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Abstract

We introduce the active audio-visual source separation
problem, where an agent must move intelligently in order
to better isolate the sounds coming from an object of in-
terest in its environment. The agent hears multiple audio
sources simultaneously (e.g., a person speaking down the
hall in a noisy household) and it must use its eyes and ears
to automatically separate out the sounds originating from
a target object within a limited time budget. Towards this
goal, we introduce a reinforcement learning approach that
trains movement policies controlling the agent’s camera and
microphone placement over time, guided by the improvement
in predicted audio separation quality. We demonstrate our
approach in scenarios motivated by both augmented real-
ity (system is already co-located with the target object) and
mobile robotics (agent begins arbitrarily far from the target
object). Using state-of-the-art realistic audio-visual simula-
tions in 3D environments, we demonstrate our model’s ability
to find minimal movement sequences with maximal payoff
for audio source separation. Project: http://vision.
cs.utexas.edu/projects/move2hear.

1. Introduction
Audio-visual events play an important role in our daily

lives. However, in real-world scenarios, physical factors can

either restrict or facilitate our ability to perceive them. For

example, a father working upstairs might move to the top of

the staircase to better hear what his child is calling out to him

from below; a traveler in a busy airport may shift closer to

the gate agent to catch the flight delay announcements amidst

the din, without moving too far in order to keep her suitcase

in sight; a friend across the table in a noisy restaurant may

tilt her head to hear the dinner conversation more clearly, or

scooch her chair to better catch music from the band onstage.

Such examples show how controlled sensor movements
can be critical for audio-visual understanding. In terms of

audio sensing, a person’s nearness and orientation relative

to a sound source affects the clarity with which it is heard,

especially when there are other competing sounds in the

Sound Source

Target Audio

Agent’s Start Location

Navigation Point

Mixed BinauralMixed Binaural

RGBRGB

Target MonauralTarget Monaural

Mixed Binaural

RGB

Target Monaural

Figure 1: Active audio-visual source separation. Given multiple

mixed audio sources Si in a 3D environment, the agent is tasked to

separate a target source (shown in green) by intelligently moving

around using cues from its egocentric audio-visual input to improve

the quality of the predicted target audio signal. See text.

environment. In terms of visual sensing, one must see obsta-

cles to circumvent them, spot desired and distracting sound

sources, use visual context to hypothesize an out-of-view

sound source’s location, and actively look for “sweet spots"

in the visible 3D scene that may permit better listening.

In this work, we explore how autonomous multi-modal

systems might learn to exhibit such intelligent behaviors.

In particular, we introduce the task of active audio-visual
source separation: given a stream of egocentric audio-visual

observations, an agent must decide how to move in order to

recover the sounds being emitted by some target object, and

it must do so within bounded time. See Figure 1. Unlike

traditional audio-visual source separation, where the goal

is to isolate sounds in passive, pre-recorded video [23, 27,

1, 20, 43, 28, 17, 29], the proposed task calls for actively

controlling the camera and microphones’ positions over time.

Unlike recent embodied AI work on audio-visual navigation,

where the goal is to travel to the location of a sounding

object [15, 25, 14, 16], the proposed task calls for returning

a separated soundtrack for an object of interest in limited

time, without necessarily traveling all the way to it.

We consider two variants of the new task. In the first, the

system begins exactly at the location of the desired sounding

object and must fine-tune its positioning to hear better; this

variant is motivated by augmented reality (AR) applications

where the object of interest is known and visible (e.g., the

person seated across from someone wearing an assistive
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audio-visual AR device) yet local movements of the device

sensors are still beneficial to improve the audio separation. In

the second variant, the system begins at an arbitrary position

away from the object of interest; this variant is motivated by

mobile robotics applications, where an agent detects a sound

from afar (e.g., the child calling from downstairs) but it is

entangled with distractors and requires larger movements

within the environment to hear correctly. We refer to these

scenarios as near-target and far-target, respectively.

Towards addressing the active audio-visual source sep-

aration problem, we propose Move2Hear, a reinforcement

learning (RL) framework where an agent learns a policy for

how to move to hear better. The agent receives an egocentric

audio-visual observation sequence (RGB and binaural au-

dio) along with the target category of interest1, and at each

time step decides its next motion (a rotation or translation of

the camera and microphones). During training, as it aggre-

gates these observations over time with an explicit memory

module and recurrent network, the agent is rewarded for

improving its estimate of the target object’s latent (monau-

ral) sound. In particular, the reward promotes movements

that better resolve the target sound from the other distractor

sounds in the environment. Our approach handles both near-

and far-target scenarios.

Importantly, optimal positioning for audio source separa-

tion is not the same as navigation to the source, both because

the agent faces a time budget—it may be impossible to reach

the target in that time—and also because the geometry of the

3D environment and relative positions of distractor sounds

make certain positions relative to the target more amenable

to separation. For example, in Fig. 1 the agent is tasked with

separating the audio from object S3. Here, going directly to

S3 is not ideal, as that position will have high interference

from the other audio sources in the scene, S1 and S2. By

moving around the kitchen bar, the agent manages to dampen

the signal from S1 significantly due to the intermediate ob-

stacles (walls) and, simultaneously, emphasize the signal

from S3 compared to S2, thus leading to better separation.

We test our approach with realistic audio-visual

SoundSpaces [15] simulations on the Habitat platform [54]

comprising 47 real-world Matterport3D environment

scans [10], along with an array of sounds from diverse hu-

man speakers, music, and other background distractors. Our

model successfully learns how to move to hear its target

more clearly in unseen scenes, surpassing baselines that sys-

tematically survey their surroundings, smartly or randomly

explore, or navigate directly to the source. We explore the

synergy of both vision and audio for solving this task.

Our main contributions are 1) we define the active audio-

visual separation task, a new direction for embodied AI

research; 2) we present the first approach to begin tackling

this task, namely a new RL-based framework that integrates

1e.g., a human speaker, a musical instrument, or some other sound type

sound separation and visual navigation motion policies; and

3) we thoroughly experiment with a variety of sounds, visual

environments, and use cases. While just the first step in this

area, we believe our work lays groundwork to explore new

problems for multi-modal agents that move to hear better.

2. Related Work

Passive Audio(-Visual) Source Separation. Passive

(non-embodied) separation of audio sources using solely

audio inputs has been extensively studied in signal process-

ing. While sometimes only single-channel monaural audio

is assumed [59, 61, 69, 34], multi-channel audio captured

with multiple microphones [39, 80, 19]—including binaural

audio [18, 70, 76]—facilitates separation by making the spa-

tial cues explicit. Using vision together with sound improves

separation. Audio-visual (AV) separation methods leverage

mutual information [33, 21], subspace analysis [60, 46], ma-

trix factorization [44, 56, 27], correlated onsets [6, 35], and

deep learning to separate speech [1, 23, 20, 43, 2, 17, 29],

music [28, 24, 74, 77], and other objects [27]. While some

methods extract the audio tracks for all classes present

in the mixture [57, 66], others isolate one specific tar-

get [42, 67, 30, 31, 81].

Whereas prior work assumes a pre-recorded video as

input, our work addresses a new embodied perception ver-

sion of the audio separation task, in which an agent can

see, hear, and move in a 3D environment to actively hear

a source better. To our knowledge, our work is the first to

consider how intelligent movement influences a multi-modal

mobile agent’s ability to separate sound sources. In addi-

tion, whereas existing video methods use dynamic object

motion to tease out audio-visual associations (especially for

speech [23, 1, 20, 43, 17, 29]), our setting demands using

visual cues in the surrounding 3D environment to move to

“sweet spots" for listening to a source amidst competing

background sounds. Finally, our task requires recovering the

target object’s latent monaural audio as output—stripping

away the effects of the agent’s relative position, environment

geometry, and scene materials. This aspect of the task is by

definition absent for AV separation in passive video.

Visual and Audio-Visual Navigation. While mobile

robots traditionally navigate by a mixture of explicit map-

ping and planning [65, 22], recent work explores learn-

ing navigation policies from egocentric image observa-

tions (e.g., [32, 53, 36]). Facilitated by fast rendering plat-

forms [54] and realistic 3D visual assets [10, 73, 62], re-

searchers develop reinforcement learning architectures to

tackle diverse visual navigation tasks [32, 36, 71, 78, 75,

7, 72, 37, 13, 11, 79, 53, 12]. Going beyond purely visual

agents, recent work explores joint audio-visual sensing for

embodied AI [25, 15, 26, 47, 14, 16]. In the audio-visual
navigation task, an agent enters an unmapped environment
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and must travel to a sounding target object (e.g., go to the

ringing phone) [25, 15, 14, 16]. Related efforts explore

audio-visual spatial sensing to infer environment geome-

try [26] or floorplans [47], or attempt audio-only navigation

to multiple fixed-position sources in a gridworld while ac-

counting for distractor sounds [49].

Our separation goal is distinct from navigation: our agent

succeeds if it accurately separates the true target sound, not if

it simply travels to where the sound or target object is. As we

will show, the two tasks yield agents with differing behavior.

In fact, our model remains relevant even in the near-target

scenario, where (unlike AV navigation) the position of the

target is already known. Compared to any of the above, our

key novel insight is that audio-visual cues can tell an agent

how to move to separate multiple active audio sources.

Source Localization in Robotics Robotic systems use mi-

crophone arrays to perform sound source localization, of-

ten via signal processing techniques on the audio stream

alone [41, 50]. To focus on a sound, like a human speaker,

the microphone can be actively steered towards the localized

source (e.g., [4, 40, 9]). Using both visual and audio cues to

localize people and detect when they are speaking [3, 68, 5]

is an important precursor to human-robot systems that fol-

low conversations. The proposed task also requires actively

attending to audio events, but in our case there are multiple

competing sound sources and they may be initially far from

the agent. Our technical contribution is complementary to

existing methods: our approach learns to map audio-visual

egocentric observations directly to long-term sequential ac-

tions. Learning behaviors from data, as opposed to fixing

heuristics, offers potential advantages for generalization.

3. Active Audio-Visual Source Separation

We propose a novel task: active audio-visual source sepa-

ration (AAViSS). In this task, an autonomous agent simulta-

neously hears multiple audio sources of different types (e.g.,

speech, music, background noise) that are at various loca-

tions in a 3D environment. The agent’s goal is to separate a

target source (e.g., a specified human speaker or instrument)

from the heard audio mixture by intelligently moving in the

environment. This active listening task requires the agent

to leverage both acoustic and visual cues. While the acous-

tic signal carries rich information about the types of audio

sources and their relative distances and orientations from the

agent, the visual signal is crucial both to see obstacles affect-

ing navigation and identify useful locations from which to

sample acoustic information in the visible 3D scene.

Task Definition. In each episode of agent experience, mul-

tiple audio sources are randomly initialized in the 3D envi-

ronment. The map of the environment is unknown to the

agent as are the locations of the audio sources. At each step,

the agent hears a mixed binaural audio signal that is a func-

tion of the source types (e.g., human voice, music, etc.), their

displacement from the agent, and their sound reflections re-

sulting from the major geometric surfaces and materials in

the 3D scene. One of the audio sources is the target, i.e., the

source the agent wants to hear, as relevant to its overarching

application setting. The agent is tasked with predicting the

target’s monaural audio signal as clearly as possible—that

is, the true latent target sound itself, separated from the other

sources and independent of the spatial effects of where it

is emitted. The agent must intelligently move and sample

visual-acoustic cues from its environment to best predict the

target signal by the end of a fixed time budget.

Note that it is significant that we define the correct output

to be the monaural target sound. Were the objective instead

to output the binaural sound of the target at the agent’s

current position, trivial but non-useful solutions would exist

(e.g., moving to a position where the target is inaudible, and

hence its binaural waveforms are approximately 0).

As discussed above, we consider two variants of this task

depending on the agent’s starting position relative to the tar-

get audio source. In the near-target variant, the agent starts

at the target and needs to conduct a sequence of fine-grained

motions to extract the best target audio; in the far-target
variant, the agent starts in a random far position and must

first navigate to the vicinity of the target before commencing

movements for better separation.

Episode Specification. Formally, an episode is defined by

a tuple (E, p0, S1, S2, . . . Sk, G
y) where E is a 3D scene,

p0 = (l0, r0) is the initial agent pose defined by its location l
and rotation r, Si = (Sw

i , S
l
i, S

y
i ) is an audio source defined

by its periodic monaural waveform Sw
i , its location Sl

i , and

type Sy
i . There are k audio sources in the scene, each from

a different type2 (Sy
1 �= Sy

2 �= . . . �= Sy
k ), and Gy is the

target audio goal type such that G ∈ {Si}. At each step, the

agent hears a mixture of all audio sources, and the goal is to

predict Gw by the end of the episode, given the target goal

label Gy . The episode length is T steps, meaning the agent

has bounded time to provide its output.

Action Space. The agent’s action space A consists of

MoveForward, TurnLeft, and TurnRight. At each

step, the agent samples an action at ∈ A to move on a

navigability graph of the environment; that graph is un-

known to the agent. While turning actions are always valid,

MoveForward is allowed only if there is an edge connect-

ing the current node and the next one, and the agent is facing

the destination node. Non-navigable connections exist due

to walls and obstacles, e.g., a sofa blocking the path.

3D Environment and Audio-Visual Simulator. Consis-

tent with substantial embodied AI research in the computer

2Note that distinct human voices count as distinct types.
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vision community (e.g., [15, 48, 32, 53]), and in order to

provide reproducible results, we develop our approach using

state-of-the-art visually and acoustically realistic 3D simula-

tors. We use the SoundSpaces [15] audio simulations, built

on top of the AI-Habitat simulator [54] and the Matterport3D

scenes [10]. The Matterport3D scenes are real-world homes

and other indoor environments with both 3D meshes and im-

age scans. SoundSpaces provides room impulse responses

(RIR) at a spatial resolution of 1 meter for the Matterport3D

scenes. These state-of-the-art RIRs capture how sound from

each source propagates and interacts with the surrounding ge-

ometry and materials, modeling all of the major real-world

features of the RIR: direct sounds, early specular/diffuse

reflections, reverberations, binaural spatialization, and fre-

quency dependent effects from materials and air absorption.

Our experiments further push the realism by considering

noisy sensors (Sec. 5). See the Supp. video to gauge realism.

We place k monaural audio sources in the 3D environ-

ment. Since current simulators do not support dynamic

object rendering (e.g., people talking, instruments being

played), these sources are represented as point objects [15].

At each time step, we simulate the binaural mixture of

the k sounds coming from their respective locations in the

scene, as received by the agent at its current position. Specif-

ically, the sources’ waveforms Sw
i are convolved with RIRs

corresponding to the scene E and the agent pose and the

source location pairs (p, Sl
i). Subsequently, the output of

the convolved RIRs is mixed together to generate dynamic

binaural mixtures as the agent moves around:

Bw,mix
t =

1

k

k∑
i=1

Bw,i
t , (1)

where Bw,i
t is the binaural waveform of the sound source i

at time t, and Bw,mix
t is the binaural waveform of the mixed

audio. Note that the ground truth waveforms per source are

known only by the simulator; during inference, the agent

observes only the mixed binaural sound, which changes with

t as a function of the agent’s movements.

4. Move2Hear Approach
We pose the AAViSS task as a reinforcement learning

problem, where the agent learns a policy to sequentially de-

cide how to move given its stream of egocentric audio-visual

observations. Our model has two main components (see

Fig. 2): 1) the target audio separator network and 2) the

active audio-visual (AV) controller. The separator network

has two functions: it separates the target audio signal from

the heard mixture at each step, and it informs the controller

about its current estimate to improve the separation. The

AV controller learns a policy guided by the separation qual-

ity, such that it moves the agent in the 3D environment to

improve the predicted target audio signal. These two com-

ponents learn from each other during training to help the
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Figure 2: Our model for active audio-visual source separation has

two main components: 1) an audio separator network (top) and 2)

an active audio-visual controller (bottom). At each step, our model

receives mixed audio from multiple sources in the 3D environment

along with egocentric RGB views. The model actively moves in

the environment to improve its separation of a target audio source.

agent build an implicit understanding of how the separation

quality changes given the current surrounding 3D structure

(furniture, walls, rooms, etc.), the various audio sources, and

their (unobserved) locations relative to the agent and the

target. Hence, they enable the agent to learn a useful active

movement policy to improve audio separation quality.

4.1. Target Audio Separator Network

At each step t, the audio network fA receives the mixed

binaural sound Bmix
t coming from all audio sources in the

scene and the target audio type Gy , and it predicts the monau-

ral target audio M̈G, i.e., fA(Bmix
t , Gy) = M̈G (Fig. 2 top).

We use the short-time Fourier transform (STFT) to represent

both the monaural M and binaural B audio spectrograms.

M and B are matrices, with B ∈ R
2×F×N
+ and M ∈ R

F×N
+

where F is the number of frequency bins, N is the time win-

dow, and B has two channels (left and right).

The audio network fA predicts M̈G in three steps and

using three modules, such that: fA = fB ◦ fM ◦ fR. First,

given the target category Gy , the binaural target audio sepa-

rator fB separates the target’s binaural signal B̃G
t from the

input mixture Bmix
t . Second, the monaural audio predictor

fM takes the previous binaural output B̃G
t and predicts the

monaural target audio M̃G
t (i.e., independent of the room

acoustics and spatial effects). Finally, given the monaural

estimates from all previous steps and the current one M̃G
t ,

the acoustic memory refiner fR continuously enhances the

target monaural audio prediction M̈G
t . Next we describe the

architecture of these three modules in detail.

Binaural Audio Separator. For the binaural extractor fB ,

we use a multi-layer convolutional network in a U-Net like

architecture [51] with ReLU activations in the last layer.

Specifically, we concatenate the target label Gy with the
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mixed binaural audio Bmix along the channel dimensions,

and pass this input to the U-Net to predict a real-valued ratio

mask R̃T [28, 74, 77] for the target binaural spectrogram:

R̃G
t = fB(Bmix

t ⊕Gy), (2)

where ⊕ denotes channel-wise concatenation. Then, the

predicted spectrogram for the target binaural B̃G
t is obtained

by soft-masking the mixed binaural spectrogram with R̃G
t :

B̃G
t = R̃G

t �Bmix
t , (3)

where � denotes the element-wise product of two tensors.

Monaural Audio Predictor. Similarly, we use another U-

Net for fM to predict the target monaural audio at the current

step given the prediction from fB , i.e.:

M̃G
t = fM (B̃G

t ). (4)

M̃G
t serves as an initial estimate of the target monaural that

our model predicts based only on the mixed binaural audio

heard at the current step t. The factorization of monaural

prediction into two steps fB and fM allows our model to

first focus on the audio source separation by extracting the

target audio in the same domain as the input (binaural) using

fB then to learn how to remove spatial effects from the

binaural to get the monaural signal using fM . Additionally,

fB provides the policy with spatial cues about the target

to help the agent anchor its actions in relation to the target

location (see Sec. 4.2). We refine this prediction using an

acoustic memory, as we will describe next.

Acoustic Memory Refiner. The acoustic memory refiner

fR is a CNN that receives the current monaural separation

M̃G
t from fM and its own previous prediction M̈G

t−1 as

inputs, and predicts the refined monaural audio M̈G
t :

M̈G
t = fR(M̃G

t ⊕ M̈G
t−1). (5)

See Fig. 2 top right. The acoustic memory plays an impor-

tant role in stabilizing the monaural predictions and helping

the agent learn a useful policy, and it also provides robust-

ness to microphone noise. By taking into consideration the

previous estimate M̈G
t−1 and its relation to M̃G

t , the model

can learn when to update the monaural estimate of the target

and by how much. This encourages non-myopic behavior: it

allows the agent to explore its vicinity with less pressure to

reduce the quality of the predictions, in case there is a need

to traverse intermediary low quality spots in the environment.

Consequently, when the navigation policy is trained with a

reward that is a function of the improvement in fR’s predic-

tion quality (details below), the agent learns to visit spaces in

the scene that will improve the separation quality over time.

All three modules fB , fM , and fR are trained in a super-

vised manner using the ground truth of the target binaural

and monaural signal, as detailed in Sec. 4.3.

4.2. Active Audio-Visual Controller

The second component of our approach is an AV con-

troller that guides the agent in the 3D environment to im-

prove its audio predictions (Fig. 2 bottom). The controller

leverages both visual and acoustic cues to predict a sequence

of actions at that will improve the output of fA, the separa-

tor network defined above. It has two main modules: 1) an

observation encoder and 2) a policy network.

Observation Space and Encoding. At every time step t,
the AV controller receives the egocentric RGB image Vt, the

current binaural separation B̃G
t from fB , and the channel-

wise concatenation of the target monaural predictions from

fM and fR, that is, M̄G
t = M̃G

t ⊕ M̈G
t .

The audio and visual inputs carry complementary cues

required for efficient navigation to improve the separation

quality. B̃G
t conveys spatial cues about the target (its general

direction and distance relative to the agent) which helps the

agent to anchor its actions in relation to the target location.

Importantly, the better the separation quality of B̃G
t , the

more apparent this directional signal is (compared to Bmix
t ,

the mixed audio directly observed by the agent). M̄G
t is

particularly useful in letting the policy learn the associations

between the model’s current position and the quality of the

prediction in that position (captured by M̃G), the overall

quality so far (captured by M̈G), and whether this position

led to a change in the estimate (captured by M̄G).

The visual signal Vt provides the policy with cues about

the geometric layout of the 3D scene so that the agent can

avoid colliding with obstacles. Further, the visual input

coupled with the audio allow the agent to capture relations

between the 3D scene and the expected separation quality at

different locations.

We encode the three types of input using separate CNN en-

coders: vt = EV (Vt), bt = EB(B̃T
t ) and mt = EM (M̄G

t ).
We concatenate the three feature outputs to obtain the current

audio-visual encoding ot = [vt, bt,mt].

Policy Network. The policy network is made up of a gated

recurrent network (GRU) that receives the current audio-

visual encoding ot and the accumulated history of states

ht−1 to update its history to ht and outputs the current state

representation st. This is followed by an actor-critic module

that takes st and ht−1 as inputs to predict the policy distribu-

tion πθ(at|st, ht−1) and the value of the state Vθ(st, ht−1),
where θ are the policy parameters. The agent samples an ac-

tion at ∈ A according to πθ to interact with its environment.

Near- and Far-Target Policies. For the near-target task,

we learn a quality policy πQ that is driven by the improve-

ment in the target audio prediction (reward defined below).

For the far-target variant, we learn a composite policy made

up of πQ and an audio-visual navigation policy πN trained

to get closer to the target audio.
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The composite policy uses a time-based strategy to switch

control between the two policies. First, the navigation policy

brings the agent closer to the target audio in a budget of

T N steps, then the agent switches control to the quality

policy to focus on improving the target audio separation. We

found alternative blending strategies, e.g., switching based

on predicted distance to the target, inferior in practice. The

audio network fA is active throughout the episode in both

the near- and far-target tasks.

4.3. Training

Training the Target Audio Separator Network. The

separator network has two outputs: the binaural B̃ and the

monaural audio predictions M̃ and M̈ . We train it using

the respective ground truth spectrograms of the target audio

which are provided by the simulator:

LB = ||B̃G
t −BG

t ||1, (6)

where BG
t is the ground truth binaural spectrogram of the

target at step t. Similarly, for the monaural predictions:

LM = ||M̃G
t −MG||1, LR = ||M̈G

t −MG||1, (7)

where MG is the ground-truth monaural spectrogram for the

target. Note that the predictions from fB and fM (i.e., B̃G
t

and M̃G
t respectively) are step-wise predictions, unlike fR

that takes into consideration the history of monaural predic-

tions in the episode to refine its estimate. Hence, we pretrain

fB and fM using LB and LM and a dataset we collect from

the training scenes. For each datapoint in this dataset, we

place the agent and k audio sources randomly in the scene,

then at the agent location we record the ground truth spectro-

grams (BG, MG) for a randomly sampled target type. We

find this pretraining stage leads to higher performance and

brings more stability to the predictions of the audio separator

network compared to training those modules on-policy.

Once fB and fM are trained, we freeze their parameters

and train fR on-policy along with the audio-visual controller,

since the sequence of actions taken by the agent impact the

history of the monaural predictions observed by fR.

Training the Active Audio-Visual Controller. The pol-

icy guides the agent to improve its audio separation quality

by moving around. Towards this goal, we formulate a novel

dense RL reward to train the quality policy πQ:

rt =

{
rst 1 ≤ t ≤ T − 2

−10× LR
T + rst t = T − 1,

(8)

where rst = LR
t −LR

t+1 is the step-wise reward that captures

the improvement in separation quality of the monaural au-

dio, and rT −1 is a one-time sparse reward at the end of the

episode. While rst encourages the agent to improve the sepa-

ration quality at each step, the final reward rT −1 encourages

the agent to take a trajectory that leads to an overall high-

quality separation in the end. For the navigation policy πN ,

we adopt a typical navigation reward [54, 15, 16] and reward

the agent with +1.0 for reducing the geodesic distance to the

target source and an equivalent penalty for increasing it.

We train πQ and πN using Proximal Policy Optimization

(PPO) [55] with trajectory rollouts of 20 steps. The PPO

loss consists of a value network loss, policy network loss,

and entropy loss to encourage exploration (see Supp.). Both

policies have the same architecture but differ in their reward

functions and distribution of their initial agent locations p0.

Cyclic Training. We train the audio memory refiner fR

and the policies πQ and πN jointly. We adopt a cyclic

training scheme, i.e., in each cycle, we alternate between

training the audio memory refiner and the policy for U = 6
parameter updates. The cyclic training helps with stabilizing

the RL training by ensuring partial stationarity of the rewards,

particularly while training πQ, where the reward is a function

of the quality of the target monaural predictions from fR.

5. Experiments

Experimental Setup. For each episode, we place k = 2
(we also test with k = 3) audio sources randomly in the

scene at least 8 m apart, and designate one as the target. The

agent starts at the target audio location for the near-target
task, and at a random location 4 to 12 m from other sources

for the far-target task. The 12 m upper limit ensures that the

agent can hear the target audio at the onset of its trajectory.

We set the maximum episode length to T = 20 and 100
steps for near-target and far-target, respectively. T N = 80
is set using the validation split. We use all 47 Matterport3D

scenes that are large enough to generate at least 500 distinct

episodes given the setup above. We form train/val/test splits

of 24/8/15 scenes and 112K/100/1K episodes. Because the

test and train/val environments are disjoint, the agent is

always tested in an unmapped space.

We use 12 types of sounds from three main groups:

speech, music, and background sounds. For speech, we sam-

ple 10 distinct speakers from the VoxCeleb1 dataset [38] with

different genders, accents, and languages. For music, we use

a variety of instruments from the MUSIC dataset [77]. For

background sounds, we sample non-speech and non-music

sounds (e.g., clock-alarm, dog barking, washing machine)

from ESC-50 [45]. The target in each episode can be one

of G ∈ {Speakers,Music}, and the distractor(s) can be

one of D ∈ {Speakers,Music, Background} such that

G �= D in the episode. Note that Speakers denotes 10

separate speaker classes, resulting in a total of 11 target and

12 distractor classes. This enables us to evaluate a variety of

audio separation scenarios: fine-grained separation (among

the different speakers), coarse-grained separation (speech

vs. music), and separation against background and ambi-
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ent sounds commonly encountered in daily life. In total,

we sample 23,677 1 sec audio clips of all types for use as

monaural sounds. When testing on unheard sounds, we split

the monaural sounds in the train:val:test ratio of 16:1:2. The

longer audio clips used to produce the 1 sec unheard audio

clips have no overlap among train, val, and test.

See Supp. for all other details like spectrograms, network

architectures, training hyperparameters, and baseline details.

Baselines. Since no prior work addresses the proposed

task, we design strong baselines representing policies from

related tasks and passive/un-intelligent motion policies:

• Stand In-Place: audio-only baseline where the agent

holds its starting pose for all steps, representing a default

passive source separation method.

• Rotate In-Place: audio-only baseline where the agent

stays at the starting location and keeps rotating in place,

i.e., sampling acoustic cues from different orientations.

• DoA: Inspired by [40], this agent faces the audio direction

of arrival (DoA), i.e., it directs its microphones at the target

sound from one step away (only relevant for near-target).
• Random: an agent that randomly selects an action from

the action space A.

• Proximity Prior: an agent that selects random actions but

stays within a radius of 2 m (selected via validation) of the

target so it cannot wander far from locations that are likely

better for separation. Note that this baseline assumes an

oracle for distance to target, not given to our method.

• Novelty [8]: standard visual exploration agent trained to

visit as many novel locations as possible within T .

• Audio-visual (AV) Navigator [15]: state-of-the-art deep

RL AudioGoal navigation agent [15] adapted for our task

to additionally take the target audio category as input. Its

audio input space exactly matches that of fB and it is

trained with the typical navigation reward [54, 15, 16].

For fair comparison, all baselines use our audio separator

network fA as the audio separation backbone, taking as input

the audio/visual observations resulting from their chosen

movements in the scene. Specifically, all agents share the

same fB and fM , and only the audio memory refiner fR is

trained online with its respective policy. This means that any

differences in performance are attributable to the quality of

each method’s action selection.

Evaluation. We evaluate the target monaural separation

quality at the end of T steps, for 1000 test episodes with 3

random seeds. We use the ground-truth monaural phase [58]

for all methods and the inverse short-time Fourier transform

to reconstruct a time-discrete monaural waveform from M̈G.

We use standard metrics: STFT distance, a spectrogram-

level measure of prediction error, and SI-SDR [52], a scale-

invariant measure of distortion in the reconstructed signal.

Heard Unheard
Model SI-SDR ↑ STFT ↓ SI-SDR ↑ STFT ↓
Stand In-Place 3.49 0.287 2.40 0.325

Rotate In-Place 3.45 0.285 2.50 0.321

DoA 3.63 0.280 2.59 0.316

Random 3.68 0.280 2.57 0.319

Proximity Prior 3.74 0.276 2.63 0.315

Novelty [8] 3.82 0.276 2.86 0.318

Move2Hear (Ours) 4.31 0.260 3.20 0.298

Table 1: Near-Target AAViSS3.

Heard Unheard
Model SI-SDR ↑ STFT ↓ SI-SDR ↑ STFT ↓
Stand In-Place 0.74 0.390 0.09 0.416

Rotate In-Place 1.01 0.382 0.26 0.412

Random 1.15 0.378 0.46 0.402

Novelty [8] 1.74 0.356 1.31 0.367

AV Navigator [15] 1.46 0.368 0.72 0.396

Move2Hear (Ours) 3.50 0.291 2.33 0.333

Table 2: Far-Target AAViSS.

5.1. Active Audio-Visual Source Separation
Near-Target. Table 1 reports the separation quality of all

models on the near-target task.3 Passive models that stay

at the target (Stand, Rotate) do not perform as well as those

that move (e.g., Proximity Prior). DoA fares better than the

In-Place baselines as it gets to direct its microphones towards

the target to sample a cleaner signal. Novelty outperforms

the other baselines, showing the benefit of adding vision

and sampling diverse acoustic cues. Our Move2Hear model

outperforms all baselines by a statistically significant margin

(according to the Kolmogorov–Smirnov test with p ≤ 0.05).

Move2Hear learns to take deliberate sequences of actions to

improve the separation quality by reasoning about the 3D

environment and inferred source locations.

Fig. 3a shows performance across each step in the episode.

The non-stationary models make progress initially when

sampling the cues close to the target, but then flatten quickly.

In contrast, Move2Hear keeps improving with almost each

action it takes, anticipating locations better for separation

and learning behavior distinct from the other motion policies.

Far-Target. Table 2 shows the results on the far-target
task. Here again we see a distinct advantage for models that

move around. Interestingly, AV Navigator [15] performs

worse than Novelty [8] even though it has been trained to

navigate towards the target. This highlights the difficulty of

audio goal navigation in the presence of distractor sounds

and the need for high-quality separations for successful nav-

igation. Our model outperforms the previous baselines by a

significant margin (p ≤ 0.05).

5.2. Model Analysis

3AV Navigator [15] is not applicable here; the agent begins at the target.
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Heard Unheard
Model SI-SDR ↑ STFT ↓ SI-SDR ↑ STFT ↓
Move2Hear 3.50 0.291 2.33 0.333
Move2Hear w/o fR 2.64 0.320 1.57 0.361

Move2Hear w/o Vt 3.32 0.300 2.12 0.343

Move2Hear w/o πN 2.64 0.318 1.88 0.347

Move2Hear w/o πQ 3.08 0.304 1.99 0.343

Table 3: Ablation of our Move2Hear model on Far-Target AAViSS.

(a) Separation progress (b) Separation with 3 sources

Figure 3: (a) Separation quality as a function of time. (b) Final

separation performance with 3 sources (i.e., 2 distractors).

Figure 4: Models’ robustness to various levels of noise in audio.

Ablations. In Table 3 we ablate the components of our

model. We see that our acoustic memory refiner (fR) plays

an important role in the overall performance. fR promotes

stable, improved predictions by informing the policy of the

separation quality changes. The vision component Vt is

critical as well since Vt helps the agent to avoid obstacles, to

reach the target, and to reason about the visible 3D scene.

Please see Supp. for additional analysis showing that 1)

the composite policy for far-target is essential for best perfor-

mance, 2) source types affect task difficulty, 3) Move2Hear

retains its benefits even with a SOTA passive separation back-

bone, 4) Move2Hear’s separation quality does not degrade

with different intra-source distances, and 5) our model helps

audio-visual navigation in the presence of distractor sounds.

Noisy Audio. We analyze our model’s robustness to au-

dio noise using standard noise models [64, 63] in the heard
and near-target setting (Fig. 4). Our model’s gains over the

baselines persist even with increasing microphone noise lev-

els. The plot also shows the positive impact of our memory

refiner fR (dashed lines); all models decline without it.4

4Note that evaluating noisy odometry and actuation is not supported by

SoundSpaces since RIRs are available only on the discrete grid.

Sound Source
Start Location
Target

Agent

Best Separation Pose Episode ProgressSeparation Quality

Occupied / Unseen /Seen Area

Figure 5: Example movements by our Move2Hear model. Our

model takes advantage of the visible 3D structure to actively im-

prove its separation quality of a target audio (see text for details).

Number of Audio Sources. Next we test how our model

generalizes to more than one distractor sound. Fig. 3b shows

the results for the near-target task using k = 3 audio sources

per episode. Our model generalizes better than the rest of

the baselines and maintains its advantage.

Qualitative Results. In Fig. 5, our Move2Hear agent is

placed in a scene with two audio sources as possible targets.

Our model exhibits an intriguing behavior that takes advan-

tage of the visible 3D structures. When S1 is the target, it

takes the minimum steps to go around the column to put

itself in the acoustic shadow of the column in relation to S2,

thus dampening its signal. However, when S2 is the target,

it decides to move into the corridor closer to S2, putting the

wall between itself and S1.

Failure Cases. Common failure cases for near-target in-

volve the agent having limited freedom of movement due to

complex surrounding geometry and when any translational

motion takes it towards the distractor(s) thus incurring a high

loss in quality. For far-target, the agent sometimes lacks a

direct path to the target due to cluttered surroundings.

6. Conclusion
We introduced the AAViSS task, where agents must move

around using both sight and sound to best listen to a de-

sired target object. Our Move2Hear model offers promis-

ing results, consistently outperforming alternative explo-

ration/navigation motion policies from the literature, as well

as strong baselines. In future work, we aim to extend our

model to account for non-periodic sounds, e.g., with new

forms of sequential memory, and to investigate sim2real

transfer of the learned policies.
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