
Better Trigger Inversion Optimization in Backdoor Scanning

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu
Shiqing Ma†, Pan Li, Xiangyu Zhang

Purdue University, †Rutgers University
{taog, shen447, liu1751, an93, xu1230, panli, xyzhang}@cs.purdue.edu

†sm2283@cs.rutgers.edu

Abstract

Backdoor attacks aim to cause misclassification of a sub-
ject model by stamping a trigger to inputs. Backdoors could
be injected through malicious training and naturally exist.
Deriving backdoor trigger for a subject model is critical to
both attack and defense. A popular trigger inversion method
is by optimization. Existing methods are based on finding a
smallest trigger that can uniformly flip a set of input sam-
ples by minimizing a mask. The mask defines the set of
pixels that ought to be perturbed. We develop a new op-
timization method that directly minimizes individual pixel
changes, without using a mask. Our experiments show that
compared to existing methods, the new one can generate
triggers that require a smaller number of input pixels to be
perturbed, have a higher attack success rate, and are more
robust. They are hence more desirable when used in real-
world attacks and more effective when used in defense. Our
method is also more cost-effective.

1. Introduction

Backdoor attacks aim to induce model misclassification

of arbitrary input samples to a target label by stamping a

special input pattern called trigger. Backdoors could be

injected by various methods, such as data poisoning [17,

35, 40] and neuron hijacking [39], and also naturally exist

in normally trained models, called natural backdoors [41].

The latter is caused by distribution bias of low level features

and can be exploited just like injected backdoors. For ex-

ample, if a person always wears a unique pair of glasses in

a clean face recognition dataset, the glasses may become a

trigger to induce misclassification to the person.

Due to the prominent threat of backdoors, researchers

have proposed a large body of defense solutions (see Sec-

tion 2). Among them, backdoor scanning [21, 22, 68, 76] is

an important type of defense. Many scanners [38,41,59,65,

75] rely on trigger inversion, which leverages optimization

(a) NC (b) Ours

Figure 1. Loss landscapes of NC and our method. The x-axis and

y-axis show the coefficients on two random directions. The z-axis

denotes the loss value.

to derive a small input pattern that can flip clean samples

(of a victim class) to the target label. A model is consid-

ered having backdoor if an exceptionally small trigger can

be found.

Most existing trigger inversion methods (e.g., ABS [38],

K-arm [59], and Tabor [19]) are built on Neural Cleanse

(NC) [65], which decouples a trigger into a perturbation

vector and a mask. The perturbation vector denotes the

perturbations applied to an input and the mask determines

which part of the perturbation vector should be applied. NC

minimizes the mask and the perturbation vector together to

produce a small trigger (details in Section 3.1). Due to the

multiplication correlation between the mask and the pertur-

bation vector during optimization, NC can fall into local

optima and fail to reach the optimal trigger, i.e., the small-

est trigger with a high attack success rate. Figure 1a shows

the loss landscape of NC using the contour plot with two

random directions [16,24,31] with (x = 0, y = 0) the opti-

mum. Observe that there are multiple dips (local optima) on

the loss surface, which prevent NC from reaching the opti-

mum. In addition, triggers by NC are often not robust and

may become ineffective when undertaking transformations

(see Section 5.3).

Figure 2 shows the results of various techniques for gen-

erating a natural backdoor pattern for a normally trained



2k, 0% 50k, 2% 27k, 28% 822, 70%
CW (1080m) UAP (23m) NC (9m) Ours (4m)

1950, 0% 822, 22%

CW UAP NC OursInput Target

Figure 2. Comparison of generated backdoors. In the first row, the texts below backdoor images denote the number of perturbed pixels

and the ASR on all the samples of loggerhead turtle from the validation set. The value shown together with the method name denotes the

trigger generation time cost in minutes. The bottom two rows show example images stamped with backdoors by different methods, where

the first column gives the victim class images and the last column the target class images.

model on ImageNet downloaded from [25]. Stamping each

of these backdoors on sea turtle images can flip them to

the kangaroo class. The first row shows the backdoor pat-

terns by various inversion techniques. From left to right, the

second and third rows show samples from the victim class

(column 1), samples stamped with the backdoor patterns

(columns 2-5), and the target class samples (last column).

The fourth and fifth images in the first row denote the trig-

ger generated by NC and its reduced version, respectively.

Observe that the NC trigger requires perturbing 27k pixels

and has only 28% ASR. When we reduce the NC trigger by

removing the smallest perturbations to size 822 (which is

the same as our trigger), the ASR degrades to 22%. This

is because of the large number of local minima, as those on

the loss surface of NC in Figure 1a. Our results in Section 5

show that on average, when NC triggers are reduced to the

same size of ours, their ASRs on average degrade by 26%.

Problem Statement. In the context of backdoor attack and

defense, a good optimization method (for trigger genera-

tion) is critical. In this paper, we say a method is good if

it produces triggers that are (1) small (i.e., having a small

number of perturbed pixels), (2) having a high attack suc-
cess rate (ASR) (the percentage of unseen clean samples

that can be flipped by the trigger), (3) robust (against input

transformations), and (4) has low computation overhead. A

good trigger generation method serves both attack and de-

fense. If it is used in attack, e.g., generating natural triggers

for normally trained models to induce intended misclassifi-

cation, a small and robust trigger makes the attack easy to

launch and effective in the physical world. If it is used in

defense, smaller triggers can help scanners more effectively

determine if a model is trojaned, as an exceptionally small

trigger is a good indicator of injected backdoor [38, 59, 65],

and have better effectiveness in model hardening. �
We propose a novel optimization method. Instead of

optimizing the product of the perturbation vector and the

mask, our method only optimizes a perturbation vector.

Specifically, we leverage the long-tail effects of tanh func-

tion to represent the binary nature of perturbations, with one

end modeling the maximum perturbation and the other end

no perturbation. We introduce two tanh functions for each

pixel, one denoting positive perturbation and the other neg-

ative. Our optimization method has a much smoother loss

surface than NC as shown in Figure 1b. Observe that the

loss values all descend along the valley towards the optimal

point at the bottom. On the ImageNet dataset, our gener-

ated triggers are two orders of magnitude smaller than those

of NC, 2.73 times more robust, and have 20% higher ASR

on average. Our method is 2.15 times faster than NC. The

last image in the first row of Figure 2 shows our trigger. It

has the smallest number of perturbed pixels (822) with the

highest ASR (70%) on the unseen validation set. We also

compare with UAP [58] and CW [4] (another two trigger

generation methods adapted from adversarial attacks). Ours

is one or more orders of magnitude faster. The implementa-

tion of our method is publicly available [1].



2. Related Work

Backdoor Attack. Existing backdoor attacks poison the

training set using intentionally crafted samples with in-

jected backdoor patterns together with the target label such

as patch attacks [7, 17]. To achieve stealthiness, a dif-

ferent type of backdoor attacks applies imperceptible per-

turbations on poisoned data with the original label like

clean label attacks [55, 57, 78]. Another type of back-

door attacks crafts different backdoors for different in-

puts [35,49,56]. Other than poisoning the training set, back-

doors also naturally exist in clean models [41]. Backdoor

attacks can be launched on models with various applica-

tions, such as natural language processing [28, 77], transfer

learning [53, 66, 73], and federated learning [3, 67, 71].

Backdoor Defense. To detect poisoned models [19, 22, 26,

52,72], existing works reverse-engineer backdoors [38,65],

and leverage the difference between poisoned and clean

models when reacting to input perturbations [21, 68, 76].

Existing techniques also detect and reject inputs stamped

with backdoors [5, 6, 8, 10, 12, 13, 34, 42, 43, 60, 62, 63].

Verification methods aim to provide guarantees that mod-

els are not vulnerable to certain types of backdoors [23, 30,

64,69]. There are also works focusing on eliminating back-

doors [33] by pruning out compromised neurons [37] or re-

training leveraging data augmentation technique [74].

Optimization Methods for Trigger Generation. NC [65]

is a state-of-the-art and we have detailed discussion and

comparison throughout the paper. Existing adversarial at-

tack methods were proposed to generate per-instance per-

turbations, such as fast gradient sign method (FGSM) [15],

projected gradient descent (PGD) [44], JSMA [51], CW [4],

and SLIDE [61], etc. Universal adversarial perturbation

(UAP) [46] aims to generate a global perturbation that can

cause a set of inputs to misclassify. We extend some of them

to generate triggers (see the following section).

3. Existing Optimization Methods for Back-
door Trigger Generation and Their Limi-
tations

In this section, we discuss in detail NC’s optimization

in trigger generation and two other optimizations that are

popular in adversarial attack and hence adapted to trigger

generation (i.e., CW and UAP). We focus on studying their

limitations in trigger generation.

3.1. Optimization of Neural Cleanse (NC)

As mentioned earlier, the optimization method in NC

is the most popular in trigger generation. Specifically, it

(a) The distribution of mask values

for 10 runs of NC
(b) The relation between ASR and

perturbed pixels

Figure 3. Characteristics of generated backdoors on all the test

samples of a victim class from the CIFAR-10 dataset

solves the following optimization problem.

min
m,p

LNC = L(M(x′), yt
)
+ λ · ‖m‖1, ∀x ∈ X, (1)

where x′ = (1−m) ◦ x+m ◦ p. (2)

Variables m and p denote the mask and the perturbation

vector, respectively; L(·, ·) denotes the cross entropy loss

function of the subject model M; yt is the target label. In-

tuitively, the optimization aims to flip the classification re-

sult (the first term in the loss function) and reduce the trig-

ger size (the second term). The introduction of the mask

enables using optimization to reduce the trigger size. How-

ever, it also has some undesirable effects. NC has to opti-

mize both m and p that are correlated by the ◦ operation

in Equation 2, which is difficult and leads to low ASRs and

large sizes. NC tends to produce many small values in the

mask, indicating the corresponding input pixels need to be

slightly perturbed. Although these values are small, many

of them cannot be set to zero. Otherwise, the ASR degrades.

These small and pervasive perturbations make attack in the

physical world difficult and the backdoor not robust against

input transformations (see results in Section 5.3).

Figure 3a shows the distribution of mask values for 10

random runs of NC for generating a natural trigger that flips

plane to dog in a ResNet20 model on CIFAR-10. Observe

that a large portion of mask values fall in the range from 0 to

0.1, which is equivalent to keeping 90% of the original pixel

values. In Figure 3b, we start from the generated triggers,

gradually set the smallest mask values to 0, which is equiv-

alent to gradually reducing the number of perturbed pixels,

and show the changes of ASR with the number of perturbed

pixels. The number of perturbed pixels of the NC trigger is

725 with the ASR of 0.66. According to Figure 3a, most of

them have small values. However, when the number of per-

turbed pixels is gradually reduced to 150, the ASR starts to

degrade quickly, indicating the perturbations on these pix-

els need to be retained, even though they are still small. In

contrast, our trigger has 0.83 ASR with only 39 perturbed

pixels. Besides making physical attack difficult and not ro-

bust, the larger triggers by NC are less effective in expos-



ing injected pervasive backdoors and model hardening (see

Section 5.4 and Section 5.5).

3.2. Optimization of CW

There are existing optimization methods in adversarial

attack that can be adapted for trigger generation, such as

JSMA [51] and CW [4], with the later the state-of-the-art.

The CW L0 attack first searches for perturbations on all

pixels that can cause misclassification using the L2 norm.

It then uses a processing step external to the optimization

to remove the perturbations that are the least important af-

ter each optimization epoch. The algorithm can be easily

adapted to generate backdoor: instead of optimizing one in-

put, we optimize a set of inputs. Details of the optimization

can be found in Appendix A.

The adapted CW optimization has a few limitations in

trigger generation. First, it is very expensive. To deter-

mine the unimportant perturbations, it has to perform gra-

dient back-propagation to each pixel of each input and sort

the importance values for all pixels. As a result, it is often

two to three orders of magnitude slower than our technique

and NC (see Section 5). Second, its trigger size reduction

is by an external step instead of optimization, and the re-

duction is monotonic. As such, if some step of reduction

is not towards a global minimal, it cannot be reverted. As

a result, CW’s optimization yields 28.28% lower ASRs and

17.25% larger trigger sizes on average compared to ours on

CIFAR-10 (see Section 5). The first image in the first row

of Figure 2 shows a CW backdoor. Its number of perturbed

pixels (2k) is smaller than NC (27k) but larger than ours

(822). However, its ASR is close to 0. It also takes 1,080

minutes to generate, compared to 4 minutes in our method.

3.3. Optimization of Universal Adversarial Pertur-
bation (UAP)

UAP [46, 58] generates a global perturbation that can

cause a set of inputs to misclassify. It has a similar goal

as ours and can be adapted for trigger generation. Details

can be found in Appendix B.

4. Our Method
According to our problem statement in the introduction

section, having a small number of perturbed pixels is criti-

cal for backdoor trigger generation. NC uses a mask vector

to denote which parts of an input are subject to perturbation.

However, it requires optimizing the product of the mask and

the perturbation vector, which is difficult. We propose to di-

rectly optimize a perturbation vector, without using a mask

like that in NC and CW. We use tanh functions to denote

perturbations of individual pixels and use optimization to

minimize the sum of all these functions. The long-tail ef-

fects of the tanh function allow us to nicely model the two

ends for a pixel’s value change, namely, a pixel is either not

(a) (b)

(c)

Figure 4. Illustration of using different tanh functions for the per-

turbation of a pixel. In (a), we denote positive change by adding
1
2
(tanh(x) + 1) to the original pixel value (red line). In (b), we

denote both positive and negative changes by adding tanh(x) to

the pixel value. In (c), we use two tanh functions to denote posi-

tive and negative changes, respectively.

changed at all or has change of arbitrarily large magnitude

(within bound). Figure 4a illustrates the concept. The y axis

denotes pixel value and the x axis perturbation. The former

is normalized to [−1, 1] and the latter is in (−∞,+∞). The

red horizontal line denotes an original pixel value. The blue

curve denotes how the pixel value changes with x. The pixel

is changed by adding 1
2 (tanh(x) + 1). Note that although

x is unbounded, the tanh function bounds the pixel value

change in (0, 1). Observe that the long left tail of the blue

curve means that a large number of x values on the left cor-

respond to close-to-0 changes to the pixel, whereas the long

right tail means that those x values on the right correspond

to the maximum change. The shape and the continuity of

the curve on one hand encourage achieving tail values (in

order to have a small loss value), and on the other hand,

allow perturbations to recover from tail values if needed.

However, using one tanh for each pixel only allows de-

noting changes along one direction, positive or negative. A

naı̈ve design is to use one tail to denote maximum posi-

tive change and the other tail to denote maximum negative

change. That is, the pixel is changed by tanh(x). How-

ever, it loses the key benefit of encouraging as many pixels

to have 0 value change as possible. Figure 4b illustrates the

concept. Observe that the blue curve tends to go to either

the maximum positive or the maximum negative. The part

denotes 0 change (i.e., the interaction of the blue curve and

the red line) has a steep slope such that it is unlikely for the

optimization to stabilize at this point. Our solution is hence

to use two tanh functions for a pixel, one denoting posi-

tive change and the other negative. Figure 4c illustrates the

concept. In addition to the blue curve going upward, there

is also the green curve that goes downward, denoting the

negative changes. The key difference from the above naı̈ve

method is that both curves have a long tail on zero change,



which enables the optimization to stabilize. If the optimiza-

tion desires positive change, it just needs to go up along the

blue curve and stay on the left tail along the green curve,

and vice versa. Formally, we have the following optimiza-

tion objectives.

min
bp,bn

Lours = L(M(x′), yt
)
+ α · Lpixel, (3)

where x′ = clip
(
x+

1

2

(
tanh(bp) + 1

) ·maxp

− 1

2

(
tanh(bn) + 1

) ·maxp
)
, (4)

and Lpixel =
∑
h,w

(
maxc

(1
2

(
tanh(

bp
γ
) + 1

)))

+
∑
h,w

(
maxc

(1
2

(
tanh(

bn
γ
) + 1

)))
. (5)

Variables bp, bn ∈ (−∞,+∞) denote positive and nega-

tive perturbations, respectively; L(·, ·) denotes the cross en-

tropy loss function of the subject model M; yt is the target

label; α controls the weight of the second objective. We dy-

namically adjust α according to the attack success rate dur-

ing optimization to better balance the two objectives. Op-

eration clip(·) constrains the values to the valid pixel value

range. In Equation 4, 1
2 (tanh(bp) + 1) ·maxp denotes the

positive value change and 1
2 (tanh(bn)+1) ·maxp the neg-

ative change, with maxp the upper bound of pixel values

(i.e., 255). The function
∑

h,w sums perturbations at all

pixels with maxc the maximum among the three R, G, B

channels. Parameter γ is used to alter the slope of tanh
such that the optimization is smoother. We empirically set

γ = 10.

A Simplified Version. Empirically we find that when using

tanh in perturbing pixel values (in Equation 4), the opti-

mizer continues to have gradient descents from the cross-

entropy loss term in Equation 3, which is much more com-

plex than the Lpixel term, to variables bp and bn, even when

the pixel value changes (e.g., 1
2 (tanh(bp) + 1) ·maxp) are

already close to 0. This unnecessarily slows down the opti-

mization. We hence replace Equation 4 with the following.

x′ = clip
(
x+ clip(bp ·maxp)− clip(bn ·maxp)

)
, (6)

Specifically, we remove the tanh functions on bp and bn.

Instead, we directly scale them with maxp and then clip

them to the valid range. This is equivalent to using a linear

function in the cross-entropy loss term in Equation 3 instead

of tanh, while keeping the tanh functions in the Lpixel loss

term. Intuitively, the shape of clip(bp · maxp) is similar

to that of a tanh function. That is, the values on the two

sides are zero and maximum, and there is a slope within a

small range in the center. As such, Equation 6 approximates

Equation 4. Empirically, we find that it makes our method

faster and does not degrade the quality of generated triggers

when it is used to generate natural triggers. It is faster be-

cause the clip operations prevent unnecessary gradient de-

scents. However, we also find that Equation 4 is necessary

in generating injected triggers for trojaned models during

backdoor scanning (see Section 5.5). We speculate trojaned

models have more non-linear behaviors than clean models

due to data poisoning, which requires a smoother loss func-

tion. Specifically, trojaned models need to learn not only

the relations between normal features and correct labels,

but also the relations between poisoned data and the target

label. This requires them to have more complex decision

boundaries than benign models, and hence more non-linear

behaviors. Smoother functions help escaping local optima

with the increased non-linearity of trojaned models. More-

over, our ablation study in Appendix K shows that the tanh
in Equation 5 is always beneficial.

5. Evaluation
The evaluation is conducted on four datasets including

ImageNet. For backdoor scanning, we leverage pre-trained

models from the TrojAI competition [50] with a variety

of classification tasks and model types. We also conduct

an ablation study to understand the effects of different de-

sign choices (see Appendix K). Most experiments are con-

ducted on a server equipped with two Intel Xeon Silver

4214 2.20GHz 12-core processors, 256 GB of RAM, and

eight NVIDIA Quadro RTX 6000 GPUs.

5.1. Experiment Setup

Datasets and Models. We use four datasets: CIFAR-

10 [27], SVHN [47], LISA [45] and ImageNet [54]. We

also conduct experiments on 300 pre-trained models (in-

cluding clean and poisoned models) from rounds 2-4 of Tro-

jAI competition [50]. Details are in Appendix C.

Baselines. Three existing optimization methods discussed

in Section 3 are employed as the baselines: NC [65],

CW [4], and UAP [58]. We randomly select 100 images

from the validation set as the generation set for CIFAR-10

and SVHN, that is, the set of clean images used for trig-

ger generation. For ImageNet, CW can only be performed

on 50 images given the GPU memory limit. We hence ran-

domly select 50 images from the training set as the gen-

eration set for all the methods. We use 90% ASR as the

threshold on the generation set for CW, NC and ours. Since

UAP may not produce any trigger with a high ASR, we do

not use the threshold for UAP. As UAP is an L∞ attack, we

use an L∞ bound of 8/255 for CIFAR-10 and ImageNet,

and 0.03 for SVHN. Due to the different natures of these

methods, it is hard to define a uniform criterion (threshold)

of convergence. For fair comparison, we use a conserva-

tive (i.e., fairly large) number of optimization epochs (1000



(a) #Pixels of generated triggers. The last heat map shows how much larger CW triggers are.

(b) ASRs of generated backdoors. The last map shows how much higher our ASRs are

Figure 5. Comparison of CW and ours for all class pairs on CIFAR-10

Figure 6. Comparison of NC and ours on the ASR for all class

pairs on the CIFAR-10 dataset

epochs) for all the methods. Note that both CW and NC

converge slower than ours. Please see the results on SVHN

in Appendix F and the comparison with UAP in Appendix E

due to the page limit.

Metrics. We consider the following criteria. The number

of perturbed pixels (#pixels) measures the size of generated

triggers. The attack success rate (ASR) gauges the percent-

age of unseen clean samples that can be flipped by a trigger.

For evaluating ASR, we use the whole test set for CIFAR-

10 and SVHN, and the whole validation set for ImageNet.

We also measure the time cost.

5.2. Evaluation on CIFAR-10

Comparison with CW Optimization. In this experiment,

we use CW and our method to generate natural triggers for

all the class pairs for a clean ResNet20 model on CIFAR-10.

Figure 5 shows the comparison. Each cell in heat map de-

notes the result for a natural backdoor flipping all the test

samples from a victim class (row) to a target class (col-

umn). Figure 5a and Figure 5b show the number of per-

turbed pixels and the ASRs for CW (the left heat map) and

ours (the middle heat map), respectively. The right heat

map in Figure 5a shows how much larger the CW triggers

are compared to ours. Observe that there are a few class

pairs where CW and ours have the same trigger size, such as

bird→plane and deer→plane. However, for other pairs, CW

has a significantly larger trigger size than ours. For instance,

for pair plane→bird, the trigger by CW is 131% larger than

ours. Even with a much larger trigger, CW however still has

lower ASR (50% vs 79% for plane→bird). This is because

CW uses an external procedure to reduce the number of per-

turbed pixels (removing unimportant pixels based on gi · δi
as discussed in Appendix A). Our method converges 10.88

times faster than CW on average (see Appendix D).

Comparison with NC. NC tends to generate triggers with

a large number of small perturbations. The generated trig-

gers hence cannot be easily applied in physical attacks. We

conduct two experiments: (1) align the number of perturbed

pixels of the NC triggers and our triggers and then compare

the corresponding ASRs; (2) align the ASRs and compare

the trigger sizes. For the first experiment, we use the sizes of

our triggers as the reference, and align the NC triggers by

gradually removing their smallest perturbations until they

have the same sizes as ours. We then compare the ASRs of

our triggers and the reduced NC triggers. Figure 6 presents

the results. Observe that for most class pairs, the reduced

NC triggers have less than 50% ASR. In the worst case,

NC has only 7.3% ASR (plane→horse). On average, NC



Table 1. Comparison of different methods on a victim class logger-

head turtle (left table) and a victim class Persian cat (right table)

from ImageNet. The first column shows the target classes. The

second column shows the methods. The third/sixth column is the

time cost in minutes and the fourth/seventh column the number of

perturbed pixels (#Pixels). The fifth/eighth column shows ASR on

the samples from validation set.

T Method Time #Pixels ASR

S
n

o
w

b
ir

d CW 845.57 1849 0.00%

UAP 21.19 50171 0.00%

NC 9.19 26032 60.00%

Ours 4.35 432 72.00%

R
o

b
in

CW 1039.72 1674 0.00%

UAP 21.77 50172 0.00%

NC 9.19 26094 34.00%

Ours 4.10 467 60.00%

G
ro

u
se

CW 1035.85 2150 0.00%

UAP 22.94 50174 0.00%

NC 9.52 25977 14.00%

Ours 4.02 675 60.00%

K
an

g
ar

o
o CW 1079.54 2165 0.00%

UAP 22.69 50173 2.00%

NC 9.02 26583 28.00%

Ours 4.27 822 70.00%

Time #Pixels ASR

850.49 1097 4.00%

22.44 50175 10.00%

9.35 25887 58.00%

4.43 519 66.00%

983.07 1063 2.00%

22.85 50176 14.00%

9.44 26358 46.00%

4.52 433 54.00%

882.65 1340 2.00%

22.10 50174 12.00%

9.10 25688 44.00%

4.35 656 54.00%

1028.50 1503 0.00%

22.52 50176 8.00%

9.10 29165 54.00%

4.35 621 62.00%

has 39.83% ASR for all class pairs, degraded from 65.52%

without reduction. This demonstrates that the large num-

ber of perturbations in NC triggers are important for a good

ASR although they may have small values. In contrast, our

triggers have higher ASRs than NC’s for all class pairs. On

average, ours have 78.22% ASR, even higher than the orig-

inal NC triggers without size reduction. In the second ex-

periment, we use NC’s ASR as the reference and then grad-

ually remove the smallest perturbations in our triggers until

their ASRs drop to the same level as NC’s and then com-

pare the sizes. Figure 10a in Appendix presents the results.

Observe that NC has one order of magnitude larger trigger

sizes than ours for all the class pairs, indicating that our gen-

erated triggers indeed perturb much fewer pixels. We also

study an NC variant, ABS [38], for trigger generation and

have similar observations in Appendix G.

5.3. Evaluation on ImageNet

ImageNet has 1,000 classes. It is hence infeasible to test

on all class pairs, especially for CW, which takes more than

14 hours to generate just one trigger. We hence randomly

select 8 class pairs for experiments (see results on more

class pairs in Table 9 in Appendix). Table 1 presents the

quality of generated triggers. Observe that CW takes more

than 800 minutes to generate a trigger for all the evaluated

class pairs, and the highest ASR it can achieve is 4% for

pair cat→snowbird. The size of generated triggers by CW

is smaller than UAP and NC, but one order of magnitude

larger than ours. UAP is much faster than CW, but is still

Table 2. Comparison of different methods on model hardening.

First two columns denote different training methods and model

accuracy. The third and the fifth columns show the average trigger

size measured by NC and ours, respectively. The fourth and the

sixth columns denote the improvement.

Method Accuracy AdvNC IncreaseNC AdvOurs IncreaseOurs

Natural 95.15% 55.11 - 32.83 -

UAP 93.16% 49.40 -8.86% 23.69 -27.08%

NC 93.45% 75.77 39.10% 45.57 39.69%

Ours 94.18% 122.79 121.07% 83.24 152.02%

one order of magnitude slower than ours. Its ASRs are also

very low, with the highest 14%. Compared to the other two

baselines, NC is faster and has a better ASR (42.25% on

average). However, the triggers by NC have more than 25k

perturbed pixels, which are almost half of the whole im-

age (224 × 224 ≈ 50k). Our method has the lowest time

cost, requiring less than 5 minutes to generate a valid trig-

ger with a higher ASR (62.26% on average). Compared

to NC, our triggers are two orders of magnitude smaller

and have 20% higher ASR. We also conduct an experiment

similar to the above on a desktop to demonstrate that our

method can be easily deployed on machines with limited re-

sources (see Appendix H). We further study the robustness

of generated triggers under various image transformations.

Results show that most of NC triggers become ineffective

after 96% rescaling or 2◦ rotation (nearly 0% ASR). Our

method has a consistently higher ASR than NC (see details

in Appendix I). We also study the robustness of triggers by

applying transformations during trigger generation. The ob-

servations are similar (see Appendix J).

5.4. Model Hardening

As natural backdoors widely exist in clean models. It is

important to harden models against such attacks. We use the

generated triggers by different methods to harden models

and then apply NC and our method to generate triggers for

all class pairs to measure improvement. Table 2 shows the

results on a ResNet32 model for SVHN. Observe that the

improvement on average trigger size by our method is 3x

larger than those by existing methods (i.e., UAP and NC).

We evaluate on two more datasets and five more models,

and the observation is similar. Please see details in Ap-

pendix L.1.

5.5. Backdoor Scanning

We study the performance of existing backdoor scanners

by replacing their trigger inversion method with ours on the

polygon attack and three advanced backdoor attacks.

For polygon backdoors, we evaluate on 300 pre-trained

models from the TrojAI competition. The results show our

method can improve a state-of-the-art scanner K-arm [59]’s

accuracy by 2% via replacing its optimization component



NC (381) Ours (86)Injected NC (616) Ours (351)Injected

Figure 7. Comparison between injected backdoor and reverse engineered backdoor for poisoned models from the TrojAI dataset. Columns

Injected show the original injected backdoors. Columns NC and Ours present backdoors generated by NC and ours, respectively. The

numbers in the brackets denote the number of perturbed pixels of corresponding backdoors.

Table 3. Detecting a new pervasive backdoor attack [48]

Method
Dataset

MNIST CIFAR-10 GTSRB CelebA

NC 1.51 1.74 1.61 1.03

Ours 3.15 2.25 2.59 3.04

(based on NC) with ours. Note that the original scanner al-

ready had a state-of-the-art detection accuracy close to 90%

such that 2% improvement is non-trivial. We also demon-

strate example backdoors generated by NC and our method

in Figure 7. The three images on the left show the injected

trigger, the triggers inverted by NC and by ours, respec-

tively. The three images on the right show another example.

The number beside the method name denotes the trigger

size. Observe that our generated backdoors are significantly

smaller than NC’s. Especially for the left case, ours is one

order of magnitude smaller than that of NC. It is important

to have small inverted triggers as scanners rely on the size

of those triggers to distinguish poisoned models from be-

nign ones. Note that in the TrojAI competition, the location

of injected triggers is randomized to make the triggers more

robust. The location shown in Figure 7 is only one of such

cases. The generated triggers may be at any location.

We also evaluate our method on detecting three ad-

vanced backdoor attacks, namely, WaNet [48], invisible

backdoor [32], and blind backdoor [2]. Compared to sim-

ple patch backdoors, WaNet and invisible backdoor have

triggers that are not fixed. Their triggers are content based

distortions. Blind backdoor uses inverted backdoors by ex-

isting scanners to adversarially train backdoored models,

making the attack robust. We use the same anomaly in-

dex to detect backdoored models as that in the original NC

paper, namely, a model with an anomaly index larger than 2

is considered backdoored. We download all the publicly

available pre-trained models from WaNet [48]. Table 3

shows the anomaly indices for different models using NC

and ours. We can see that NC cannot detect any of the eval-

uated models (consistent with the results reported in [48]),

whereas our method can detect all the backdoored models

(as we can generate a much smaller trigger for the target).

The observation on the other two attacks are the same. Our

inspection shows that although the injected triggers are per-

vasive, the models pick up low level features such as curly

lines during poisoning. NC generates large triggers for the

target class that are not distinguishable from those of be-

nign classes, whereas our triggers are much smaller. Please

see Appendix L.2 for more details. Our method is also con-

sistently superior in detecting invisible backdoor and blind

backdoor. Please see Appendix L.2.

6. Conclusion

We propose a new optimization method for backdoor

trigger generation that minimizes the number of perturbed

pixels. Compared to the state-of-the-art methods, our

method is more cost-effective and can generate triggers with

a smaller size, higher attack success rate, and better robust-

ness. It also improves performance of model hardening and

backdoor scanning.

Limitations of Our Method. Similar to NC and other ex-

isting scanners [19, 38, 59], our technique requires using a

(small) set of clean samples in optimization, trying to flip

their classification results. There are situations in which

clean samples may not be available. It is unclear how our

method can be extended to handle those cases. We will

leave it to our future work.

Potential Negative Societal Impacts. The proposed

method is general, aiming to generate better backdoor trig-

gers. It could serve both attack and defense. Malicious

users could use our method to generate triggers for pre-

trained models and use them in attack. However, just

like adversarial attack techniques are critical to improving

model robustness, the triggers generated by our technique

can be used to scan and mitigate backdoor vulnerabilities.

Acknowledgement

We thank the anonymous reviewers for their construc-

tive comments. This research was supported, in part

by IARPA TrojAI W911NF-19-S-0012, NSF 1901242

and 1910300, ONR N000141712045, N000141410468 and

N000141712947. Any opinions, findings, and conclusions

in this paper are those of the authors only and do not neces-

sarily reflect the views of our sponsors.



References
[1] PixelBackdoor. https://github.com/Gwinhen/

PixelBackdoor, 2022. 2

[2] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors

in deep learning models. In USENIX Security 21, 2021. 8,

19

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah

Estrin, and Vitaly Shmatikov. How to backdoor federated

learning. In AISTATS 2020, pages 2938–2948. PMLR, 2020.

3

[4] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In SP 2017, pages 39–57.

IEEE, 2017. 2, 3, 4, 5

[5] Alvin Chan and Yew-Soon Ong. Poison as a cure: Detect-

ing & neutralizing variable-sized backdoor attacks in deep

neural networks. arXiv preprint arXiv:1911.08040, 2019. 3

[6] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko

Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and

Biplav Srivastava. Detecting backdoor attacks on deep

neural networks by activation clustering. arXiv preprint
arXiv:1811.03728, 2018. 3

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn

Song. Targeted backdoor attacks on deep learning systems

using data poisoning. arXiv preprint arXiv:1712.05526,

2017. 3

[8] Edward Chou, Florian Tramer, and Giancarlo Pellegrino.

Sentinet: Detecting localized universal attack against deep

learning systems. SPW 2020, 2020. 3

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR
20, pages 3213–3223, 2016. 13

[10] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detec-

tion and backdoor attack detection via differential privacy. In

ICLR 19, 2019. 3

[11] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,

Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. Robust physical-world attacks on

deep learning visual classification. In CVPR 18, pages 1625–

1634, 2018. 12, 13

[12] Hao Fu, Akshaj Kumar Veldanda, Prashanth Krishnamurthy,

Siddharth Garg, and Farshad Khorrami. Detecting backdoors

in neural networks using novel feature-based anomaly detec-

tion. arXiv preprint arXiv:2011.02526, 2020. 3

[13] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,

Damith C Ranasinghe, and Surya Nepal. Strip: A defence

against trojan attacks on deep neural networks. In ACSAC
19, pages 113–125, 2019. 3

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. IJRR,

2013. 13

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and Harnessing Adversarial Examples. arXiv
preprint arXiv:1412.6572, 2014. 3

[16] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qual-

itatively characterizing neural network optimization prob-

lems. In ICLR 2015, 2015. 1

[17] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth

Garg. Badnets: Evaluating backdooring attacks on deep neu-

ral networks. IEEE Access, 7:47230–47244, 2019. 1, 3

[18] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn

Song. Tabor: A highly accurate approach to inspecting and

restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019. 18

[19] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and

Dawn Song. Towards inspecting and eliminating trojan back-

doors in deep neural networks. In ICDM, 2020. 1, 3, 8, 18

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 12, 13

[21] Shanjiaoyang Huang, Weiqi Peng, Zhiwei Jia, and Zhuowen

Tu. One-pixel signature: Characterizing cnn models for

backdoor detection. In ECCV, 2020. 1, 3, 18

[22] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neu-

roninspect: Detecting backdoors in neural networks via out-

put explanations. arXiv preprint arXiv:1911.07399, 2019. 1,

3, 18

[23] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrin-

sic certified robustness of bagging against data poisoning at-

tacks. arXiv preprint arXiv:2008.04495, 2020. 3

[24] Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An

empirical analysis of the optimization of deep network loss

surfaces. arXiv e-prints, pages arXiv–1612, 2016. 1

[25] Keras. Applications. https://keras.io/api/
applications/, 2021. 2, 13

[26] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and

Heiko Hoffmann. Universal litmus patterns: Revealing back-

door attacks in cnns. In CVPR, pages 301–310, 2020. 3, 18

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5, 12

[28] Keita Kurita, Paul Michel, and Graham Neubig. Weight poi-

soning attacks on pre-trained models. In ACL 20, 2020. 3

[29] Fredrik Larsson, Michael Felsberg, and P-E Forssen. Corre-

lating fourier descriptors of local patches for road sign recog-

nition. IET Computer Vision, 5(4):244–254, 2011. 13

[30] Alexander Levine and Soheil Feizi. Deep partition aggre-

gation: Provable defense against general poisoning attacks.

arXiv preprint arXiv:2006.14768, 2020. 3

[31] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom

Goldstein. Visualizing the loss landscape of neural nets. In

Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 6391–6401, 2018. 1

[32] Shaofeng Li, Minhui Xue, Benjamin Zhao, Haojin Zhu, and

Xinpeng Zhang. Invisible backdoor attacks on deep neural

networks via steganography and regularization. TDSC 20,

2020. 8, 19

[33] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li,

and Xingjun Ma. Neural attention distillation: Erasing back-

door triggers from deep neural networks. In ICLR 21, 2021.

3



[34] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,

Zhifeng Li, and Shutao Xia. Rethinking the trigger of back-

door attack. arXiv preprint arXiv:2004.04692, 2020. 3

[35] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Com-

posite backdoor attack for deep neural network by mixing

existing benign features. In CCS 20, pages 113–131, 2020.

1, 3

[36] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-

work. arXiv preprint arXiv:1312.4400, 2013. 12

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-

pruning: Defending against backdooring attacks on deep

neural networks. In RAID 18, pages 273–294. Springer,

2018. 3

[38] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma,

Yousra Aafer, and Xiangyu Zhang. Abs: Scanning neural

networks for back-doors by artificial brain stimulation. In

CCS 19, pages 1265–1282, 2019. 1, 2, 3, 7, 8, 15, 18

[39] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,

Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning

attack on neural networks. In NDSS 18, 2018. 1

[40] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Re-

flection backdoor: A natural backdoor attack on deep neural

networks. In ECCV 20, pages 182–199. Springer, Cham,

2020. 1

[41] Yingqi Liu, Guangyu Shen, Guanhong Tao, Zhenting Wang,

Shiqing Ma, and Xiangyu Zhang. Ex-ray: Distinguishing

injected backdoor from natural features in neural networks

by examining differential feature symmetry. arXiv preprint
arXiv:2103.08820, 2021. 1, 3

[42] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans.

In ICCD 17, pages 45–48. IEEE, 2017. 3

[43] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee,

and Xiangyu Zhang. Nic: Detecting adversarial samples

with neural network invariant checking. In NDSS 19, 2019.

3

[44] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learning

models resistant to adversarial attacks. In ICLR 18, 2018. 3,

13

[45] Andreas Mogelmose, Mohan Manubhai Trivedi, and

Thomas B Moeslund. Vision-based traffic sign detection and

analysis for intelligent driver assistance systems: Perspec-

tives and survey. T-ITS, 13(4):1484–1497, 2012. 5, 12

[46] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar

Fawzi, and Pascal Frossard. Universal adversarial perturba-

tions. In CVPR 17, pages 1765–1773, 2017. 3, 4

[47] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. 2011. 5, 12

[48] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-

based backdoor attack. In ICLR 2021, 2021. 8, 19

[49] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic

backdoor attack. NeurIPS 20, 2020. 3

[50] NIST. TrojAI. https://pages.nist.gov/trojai/,

2020. 5, 13, 18

[51] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In Eu-
roS&P 16, pages 372–387. IEEE, 2016. 3, 4

[52] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural

backdoors via generative distribution modeling. In NeurIPS
19, pages 14004–14013, 2019. 3, 18

[53] Shahbaz Rezaei and Xin Liu. A target-agnostic attack on

deep models: Exploiting security vulnerabilities of transfer

learning. In ICLR, 2020. 3

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 115(3):211–252,

2015. 5, 13

[55] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-

siavash. Hidden trigger backdoor attacks. In AAAI 20, num-

ber 07, pages 11957–11965, 2020. 3

[56] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and

Yang Zhang. Dynamic backdoor attacks against machine

learning models. arXiv preprint arXiv:2003.03675, 2020.

3

[57] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Su-

ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.

Poison frogs! targeted clean-label poisoning attacks on neu-

ral networks. In NeurIPS 18, pages 6103–6113, 2018. 3

[58] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson,

Larry S Davis, and Tom Goldstein. Universal adversarial

training. In AAAI 20, volume 34, pages 5636–5643, 2020. 2,

4, 5, 12

[59] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An,

Qiuling Xu, Siyuan Cheng, Shiqing Ma, and Xiangyu Zhang.

Backdoor scanning for deep neural networks through k-arm

optimization. In ICML, 2021. 1, 2, 7, 8, 18

[60] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang.

Demon in the variant: Statistical analysis of dnns for ro-

bust backdoor contamination detection. In USENIX Security,

2021. 3

[61] Florian Tramèr and Dan Boneh. Adversarial training and

robustness for multiple perturbations. In NeurIPS 19, 2019.

3

[62] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral

signatures in backdoor attacks. In NeurIPS, pages 8000–

8010, 2018. 3

[63] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan,

Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri,

Brendan Dolan-Gavitt, and Siddharth Garg. Nnoculation:

broad spectrum and targeted treatment of backdoored dnns.

arXiv preprint arXiv:2002.08313, 2020. 3, 18

[64] Binghui Wang, Xiaoyu Cao, Neil Zhenqiang Gong, et al. On

certifying robustness against backdoor attacks via random-

ized smoothing. arXiv preprint arXiv:2002.11750, 2020. 3

[65] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-

mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural

cleanse: Identifying and mitigating backdoor attacks in neu-

ral networks. In S&P 19, pages 707–723. IEEE, 2019. 1, 2,

3, 5, 17, 18, 19

[66] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao

Zheng, and Ben Y Zhao. With great training comes great



vulnerability: Practical attacks against transfer learning. In

USENIX Security 18, pages 1281–1297, 2018. 3

[67] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit

Vishwakarma, Saurabh Agarwal, Jy-yong Sohn, Kangwook

Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes,

you really can backdoor federated learning. NeurIPS, 33,

2020. 3

[68] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun

Xiong, and Meng Wang. Practical detection of trojan neural

networks: Data-limited and data-free cases. In ECCV, 2020.

1, 3, 18

[69] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and

Bo Li. Rab: Provable robustness against backdoor attacks.

arXiv preprint arXiv:2003.08904, 2020. 3

[70] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than

free: Revisiting adversarial training. In ICLR, 2020. 13

[71] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:

Distributed backdoor attacks against federated learning. In

ICLR, 2019. 3

[72] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A

Gunter, and Bo Li. Detecting ai trojans using meta neural

analysis. arXiv preprint arXiv:1910.03137, 2019. 3, 18

[73] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao.

Latent backdoor attacks on deep neural networks. In CCS,

pages 2041–2055, 2019. 3

[74] Yi Zeng, Han Qiu, Shangwei Guo, Tianwei Zhang, Meikang

Qiu, and Bhavani Thuraisingham. Deepsweep: An evalu-

ation framework for mitigating dnn backdoor attacks using

data augmentation. arXiv preprint arXiv:2012.07006, 2020.

3

[75] Xinqiao Zhang, Huili Chen, and Farinaz Koushanfar. Tad:

Trigger approximation based black-box trojan detection for

ai. arXiv preprint arXiv:2102.01815, 2021. 1

[76] Xiaoyu Zhang, Ajmal Mian, Rohit Gupta, Nazanin Rah-

navard, and Mubarak Shah. Cassandra: Detecting trojaned

networks from adversarial perturbations. arXiv preprint
arXiv:2007.14433, 2020. 1, 3, 18

[77] Xinyang Zhang, Zheng Zhang, and Ting Wang. Trojaning

language models for fun and profit. In EuroS&P, 2021. 3

[78] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey,

Jingjing Chen, and Yu-Gang Jiang. Clean-label backdoor

attacks on video recognition models. In CVPR 20, pages

14443–14452, 2020. 3

[79] Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and

Hongyi Wu. Gangsweep: Sweep out neural backdoors by

gan. In Proceedings of the 28th ACM International Confer-
ence on Multimedia, pages 3173–3181, 2020. 18



Appendix

A. Optimization of CW

The CW L0 attack first searches for perturbations on all

pixels that can cause misclassification using the L2 norm. It

then uses a processing step external to the optimization to

remove the perturbations that are the least important after

each optimization epoch. The objective of optimization is

the following.

min
w

LCW = ‖x′ − x‖22 + c · f(x′), (7)

where f(x′) = max
(
max{Z(x′)i : i 	= t} − Z(x′)t,−κ

)
,

(8)

and x′ = v ◦ 1

2
tanh(w) + (1− v) ◦ x. (9)

The first objective in LCW is to minimize the L2 distance

between the perturbed input x′ and the original input x.

The second objective f(x′) is for inducing misclassifica-

tion by enlarging the target label t’s logits value (denoted

by Z(·)) and reducing the largest logits of other labels as

shown in Equation 8. The parameter κ controls the confi-

dence of the misclassification. Equation 9 explains how an

input x is perturbed. The perturbation is controlled by a

mask vector v similar to the mask in NC. Its value is either

0 or 1, with the former indicating the corresponding pixel

cannot be perturbed and the latter meaning that the pixel is

replaced with the perturbation value. Variable w is a vec-

tor of arbitrary values denoting the perturbations. Function
1
2 tanh(w) projects these values to [−0.5, 0.5]. Note that

in CW, each pixel value is normalized to [−0.5, 0.5]. To

reduce the number of perturbed pixels, CW leverages a pro-

cessing step external to the optimization after each epoch.

Specifically, let δ = 1
2 tanh(w) be the perturbations and

g = ∇LCW be the gradient of objective function. It com-

putes the importance of the perturbation of a pixel i by

gi · δi. CW sets vi to 0 if the importance is smaller than

a threshold. The change of v is monotonic. The algorithm

can be easily adapted to generate backdoor: instead of op-

timizing w for one input, we optimize it for a set of inputs.

B. Optimization of Universal Adversarial Per-
turbation (UAP)

The existing UAP algorithm mainly produces perturba-

tions for untargeted attacks. Since backdoor attacks are

usually targeted, we extend the algorithm as follows.

min
δ

LUAP =
1

N

N∑
i=1

L̂(M(xi + δ), yt
)

s.t. ‖δ‖∞ ≤ ε,

(10)

where L̂(M(xi + δ), yt
)
= min{L(xi + δ, yt), β}.

(11)

Variable δ denotes the backdoor perturbation, bounded by

an L∞ size ε. Parameter β is a threshold for the loss of

individual samples so as to avoid the loss of a single sam-

ple dominating the whole objective and to achieve a higher

ASR [58]. Intuitively, the method aims to bound the max-

imum perturbation on a single pixel while minimizing the

adversarial loss. Such bound is needed. Otherwise with an

unbounded L∞ distance, the optimization might completely

change the input image in order to achieve its goal. We do

not add a loss term to minimize the L∞ distance because its

ASR is low to begin with. Our results in Appendix E and

F show that UAP cannot achieve high ASRs. Furthermore,

almost all the pixels on an input image are perturbed. This

makes its application in the physical world very difficult.

The second and third images in the first row in Figure 2 (see

Section 1) present the generated backdoors by UAP and its

reduced version, respectively. Observe that almost all the

pixels (50k ≈ 224 × 224) are perturbed while the ASR is

only 2%. Reducing the number of perturbed pixels leads

to 0% ASR. Its performance on CIFAR-10 is better. The

green line in Figure 3 (see Section 3) shows that the ASR

for a UAP trigger can be as high as 0.6 (the right end of the

line). However, applying only the top 200 perturbations of

UAP backdoor has nearly zero ASR, indicating most per-

turbations in the backdoor are important.

C. Detailed Experiment Setup
CIFAR-10 [27] is an object recognition dataset for a 10-

class classification task, which contains 60,000 images. We

split the whole dataset into three sets: 48,000 images for

training, 2,000 for validation and 10,000 for testing. Two

different models are utilized for this dataset: ResNet20 [20],

Network in Network (NiN) [36].

SVHN (Street View House Numbers) [47] dataset contains

house number digits extracted from Google Street View im-

ages, which consist of 73,257 training images and 26,032

test images. We further split the original training set into

67,257 samples for training and 6,000 samples for valida-

tion. We employ two models, NiN [36] and ResNet32 [20].

LISA [45] is a U.S. traffic sign dataset that contains 47 dif-

ferent road signs. However, the number of samples of dif-

ferent classes is not well-balanced, with some classes hav-

ing very few images. We use the same setting as in an exist-

ing work [11] by choosing 18 most common classes based



(a) CIFAR-10 (b) SVHN

Figure 8. Comparison of CW and ours on the generation efficiency

for all class pairs on CIFAR-10 and SVHN datasets. The x-axis

denotes the time in seconds and the y-axis shows the size of back-

doors during the trigger generation.

on the number of training examples, and split the dataset

into 5,635 training samples, 704 validation samples and 704

test samples. We use two model structures for this dataset:

A CNN model [11] that consists of three convolutional lay-

ers and one fully-connected layer, and a ResNet20 [20].

ImageNet [54] dataset is a large set for image classifi-

cation with 1,000 labels, which contains 1,281,167 train-

ing images and 50,000 validation images. We use a

ResNet50 [20] model downloaded from a widely-used

model repository [25].

For backdoor scanning, we randomly select 100 models

(half clean and half poisoned) in each round from rounds

2-4 of the TrojAI competition [50]. We exclude the round

1 models due to its simple poisoning settings. In total, we

have 150 clean models and 150 poisoned models. The task

of backdoor scanning is to determine whether a given model

is poisoned or not. TrojAI models utilize 16 different struc-

tures such as DenseNet121, InceptionV3, MobileNetV2,

etc. Each model is trained to classify synthetic traffic signs

to between 5 and 45 classes. Input images are created by

compositing a foreground object, e.g., a synthetic traffic

sign, with a random background image from five different

datasets in three categories from the KITTI dataset [14], the

Cityscapes dataset [9] and the Swedish Roads dataset [29].

The organizer provides 2-50 clean images per class for each

model in different rounds. Poisoned models are trojaned

with various kinds of backdoors, including universal, label-

specific and position-specific. We consider polygon trig-

gers in this paper which are pixel patterns (e.g., polygons

with solid color). Random transformations, such as shifting,

titling, lighting, blurring, and weather effects, are applied

during training to improve dataset diversity. Also, adversar-

ial training with PGD (Projected Gradient Descent) [44] and

FBF (Fast is Better than Free) [70] is leveraged to improve

model quality in rounds 3-4.

D. Comparison of Time Cost with CW
We compare the time cost of CW and ours in Figure 8.

The x-axis denotes the time in seconds and the y-axis de-

Figure 9. Comparison of UAP and ours on the ASR for all class

pairs on the CIFAR-10 dataset

notes the trigger size. We record the generation for all

class pairs from CIFAR-10 and SVHN. Observe that CW

spends a large amount of time finding a feasible solution

at the beginning (around 120 seconds). After that, it aims

to reduce the number of perturbed pixels using an external

step as discussed in Section 3.2. This leads to the staircase

phenomenon in Figure 8 as CW tries to find a feasible so-

lution with the given set of pixels allowed for perturbing.

Our method converges significantly faster than CW. On av-

erage, ours is 10.88 times faster on CIFAR-10 and 11.53

times faster on SVHN.

E. Comparison with UAP on CIFAR-10
UAP is based on L∞ and hence not directly compara-

ble with our method. We follow the same procedure as be-

fore (see comparison with NC in the evaluation section):

aligning by trigger sizes and then comparing ASRs, and

aligning by ASRs and then comparing trigger sizes. The

left heat map in Figure 9 shows the results when aligning

trigger sizes. The average ASR of reduced UAP triggers

is only 0.96%, whereas the original triggers have 68.21%

ASR. It is clear that triggers generated by UAP are inef-

fective with a small number of perturbed pixels like ours.

The left heat map in Figure 10b shows the results of align-

ing ASRs. Observe that the UAP triggers perturb all pixels,

whereas ours are two orders of magnitude smaller. This is

expected as UAP is an L∞ method. Triggers generated by

such a method can hardly be used in physical attack.

F. Evaluation on SVHN
Comparison with CW Optimization. In this experiment,

we use CW and our method to generate natural triggers for

all the class pairs for a clean NiN model on SVHN. Fig-

ure 12 shows the comparison. Each cell in a heat map de-

notes the result for a natural backdoor flipping all the test

samples from a victim class (row) to a target class (col-

umn). Figure 12a and Figure 12b show the trigger sizes and

the ASRs for CW (the left heat map) and ours (the middle



(a) Comparison with NC

(b) Comparison with UAP

Figure 10. Comparison of the number of perturbed pixels with the same ASR for all class pairs on the CIFAR-10 dataset. The first two heat

maps in each subfigure illustrate the results for NC/UAP and ours, respectively. The last heat map shows how much larger of generated

backdoors by NC/UAP compared to ours.

heat map), respectively. The right heat map in Figure 12a

shows how much larger the CW triggers are compared to

ours. Observe that there are a few class pairs where CW and

ours have the same trigger size, such as 3 → 0 and 5 → 2.

However, for other pairs, CW has a significantly larger trig-

ger size than ours. For instance, for pair 2 → 0, the trigger

by CW is 110% larger than ours. Even with a much larger

trigger, CW however still has lower ASR (59% vs 83% for

2 → 0). This is because CW uses an external procedure to

reduce the number of perturbed pixels (removing unimpor-

tant pixels based on gi · δi as discussed in Section 3.2).

Comparison with NC. NC tends to generate triggers with

a large number of small perturbations. The generated trig-

gers hence cannot be easily applied in physical attacks. We

conduct two experiments: (1) align the number of perturbed

pixels of the NC triggers and our triggers and then compare

the corresponding ASRs; (2) align the ASRs and compare

the trigger sizes. For the first experiment, we use the sizes

of our triggers as the reference, and align the triggers by

NC by gradually removing their smallest perturbations un-

til they have the same sizes as ours. We then compare the

ASRs of our triggers and the reduced NC triggers. Figure 13

presents the results. Observe that for most class pairs, the

reduced NC triggers have reasonable ASRs with an average

of 75.87%, degraded from 76.55% without reduction. The

results on SVHN are better than those on CIFAR-10 and

ImageNet. Because SVHN is a dataset for digital number

(from 0 to 9) recognition, which is a simpler task than objec-

tion recognition in CIFRA-10 and ImageNet. Optimization

methods like NC can generate a digit shape (e.g., 1) with

a few pixels change. This also explains the similar ASRs

of triggers with and without reduction. Our triggers have

higher ASRs than NC’s for all class pairs, with the largest

difference of 21% for 2 → 8 and 8 → 2. On average, ours

have 83.18% ASR, even higher than the original NC trig-

gers without size reduction. In the second experiment, we

use NC’s ASR as the reference and then gradually remove

the smallest perturbations in our triggers until their ASRs

drop to the same level as NC’s and then compare the sizes.

Figure 14a presents the results. Observe that NC has one or-

der of magnitude larger trigger sizes than ours for all class

pairs (except for 6 → 5 and 3 → 8). Since the reduced NC

triggers have similar ASRs as the non-reduced ones, many

pixel perturbations by NC are redundant and can be pruned

for SVHN. After alignment, our generated triggers perturb

fewer pixels.

Comparison with UAP. UAP is based on L∞ and hence

not directly comparable either. We follow the same proce-



(a) Snowbird (b) Robin

(c) Black grouse (d) Kangaroo

Figure 11. Evaluation of NC and our triggers under transformations on ImageNet. The victim class is turtle and the target classes are in

the caption of each subfigure.

dure as before: aligning by trigger sizes and then comparing

ASRs, and aligning by ASRs and then comparing trigger

sizes. The middle heat map in Figure 13 shows the results

when aligning trigger sizes. The average ASR of reduced

UAP triggers is only 0.51%, whereas the original triggers

have 18.76% ASR, which is also very low. It is clear that

triggers generated by UAP are completely ineffective with

a small number of perturbed pixels like ours. The left heat

map in Figure 14b shows the results of aligning ASRs. Ob-

serve that the UAP triggers perturb all pixels, whereas ours

are two orders of magnitude smaller.

G. Comparison with NC Variants

NC variants are based on NC and hence limited by the

performance of NC. We test on a NC variant, ABS [38],

for generating a trigger for pair plane→car on a ResNet20

model on CIFAR-10. The generated trigger by ABS has 84

perturbed pixels, which is twice larger than ours (38). The

ASR on the test set is 38% by ABS and 78% by ours. If

we reduce the number of perturbed pixels by ABS to match

the size of our trigger, it has only 16% ASR. This empiri-

cally demonstrates that NC variants have the same limita-

tion as NC. Besides, as those variants are built upon NC,

they can be modified to use our method as the core opti-

mization, which can boost their performance.

H. Evaluation on Desktop

We conduct an experiment on a desktop equipped with

one Intel i7-8700 Processor, 16 GB of RAM, and a single

NVIDIA GeForce GTX 1070 Ti GPU, which is a common

affordable desktop machine. We use the case shown in Fig-

Table 4. Experimental comparison on different machines

Method Machine Time #Pixels ASR

UAP
Server 22.69 50173 2.00%

Desktop 21.12 50170 2.00%

NC
Server 9.02 26583 28.00%

Desktop 10.62 17516 20.00%

Ours
Server 4.27 822 70.00%

Desktop 5.40 818 70.00%

ure 2 in Section 1 and the results are shown in Table 4. Ob-

serve that the runtime for different methods on the desktop

is similar to that on the server with minor differences. Our

method still has the lowest time cost, and is around 2 times

faster than NC and 4 times faster than UAP. Our method can

be easily deployed on machines with limited resources.

I. Robustness of Generated Triggers

We study the robustness of generated triggers under vari-

ous image transformations. As the triggers by CW and UAP

have very low ASRs, we hence only consider NC in this

study. For some target classes, NC still has a low ASR.

We then increase the strength of the adversary by utilizing

100 images for both NC and ours during trigger generation

(50 images for the study in Section 5.3). This yields bet-

ter test ASRs in general. We test on two types of transfor-

mations with different parameters: rescaling and rotation.

Figure 11 presents the results for a source class turtle, with

the target classes in individual subfigures. For each target

class, we show the results under rescaling transformation

on the left and under rotation on the right. The x-axis de-



Table 5. Comparison of different methods augmented with transformations during generation on a victim class turtle from the ImageNet

dataset. The first column shows the target classes. The second column shows backdoor generation methods. The third column is the ASR

of original triggers. The 4th-7th columns show the ASR under different rescaling transformations. The 8th-12th columns show the ASR

under different rotation transformations. The last column shows the average ASR.

Target Method Normal
Rescaling Rotation

Average

98% 96% 88% 80% 1◦ 2◦ 3◦ 4◦ 5◦

Snowbird

NC 80.00% 74.00% 46.00% 0.00% 0.00% 82.00% 46.00% 8.00% 8.00% 2.00% 34.60%

NC Prune 64.00% 44.00% 16.00% 0.00% 0.00% 50.00% 18.00% 0.00% 0.00% 0.00% 14.22%

Ours 78.00% 66.00% 64.00% 16.00% 6.00% 74.00% 26.00% 18.00% 4.00% 4.00% 35.60%

Robin

NC 80.00% 70.00% 56.00% 16.00% 12.00% 68.00% 50.00% 20.00% 18.00% 10.00% 40.00%

NC Prune 42.00% 38.00% 22.00% 6.00% 4.00% 32.00% 18.00% 4.00% 6.00% 4.00% 17.60%

Ours 84.00% 78.00% 70.00% 46.00% 32.00% 80.00% 46.00% 40.00% 20.00% 12.00% 50.80%

Grouse

NC 82.00% 70.00% 48.00% 0.00% 0.00% 70.00% 6.00% 2.00% 0.00% 0.00% 27.80%

NC Prune 76.00% 68.00% 42.00% 0.00% 0.00% 54.00% 4.00% 2.00% 0.00% 0.00% 18.89%

Ours 82.00% 70.00% 68.00% 30.00% 28.00% 78.00% 42.00% 28.00% 24.00% 24.00% 47.40%

Kangaroo

NC 80.00% 72.00% 52.00% 0.00% 0.00% 74.00% 38.00% 34.00% 28.00% 20.00% 39.80%

NC Prune 66.00% 46.00% 28.00% 0.00% 0.00% 52.00% 24.00% 16.00% 18.00% 8.00% 21.33%

Ours 78.00% 70.00% 60.00% 50.00% 34.00% 76.00% 54.00% 52.00% 48.00% 40.00% 56.20%

notes the transformation strengths with the first one without

any transformations, and the y-axis denotes the ASR. As we

discussed in Section 5.3, NC has a much larger number of

perturbed pixels than ours. Hence besides the original NC

triggers, we also reduce the NC triggers to match our num-

bers of perturbed pixels and study their robustness as well.

They are denoted as NC Prune in the figure. Observe that

most of NC triggers become ineffective after 96% rescaling

or 2◦ rotation (near 0% ASR). NC Prune has a lower ASR,

even without transformations. For the target kangaroo, NC

Prune has 28% lower ASR compared to NC, indicting that

NC does require a large number of perturbed pixels to be

effective, which is not so desirable for physical attacks. Our

method has a consistently higher ASR than NC. For target

kangaroo, our trigger has around 40% ASR with most of the

transformations. We further study the robustness of triggers

by applying transformations during the trigger generation.

The observations are similar (see the following section).

J. Augmentation during Backdoor Generation

In this section, we study the robustness of triggers by

applying transformations during trigger generation. Specifi-

cally, for input samples stamped with triggers, we randomly

rescale 1% and rotate 1◦ for those samples. Using larger

transformations would increase the trigger size, which is

not desired for physical attacks. Table 5 shows the ASR

results for augmented triggers on a victim class turtle from

the ImageNet dataset. The first two columns show the target

classes and backdoor generation methods. The third column

is the ASR of original triggers. The 4th-7th columns show

the ASR under different rescaling transformations. The 8th-

12th columns show the ASR under different rotation trans-

formations. The last column shows the average ASR. As

NC has a much larger number of perturbed pixels than ours.

Hence besides the original NC triggers, we also reduce the

NC triggers to match our trigger sizes and study their ro-

bustness as well, which is denoted as NC Prune in the table.

Observe that the ASRs of both NC and ours are increased on

small scale transformations (98%-96% rescaling and 1◦-2◦

rotation) compared to the results in Figure 11 in the previ-

ous section. However, for larger transformations, NC still

has near 0% ASR on most cases. NC Prune has a low ASR

even with the augmentation during the trigger generation.

On average, it has only 18.01% ASR. Backdoors gener-

ated by our method can maintain a reasonable ASR. For

instance, under the largest rescaling transformation (80%),

our triggers still have around 30% ASR on the bottom three

target classes. On average, our method has 47.50% ASR,

11.95% higher than NC (35.55%) and 29.49% higher than

NC Prune (18.01%), indicating our generated triggers are

more suitable for physical attacks.

K. Ablation Study

Our method introduces two components for approximat-

ing the number of perturbed pixels: the tanh loss and

the two variables bp and bn for the positive and negative

perturbations. We study individual components to under-

stand their effects. In particular, we consider four settings,

namely, (1) excluding the tanh loss; (2) replacing the two

variables with a single variable for the positive perturba-

tion; (3) replacing the two variables with a single variable

for both positive and negative perturbations; (4) excluding

both the tanh loss and the two variables. The results for

pair plane→dog from CIFAR-10 on a ResNet20 model with

10 random runs are shown in Table 6. The number of per-

turbed pixels (#Pixels) is presented in the second column



Table 6. Ablation study on effects of different components.

The results are collected from 10 random runs for the class pair

plane→dog for a ResNet20 model on the CIFAR-10 dataset.

Method #Pixels ASR

Ours 38.70± 5.10 80.07±3.96%

- tanh loss 46.40±10.07 79.73±2.11%

- two variables (positive) 84.50±12.24 72.64±3.82%

- two variables 1024.00± 0.00 90.99±4.40%

- tanh loss & two variables 1023.10± 0.88 88.39±4.85%

and the ASR in the third column. Observe that without us-

ing the tanh loss, the trigger size increases by 20% from

38.70 to 46.40 on average. The standard deviation is twice

of ours (10.07 vs. 5.10). Replacing the two variables with

a single positive variable doubles the size of the generated

trigger (from 38.70 to 84.50), and the ASR also drops (from

80.07% to 72.64%). Using a single variable for both pos-

itive and negative perturbations cannot reduce the number

of perturbed pixels (the last two rows). As discussed in

Section 4, there is a steep slope where the perturbation is

0 when using such a variable. It is unlikely for the opti-

mization to stabilize at the 0 point. Hence, almost all the

pixels will be perturbed during the trigger generation. This

indicates the necessity of separating the positive and nega-

tive perturbations during the optimization. Using the tanh
loss can further reduce the trigger size without sacrificing

the ASR.

L. Applications
In this section, we evaluate our method in two applica-

tions including model hardening and backdoor scanning.

L.1. Model Hardening

In the introduction section, we have shown that a small

backdoor generated by our method can flip the majority

of samples of turtle to kangaroo in the ImageNet dataset.

This is a critical security threat. We hence utilize generated

triggers to harden the model by training on normal inputs

stamped with triggers. After hardening, an adversary is sup-

posed to produce a large and visible backdoor, which can be

easily detectable by automated tools or human inspectors.

CW is extremely expensive in trigger generation (as shown

in Section 5 and Appendix D), which is not computationally

feasible for model hardening that requires a large number

of triggers generated on-the-fly during training. We hence

only consider UAP, NC and ours for model hardening. In

the original paper [65], NC generates universal backdoors

for all classes beforehand, and then hardens the model us-

ing this set of backdoors by stamping on training inputs. We

further improve the hardening process by generating univer-

sal backdoors on-the-fly, similar to adversarial training. We

call it iterative NC. We use the same procedure for UAP and

ours to harden models. The L∞ bound for UAP training is

determined according to the normal accuracy drop. We use

L∞ bound of 4/255 for CIFAR-10, 0.05 for SVHN, and

0.03 for LISA.

We use the mask size by NC and the number of perturbed

pixels by our method to measure the class distance from a

victim class to a target class. The goal of model harden-

ing is hence to enlarge the class distance for all pairs. We

use the relative improvement of pairwise class distance as

the metric. That is, we compute the improvement percent-

age for every class pair and obtain the average, defined as

follows.

1

n× (n− 1)

n∑
i=1

n∑
j=1,j �=i

d̂i→j − di→j

di→j
, (12)

where n is the number of classes; di→j and d̂i→j are the

class distances from i to j for the original model and the

hardened model, respectively. We randomly select 100 sam-

ples from the validation set of class i and apply NC/ours for

1,000 epochs to generate a backdoor that can flip 90% of

those samples to the target class j. As a backdoor is ran-

domly initialized during generation, to avoid the bias from

randomness, we run the generation on the same pair for 3

times and use the smallest backdoor size as the class dis-

tance. We show the average relative improvement along

with the average class distance in the following results.

Table 7 shows the results for model hardening on

CIFAR-10, SVHN and LISA datasets. The first three

columns denote the dataset, model structure and training

methods, respectively. The 4th column shows the model

accuracy on the test set. The 5th column presents the train-

ing time in minutes. The 6th and 8th columns show the

average class distance measured by NC and ours, respec-

tively. The 7th and 9th columns show the relative improve-

ment of class distance measured using Equation 12. UAP

has the lowest improvement on distances by both NC and

ours on CIFAR-10 and SVHN, except for the ResNet20

model on CIFAR-10 measured by NC. For cases such as

ResNet32 on SVHN, UAP instead reduces the class dis-

tance measured by both NC and ours. NC can achieve a

reasonable improvement from 4.58% to 39.10% measured

by NC and from 3.96% to 49.56% measured by ours. The

iterative version of NC further improves the class distance.

It has an average of 68.61% improvement on the distance

measured by NC and 89.70% by ours. Using our method

for hardening produces the largest class distance improve-

ment on both metrics (73.02% by NC and 106.37% by ours)

on average. Specifically, models hardened by our method

have much more improvements on the distance measured

by ours, and are also better when measured by NC. This

demonstrates that our backdoor generation method is better

than NC in exposing model vulnerabilities. Models hard-



Table 7. Comparison of different methods on model hardening. First three columns denote different datasets (D), models (M) and training

methods for the evaluation. The fourth column denotes model accuracy on the test set. The fifth column shows the training time in minutes.

The sixth and the eighth columns show the average class distance across all class pairs measured by NC and ours, respectively. The seventh

and the ninth columns denote the improvement of pairwise class distance (measured by NC and ours) by different techniques compared to

that of original models (Natural).

D M Method Accuracy Time (m) AdvNC IncreaseNC AdvOurs IncreaseOurs

C
IF

A
R

-1
0 R
es

N
et

2
0

Natural 91.52% 56.77 53.49 - 43.91 -

UAP 90.04% 243.11 96.00 81.57% 61.62 42.91%

NC 90.83% 84.88 72.56 37.84% 62.77 49.56%

Iterative NC 90.57% 65.00 93.54 78.16% 89.24 112.12%

Ours 90.32% 64.11 95.17 79.21% 100.72 139.77%

N
iN

Natural 88.09% 68.30 60.67 - 38.17 -

UAP 86.61% 196.67 57.56 -5.22% 36.92 -2.05%

NC 86.64% 40.35 75.49 26.49% 52.20 42.89%

Iterative NC 86.76% 33.90 90.69 54.09% 66.69 87.75%

Ours 86.32% 28.46 93.77 59.08% 74.31 108.59%

S
V

H
N

N
iN

Natural 95.61% 10.50 64.63 - 37.17 -

UAP 94.63% 45.47 69.31 6.99% 41.56 12.37%

NC 94.89% 24.72 82.90 32.19% 53.16 48.96%

Iterative NC 95.03% 53.40 107.15 65.97% 67.53 88.99%

Ours 94.86% 42.71 108.43 68.47% 71.18 99.86%

R
es

N
et

3
2

Natural 95.15% 26.70 55.11 - 32.83 -

UAP 93.16% 228.95 49.40 -8.86% 23.69 -27.08%

NC 93.45% 31.51 75.77 39.10% 45.57 39.69%

Iterative NC 94.60% 109.30 120.20 113.92% 76.20 128.26%

Ours 94.18% 97.55 122.79 121.07% 83.24 152.02%

L
IS

A

C
N

N

Natural 97.30% 0.15 68.47 - 32.92 -

UAP 95.60% 1.79 65.90 -1.23% 32.31 -0.43%

NC 96.88% 8.27 71.69 4.58% 35.09 6.70%

Iterative NC 96.45% 11.34 101.48 46.13% 53.38 60.36%

Ours 96.02% 10.41 107.34 54.34% 56.83 70.11%

R
es

N
et

2
0

Natural 98.86% 1.70 72.05 - 43.62 -

UAP 96.16% 6.33 97.11 36.32% 56.77 30.77%

NC 99.29% 34.34 75.51 4.67% 45.21 3.96%

Iterative NC 98.30% 25.37 113.35 53.38% 72.18 60.74%

Ours 98.30% 27.03 115.63 55.96% 75.58 67.86%

ened by our method are more resilient to existing natural

backdoor attacks.

L.2. Backdoor Scanning

Backdoor scanning aims to scan a given model to de-

cide if it contains a backdoor, without assuming any inputs

stamped with the backdoor pattern [19,21,22,26,52,63,68,

72,76]. This is one of the popular defense solutions against

backdoor attack. Many existing backdoor scanners are built

on top of NC’s trigger generation method. For instance, a

state-of-the-art approach K-arm [59] uses NC as the base

optimization method to generation backdoor. It iteratively

and stochastically selects the most promising labels (poten-

tially poisoned) for optimization with the guidance of an

objective function. It achieves the top performance on the

TrojAI competition organized by IARPA [50], outperform-

ing NC [65], ABS [38], TABOR [18], DLTND [68], and

other existing methods. To evaluate the performance of our

backdoor generation method in downstream applications,

we replace the NC method with ours in the K-arm scanner.

We conduct the experiment on 300 pre-trained models from

the TrojAI competition. Detailed setup can be found in Ap-

pendix C. For a fair comparison, we use the same setting in

K-arm (including the pre-selection and the scheduler) and

only replace the optimization component. The compari-

son results are shown in Table 8. We also include the re-

sults of a few other baselines from the K-arm paper [59].

The first column denotes detection methods. The follow-

ing six columns present detection accuracy and time (per

model in seconds) on different rounds. Observe that using

our method can further boost the performance of K-arm for

1% on round 3 and 2% on round 4, surpassing the state-of-

the-art results. Note that since the original K-arm already

has high accuracy, the room to improve is small. The time

cost is comparable using our method. We also compare our

method with another detection approach GangSweep [79]

on the TrojAI round 3. We randomly select 20 benign mod-

els and 20 poisoned models to conduct the experiment. The



Table 8. Scanning backdoored models on the TrojAI dataset

Method
Round 2 Round 3 Round 4

Acc. Time(s) Acc. Time(s) Acc. Time(s)

ABS 62% 1527 71% 1435 79% 525

TABOR 55% > 32000 60% > 30000 60% > 35000

DLTND 60% > 26000 65% > 29000 65% > 31000

K-arm 85% 210 91% 183 87% 292

Ours 85% 231 92% 198 89% 320

detection accuracy of GangSweep is only 57.50%, much

lower than ours (92%).

We further evaluate our method on detecting three ad-

vanced backdoor attacks, namely, WaNet [48], invisible

backdoor [32], and blind Backdoor [2].

WaNet [48] uses distortion transformation (e.g., distort-

ing straight lines) as the backdoor. At the pixel level, the

backdoor varies for different inputs. We conduct an ex-

periment on backdoored models downloaded from the of-

ficial repository [48], which are trained on MNIST, CIFAR-

10, GTSRB and CelebA, respectively. We use NC and our

method to reverse engineer triggers for these models. We

use the anomaly index to analyze generated triggers for

backdoor detection as in the original NC paper [65]. A

large index means that the generated trigger for a label is

much smaller than those for other labels. A model with

an anomaly index larger than 2 is considered backdoored

(i.e., the default setting). Table 3 in Section 5.5 shows the

anomaly indices for different models using NC and ours.

We can see that NC cannot detect any of the evaluated mod-

els (consistent with the results reported in [48]), whereas

our method can detect all the backdoored models (as we can

generate a much smaller trigger for the target). Our inspec-

tion shows that although the injected triggers are pervasive,

the models pick up low level features such as curly lines

during poisoning. NC generates large triggers for the tar-

get class that are not distinguishable from those of benign

classes, whereas our triggers are much smaller.

The invisible backdoor [32] uses a uniform perturbation

with the smallest L2 as the backdoor, which is hence perva-

sive. Since the authors did not provide the implementation

or backdoored models in the paper, we have contacted the

authors but haven’t heard from them yet. We also tried to

re-implement their attack based on the paper. With limited

details of hyper parameters, the backdoor we got is larger

than what was reported in the paper. We hence tested on a

backdoored model on CIFAR-10 with the smallest L2 back-

door that we can get. The normal test accuracy is 90.96%

and the ASR is 99.63%. We then use NC and our method to

evaluate this model. The anomaly index is 0.77 by NC and

2.28 by ours. The result shows that our method can detect

the model as backdoored, whereas NC cannot.

The blind backdoor attack [2] can evade the detection

of NC. We study our method against such a strong attack.

We use the official repository from the original paper [2]

to conduct an experiment. We use the MNIST dataset and

replace the optimization of NC with ours in the robust train-

ing. After training, we run our method on the trained model

to generate triggers for all classes, and use anomaly detec-

tion to see whether the model is backdoored. For the above

robustly trained model, our method has an anomaly index of

3.37, which can detect the model as backdoored. It indicates

that the smoother loss function in our technique allows find-

ing the true trigger despite the robust training. We further

demonstrate that when applying our method on the robust

model trained with NC (the same in [2]), we can also detect

the model as backdoored with an anomaly index of 3.04.



Table 9. Comparison of different methods on more class pairs from ImageNet. The first column shows the victim→target class pairs. The

second column shows the methods. The third column is the time cost (in minutes) and the fourth column the number of perturbed pixels

(#Pixels). The last column shows ASR on the samples from the validation set.

Pair Method Time (min) #Pixels ASR

Bullfrog→Robin

UAP 10.28 50175 0.00%

NC 9.20 26016 28.00%

Ours 3.69 489 50.00%

Gorilla→Tench

UAP 12.37 50173 0.00%

NC 9.19 26803 10.00%

Ours 3.78 587 50.00%

Gorilla→Goldfish

UAP 12.63 50174 0.00%

NC 9.19 26532 50.00%

Ours 4.20 626 62.00%

Gorilla→Hammerhead

UAP 12.79 50173 0.00%

NC 9.11 26854 30.00%

Ours 4.54 643 54.00%

Treefrog→Goldfish

UAP 13.21 50175 44.00%

NC 9.20 26714 48.00%

Ours 4.04 551 58.00%

Pair Method Time (min) #Pixels ASR

Treefrog→Tiger Shark

UAP 12.70 50175 14.00%

NC 9.21 27383 28.00%

Ours 4.12 967 58.00%

Peacock→Ostrich

UAP 13.04 50175 0.00%

NC 9.47 29800 12.00%

Ours 4.29 1447 54.00%

Peacock→Bulbul

UAP 12.70 50171 0.00%

NC 9.37 28882 50.00%

Ours 5.02 1512 62.00%

Chihuahua→Partridge

UAP 10.45 50175 0.00%

NC 9.19 26228 36.00%

Ours 3.77 666 54.00%

Chihuahua→Isopod

UAP 10.35 50173 8.00%

NC 9.27 26397 26.00%

Ours 3.69 626 56.00%

(a) #Pixels of generated triggers. The last heat map shows how much larger CW triggers are.

(b) ASRs of generated backdoors. The last heat map shows how much higher our ASRs are.

Figure 12. Comparison of CW and ours for all class pairs on SVHN. Each cell denotes the result of a generated trigger from a victim class

(row) to a target class (column). The first two heat maps in each subfigure illustrate the results for CW and ours. The last shows the relative

difference.



Figure 13. Comparison of NC, UAP and ours on the ASR for all class pairs on the SVHN dataset

(a) Comparison with NC

(b) Comparison with UAP

Figure 14. Comparison of the number of perturbed pixels with the same ASR for all class pairs on the SVHN dataset. The first two heat

maps in each subfigure illustrate the results for NC/UAP and ours, respectively. The last heat map shows how much larger of generated

backdoors by NC/UAP compared to ours.


