TPLP 22 (5): 658677, 2022. (© The Author(s), 2022. Published by Cambridge University Press. 658
This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068422000205 First published online 1 July 2022

FOLD-RM: A Scalable, Efficient, and Explainable
Inductive Learning Algorithm for Multi-Category
Classification of Mixed Data

HUADUO WANG, FARHAD SHAKERIN and GOPAL GUPTA
The University of Texas at Dallas, Richardson, USA
(e-mails: huaduo.wang@utdallas.edu, farhad.shakerin@utdallas.edu, gupta@utdallas.edu)

submitted 15 May 2022; accepted 08 June 2022

Abstract

FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (nu-
merical and categorical) data. It generates an (explainable) answer set programming (ASP) rule
set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-
RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms
such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM
algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets,
particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.

KEYWORDS: explainable AI, data mining, inductive logic programming, machine learning

1 Introduction

Dramatic success of machine learning has led to an avalanche of applications of artificial
intelligence (AI). However, the effectiveness of these systems is limited by the machines’
current inability to explain their decisions to human users. That is mainly because sta-
tistical machine learning methods produce models that are complex algebraic solutions
to optimization problems such as risk minimization or geometric margin maximization.
Lack of intuitive descriptions makes it hard for users to understand and verify the un-
derlying rules that govern the model. Also, these methods cannot produce a justification
for a prediction they arrive at for a new data sample. The problem of explaining (or jus-
tifying) a model’s decision to its human user is referred to as the model interpretability
problem. The subfield is referred to as explainable AT (XAI).

The inductive logic programming (ILP) learning problem is the problem of searching
for a set of logic programming clauses from which the training examples can be deduced.
ILP provides an excellent solution for XAI. ILP is a thriving field and a large number of
such clause search algorithms have been devised as described by Muggleton et al. (2012)
and Cropper and Dumancic (2020). The search in these ILP algorithms is performed
either top down or bottom up. A bottom-up approach builds most-specific clauses from
the training examples and searches the hypothesis space by using generalization. This

CrossMark

@)

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068422000205
https://orcid.org/0000-0002-2118-5425
mailto:huaduo.wang@utdallas.edu
mailto:farhad.shakerin@utdallas.edu
mailto:gupta@utdallas.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000205&domain=pdf
https://doi.org/10.1017/S1471068422000205

FOLD-RM 659

approach is not applicable to large-scale datasets, nor it can incorporate negation-as-
failure (NAF) into the hypothesis, as explained in the book by Baral (2003). A survey
of bottom-up ILP systems and their shortcomings has been compiled by Sakama (2005).
In contrast, top-down approach starts with the most general clauses and then specializes
them. A top-down algorithm guided by heuristics is better suited for large-scale and/or
noisy datasets, as explained by Zeng et al. (2014).

The FOIL algorithm by Quinlan is a popular top-down ILP algorithm that learns
a logic program. The FOLD algorithm by Shakerin et al. (2017) is a novel top-down
algorithm that learns default rules along with exception(s) that closely model human
thinking. It first learns default predicates that cover positive examples while avoiding
covering negative examples. Then it swaps the covered positive examples and negative
examples and calls itself recursively to learn the exception to the default. It repeats
this process to learn exceptions to exceptions, exceptions to exceptions to exceptions,
and so on. The FOLD-R++ algorithm by Wang and Gupta (2022) is a new scalable ILP
algorithm that builds upon the FOLD algorithm to deal with the efficiency and scalability
issues of the FOLD and FOIL algorithms. It introduces the prefix sum computation and
other optimizations to speed up the learning process while providing human-friendly
explanation for its prediction using the s(CASP) answer set programming system (ASP)
of Arias et al. (2018). However, all these algorithms focus on binary classification tasks,
and cannot deal with multi-category classification tasks. Note that a binary classification
task checks whether a data record is a member of a given class or not, for example, does
a given creature fly or not fly? In multi-category classification, there can be multiple
membership classes, for example, a given creature’s habitat can be predicted to be one of
desert, mountain, plain, salt water, or fresh water (see the textbook by Bishop (2006)).

In this paper we propose a new ILP learning algorithm called FOLD-RM for multi-
category classification that builds upon the FOLD-R++ algorithm. FOLD-RM also pro-
vides native explanations for prediction without external libraries or tools. Our experi-
mental results indicates that the FOLD-RM algorithm is comparable in performance to
traditional, popular machine learning algorithms such as XGBoost by Chen and Guestrin
(2016) and multi-layer perceptrons (MLP) described in the book by Aggarwal (2018).
In most cases, FOLD-RM outperforms them in execution efficiency. Of course, neither
XGBoost nor MLP are interpretable.

Note that the term model in the field of machine learning and logic programming have
different meanings. We use the term model in this paper in machine learning sense. Thus,
the answer set program generated by our FOLD-RM algorithm is the model that we learn
in the sense of machine learning. We use the term answer set in this paper to refer to
stable models of answer set programs, where a model means assignment of truth values
to program predicates that make the program true. Note also that we use the terms
clause and rule interchangeably in this paper.

2 Background
2.1 Inductive logic programming

ILP as described in Muggleton (1991) is a subfield of machine learning that learns models
in the form of logic programming clauses comprehensible to humans. This problem is
formally defined as:

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

660 H. Wang et al.

Given

1. A background theory B, in the form of an extended logic program, that is, clauses
of the form h < 1y, ..., l;n, not l;41, ..., not l,, where h,ly, ..., 1, are positive literals
and not denotes NAF as described in Baral (2003). For reasons of efficiency, we
restrict B to be stratified (stratified logic programs are explained in the book by
Gelfond and Kahl (2014)).

2. Two disjoint sets of ground target predicates E+, E~ known as positive and nega-
tive examples, respectively.

3. A hypothesis language of function free predicates L, and a refinement operator p
under #-subsumption described in Plotkin (1971) (for more details, see the paper
by Cropper and Dumancic (2020)). The hypothesis language L is also assumed to
be stratified.

Find a set of clauses H such that:

1. Vee ET, BUH Ee.
2.Yee E-, BUH }e.
3. B A H is consistent.

The target predicate is the predicate whose definition we want to learn as a stratified
normal logic program. The positive and negative examples are grounded target predi-
cates, that is, suppose we want to learn the concept of which creatures can fly, then

we will give positive examples BT = {fly(tweety), fly(sam), ...} and negative ex-
amples F~ = {fly(kitty), fly(polly), ...}, where tweety, sam, ..., are names of
creatures that can fly, and kitty, polly, ..., are names of creatures that cannot fly.

Note that the reason for restricting to stratified normal logic programs is that we
can realize a simple and efficient ASP interpreter in the FOLD-RM system code for
the training process. If we allowed for non-stratified programs, the training process will
have to invoke a full-fledged ASP interpreter during the training and testing process,
resulting in significant inefficiency. Considering non-stratified programs is part of our
future research plan. We restrict ourselves to function-free predicates, that is, we allow
only datalog rules, again, for reasons of efficiency.

2.2 Default rules

Default logic proposed by Reiter (1980) is a non-monotonic logic to formalize common-
sense reasoning. A default D is an expression of the form

A:MB

-T
which states that the conclusion I' can be inferred if pre-requisite A holds and B is
justified. M B stands for “it is consistent to believe B” as explained in the book by
Gelfond and Kahl (2014). Normal logic programs can encode a default quite elegantly.
A default of the form:

ag ANag A~ ANay : M=g1,M=5; ... M—5,,
Y

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 661

can be formalized as the following normal logic program rule:

Y i-Q1,Q9,...,0,,00t 1,00t Bo,...,n0t Gy

where a’s and f’s are positive predicates and not represents NAF (under the stable
model semantics as described in Baral (2003)). We call such rules default rules. Thus,
the default b"'d(X):%;(p;?gum(X) will be represented as the following ASP-coded default

rule:

fly(X) :- bird(X), not penguin(X).
We call bird(X), the condition that allows us to jump to the default conclusion that X
can fly, as the default part of the rule, and not penguin(X) as the exception part of the
rule.

Default rules closely represent the human thought process (i.e. frequently used in com-
monsense reasoning). FOLD-R and FOLD-R++ learn default rules represented as answer
set programs. Note that the programs currently generated are stratified normal logic pro-
grams, however, we eventually hope to learn non-stratified answer set programs too as
in the work of Shakerin and Gupta (2018) and Shakerin (2020). Hence, we continue to
use the term answer set program for a normal logic program in this paper. An advan-
tage of learning default rules is that we can distinguish between exceptions and noise as
explained by Shakerin et al. (2017) and Shakerin (2020). The introduction of (nested)
exceptions, or abnormal predicates, in a default rule increases coverage of the data by
that default rule. A single rule can now cover more examples which results in reduced
number of generated rules. The equivalent program without the abnormal predicates will
have many more rules if the abnormal predicates calls are fully expanded.

2.3 Classification problems
Classification problems are either binary or multi-category.

1. Binary classification is the task of classifying the elements of a set into two groups
on the basis of a classification rule. For example, a specific patient (given a set of
patients) has a particular disease or not, or a particular manufactured article (in a
set of manufactured articles) will pass quality control or not. Details can be found
in the book by Bishop (2006).

2. Multi-category or multinomial classification is the problem of classifying instances
into one of three or more classes. For example, an animal can be predicted to have
one of the following habitats: sea water, fresh water, desert, mountain, or plains.
Again, details can be found in the book by Bishop (2006).

3 The FOLD-R++ algorithm

The FOLD-R++ algorithm by Wang and Gupta (2022) is a new ILP algorithm for bi-
nary classification that is built upon the FOLD algorithm of Shakerin et al. (2017). Our
FOLD-RM algorithm builds upon the FOLD-R++ algorithm. FOLD-R++ increases the
efficiency and scalability of the FOLD algorithm. The FOLD-R++ algorithms divides
features into two categories: categorical features and numerical features. For a categorical

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

662 H. Wang et al.

Algorithm 1 FOLD-R++ Algorithm: Information Gain function
Input: tp, fn, tn, fp: the number of Ey;,, E¢,, Esy, E¢p, implied by literal
Output: information gain
1: function F(a,b)
2 if a = 0 then
3 return 0
4 end if
5: return a - log, (
6
7
8
9

15)

: end function

: function IG(tp, fn,tn, fp)

if fp+ fn > tp+tn then
return —oo

10: end if
11: return mo(F(tp, fp) + F(fp, tp) + F(tn, fn) + F(fn,tn))
12: end function

feature, all the values in the feature would be considered as categorical values even though
some of them are numbers. For categorical features, the FOLD-R++ algorithm only gen-
erates equality or inequality literals. For numerical features, the FOLD-R++ algorithm
would try to read all the values as numbers, converting them to categorical values if con-
version to numbers fails. FOLD-R++ additionally generates numerical comparison (<
and >) literals for numerical values. For a mixed type feature that contains both cate-
gorical values and numerical values, the FOLD-R++ algorithm treats them as numerical
features.

The FOLD-R++ algorithm employs information gain (IG) heuristic to guide literal se-
lection during the learning process. It uses a simplified calculation process for IG by using
the number of true positive, false positive, true negative, and false negative examples that
a literal can imply. The IG for a given literal is calculated as shown in Algorithm 1.

The goal of the ILP algorithm is to find an answer set program whose answer set has
all the positive examples and none of the negative examples. Our algorithm incremen-
tally learns this program using the IG heuristic. The IG heuristic allows us to refine
our program incrementally, that is, the answer set of the program after each refine-
ment step has more and more positive examples included and fewer and fewer of the
negative ones.

The comparison between two numerical values or two categorical values in FOLD-R++
is straightforward, as commonsense would dictate, that is, two numerical (resp. categor-
ical) values are equal if they are identical, else they are unequal. However, a different
assumption is made to compare a numerical value and a categorical value in FOLD-R++.
The equality between a numerical value and a categorical value is always false, and the
inequality between a numerical value and a categorical value is always true. Additionally,
numerical comparison (< and >) between a numerical value and a categorical value is al-
ways false. An example is shown in Table 1 (left), while an evaluation example for a given
literal, literal(i, >, 4), based on the comparison assumption is shown in Table 1 (right).
Given ET = {1,2,2,4,5,z,z,y}, E- = {1,3,4,y,9,y, 2}, and literal(i,>,4), the true
positive example Ey;,, false negative examples E,,, true negative examples E,,,, and false
positive examples E, implied by the literal are {5}, {1,2,2,4,z,z,y}, {1,3,4,y,9,v, 2},

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 663

Table 1. Left: Comparisons between a numerical value and a categorical value. Right:
Evaluation and count for literal(i, >, 4).

i"® feature values| count
comparison| evaluation ET 12245xxy 8
5 ="k False E™ 134yyyz 7
5 75 ‘k’ True Etp(i,>,4) 5 1
5 <k False Etni,>,9) 1224xxy 7
5>k’ False Etng,>,4 134yyyz 7
Eei,>0 9 0

@ respectively. Then, the IG of literal(i, >, 4) is calculated IG(; > 4)(1,7,7,0) = —0.647
through Algorithm 1.

The FOLD-R++ algorithm starts with the clause p(...) :- true., where p(...) is
the target predicate to learn. It specializes this clause by adding literals to its body during
the inductive learning process. It selects a literal to add that maximizes IG. The literal
selection process is summarized in Algorithm 2. In line 2, pos and neg are dictionaries
that hold, respectively, the numbers of positive and & negative examples for each unique
value. In line 3, xs and & cs are lists that hold, respectively, the unique numerical and
categorical values. In line 4, xp and & zn are the total number of, respectively, positive
and negative examples with numerical values; cp and cn are the same for categorical
values. In line 11, the IG of literal(i, <, z) is calculated by taking the parameters pos|z]
as the number of true positive examples, xp — pos|x] + ¢p as the number of false negative
examples, zn — neglz] + cn as the number of true negative examples, and neg[z] as the
number of false positive examples. After computing the prefix sum in line 6, pos[z] holds
the total number of positive examples that has a value less than or equal to z. Therefore,
xp—pos|x] represents the total number of positive examples that have a value greater than
x. cp, the total number of positive examples that have a categorical value, is added to the
number of false negative examples because of the assumption that numerical comparison
between a numerical value and a categorical value is always false. The negative examples
that have a value greater than x or a categorical value would be evaluated as false by
literal(i, <, z), so zn — neglz] is added as true negative parameter. And, cn, the total
number of negative examples that has a categorical value, is added to true negative
parameter. The expression neg[z] means the number of negative examples that have the
value less than or equal to z; neg[z] is added as false positive parameter because the
evaluations of these examples by literal(i, <,x) are true. The IG calculation processes
of other literals also follows the comparison assumption mentioned above. Finally, the
best_info_gain function returns the best score on IG and the corresponding literal
except the literals that have been used in current rule-learning process. For each feature,
we compute the best literal, then the find best_literal function returns the best literal
among this set of best literals.

Ezample 1

Given positive and negative examples in Table 2, ET, E~, with mixed type of values on
ith feature, the target is to find the literal with the best IG on the given feature. There
are 8 positive examples, their values on i*" feature are [1,2,2,4,5,z, x,7], and the values
on it" feature of the 7 negative examples are [1,3,4,y,y,y, 2].

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

664

H. Wang et al.

Algorithm 2 FOLD-R++ Algorithm, Find Best Literal function

Input: ET: positive examples, £ : negative examples, Lyscq: used literals
Output: best_lit: the best literal that provides the most information
1: function BEST_INFO_GAIN(ET, E™, i, Lysed)

© % NPT W

NN N N = e e e e e e

24:
25:
26:
27:
28:
29:

pos,neg < count_classification(E™, E~ 1)

xs,cs < collect_unique_values(E*, E~ 1)

xp, T, cp, cn <+ count_total(E™, E~ 1)

xs + couting_sort(xs)

for j < 1 to size(xzs) do > compute prefix sum for ET & E~ numerical values
pos[zs;] < pos|zs;] + pos[rsj_1]
neglxs;] < neglrs;] + neglrs;j_1]

end for

for x € zs do
lit_dict[literal (i, <, z)] + IG(pos|z|, zp — pos[x] + cp, zn — neg|x] + cn, neg|z])
lit_dict[literal (i, >, x)] < IG(xp — pos[z], pos[x] + cp, neg[x] + cn, zn — neg|x])

end for

for c € cs do
lit_dict[literal (i, =, x)] < 1G(pos|c], cp — pos[c] + xp, cn — neg[c] + xn, neg[c])
lit_dict[literal (i, #, x)] < 1G(cp — pos|c] + xp, posc], negc], ecn — neglc] + an)

end for

best,l < best_pair(lit_dict, Lyseq)

return best, [> return the best info gain and its corresponding literal

end function
: function FIND_BEST_LITERAL(E™, ™, Lysecd)

best_ig, best_lit < —oo, invalid
for i < 1to N do > N is the number of features
ig, lit < BEST_INFO_GAIN(EY,E~ i, Lysed)
if best_ig < ig then
best_ig, best_lit < 1ig, lit
end if
end for
return best_lit

30: end function

With the given examples and specified feature, the number of positive examples and
negative examples for each unique value are counted first, which are shown as pos, neg on
right side of Table 2. Then, the prefix sum arrays are calculated for computing heuristic
as psum™, psum~. Table 3 shows the IG for each literal, the literal(i,=,x) has been
selected with the highest score.

4 The FOLD-RM algorithm

The FOLD-R++ algorithm performs binary classification. We generalize the FOLD-R++
algorithm to perform multi-category classification. The generalized algorithm is called
FOLD-RM. The FOLD-R++ algorithm is summarized in Algorithm 3. The FOLD-R++
algorithm generates an ASP rule set, in which all the rules have the same rule head.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 665

Table 2. Left: Examples and values on it" feature. Right: positive/negative count and
prefix sum on each value

value | 1| 2| 3| 4| 5| x y z

i'" feature values pos 11 2] 0f 1| 1 2 1 0

ET| 1] 2] 2] 4] 5] x| x| y psum™ | 1| 3] 3| 4] 5] N/A| N/A| N/A
E7 | 1| 3| 4| y| y| v| = neg 1{ 0] 1/ 1{ 0] O 3 1
psum™ | 1| 1| 2| 3| 3] N/A| N/A| N/A

Table 3. The info gain on i*" feature with given examples

Info Gain
value 1 2 3 4 5 X y z
< value —oco —0.655 —0.68 —0.688 —0.672 N/A N/A N/A
> value —-0.667 —oo —0.682 —0.647 —oo N/A N/A N/A
= value N/A N/A N/A N/A N/A —-0598 —o0 —00
value N/A N/A N/A N/A N/A —oo —0.631 —0.637

An example covered by any rule in the set would imply the rule head is true. The
FOLD-R++ algorithm generates a model by learning one rule at a time. Ruling out the
already covered example in line 9 after learning a rule would help select better literal
for remaining examples. In the rule-learning process, the best literal would be selected
according to the useful information it can provide for current training examples (line
17) till the literal selection fails. If the ratio of false positive examples to true positive
examples drops below the threshold ratio in line 22, it would next learn exceptions by
swapping residual positive and negative examples and calling itself recursively (line 26).
Any examples that cannot be covered by the selected literals would be ruled out in line
20, 21. The ratio in line 22 represents the upper bound on the number of true positive
examples to the number of false positive examples implied by the default part of a rule.
It helps speed up the training process and reduces the number of rules learned.

Generally, avoiding covering negative examples by adding literals to the default part of
a rule will reduce the number of positive examples the rule can imply. Explicitly activating
the exception learning procedure (line 26 in Algorithm 3) could increase the number of
positive example a rule can cover while reducing the total number of rules generated. As
a result, the interpretability is increased due to fewer rules being generated.

The FOLD-RM algorithm performs multi-category classification. It generates rules
that it can learn for each category. If an example cannot be implied by any rule in
the learned rule set, it means the model fails to classify this example. The FOLD-RM
algorithm, summarized in Algorithm 4, first finds a target literal that represents the
category with most examples among the current training set (line 4). It next splits the
training set into positive and negative examples based on the target literal (line 5). Then,
it learns a rule to cover the target category (line 6) by calling the learn_rule function of
the FOLD-R++ algorithm. The already covered examples would be ruled out from the
training set in line 11, and the rule head would be changed to the target literal in line
12. However, there is a difference between the outputs of FOLD-RM and FOLD-R++.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

666 H. Wang et al.

Algorithm 3 FOLD-R++ Algorithm
Input: ET: positive examples, £~ : negative examples
> Global Parameters: target, B: background knowledge, ratio: exception ratio
Output: R = {ry,...,m }: a set of defaults rules with exceptions
1: function FOLD RPP(E', E~, Lyseq) > Lyseq: used literals, initially empty
2 R+ 0
3 while |[E*| > 0 do
4 7 < LEARN_RULE(EY, E7, Lysed)
5: Eprn < covers(r, ET, false) > Epy: false negative examples implied by rule r
6
7
8
9

if |EFN| = |E+| then
break
end if
: Et « Ery > rule out the already covered examples

10: R+ RU{r}
11: end while
12: return R
13: end function
14: function LEARN _RULE(EY, E7, Lyseqd)

15: L+ 0

16: while true do

17; [< FIND_BEST_LITERAL(EY, E~, Lysecq)

18: L+ LuU{l}

19: r < set_default(r, L) > set default part of rule r as L
20: E* « covers(r, ET, true)

21: E~ «+ covers(r, E~, true)

22: if [is invalid or |[E~| < |ET| % ratio then

23: if [is invalid then

24: r + set_default(r, L'\ {l}) ©» remove the invalid literal [from rule r
25: else

26: AB + FOLD_RPP(E™, BT, Lyseq+ L) > learn exception rules for r
27: r + set_exception(r, AB) > set exception part of rule r as AB
28: end if

29: break

30: end if

31: end while

32: return r > the head of rule 7 is target

33: end function

Unlike FOLD-R++, the output of FOLD-RM is a textually ordered answer set program,
which means a rule is checked only if all the rules before it did not apply. The FOLD-RM
system is publicly available at https://github.com/hwd404/FOLD-RM.

Note that for learning each rule, FOLD-RM (Algorithm 4) chooses the target predicate
by finding the label value with the most examples in the remaining training examples
and sets it as the target predicate for this rule. In other words, the target predicate is the
“most popular” label value. The names of the predicates are the names of features in the
data. The head predicate and predicates in rule body each have exactly two arguments.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://github.com/hwd404/FOLD-RM
https://doi.org/10.1017/S1471068422000205

FOLD-RM 667

The first argument is a reference to the data record itself. For the target predicate, the
second argument is the predicted label for that record, while for predicates in the body,
the second argument is used to extract the appropriate feature value for that record. The
abnormal predicates only take one argument, namely, the data record itself. For example,
consider:

class(X,2) :- condition(X, s), not ab5(X).
ab5(X) :- not steel(X,r), not enamelability(X,2).

The first rule says that the predicted class of data record X is ‘2 if the condition feature
of X has value ‘s, and abnormal case ab5 does not apply. ab5(X) is an abnormal case
predicate and has only one argument. It says that the record X should not be predicted
to have class value ‘2, if the value of steel feature is not ‘r, and the value of enamelability
feature is not ‘2.

4.1 Algorithmic complexity

Next, we analyze the complexity of the FOLD-RM algorithm. If M is the number of
examples and N is the number of features, it is easy to see that the time complexity of
finding the best literal (Algorithm 2) is O(NM). We assume that counting sort (com-
plexity O(M)) with a pre-sorted list is used at line 5 in Algorithm 2. The worst case
in the FOLD-RM algorithm arises when each generated rule only covers one example
and each literal only excludes one non-target example. Therefore, in the worst case there
will be O(M?) literals chosen in total. The worst case time complexity of the FOLD-RM
algorithm (Algorithm 4) can be calculated to be O(NM?). However, this is a theoret-
ical upper bound. The actual learning process is really efficient because the heuristics
we employ helps select very effective literals, reducing the number of iterations in the
algorithm.

One can also prove that the FOLD-RM algorithm always terminates. The fold rm
function calls the learn_rule function to induce a rule that can cover at least one ‘most
popular’ remaining example till all the examples have been covered or the learned rule
fails to cover any ‘most popular’ example. The loop in the fold_rm function iterates at
most |E| times while excluding the already covered examples. The learn_rule function
refines the rule with a given target by adding the best literal to the rule body. By
adding literals to the rules, the numbers of true positive and false positive examples
the rule implies can only monotonically decrease. The learned valid literal excludes at
least one false positive example that the rule implies. So, the loop in the learn rule
function iterates at most |E~| times. When the |E~| < |E™|x ratio condition is met, the
fold_rpp function is called to learn exception rules for the current default rule. Similar to
the fold_rm function, the fold_rpp function iterates at most |ET| times. Also, there are
only finite for-loops inside the find best_literal function. Therefore, we can conclude
that the FOLD-RM algorithm will always terminate.

4.2 An illustrative example

We illustrate FOLD-RM, next, with a simple example.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

668 H. Wang et al.

Algorithm 4 FOLD-RM Algorithm
Input: E: examples, B: background knowledge, ratio: exception ratio
Output: R = {ry,...,m, }: a set of defaults rules with exceptions

1: function FOLD_RM(F)

2 R+ 0

3 while |E| > 0 do

4 l + MOsT(E) > [: most popular target literal as the learning target
5: Et,E~ + SPLIT_BY_LITERAL(E,)

6 7 < LEARN_RULE(ET, E~,)

7 Eprn < covers(r, ET, false)

8 if |EFN| = |E+| then

9: break

10: end if

11: E <+ EtUEpyN > rule out the already covered examples
12: r < add_head(r, 1)

13: R <+ RU{r}

14: end while

15: return R

16: end function

17: function MOST(E) > find the most popular target literal
18: for e € F do

19: countllabel,] < count[label,] + 1
20: end for
21: label st < FIND_MOST(count)
22: return literal(indexigper, =, labelmost)

23: end function

24: function SPLIT_BY_LITERAL(E, 1)
25: EtE-« 0,0

26: for e € E do

27: if EVALUATE(e, 1) is true then
28: Et «+ Etu{e}

29: else

30: E- «— E-U{e}

31: end if

32: end for

33; return £+ E~

34: end function

Example 2

The target is to learn rules for habitat using the FOLD-RM algorithm. B, E are back-
ground knowledge and training examples, respectively. There are 3 classifications: two
explicit ones (land and water), and one implicit one (neither land, nor water).

B: mammal (kitty). cat (kitty).
mammal (john) . whale (john) .
mammal (smoky) . bear (smoky) .

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 669

mammal (charlie) . dog(charlie).
fish(nemo) . clownfish(nemo) .

E: habitat(charlie,land). habitat(john,water).
habitat (smoky,land) . habitat (nemo,water).
habitat(kitty,land).

For the first rule, the target predicate {habitat(X,land):- true} is specified at line
4 in Algorithm 4 because ‘land’ is the majority label. The find best_literal function
selects literal mammal (X) as result and adds it to the clause r = {habitat(X,land):-
mammal (X) } at line 17 in Algorithms 3 because it provides the most useful information
among literals {cat,whale,bear,dog,fish,clownfish}. Then the training set rules out
covered examples at line 20-21 in Algorithm 3, E* = @, E~ ={john,nemo}. The default
learning is finished at this point because the candidate literal cannot provide any further
useful information. Therefore, the fold_rpp function is called recursively with swapped
positive and negative examples, ET ={john,nemo}, £~ = @, to learn exceptions. In this
case, an abnormal predicate {ab1(X) : -whale(X)} is learned and added to the previously
generated clause as r = {habitat(X,land):- mammal(X), not abl1(X)}. And the ex-
ception rule {ab1(X) :- whale(X)} is added to the answer set program. FOLD-RM next
learns rules for target predicate {habitat(X,water):- true} and two rules are gener-
ated as {habitat(X,water):- fish(X)} and {habitat(X,water):- whale(X)}. The
generated final answer set program is:

habitat(X,land) :- mammal(X), not abl(X).
habitat (X,water):- fish(X).

habitat (X,water) :- whale(X).

abl1(X) :- whale(X).

The program above is a logic program, which means rules are not mutually exclusive.
For correctness, a rule should be checked only if all the earlier rules result in failure.
FOLD-RM generates further rules to make the learned rules mutually exclusive. The
program above is transformed as shown below.

habitat(X,land):- habitat_1(X).

habitat (X,water) :— habitat_2(X), not habitat_1(X).
habitat(X,water):- habitat_3(X), not habitat_2(X), not habitat_1(X).
habitat_1(X):- mammal(X), not abl(X).

habitat_2(X):- fish(X).

habitat_3(X) :- whale(X).

abl(X):- whale(X).

5 Experimental results

In this section, we present our experiments on standard UCI benchmarks. The XGBoost
classifier is a well-known classification model and used as a baseline model in our ex-
periments. The settings used for XGBoost classifier is kept simple without limiting its
performance. MLP is another widely used classification model that can deal with generic
classification tasks. However, both XGBoost model and MLP cannot take mixed type
(numerical and categorical values in a row or a column) as training data without pre-

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

670 H. Wang et al.

processing. For mixed type data, one-hot encoding—as explained in the book by Aggarwal
(2018)—has been used for data preparation. For binary classification, we use accuracy,
precision, recall, and F; score as evaluation metrics. For the multi-category classifica-
tion tasks, following convention, we use accuracy, weighted average of Macro precision,
weighted average of Macro recall, and weighted average of Macro F; score to compare
models as explained by Grandini et al. (2020). The average numbers of generated rules
are also reported for the FOLD-R++ and FOLD-RM algorithms in Tables 4, 6, and 7,
some of them are not integers because of being averaged over a number of repeated
experiments.

Both FOLD-R++ and FOLD-RM algorithms do not need any encoding for training.
After specifying the numerical features, they can deal with mixed type data directly, that
is, no one-hot encoding is needed. Even missing values are handled and do not need to
be provided. We implemented both algorithms with Python. The hyper-parameter ratio
is simply set as 0.5 for all the experiments. And all the learning processes have been
run on a desktop with Intel i5-10400 CPU @ 2.9 GHz and 32 GB RAM. To have good
performance test, we performed 10-fold cross-validation test on each dataset and average
classification metrics and execution time are shown. The best performer is highlighted in
boldface.

The XGBoost classifier utilizes decision tree ensemble method to build model and
provides good performance. Performance comparison of FOLD-R++ and XGBoost is
shown in Table 4. The FOLD-R++ algorithm is comparable to XGBoost classifier for
classification, but it is more efficient in terms of execution time, especially on datasets
with many unique feature values.

For multi-category classification experiments, we collected 15 datasets for comparison
with XGBoost and MLP. The drug consumption dataset has many output attributes, we
perform training on heroin, crack, and semer attributes. The size and label distribution
of the datasets used is shown in Table 5: number of rows indicates the number of data
records, while the number of columns indicates the number of features. We first compare
the performance of FOLD-RM and XGBoost in Table 6. XGBoost performs much better
on datasets avila and yeast, and FOLD-RM performs much better on datasets ecoli, dry-
bean, eeg, and weight-lifting. After analyzing these dataset, FOLD-RM seems to perform
better on more complicated datasets with mixed type values. XGBoost seems to perform
better on the datasets that have limited information. However, for those datasets for
which FOLD-RM has similar performance with XGBoost, FOLD-RM is more efficient
in terms of execution speed. In addition, FOLD-RM is explainable/interpretable, and
XGBoost is not.

The comparison with MLP is presented in Table 7. For most datasets, FOLD-RM can
achieve equivalent scores, similar to the comparison with XGBoost, FOLD-RM performs
much better on datasets ecoli, dry-bean, eeg, and weight-lifting, while MLP performs
much better on datasets avila and yeast. MLP takes much more time for training than
XGBoost because of its algorithmic complexity. Like the XGBoost classifier, for complex
datasets with mixed values, MLP also suffers from pre-processing complications such as
having to use one-hot encoding.

RIPPER algorithm by Cohen (1995) is a popular rule induction algorithm that
generates conjunctive normal form (CNF) formulas. Eight datasets have been used for
comparison between RIPPER and FOLD-RM. We did not find the RIPPER algorithm

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

ssaud Aisianun abpliquied Aq auluo paysiiand 5020002278901L71S/2101°01/B10"10p//:sdny

Table 4. Comparison of XGBoost and FOLD-R++ on various Datasets
DataSet XGBoost.Classifier FOLD-R++
Name #Rows #Cols Acc Prec Rec Fl1 T(ms) Acc Prec Rec F1 T(ms) #Rules
acute 120 7 1 1 1 1 35 0.99 1 0.99 0.99 1.6 2.6
autism 704 18 0.97 098 0.98 0.97 76 0.95 0.96 0.97 0.97 47 24.3
breast-w 699 10 0.95 0.97 0.96 0.96 78 0.96 0.97 0.96 0.97 24 10.2
cars 1728 7 1 1 1 1 77 0.98 1 0.97 0.98 38 12.2
credit-a 690 16 0.85 0.83 0.83 0.83 368 0.84 0.92 0.79 0.84 66 10.0
ecoli 336 9 0.76 0.76 0.62 0.68 165 0.96 095 0.94 0.95 19 114
heart 270 14 0.80 0.81 0.83 0.81 112 0.79 0.79 0.83 0.81 24 11.7
ionosphere 351 35 0.88 0.86 0.96 0.90 1,126 0.92 0.93 094 0.93 214 12.0
kidney 400 25 0.98 0.98 0.98 0.98 126 0.99 1 0.98 0.99 19 5.0
kr vs. kp 3196 37 0.99 0.99 0.99 0.99 210 0.99 099 0.99 0.9 223 18.4
mushroom 8124 23 1 1 1 1 378 1 1 1 1 314 8.0
voting 435 17 0.95 0.94 0.95 094 49 0.95 0.94 0.94 0.94 17 10.5
adult 32561 15 0.86 0.88 094 0.91 274,655 0.84 0.86 0.95 0.90 2,546 16.7
rain in aus 145460 24 0.83 0.84 0.95 0.89 285,307 0.78 0.87 0.84 0.85 21,868 40.5

nWyq-a104d

1.9

https://doi.org/10.1017/S1471068422000205

672 H. Wang et al.

Table 5. The size and label distribution of UCI datasets

Dataset #Rows #Cols Distribution

anneal 898 39 ‘3’ 684, ‘U’: 40, ‘1’: 8, ‘5’: 67, ‘2°: 99

avila 20867 11 ‘A’:8572,F*:3923,H’:1039,°E*:2190,T°:1663,°Y:533
‘D’:705,X:1044,‘G’:893,‘W’:89 ,°C’:206,‘B’:10

coli 336 9 ‘cp’:143,im’:77,9mS’:2,“imL’:2,‘imU":35,‘om”:20,‘'omL’:5,
‘pp’:52

drug-heroin 1885 13 ‘CL0’:1605,‘CL1:68,‘CL2:94,‘CL3’:65,'CL5:16,‘CL6:13,
‘CL4’:24

drug-crack 1885 13 ‘CL0’:1627,°CL1":67,CL2:112,*CL3":59,‘CL5":9,CL4":9,
‘CL6:2

drug-semer 1885 13 ‘CLO’: 1877, ‘CL2’: 3, ‘CL3: 2, ‘CL4’: 1, ‘CL1’:2

dry-bean 13611 17 ‘SEKER’: 2027, ‘BARBUNYA’: 1322, ‘BOMBAY": 522

‘CALI’: 1630, ‘HOROZ’: 1928, ‘SIRA’: 2636,
‘DERMASON’: 3546

eeg 14980 15 ‘0% 8257, ‘1’: 6723
intention 12330 18 ‘FALSE’: 10422, ‘TRUE’: 1908
nursery 12960 9 ‘recommend’: 2, ‘priority’: 4266
‘not_recom’: 4320, ‘very_recom’: 328, ‘spec_prior’: 4044
pageblocks 5473 11 ‘1°: 4913, ‘2’: 329, ‘4’: 88, ‘5”: 115, ‘3’: 28
parkinson 756 754 ‘1°: 564, ‘0: 192
pendigits 10992 17 ‘87: 1055, ‘27: 1144, ‘1°: 1143, ‘4’: 1144, ‘6’: 1056
‘0’: 1143, ‘5’: 1055, ‘9’: 1055, “7’: 1142, ‘3’: 1055
wine 178 14 ‘1°: 59, 2% 71, ‘3’: 48
weight-lift 4024 155 ‘E’: 1370, ‘A’: 1365, ‘D’: 276, ‘B’: 901, ‘C’: 112
yeast 1484 10 ‘MIT’: 244, ‘NUC’: 424, ‘CYT’: 463, ‘ME1’: 44,

‘EXC’: 35, ‘ME2’: 51
‘ME3’: 163, ‘VAC’: 30, ‘POX’: 20, ‘ERL’: 5, ‘0.18’: 2,
0.16" 2, ‘0.37": 1

wall-robot 5456 25 ‘Slight-Right-Turn’: 826, ‘Sharp-Right-Turn’: 2097
‘Move-Forward’: 2205, ‘Slight-Left-Turn’: 328

flags 194 10 ‘2%: 36, ‘6’: 15, ‘1’: 60, ‘0’: 40, ‘5°: 27, ‘3’: 8, ‘4: 4, ‘T: 4

glass 214 10 ‘1°: 70, ‘2°: 76, ‘3’ 17, ‘5’ 13, ‘6’: 9, ‘7": 29

optidigits 3823 65 ‘0’: 376, ‘77: 387, ‘4’: 387, ‘67: 377, ‘2’: 380
‘5’: 376, ‘8’: 380, ‘1’: 389, ‘9’: 382, ‘3’: 389

shuttle 58000 10 ‘2% 50, ‘4’: 8903, ‘1’: 45586, ‘5’: 3267, ‘3’ 171, ‘7’: 13,
‘6’: 10

implementation with multiclass classification. Therefore, we have collected the accuracy
data reported by Asadi and Shahrabi (2016) and performed the same experiment with
the same datasets with the FOLD-RM algorithm. Two-thirds of the dataset was used for
training by Asadi and Shahrabi (2016) and the remaining one-third used as the test set.
We follow the same convention. For each dataset, this process was repeated 50 times.
The average of accuracy is shown in Table 8. Both algorithms have similar accuracy on
most datasets, though FOLD-RM outperforms on nursery dataset. Ripper is explainable,
as it outputs CNF formulas. However, the CNF formulae generated tend to have large
number of literals. In contrast, FOLD-RM rules are succinct due to use of NAF and they
have an operational semantics (that aligns with how humans reason) by virtue of being
a normal logic program.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 673
Table 6. Comparison of FOLD-RM and XGBoost on UCI Datasets
FOLD-RM XGBoost
Dataset Acc Prec Rec F1 Rules T(ms) Acc Prec Rec F1 T(ms)
anneal 099 1 0.99 0.99 17.9 63 099 099 099 0.99 295
avila 033 049 0.33 0.39 33.6 3,540 1 1 1 1 4,897
ecoli 0.80 0.82 0.80 0.80 42.3 41 042 0.79 0.42 0.50 806
drug-heroin 0.84 0.74 0.84 0.78 12.0 136 0.84 0.77 0.84 0.79 1,266
drug-crack 0.85 0.75 0.85 0.80 17.6 145 0.85 0.76 0.85 0.81 1,116
drug-semer 0.99 0.99 0.99 0.99 10.3 43 1 099 1 0.99 393
dry-bean 0.91 0.91 0.91 0.91 185.7 13,415 0.29 0.87 0.29 0.37 3,458
eeg 0.78 0.78 0.78 0.77 164.5 3,914 0.50 0.70 0.50 0.54 340
intention 090 0.89 090 0.90 783 1,621 090 0.89 090 0.89 114,161
nursery 0.97 0.97 0.97 0.96 59.8 643 088 0.93 0.88 0.89 24,100
pageblocks 0.97 0.97 0.97 0.96 72.3 929 095 094 095 0.94 81,416
parkinson 0.81 0.80 0.81 0.79 159 8,503 0.84 0.84 0.84 0.83 527
pendigits 0.96 0.96 0.96 0.96 219.2 2,447 091 092 091 091 54,102
wine 0.94 097 0.94 0.95 7.6 17 093 1 0.93 0.96 49
weight-lift 1 1 1 1 14.0 1,879 0.51 0.81 0.51 0.57 224,140
yeast 0.08 0.15 0.08 0.10 8.7 146 0.45 0.5 0.45 0.45 8,629
wall-robot 0.99 0.99 0.99 0.99 30.5 2,402 099 0.99 0.99 0.99 403
Table 7. Comparison of FOLD-RM and MLP on UCI Datasets
FOLD-RM MLP

Dataset Acc Prec Rec F1 Rules T(ms) Acc Prec Rec F1 T(ms)
anneal 099 1 0.99 0.99 17.9 63 099 099 099 0.99 462
avila 0.33 049 0.33 0.39 33.6 3,540 0.90 0.90 0.90 0.90 73,610
ecoli 0.80 0.82 0.80 0.80 42.3 41 0.52 0.91 0.52 0.61 411
drug-heroin 0.84 0.74 0.84 0.78 12.0 136 0.82 0.77 0.82 0.79 1,093
drug-crack 0.85 0.75 0.85 0.80 17.6 145 0.84 0.77 0.84 0.80 1,061
drug-semer 0.99 0.99 0.99 0.99 10.3 43 1 099 1 0.99 518
dry-bean 0.91 091 0.91 0.91 185.7 13,415 0.57 0.92 0.57 0.66 11,292
eeg 0.78 0.78 0.78 0.77 1645 3,914 049 0.68 0.49 0.54 5,946
intention 0.90 0.89 0.90 0.90 78.3 1,621 0.84 0.76 0.84 0.78 218,087
nursery 0.97 0.97 0.97 0.96 59.8 643 091 094 091 091 943
pageblocks 0.97 0.97 0.97 0.96 72.3 929 093 091 0.93 0.92 6,452
parkinson 0.81 0.80 0.81 0.79 159 8,503 0.82 0.82 0.82 0.81 1,416
pendigits 096 096 096 096 219.2 2,447 0.99 0.99 0.99 0.99 6,732
wine 094 097 094 0.95 7.6 17 097 1 0.97 0.98 189
weight-lift 1 1 1 1 14.0 1,879 054 089 0.54 0.58 52,643
yeast 0.08 0.15 0.08 0.10 8.7 146 0.41 0.49 0.41 0.38 3,750
wall-robot 0.99 0.99 0.99 0.99 305 2,402 088 0.88 0.88 0.88 8,141

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

674 H. Wang et al.

Table 8. Comparison of RIPPER and FOLD-RM on UCI Datasets

Dataset RIPPER Acc FOLD-RM Acc Dataset RIPPER Acc FOLD-RM Acc

ecoli 0.80 0.80 flags 0.61 0.58
glass 0.63 0.63 nursery 0.72 0.96
optidigits 0.90 0.90 pageblocks 0.97 0.96
pendigits 0.95 0.95 shuttle 0.99 1

6 Prediction and justification

The FOLD-RM algorithm generates rules that can be interpreted by the human user to
understand the patterns and correlations that are implicit in the table data. These rules
can also be used to make prediction given new data input. Thus FOLD-RM serves as
a machine learning algorithm in its own right. However, making good predictions is not
enough for critical tasks such as disease diagnosis and loan approval. FOLD-RM comes
with a built-in prediction and justification facility. We illustrate this justification facility
via an example.

Ezample 3

The “annealing” UCI dataset is a multi-category classification task which contains 798
training examples and 100 test examples and their classes based on features such as steel,
carbon, hardness, condition, strength, etc. FOLD-RM generates the following answer set
program with 20 rules for 5 classes, which is pretty concise and precise:

classes(X,’3’) :- not surface_quality(X,’?’), not abl(X),
not ab2(X), not ab3(X), not ab4d(X).

classes(X,’2’) :- condition(X,’s’), not ab5(X).
classes(X,’3’) :- not carbon(X,’00’), not ab6(X).
classes(X,’5’) :- family(X,’tn’).
classes(X,’u’) :- steel(X,’a’), not ab7(X).
classes(X,’2’) :- thick(X,N32), N32>0.8, not ab8(X),

not ab9(X), not abl0(X).
classes(X,’3’) :- not steel(X,’s’), not abl11(X), not ab6(X).
classes(X,’1’) :- family(X,’?’).
classes(X,’1’) :- family(X,’zs’).
ab1(X) :- hardness(X,’85’).
ab2(X) :- strength(X,’600’). ab3(X) :- carbon(X,’10’).
ab4(X) :- hardness(X,’80’), cbond(X,’?’).
ab5(X) :- not steel(X,’r’), not enamelability(X,’2’).

ab6(X) :- steel(X,’a’). ab7(X) :- carbon(X,’03’).
ab8(X) :- steel(X,’r’). ab9(X) :- steel(X,’s’).
ab10(X) :- not temper_rolling(X,’?’). ab11(X) :- not family(X,’?’).

The above generated rule set achieves 0.99 accuracy, 0.99 weighted Macro precision,
0.99 weighted Macro recall, and 0.99 weighed Macro F1 score. The justification tree
generated by the FOLD-RM system for the 8" test example is shown below:

Proof Tree for example number 8 :
the value of classes is 2 DOES HOLD because
the value of condition is ’s’ which should equal ’s’ (DOES HOLD)
exception ab5 DOES NOT HOLD because
the value of steel is ’r’ which should not equal ’r’ (DOES NOT HOLD)
the value of enamelability is ’?’ which should not equal ’2’ (DOES HOLD)
{’condition: S’, ’enamelability: ?’, ’steel: R’}

This justification tree is also shown in another format: by showing which rules were
involved in the proof/justification. For each call in each rule that was invoked, FOLD-RM

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

FOLD-RM 675

shows whether it is true ([T]) or false ([F]). The head of each applicable rule is similarly
annotated. We illustrate this for the 8" test example:

[Flab5(X) :- not [Tlsteel(X,’r’), not [Flenamelability(X,’2’).
[Tlclasses(X,’2’) :- [Tlcondition(X,’s’), not [Flab5(X).
{’condition: S’, ’enamelability: ?’, ’steel: R’}

7 Conclusions and related work

In this paper we presented FOLD-RM, an efficient and highly scalable algorithm for
multi-category classification tasks. FOLD-RM can generate explainable answer set pro-
grams and human-friendly justification for predictions. Our algorithm does not need any
encoding (such as one-hot encoding) for data preparation. Compared to the well-known
classification models like XGBoost and MLP, our new algorithm has similar performance
in terms of accuracy, weighted macro precision, weighted macro recall, and weighted
macro Fy score. However, our new approach is much more efficient and interpretable
than these other approaches. It is remarkable that an ILP system is comparable in ac-
curacy to state-of-the-art traditional machine learning systems.

ALEPH by Srinivasan (2001) is a well-known ILP algorithm that employs bottom-up
approach to induce rules for non-numerical data. Also, no automatic method is available
for the specialization process. A tree-ensemble based rule extraction algorithm is proposed
by Takemura and Inoue (2021), its performance relies on trained tree-ensemble model.
It may also suffer from scalability issue because its running time is exponential in the
number of valid rules.

In practice, statistical machine learning models show good performance for classifica-
tion. Extracting rules from statistical models is also a long-standing research topic. Rule
extraction algorithms are of two kinds: 1) pedagogical (learning rules from black box mod-
els without looking into internal structures), such as, TREPAN by Craven and Shavlik
(1995), which learns decision trees from neural networks, 2) decompositional (learning
rules by analyzing the models inside out) such as SVM+Prototypes by Nuez et al. (2006),
which employs clustering algorithm to extract rules from SVM classifiers by utilizing sup-
port vectors. RuleFit by Friedman and Popescu is another rule extraction algorithm that
learns sparse linear models with original feature decision rules from shallow tree-ensemble
model for both classification and regression tasks. However, its interpretability decreases
when too many decision rules have been generated. Also, simpler approaches that are a
combination of statistical method with ILP have been extensively explored. The kFOIL
system by Landwehr et al. (2006) incrementally learns kernel for SVM FOIL style rule
induction. The nFOIL system by Landwehr et al. (2005) is an integration of Naive Bayes
model and FOIL. TILDE by Blockeel and De Raedt (1998) is another top-down rule
induction algorithm based on C4.5 decision tree, it can achieve similar performance with
decision tree. However, it would suffer from scalability issue when there are too many
unique numerical values in the dataset. For most datasets we experimented with, the
number of leaf nodes in the trained C4.5 decision tree is much more than the number
of rules that FOLD-R++/FOLD-RM generate. The FOLD-RM algorithm outperforms
the above methods in efficiency and scalability due to (i) its use of learning defaults,
exceptions to defaults, exceptions to exceptions, and so on (ii) its top-down nature, and
(iii) its use of improved method (prefix sum) for heuristic calculation.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000205

676 H. Wang et al.

Acknowledgment

Authors acknowledge support from NSF grants IIS 1718945, IIS 1910131, IIP 1916206,
US DoD, Atos Corp and Amazon Corp. We thank our colleagues Joaquin Arias, Parth
Padalkar, Kinjal Basu, Sarat Chandra Varanasi, Elmer Salzar, Fang Li, Serdar Erbatur,
and Doug DeGroot for discussions and help.

References

AGGARWAL, C. C. 2018. Neural Networks and Deep Learning - A Textbook. Springer.
ARIAS, J., CARRO, M., CHEN, Z. AND GUPTA, G. 2020. Justifications for goal-directed constraint
answer set programming. Flectronic Proceedings in Theoretical Computer Science, 325, 59-72.

ARIAS, J., CARRO, M., SALAZAR, E., MARPLE, K. AND GupTA, G. 2018. Constraint answer
set programming without grounding. Theory and Practice of Logic Programming, 18, 3-4,
337-354.

ASADI, S. AND SHAHRABI, J. 2016. Ripmc: Ripper for multiclass classification. Neurocomputing,
191, 19-33.

BArAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

BisHop, C. M. 2006. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg.

BLOCKEEL, H. AND DE RAEDT, L. 1998. Top-down induction of first-order logical decision trees.
Artificial Intelligence, 101, 1, 285-297.

CHEN, T. AND GUESTRIN, C. 2016. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD 2016, KDD ’16, 785-794.

CoOHEN, W. W. 1995. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on International Conference on Machine Learning 1995, ICML95, 115-123, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

CRAVEN, M. W. AND SHAVLIK, J. W. Extracting tree-structured representations of trained
networks. In Proceedings of the 8th International Conference on Neural Information Processing
Systems 1995, NIPS’95. MIT Press, Cambridge, MA, USA, 24-30.

CROPPER, A. AND DUMANCIC, S. 2020. Inductive logic programming at 30: A new introduction.
URL: https://arxiv.org/abs/2008.07912

Dua, D. AND GRAFF, C. 2017. UCI machine learning repository.

GELFOND, M. AND KAHL, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.

GRANDINI, M., BAcLl, E. AND VISANI, G. 2020. Metrics for multi-class classification: an
overview. arXiv 2008.05756.

GUNNING, D. 2015. Explainable artificial intelligence (xai). URL: https://www.darpa.mil/
program/explainable-artificial-intelligence [Accessed on June 2018].

LANDWEHR, N., KERSTING, K. AND RAEDT, L. D. 2005. nFOIL: Integrating naive bayes and
FOIL. In Proc. AAAI 2005, 795-800.

LANDWEHR, N., PASSERINI, A., RAEDT, L. D. AND FrRASCONI, P. 2006. KFOIL: Learning simple
relational kernels. In Proc. AAAI 2006, 389-394.

MUGGLETON, S. 1991. Inductive logic programming. New Generation Computing, 8, 4, 295-318.

MuGGLETON, S., DE RaeDT, L., PoOoLE, D., BraTko, 1., FrLachH, P., INOUE, K. AND
SRINIVASAN, A. 2012. ILP turns 20. Machine Learning, 86, 1, 3-23.

NuEez, H., ANcuLo, C. AND CATAL, A. 2006. Rule-based learning systems for support vector
machines. Neural Processing Letters, 24, 1-18.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

https://arxiv.org/abs/2008.07912
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1017/S1471068422000205

FOLD-RM 677

PLOTKIN, G. D. 1971. A further note on inductive generalization. In Machine Intelligence 1971,
volume 6. Edinburgh University Press, 101-124.

QUINLAN, J. R. 1990. Learning logical definitions from relations. Machine Learning, 5, 239-266.

REITER, R. 1980. A logic for default reasoning. Artificial Intelligence, 13, 1-2, 81-132.

SAKAMA, C. 2005. Induction from answer sets in nonmonotonic logic programs. ACM Transac-
tions on Computational Logic, 6, 2, 203—231.

SHAKERIN, F. 2020. Logic Programming-based Approaches in Ezplainable AI and Natural Lan-
guage Processing. PhD thesis. Department of Computer Science, The University of Texas at
Dallas.

SHAKERIN, F. AND GupTA, G. 2018. Heuristic based induction of answer set programs, from
default theories to combinatorial problems. In 28th International Conference on Inductive
Logic Programming (ILP Up and Coming Papers) 2018, volume 2206, pp. 36-51.

SHAKERIN, F., SALAZAR, E. AND GuprTA, G. 2017. A new algorithm to automate inductive
learning of default theories. TPLP, 17, 5-6, 1010-1026.

SRINIVASAN, A. 2001. The aleph manual. URL: http://web.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/

TAKEMURA, A. AND INOUE, K. 2021. Generating explainable rule sets from tree-ensemble learn-
ing methods by answer set programming. Electronic Proceedings in Theoretical Computer
Science, 845, 127-140.

WAaNG, H. AND GupTA, G. 2022. FOLD-R++: A toolset for automated inductive learning of
default theories from mixed data. In Proceedings The First International Workshop on Com-
bining Learning and Reasoning: Programming Languages, Formalisms, and Representations
(CLeaR).

ZENG, Q., PATEL, J. M. AND PAGE, D. 2014. Quickfoil: Scalable inductive logic programming,.
Proceedings of the VLDB Endowment, 8, 3, 197-208.

https://doi.org/10.1017/51471068422000205 Published online by Cambridge University Press

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
https://doi.org/10.1017/S1471068422000205

	Introduction
	Background
	Inductive logic programming
	Default rules
	Classification problems

	The FOLD-R++ algorithm
	The FOLD-RM algorithm
	Algorithmic complexity
	An illustrative example

	Experimental results
	Prediction and justification
	Conclusions and related work
	References

