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Abstract— In this paper we propose a novel integrated DC/DC
converter featuring a single-input-multiple-output architecture
for emerging System-on-Chip applications to improve load
transient response and power side-channel security. The converter
is able to provide multiple outputs ranging from 0.3V to 0.92V
using a global 1V input. By using modularized circuit blocks, the
converter can be extended to provide higher power or more
outputs with minimal design complexity. Performance metrics
including power efficiency and load transient response can be well
maintained as well. Implemented in 32nm technology, single
output efficiency can reach to 88% for the post layout models. By
enabling delay blocks and circuits sharing, the Pearson correlation
coefficient of input and output can be reduced to 0.1 under re-
keying test. The reference voltage tracking speed is up to 31.95
V/us and peak load step response is 53 mA/ns. Without capacitors,
the converter consumes 2.85 mm? for high power version and only
1.4 mm? for the low power case.

Keywords—DC/DC converter, load transient response, dynamic
voltage scaling, scalability, power side-channel security.

1. INTRODUCTION

Power management for System-on-Chip (SoC) applications
is facing new challenges as both load transient responses
and side-channel security requirements are becoming more
important [1]. Meanwhile, as more Internet-of-Things (IoT)
and Edge Computing enabled applications come to the market,
we are looking for more flexible and scalable solutions to lower
design complexity and reduce cost without sacrificing any
performance. Traditionally, large off-chip power converters are
working with point-of-load on-chip converters to meet power
delivery and management requirements. However, the limited
area cannot allow independent power supplies for each of the
ever-increasing number of workloads [2, 3]. On the other hand,
protecting such embedded devices from various types of attacks
are also urgent. Among them power side-channel attack is still
the most common and effective one to steal critical information
from the circuit. Thus, conventional architectures may not be
sufficient, to match response speed, efficiency, scalability, and
security requirements [4, 5]. In this paper we will target these
problems and propose a hardware-based solution by using
single-input-multiple-output DC/DC converter. The proposed
converter will feature modularized circuit blocks in order to be
scaled easily. In Section II we will show the converter
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schematics and related control blocks. Both transient response
waveforms and security related test results are shown in Section
IIT with a brief discussion about scalability. In Section IV we
will summarize the work with some future works.

II. PROPOSED DESIGN

In this paper most of the results will be based on the 3-output
DC/DC converter shown in Figure 1 and later the 6-output
version will be shown to demonstrate scalability. In this figure
the first stage is used to generate additional voltage rails and the
second stage is to do voltage regulations. Reference voltages
are generated from off-chip circuits and output capacitors are
modelled off-chip as well. Vi here is added externally to help
select the right pair of switches for charging and discharging.
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Fig. 1. Schematic of the 3-output converter, showing 2 switched capacitor
circuits as the first stage, and 3 controllable switches and low pass filters as the
second stage. Reference voltages come from off-chip sources and are used to
generate 3 compensation voltages for delay and auxiliary blocks.

Details of the control block are shown in Figure 2. In this
work we use Vet = Verk = 550mV. Without enabling the delay
block, port Com-k and Char-k are connected directly. Auxiliary
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circuits and delay blocks are shown in Figure 3 and 4. Auxiliary
blocks are only added when power ratings are higher to improve
efficiency. Delay blocks are inserted between port Com-k and
Char-k to enhance side-channel leakage resistance. The delay
time varies based on the 5-bit results Crl(x) coming from the
five comparators. From post-layout simulations, the delay
varies from 0.4 ns to 2.9 ns and C1 = C2 = 4pF.
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Fig. 2. Schematic of the control block where gate driving signals for switches
are generated based on multiple references.
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Fig. 3. Schematic of auxiliary circuits (left) for V.« showing how multiple
compensation and sampled voltages are used, and aux blocks (right) is shown in
details with Ry, = 0.03 Q, Ly, = 8.7 pH.
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Fig. 4. Schematics of (a) the delay block; (b) details of each delay unit; and (c)
usage of the delay block of output-1 by inserting it between port Com-1 and
Char-1 of the control block.

The regulated output Vou.k follows equation (1) and (2)
where Tear and Tgisc are charging and discharging time
determined by the control block.

When Vit < Vierk < Vin P

Vout-k char Vm + lesc Vxl (1)
When 0 < Vref—k < Vset 5
Vout—k - char Vxl + lesc Vx2 (2)

In this work we follow our previous works [6] by using
modularized PMOS and NMOS switches and fixed switched-
capacitor circuits to lower design complexity and enable
scalability. We let Vi = 2/3 Vi, and Vx, = 1/3 Vj,. Each basic
MOS switch block is designed to support up to 40mA load
current and each switched capacitor circuit reaches about
81.6% efficiency while supporting 40mA current.

III. IMPLEMENTATION AND RESULTS

Post-layout models (in 32nm technology) are implemented
to get all the simulation results. We first designed a low-power
version as shown in Figure 5, which only supports up to 150mA
each output and there are no delays or auxiliary blocks added.
Then we propose a high-power version that supports up to 1A
load and delays and Aux blocks are added as well, as shown in
Figure 5(b).

1.25 mm

1.6 mm

(®
Fig. 3. (a) Layout view of low-power version in which three outputs are
identical and supposed to provide up to 150mA to each load; (b) layout view of
the high-power version where output-1 and output-2is scaled to support high
power, while output-3 is designed for lower power.

In this section both steady-state and load transient responses
results will be listed based on post-layout simulations. We also
add a total of 12.8 nF output capacitor based on off-chip
ceramic models. Single output power efficiency is shown from
Figure 7 to 9 for different cases. We can find out that the
efficiency can be well maintained for different cases and these
curves remain relatively flat for different loads. However, low
voltage and lower power cases still suffer from additional loss
due to additional control loss and charging loss. A 6-output
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version is shown in Figure 6 while each output is designed to
support about 150mA load. All the performance metrics

maintain same as the 3-output one.

Fig. 6. Layout of the extended version of the converter with 6 output channels
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Fig. 9. Single output efficiency with delays blocks, for high power case.
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Fig. 10. Steady-state waveforms of three outputs for lower-power version, each
supplying 150mA at 900mV, 130mA at 820mV and 95mA at 780mV with gate

driving signals for output-1 and output-2 shown as well.
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Fig. 11. Transient responses of all outputs (for low-power version) while
responding to at least 6 times change in the load simultaneously showing no

voltage droops/spikes and no observable cross regulations.
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Fig. 12. Transient responses of all outputs in high-power version when V is
doing voltage scaling, and output-2 and -3 are responding to digital loads.

We can see from steady-state waveforms shown in

Figure

10 that all the outputs are stable. We check load transient
response including both load transitions voltage scaling. From

Figure 11 and 12 for different versions, we can find out

that all

the outputs can remain stable without generating additional
voltage spikes or droops, and there are no cross regulations
among all the output voltages. A maximum step-up reference
tracking speed of 30.6 V/us and step-down of 31.9 V/us are

achieved. Max load current step response is 53 mA/ns.

Based on single-trace re-keying scenario, where the attacker
can only get a few repetitive traces, we will do correlation
coefficient and SNR studies which can reflect the security level

of the converter. SNR in our work is
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SNR = Var(1,,,,) 3)
Var(l, —1,.)

We first do an open-loop switch assignment test that
connects the encryption load to different outputs following this
sequence: to Voui between 0 — 150ns and 440ns — 2us; to Voue
between 150ns — 220ns and 260ns — 340ns; to Vs between
200ns — 260ns and 340ns — 440ns. The transient waveforms are
shown below in Figure 13.
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Fig. 13. Transient waveforms showing three output voltages, three inductor
currents, encryption load supply voltage and current.
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Fig. 14. Power correlation coefficient between actual encryption load current and
different measurable inductor currents based on the switch assignment scheme.

TABLE V. COMPARISON WITH RELATED WORKS

This
Reference [7] [8] [9] [10] work
Technology 28nm | 180nm | 130nm | 180nm 32nm
Input Voltage 2.8-
V) 42 3.3 1.2 1.8 1
Output Voltage 0.6- 0.45- 0.4-
) 1.2 125 1.05 1.6 0.3-0.92
Load Current
per Phase(mA) 333 1800 70 150 1000
Peak Efficiency 78 90.7 71 87.5 88.0
(%)
Max Load Step
Response 0.2 23.6 0.75 0.07 53
(mA/ns)
Reference NA | 425 29 | 0.0375 31.9
Tracking (V/us) ) ' ) i
Max Voltage
Ripple (mV) 12 <20 84 100 95
. Non-
Voltage Spike / obsery 225 100 160 Non-
Droop (mV) observable
able
Inductor (nH) 3 150 11.8 4700 1
Output Cap (nF) 50 660 32 6000 15.8
Chip Area (mm?) 1.5 2.3 0.5 1.95 2.85

We can find out that the by using different outputs to supply
the encryption workload, the correlations between the real
encryption load and the measurable inductor currents all
become quite week. More measurements are needed at first
place to determine the connections between the inputs and the
load and it becomes more difficult to further derive the key. We
also compare the current work with other works in Table 1.

IV. CONCLUSION

We presented a scalable DC/DC converter for multiple
outputs to improve both load transient responses and side-
channel security for emerging heterogeneous SoCs. Due to the
modularized circuit blocks, the converter can be easily scaled
to different power levels with low design complexity. Load
transient responses are improved as the converter provides
more than 2 times faster load transitions and 7 times faster
voltage scaling speed than other works. Under re-keying
scheme, with circuit sharing architecture, the correlation
coefficient between input and output is reduced to less than 0.1,
The proposed converter shows potentials in mitigating power
side-channel attacks and solving load transient response power
management issues for future SoCs.

Our future works include detailed modeling of the converter
and exploring specific side-channel attack mitigations with a
dynamic key insertion scheme.
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