X,’zs’).
ab1(X) :- hardness(X,’85’).
ab2(X) :- strength(X,’600’). ab3(X) :- carbon(X,’10’).
ab4(X) :- hardness(X,’80’), cbond(X,’?’).
ab5(X) :- not steel(X,’r’), not enamelability(X,’2’).
ab6(X) :- steel(X,’a’). ab7(X) :- carbon(X,’03’).
ab8(X) :- steel(X,’r’). ab9(X) :- steel(X,’s’).
ab10(X) :- not temper_rolling(X,’?’). ab11(X) :- not family(X,’?’).

The above generated rule set achieves 0.99 accuracy, 0.99 weighted Macro precision,

0.99 weighted Macro recall, and 0.99 weighed Macro F1 score. The justification tree

generated by the FOLD-RM system for the 8th test example is shown below:

Proof Tree for example number 8 :
the value of classes is 2 DOES HOLD because

the value of condition is ’s’ which should equal ’s’ (DOES HOLD)
exception ab5 DOES NOT HOLD because

the value of steel is ’r’ which should not equal ’r’ (DOES NOT HOLD)
the value of enamelability is ’?’ which should not equal ’2’ (DOES HOLD)

{’condition: S’, ’enamelability: ?’, ’steel: R’}

This justification tree is also shown in another format: by showing which rules were
involved in the proof/justification. For each call in each rule that was invoked, FOLD-RM

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 675

shows whether it is true ([T]) or false ([F]). The head of each applicable rule is similarly
annotated. We illustrate this for the 8th test example:

[F]ab5(X) :- not [T]steel(X,’r’), not [F]enamelability(X,’2’).
[T]classes(X,’2’) :- [T]condition(X,’s’), not [F]ab5(X).
{’condition: S’, ’enamelability: ?’, ’steel: R’}

7 Conclusions and related work

In this paper we presented FOLD-RM, an efficient and highly scalable algorithm for

multi-category classification tasks. FOLD-RM can generate explainable answer set pro-

grams and human-friendly justification for predictions. Our algorithm does not need any

encoding (such as one-hot encoding) for data preparation. Compared to the well-known

classification models like XGBoost and MLP, our new algorithm has similar performance

in terms of accuracy, weighted macro precision, weighted macro recall, and weighted

macro F1 score. However, our new approach is much more efficient and interpretable

than these other approaches. It is remarkable that an ILP system is comparable in ac-

curacy to state-of-the-art traditional machine learning systems.

ALEPH by Srinivasan (2001) is a well-known ILP algorithm that employs bottom-up

approach to induce rules for non-numerical data. Also, no automatic method is available

for the specialization process. A tree-ensemble based rule extraction algorithm is proposed

by Takemura and Inoue (2021), its performance relies on trained tree-ensemble model.

It may also suffer from scalability issue because its running time is exponential in the

number of valid rules.

In practice, statistical machine learning models show good performance for classifica-

tion. Extracting rules from statistical models is also a long-standing research topic. Rule

extraction algorithms are of two kinds: 1) pedagogical (learning rules from black box mod-

els without looking into internal structures), such as, TREPAN by Craven and Shavlik

(1995), which learns decision trees from neural networks, 2) decompositional (learning

rules by analyzing the models inside out) such as SVM+Prototypes by Nuez et al. (2006),

which employs clustering algorithm to extract rules from SVM classifiers by utilizing sup-

port vectors. RuleFit by Friedman and Popescu is another rule extraction algorithm that

learns sparse linear models with original feature decision rules from shallow tree-ensemble

model for both classification and regression tasks. However, its interpretability decreases

when too many decision rules have been generated. Also, simpler approaches that are a

combination of statistical method with ILP have been extensively explored. The kFOIL

system by Landwehr et al. (2006) incrementally learns kernel for SVM FOIL style rule

induction. The nFOIL system by Landwehr et al. (2005) is an integration of Naive Bayes

model and FOIL. TILDE by Blockeel and De Raedt (1998) is another top-down rule

induction algorithm based on C4.5 decision tree, it can achieve similar performance with

decision tree. However, it would suffer from scalability issue when there are too many

unique numerical values in the dataset. For most datasets we experimented with, the

number of leaf nodes in the trained C4.5 decision tree is much more than the number

of rules that FOLD-R++/FOLD-RM generate. The FOLD-RM algorithm outperforms

the above methods in efficiency and scalability due to (i) its use of learning defaults,

exceptions to defaults, exceptions to exceptions, and so on (ii) its top-down nature, and

(iii) its use of improved method (prefix sum) for heuristic calculation.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

676 H. Wang et al.

Acknowledgment

Authors acknowledge support from NSF grants IIS 1718945, IIS 1910131, IIP 1916206,

US DoD, Atos Corp and Amazon Corp. We thank our colleagues Joaquin Arias, Parth

Padalkar, Kinjal Basu, Sarat Chandra Varanasi, Elmer Salzar, Fang Li, Serdar Erbatur,

and Doug DeGroot for discussions and help.

References

Aggarwal, C. C. 2018. Neural Networks and Deep Learning - A Textbook. Springer.

Arias, J.,Carro, M.,Chen, Z. and Gupta, G. 2020. Justifications for goal-directed constraint
answer set programming. Electronic Proceedings in Theoretical Computer Science, 325, 59–72.

Arias, J., Carro, M., Salazar, E., Marple, K. and Gupta, G. 2018. Constraint answer
set programming without grounding. Theory and Practice of Logic Programming, 18, 3–4,
337–354.

Asadi, S. and Shahrabi, J. 2016. Ripmc: Ripper for multiclass classification. Neurocomputing,
191, 19–33.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg.

Blockeel, H. and De Raedt, L. 1998. Top-down induction of first-order logical decision trees.
Artificial Intelligence, 101, 1, 285–297.

Chen, T. and Guestrin, C. 2016. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD 2016, KDD ’16, 785–794.

Cohen, W. W. 1995. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on International Conference on Machine Learning 1995, ICML95, 115–123, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Craven, M. W. and Shavlik, J. W. Extracting tree-structured representations of trained
networks. In Proceedings of the 8th International Conference on Neural Information Processing
Systems 1995, NIPS’95. MIT Press, Cambridge, MA, USA, 24–30.

Cropper, A. and Dumancic, S. 2020. Inductive logic programming at 30: A new introduction.
URL: https://arxiv.org/abs/2008.07912

Dua, D. and Graff, C. 2017. UCI machine learning repository.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.

Grandini, M., Bagli, E. and Visani, G. 2020. Metrics for multi-class classification: an
overview. arXiv 2008.05756.

Gunning, D. 2015. Explainable artificial intelligence (xai). URL: https://www.darpa.mil/
program/explainable-artificial-intelligence [Accessed on June 2018].

Landwehr, N., Kersting, K. and Raedt, L. D. 2005. nFOIL: Integrating näıve bayes and
FOIL. In Proc. AAAI 2005, 795–800.

Landwehr, N., Passerini, A., Raedt, L. D. and Frasconi, P. 2006. kFOIL: Learning simple
relational kernels. In Proc. AAAI 2006, 389–394.

Muggleton, S. 1991. Inductive logic programming. New Generation Computing, 8, 4, 295–318.

Muggleton, S., de Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K. and

Srinivasan, A. 2012. ILP turns 20. Machine Learning, 86, 1, 3–23.

Nuez, H., Angulo, C. and Catal, A. 2006. Rule-based learning systems for support vector
machines. Neural Processing Letters, 24, 1–18.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

https://arxiv.org/abs/2008.07912
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1017/S1471068422000205

FOLD-RM 677

Plotkin, G. D. 1971. A further note on inductive generalization. In Machine Intelligence 1971,
volume 6. Edinburgh University Press, 101–124.

Quinlan, J. R. 1990. Learning logical definitions from relations. Machine Learning, 5, 239–266.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence, 13, 1-2, 81–132.

Sakama, C. 2005. Induction from answer sets in nonmonotonic logic programs. ACM Transac-
tions on Computational Logic, 6, 2, 203–231.

Shakerin, F. 2020. Logic Programming-based Approaches in Explainable AI and Natural Lan-
guage Processing. PhD thesis. Department of Computer Science, The University of Texas at
Dallas.

Shakerin, F. and Gupta, G. 2018. Heuristic based induction of answer set programs, from
default theories to combinatorial problems. In 28th International Conference on Inductive
Logic Programming (ILP Up and Coming Papers) 2018, volume 2206, pp. 36–51.

Shakerin, F., Salazar, E. and Gupta, G. 2017. A new algorithm to automate inductive
learning of default theories. TPLP, 17, 5–6, 1010–1026.

Srinivasan, A. 2001. The aleph manual. URL: http://web.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/

Takemura, A. and Inoue, K. 2021. Generating explainable rule sets from tree-ensemble learn-
ing methods by answer set programming. Electronic Proceedings in Theoretical Computer
Science, 345, 127–140.

Wang, H. and Gupta, G. 2022. FOLD-R++: A toolset for automated inductive learning of
default theories from mixed data. In Proceedings The First International Workshop on Com-
bining Learning and Reasoning: Programming Languages, Formalisms, and Representations
(CLeaR).

Zeng, Q., Patel, J. M. and Page, D. 2014. Quickfoil: Scalable inductive logic programming.
Proceedings of the VLDB Endowment, 8, 3, 197–208.

https://doi.org/10.1017/S1471068422000205 Published online by Cambridge University Press

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
https://doi.org/10.1017/S1471068422000205

	Introduction
	Background
	Inductive logic programming
	Default rules
	Classification problems

	The FOLD-R++ algorithm
	The FOLD-RM algorithm
	Algorithmic complexity
	An illustrative example

	Experimental results
	Prediction and justification
	Conclusions and related work
	References

