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ABSTRACT
Tensor decomposition (TD) is an important method for extract-
ing latent information from high-dimensional (multi-modal) sparse
data. This study presents a novel framework for accelerating fun-
damental TD operations on massively parallel GPU architectures.
In contrast to prior work, the proposed Blocked Linearized CoOrdi-
nate (BLCO) format enables efficient out-of-memory computation
of tensor algorithms using a unified implementation that works on
a single tensor copy. Our adaptive blocking and linearization strate-
gies not only meet the resource constraints of GPU devices, but
also accelerate data indexing, eliminate control-flow and memory-
access irregularities, and reduce kernel launching overhead. To ad-
dress the substantial synchronization cost on GPUs, we introduce
an opportunistic conflict resolution algorithm, in which threads
collaborate instead of contending on memory access to discover
and resolve their conflicting updates on-the-fly, without keeping
any auxiliary information or storing non-zero elements in specific
mode orientations. As a result, our framework delivers superior
in-memory performance compared to prior state-of-the-art, and is
the only framework capable of processing out-of-memory tensors.
On the latest Intel and NVIDIA GPUs, BLCO achieves 2.12 − 2.6×
geometric-mean speedup (with up to 33.35× speedup) over the
state-of-the-art mixed-mode compressed sparse fiber (MM-CSF) on
a range of real-world sparse tensors.

CCS CONCEPTS
•Mathematics of computing→Mathematical software per-
formance; • Computing methodologies→Massively parallel
algorithms.
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1 INTRODUCTION
Tensors are higher-order generalization of matrices, and they pro-
vide a natural abstraction for complex and inter-related data. Many
critical applications, such as data mining [26, 39], social network
analytics [14, 42], cybersecurity [9, 13], and healthcare [16, 18],
generate massive amounts of multi-dimensional (multi-modal) data
as sparse tensors that can be analyzed quickly and efficiently using
tensor decomposition (TD). The most popular TD method is the
canonical polyadic decomposition (CPD) model, which approxi-
mates a tensor as a sum of a finite number of rank-one tensors
such that each rank-one tensor corresponds to a useful data prop-
erty [5, 25]. Computing the CPD of a sparse tensor is typically
dominated by the matricized tensor times Khatri-Rao product (MT-
TKRP) operation, which makes up approximately 90% of the total
execution time [49].

TD algorithms for high-dimensional sparse data are challenging
to execute on emerging parallel architectures due to their low arith-
metic intensity, irregular memory access, workload imbalance, and
synchronization overhead [10, 17]. To improve the performance of
these memory-bound workloads, recent studies [12, 30, 35, 37, 40]
exploit massively parallel architectures equipped with High Band-
width Memory (HBM), namely GPUs, to accelerate the MTTKRP
kernel. While such accelerators deliver memory bandwidth exceed-
ing 2 TB/s [1], they suffer from limited memory capacity and high
memory-access latency, which is in the order of hundreds of pro-
cessor cycles [20, 33]. Moreover, the high memory latency together
with the massive number of threads can substantially increase the
synchronization overhead.

https://doi.org/10.1145/3524059.3532363
https://doi.org/10.1145/3524059.3532363
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Figure 1: The MTTKRP execution time of MM-CSF1across all
modes on the A100 GPU, normalized by the lowest execution
time (denoted by the blue line) for each data set. The decom-
position rank is 32. For NELL-2, modes 1 and 3 take 2–3×
longer to execute than mode 2, while for Uber and Enron,
one mode takes more than 9× longer to execute. For DARPA,
mode 1 and mode 2 take 5× and 12× longer, respectively, than
mode 3. Note that the number of FLOPs computed is identical
across modes for each data set.

Therefore, the prior studies focus primarily on designing sparse
formats that compress the tensor to decrease its memory footprint
and/or group data-dependent non-zero elements to reduce atomic
operations, which are particularly more expensive on massively
parallel architectures. However, these strategies result in formats
that are mode-specific, where non-zero elements are organized/ac-
cessed according to a specific mode (i.e., dimension) orientation.
Mode-specific formats typically require keeping multiple tensor
copies [12, 30, 37] and/or extramapping and scheduling information
(e.g., flags or arrays) about groups of data-dependent non-zero ele-
ments for every mode [12, 30, 40], which can significantly increase
their overall memory footprint.

Furthermore, in such mode-specific tensor formats, high com-
pression along one mode may result in poor performance along
other modes [35]. For example, Figure 1 illustrates the impact of
mode-specific compression on the performance of MTTKRP across
all modes for the state-of-the-art mixed-mode compressed sparse
fiber (MM-CSF) format [35], which currently has the best perfor-
mance on GPUs, achieving 2−1.4× average speedup over prior GPU
formats. This result demonstrates that depending on the data set,
the execution time may vary by an order of magnitude across modes
when the compression favors one particular mode over others.

Additionally, data formats based on compressed sparse fiber
(CSF), e.g., balanced CSF (B-CSF) [37] and MM-CSF [35], require
mode-specific implementations for tensor operations, such as MT-
TKRP, as their tree-like data structure necessitates different meth-
ods of tree traversal and intermediate result accumulation for each
mode. This leads to poor code scalability and portability. Lastly,
the mode-specific nature of these formats (i.e., tree-based structure
and/or auxiliary copies/scheduling data) makes out-of-memory
(OOM) tensors (i.e., large-scale tensors that do not fit in GPU mem-
ory) difficult to process. As a result, current GPU frameworks for
MTTKRP are constrained to sparse tensors that can fit in the limited
1https://github.com/isratnisa/MM-CSF

device memory (i.e., in-memory) and lack support for real-world
OOM tensors with billions of non-zero elements.

To summarize, the state-of-the-art tensor decomposition ap-
proaches for massively parallel GPU architectures rely on mode-
specific formats to reduce data movement via compression and to
decrease the number of atomic operations by reordering of non-zero
elements. However, these techniques can result in (i) drastic per-
formance loss and variations along different tensor modes, (ii) sig-
nificant memory overhead to keep extra tensor copies or mapping
flags/arrays, (iii) complex algorithms and code implementations
to handle tensor operations across different mode orientations,
and (iv) limited support for real-world data sets due to inability to
process OOM tensors on memory-constrained accelerators.

To address these limitations, we propose a novel mode-agnostic
framework for large-scale sparse tensor decomposition on GPUs.
We make four key contributions:
• We analyze prior state-of-the-art sparse tensor formats and
parallel MTTKRP algorithms to determine the key perfor-
mance bottlenecks and limitations (Section 3).
• We introduce Blocked Linearized CoOrdinate (BLCO), a new
sparse tensor format that uses an adaptive blocking and
linearization approach to generate coarse-grained tensor
blocks, based on the resource constraints of target devices,
while exposing the fine-grained parallelism within a block
to efficiently utilize the accelerator hardware. Our BLCO for-
mat accelerates indexing, reduces data movement, decreases
kernel launch overhead, supports out-of-memory tensors,
and enables a unified tensor representation and MTTKRP
implementation (Section 4).
• We present a novel massively parallel MTTKRP algorithm
that eliminates irregularities in control-flow and memory-
access, while efficiently discovering and resolving conflicting
updates across threads on-the-fly. By employing cooperative
thread teams and using low-latency registers/memories, our
algorithm reduces synchronization cost without requiring
any mode-specific information or storing the data in a par-
ticular mode order (Section 5).
• We demonstrate substantial performance improvement com-
pared to prior state of the art, achieving 2.12−2.6× geometric-
mean speedup (up to 33.35× speedup) across the latest Intel
and NVIDIA GPUs for a representative set of real-world ten-
sors. Furthermore, we show the utility of BLCO in processing
out-of-memory tensors in contrast to existing GPU-based
TD frameworks (Section 6).

2 BACKGROUND
In this section, we provide a brief overview of tensors, their de-
composition, and related notations. For more details on tensor
decomposition, we direct the reader towards the work by Kolda
and Bader [5, 25].

2.1 Notation
Tensors are multi-modal arrays that generalize the concepts of
vectors and matrices. An 𝑁 -order tensor is an array with 𝑁 modes.
We use the following notation in this paper:

(1) Scalars are written with lowercase letters (e.g., 𝑎).
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(2) Vectors (first-order tensors) are written with bold lowercase
letters (e.g., a ∈ R𝐼 ). The 𝑖𝑡ℎ entry of a ∈ R𝐼 is denoted 𝑎𝑖 .

(3) Matrices (second-order tensors) are written with bold capital
letters (e.g., A ∈ R𝐼×𝐽 ). The (𝑖, 𝑗)𝑡ℎ entry of A ∈ R𝐼×𝐽 is
denoted 𝑎𝑖, 𝑗 .

(4) Higher-order tensors are written with Euler script letters (e.g.,
X ∈ R𝐼1×···×𝐼𝑁 ). The (𝑖1, . . . , 𝑖𝑁 )𝑡ℎ entry of the 𝑁 -order ten-
sor X ∈ R𝐼1×···×𝐼𝑁 is denoted 𝑥𝑖1,...,𝑖𝑁 .

(5) Fibers are the analogue of matrix rows/columns for higher-
order tensors. A mode-𝑛 fiber of a tensor X is any vector
formed by fixing all indices of X, except the 𝑛𝑡ℎ index (e.g.,
a matrix column is defined by fixing the second index, and
is therefore a mode-1 fiber).

(6) Hadamard product is an element-wise product between two
vectors or matrices, and is denoted by the symbol “∗”.

(7) Kronecker product between two matrices A ∈ R𝐼×𝐽 and B ∈
R𝐾×𝐿 produces the matrix C ∈ R𝐼 𝐽 ×𝐾𝐿 , where

C =


a1,1B a1,2B · · · a1,𝐽 B
a2,1B a2,2B · · · a2,𝐽 B
.
.
.

.

.

.
. . .

.

.

.

a𝐼 ,1B a𝐼 ,2B · · · a𝐼 ,𝐽 B


and is denoted A ⊗ B.

2.2 Canonical Polyadic Decomposition
The canonical polyadic decomposition (CPD) is a widely used tensor
factorization model in data analysis. CPD approximates an 𝑁 -order
tensor X by the sum of 𝑅 outer products of 𝑁 appropriately sized
vectors, for some a priori chosen 𝑅. Each of the 𝑁 vectors in a given
outer product corresponds to a particular tensor mode. The outer
products are called the rank-1 tensors of the decomposition and
the quantity 𝑅 is called the decomposition rank. By arranging the
𝑅 vectors corresponding to a particular mode as the columns of a
matrix, we obtain the factor matrix associated with that mode. The
decomposition of X can then be written in terms of its factor ma-
trices. For example, if X ∈ R𝐼×𝐽 ×𝐾 is a third-order tensor, the CPD
of X may be written in terms of three factor matrices A(1) ∈ R𝐼×𝑅 ,
A(2) ∈ R𝐽 ×𝑅 , and A(3) ∈ R𝐾×𝑅 , as shown in Figure 2.

≈ + + ⃨⃨⃨⃨ +

a(1)
1

a(2)
1

a(3)
1

a(1)
2

a(2)
2

a(3)
2

a(1)
R

a(2)
R

a(3)
R

I

J

K

Figure 2: Rank-𝑅 CPD of a third-order tensor. The factor
matrix A(1) consists of vectors a(1)1 , a(1)2 , · · · , a(1)

𝑅
.

CANDECOMP/PARAFAC alternating least squares (CP-ALS) al-
gorithm is a popular method for calculating CPD. During each
CP-ALS iteration, we update the factor matrix corresponding to a
given tensor mode by solving a linear least squares problem, while
fixing the remaining factor matrices; this is done exactly once for
each factor matrix per iteration. The most expensive operation of

CP-ALS, as well as many other tensor algorithms, is the the matri-
cized tensor times Khatri-Rao product (MTTKRP) [49]. The CP-ALS
algorithm for an 𝑁 -order tensor is detailed in Algorithm 1. Line 4
shows the MTTKRP computations.

Algorithm 1 The CP-ALS algorithm.

Input: An 𝑁 -order sparse tensor X ∈ R𝐼1×···×𝐼𝑁 , randomly ini-
tialized dense factor matrices A(1) ∈ R𝐼1×𝑅 , A(2) ∈ R𝐼2×𝑅 , · · · ,
A(𝑁 ) ∈ R𝐼𝑁 ×𝑅 .

Output: Updated factor matrices that approximate X.
1: repeat
2: for 𝑛 = 1, . . . , 𝑁 do
3: V← A(1)𝑇A(1) ∗ · · · ∗ A(𝑛−1)𝑇A(𝑛−1) ∗

A(𝑛+1)𝑇A(𝑛+1) ∗ · · · ∗ A(𝑁 )𝑇A(𝑁 )
4: M← X(𝑛) (A(𝑁 ) ⊙ · · · ⊙A(𝑛+1) ⊙A(𝑛−1) ⊙ · · · ⊙A(1) )
5: A(𝑛) ←M V† ⊲ † denotes the pseudo-inverse
6: end for
7: until fit ceases to improve or maximum # of iterations reached
8: return A(1) , · · · , A(𝑁 )

2.3 Sparse MTTKRP
The matricized tensor times Khatri-Rao product (MTTKRP) kernel
involves two basic operations:

(1) Tensor matricization is the process in which a tensor is un-
folded into a matrix. The mode-𝑛 matricization of a tensor
X, denoted by X(𝑛) , is obtained by laying out the mode-𝑛
fibers of X as the columns of X(𝑛) .

(2) The Khatri-Rao product [32] is the “matching column-wise”
Kronecker product of two matrices. Given A ∈ R𝐼×𝑅 and B
∈ R𝐽 ×𝑅 , their Khatri-Rao product is K = A ⊙ B, where A ⊙
B = [a1 ⊗ b1 a2 ⊗ b2 . . . a𝑅 ⊗ b𝑅] ∈ R𝐼 · 𝐽 ×𝑅 .

For an 𝑁 -order tensor X and factor matrices A(1) , A(2) , · · · ,
A(𝑁 ) , the mode-𝑛 MTTKRP is given by

M = X(𝑛) (A(𝑁 ) ⊙ · · · ⊙ A(𝑛+1) ⊙ A(𝑛−1) ⊙ · · · ⊙ A(1) ). (1)

M has the same number of rows and columns as A(𝑛) and it is
utilized to update A(𝑛) in CP-ALS (Line 5 in Algorithm 1). Note
that for sparse tensors, explicitly forming and multiplying X(𝑛)
and the corresponding Khatri-Rao product (cf. (1)) is expensive and
unnecessary. In practice [5, 17, 28, 49], MTTKRP is calculated using
the factor matrix rows corresponding to the non-zero elements of
the tensor only as needed (c.f. Figure 3).

3 SPARSE TENSOR FORMATS FOR GPUS
The state-of-the-art tensor formats for massively parallel GPUs
use list-based [12, 30, 40] or tree-based [35, 37] data structures to
store high-dimensional sparse data in a mode-specific form. In this
section, we provide an overview of the flagged coordinate (F-COO)
and MM-CSF formats, which are representative of the two main
format categories for GPU architectures. In contrast to sparse linear
algebra, higher-order tensor algorithms typically perform tensor
operations on every mode orientation. Using MTTKRP as a case
study, we illustrate the challenges in optimizing and efficiently
executing sparse tensor operations on GPUs.
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  X
(1)

A(2)

M

○ ○

A(3)

○

(1) Load row i2 from A(2) 
and row i3 from A(3)

(3) Scale result by
non-zero value

(4) Accumulate
to row i1 in M

A
(2)⊙A

(3)

(2) Calculate 
corresponding row 
in (A(2)⊙A(3)) via
Hadamard product

(i1, i2, i3)

Figure 3: Mode-1MTTKRP operation for a third-order sparse
tensor. For each non-zero element with index (𝑖1, 𝑖2, 𝑖3), rows
𝑖2 and 𝑖3 from factor matrices A(2) and A(3) are fetched (1)
and their Hadamard product (element-wise product) is cal-
culated (2). The result is scaled by the non-zero element’s
value (3), and then accumulated to matrix row 𝑖1 frommatrix
M (4), which is later used to calculate A(1) .

3.1 F-COO Format
F-COO is an example of list-based formats that explicitly store non-
zero elements with their coordinate indices. The simplest form of
this category is the coordinate (COO) format, which keeps 𝑁+1 lists
for an 𝑁 -order tensor—𝑁 lists for the indices, and one list for the
non-zero values. While COO is a mode-agnostic format, it suffers
from substantial synchronization overhead due to update conflicts
across threads.

For example, Figure 3 depicts the mode-1 MTTKRP operation,
where every thread that is processing non-zero elements with mode-
1 index of 𝑖1 (red and black circles) accumulates its partial result to
row 𝑖1 of matrix M (step (4)). This results in chains of read-after-
write (RAW) data hazards, which require expensive locks or atomic
operations to resolve; on GPUs, this can quickly become a severe
performance bottleneck because of the large number of concurrent
threads and the high-latency memory system.

To address this issue, F-COO [30] stores sparse tensors in a sorted
mode-specific form to group non-zero elements with the same 𝑖1
index together (same 𝑖1 for mode-1MTTKRP, same 𝑖2 for mode-2
MTTKRP, etc.), so that the accumulation of partial results can be
performed locally using segmented scan [44, 54] and globally using
atomic operations when group boundaries are crossed. Additionally,
F-COO keeps extra mapping/scheduling information (flags) for
synchronization to delineate the end of a non-zero group. Thus, the
F-COO format needs to keep 𝑁 tensor copies in the GPU memory
for an 𝑁 -order tensor. As a result, while F-COO reduces the number
of global atomic operations, it has high memory usage due to extra
data. Figure 4 shows an example sparse tensor in the COO (4a) and
F-COO (4b) representations.

3.2 MM-CSF Format
MM-CSF represents a class of compressed formats that use tree-
based structures to encode higher-order tensors. The original CSF

𝑖1 𝑖2 𝑖3 v
1 1 1 1.0
1 1 2 2.0
1 3 3 3.0
2 1 2 4.0
2 1 3 5.0
3 1 2 6.0
3 4 4 7.0
4 2 1 8.0
4 2 2 9.0
4 3 3 10.0
4 3 4 11.0
4 4 4 12.0

(a) COO.

𝑏𝑓 𝑖2 𝑖3 v

𝑠 𝑓 =1

1 1 1 1.0
1 1 2 2.0
0 3 3 3.0
1 1 2 4.0

𝑠 𝑓 =1

0 1 3 5.0
1 1 2 6.0
0 4 4 7.0
1 2 1 8.0

𝑠 𝑓 =0

1 2 2 9.0
1 3 3 10.0
1 3 4 11.0
0 4 4 12.0

(b) F-COO for mode-1 MTTKRP.

Figure 4: Comparison between COO (4a) and F-COO (4b). In
F-COO, the target mode index (𝑖1) is replaced by 𝑏𝑓 (bit flag)
that goes from 1 to 0 when the index changes. The 𝑠 𝑓 (start
flag) stores a bit for each non-zero group, where 1 indicates
that a new target index has been encountered by the group.

format [47, 49] extends traditional compressed matrix formats, such
as the compressed sparse row (CSR) format, by storing a tensor as
a collection of index sub-trees with mode-specific ordering. Given
a CSF representation with a mode ordering of 1-2-3, where 1 is the
root mode and 3 is the leaf mode, the root node of each sub-tree
represents the factor matrix row that will be updated duringmode-1
MTTKRP, and the leaf nodes represent the non-zero elements that
contribute to that update.

Thus, to calculate MTTKRP for all modes, multiple CSF copies
with different root modes are needed, which increases the mem-
ory footprint by a factor of 𝑁 , where 𝑁 is the number of modes.
Alternatively, the index sub-trees can be traversed both bottom-up
and top-down, meeting at the tree level with the target mode for
MTTKRP. While the second approach allows computing MTTKRP
for all modes with one copy of the CSF format, it requires expensive
synchronization to avoid update conflicts as well as separate tree
traversal implementations. Moreover, regardless of the strategy
used, CSF suffers from workload imbalance due to the variable size
of each sub-tree.

Balanced CSF (B-CSF) [38] creates sub-trees that are more bal-
anced, but still requires 𝑁 copies of the tensor. The state-of-the-art
MM-CSF [36] improves upon B-CSF by using a single copy of the
tensor. This is achieved by analyzing fiber density (i.e., number
of non-zero elements in a fiber) and creating sub-trees with fibers
that are as dense as possible. However, the root of these sub-trees
can come from any mode; hence, different traversal methods and
parallel algorithms are required to perform MTTKRP, based on
the mode that is being calculated, leading to drastic performance
variations across different modes as shown in Figure 1. Further-
more, the complexity of the tree-based structure requires different
implementation for each tensor order (i.e., number of modes) and
it also restricts MM-CSF to tensors that can fit in the limited GPU
memory. As a result, the current MM-CSF implementation only
supports 3- and 4-dimensional tensors and cannot handle OOM
tensors. Figure 5 shows an example of the MM-CSF format for the
tensor from Figure 4a.
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Figure 5: MM-CSF format for the sparse tensor from Fig-
ure 4a. Unlike CSF, where every sub-tree has the same mode
orientation, MM-CSF identifies fibers with the highest num-
ber of non-zero elements, and then constructs sub-trees with
different mode orientations.

4 THE BLCO FORMAT
To address the limitations of prior GPU-based formats, we propose
the Blocked Linearized CoOrdinate (BLCO) format, a new sparse
tensor representation devised for massively parallel architectures.
BLCO linearizes and aggregates non-zero elements into coarse-
grained blocks that meet the resource constraints of target GPUs to
(i) minimize data movement, (ii) accelerate indexing, (iii) enable a
unified tensor representation and algorithmic implementation, and
(iv) support out-of-memory tensor computation. Figure 6 depicts
an example of the BLCO format for the sparse tensor in Figure 4a.
The generation of BLCO tensors consists of two stages: tensor
linearization (Section 4.1) and adaptive blocking (Section 4.2).

4.1 Tensor Linearization
The BLCO format leverages index linearization [15, 17] to map
multi-dimensional space onto one-dimensional space, such that a
point in N-D space, represented by 𝑁 coordinates, can be mapped
to a point on an encoding line, represented by a single index. The
length of the encoding line determines the number of bits required
to represent linearized indices. During computation (e.g., MTTKRP),
the linear indices are de-linearized to recover the original coordi-
nates. Thus, fast de-linearization is important for high-performance
execution of tensor algorithms using linearized formats.

To efficiently encode multi-dimensional spaces with irregular
shapes (which typically arise in higher-order sparse data) in a mode-
agnostic way, prior state-of-the-art linear format (ALTO [17]) re-
cursively partitions the multi-dimensional space and “traverses”
this space linearly using a compact space-filling curve. When the
multi-dimensional space is regular, i.e., all modes have the same
length, the resulting space-filling curve is similar to Morton-Z or-
dering [34]. This linearization outperforms state-of-the-art tree-,
list-, and block-based formats [17] on CPU-based platforms, and
therefore, we adopt its ordering for BLCO.

Such a mode-agnostic linearized encoding results in an interleav-
ing of bits from different mode indices, as shown in Figure 6a. To
quickly process indices encoded in this manner, efficient support for
bit-level scatter and gather operations are needed. However, GPUs
lack native support for advanced bit manipulation, and emulating

𝑙 v
0 (000000)2 1.0
4 (000100)2 2.0
5 (000101)2 4.0
10 (001010)2 8.0
12 (001100)2 6.0
15 (001111)2 9.0
33 (100001)2 5.0
48 (110000)2 3.0
57 (111001)2 10.0
61 (111101)2 11.0
62 (111110)2 7.0
63 (111111)2 12.0

(a) Initial linearization.

𝑏 𝑙 v

0

0 (00000)2 1.0
16 (10000)2 2.0
17 (10001)2 4.0
6 (00110)2 8.0
18 (10010)2 6.0
23 (10111)2 9.0

1

1 (00001)2 5.0
8 (01000)2 3.0
11 (01011)2 10.0
27 (11011)2 11.0
30 (11110)2 7.0
31 (11111)2 12.0

(b) BLCO tensor.

Figure 6: BLCO format for the sparse tensor in Figure 4a,
where the bits of linearized indices are color-coded to indi-
cate different modes. First, BLCO linearizes the tensor (6a)
based on a recursive partitioning of the multi-dimensional
space [17]. Next, it aggregates non-zero elements into blocks
(6b) according to accelerators’ resource constraints, namely,
on-device memory, length of encoding line, and support for
bit manipulation. For simplicity, we assume that the max-
imum length of the encoding line is 32 (25) and each block
has no more than 6 non-zero elements. Note that BLCO re-
encodes the linearized index (𝑙) to allow the use of bitwise
mask/shift (which are efficiently supported on GPUs) for
de-linearization instead of bit-level gather/scatter.

these instructions can be prohibitive,2 leading to inefficient tensor
processing operations.

To address this issue, the BLCO format arranges the non-zero
elements using ALTO ordering, but re-encodes the linearized indices
to allow the use of bitwise shift andmask (AND) instructions, which
are natively supported on accelerators, to de-linearize the indices.
As illustrated in Figure 6b, BLCO achieves this goal by rearranging
the encoding bits of linearized indices (𝑙 ) into contiguous mode sets
that can be quickly extracted on GPUs during tensor computations.
This re-encoding resembles the index concatenation of the LCO [15]
format, but with bitwise shift and mask used for de-linearization
instead of arithmetic division and modulo.

4.2 Adaptive Blocking
To map a tensor X ∈ R𝐼1×···×𝐼𝑁 into a linearized form, an encoding
line of length 𝐼1 × · · · × 𝐼𝑁 is required. As the number of modes
and their lengths increase, the encoding line and the range of linear
index values can significantly expand. Hence, large-scale tensors
may require more than 64 bits to encode a linear index. Since GPUs
do not provide native support for large integer (more than 64 bits)
operations, a custom implementation3 of large integer arithmetic is
needed, which are typically not as efficient as native instructions. In
addition, many tensors can require a slightly higher bit resolution
(only a few additional bits) than 64 bits, so using large integers for
linearized indices may lead to wasted memory.
2For a third-order tensor, we estimate that a naïve emulation would require 276 bitwise
operations to de-linearize each non-zero element.
3https://github.com/curtisseizert/CUDA-uint128
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Most importantly, the state-of-the-art libraries for sparse MT-
TKRP require the entire tensor to be in the limited GPU memory,
due to their compressed and/or mode-specific tensor formats. In
particular, it is challenging to stream the data in small chunks that
can be partially processed using tree- (e.g., B-CSF [38] and MM-
CSF [36]) and block-based (e.g., HiCOO [28]) formats, where the
granularity of tensor chunks (e.g., sub-trees and HiCOO blocks)
are difficult to control. List-based formats (e.g., GenTen [40] and
F-COO [31]) are more amenable to streaming, but will require ad-
ditional information for synchronization across these data chunks.

To address these issues, we propose adaptive blocking to aggre-
gate non-zero elements into coarse-grained blocks by partitioning
the tensor into smaller sub-tensors. Blocking the tensor to exploit
density structures and to compress the data has been previously
explored by the HiCOO [28] format. However, such a compression
comes at the cost of severe workload imbalance across blocks, due
to the irregular spatial distributions of sparse data [17, 29], and it
requires expensive tuning to find the best block size. In contrast,
the proposed blocking technique aims to meet the requirements of
memory-constrained GPUs, while at the same time generate the
largest possible blocks that can efficiently utilize these throughput-
oriented accelerators with massive parallelism.

As such, our BLCO format first uses the uppermost bits from
every mode of linearized indices that exceeds the target integer size
to form the initial blocks, which allows the sub-spaces spanned by
these blocks to naturally adapt to the underlying tensor space. For
example, if a tensor requires 72 bits for linearized indices and the
size of target integers is 64 bits, a total of 8 (72− 64) uppermost bits
across all the modes are stripped from the linear indices and used
as a key to group the non-zero elements into blocks; then, these
bits are stored as metadata along with each block (𝑏), as depicted in
Figure 6b. This strategy does not require expensive tuning to create
the blocks and, compared to using longer encoding lines, it reduces
the memory footprint and leverages more efficient native integer
(64-bit) instructions. Next, BLCO further splits the initial blocks, if
needed, based on the available on-device memory to ensure that
each block has no more than the maximum number of non-zero
elements that can fit in the target device.

While the resulting BLCO format may still suffer from variance
in the number of non-zero elements across blocks, it exposes the
fine-grained parallelism within a block, due to its linearized list-
based form. Specifically, it allows workload to be partitioned at the
granularity of a non-zero element rather than a compressed block.
Hence, a GPU hardware scheduler can automatically hide the exe-
cution and memory-access latency as well as balance the workload
across threads, as long as there are enough non-zero elements to be
processed in the GPU memory. In addition, our massively parallel
MTTKRP algorithm (Section 5), with opportunistic conflict resolu-
tion, allows BLCO blocks to be processed independently. Therefore,
once the GPU has processed a block, it will fetch the next available
block to automatically occupy any available GPU resources. These
properties enable our BLCO format and MTTKRP algorithm to
seamlessly handle OOM tensors, in contrast to prior work.

Our implementation uses device queues (SYCL queues or CUDA
streams) to launch BLCO blocks, allowing the computation of active
blocks to be done asynchronously with the transmission of pending
blocks. Each device queue has reserved memory, corresponding
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linearize non-zero elements1 1 2 4 3 4 2 1 4 4 3 4

1 1 1 2 1 2 1 3 3 3 4 4
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Figure 7: Steps (1) – (7) illustrates mode-1 MTTKRP with
hierarchical conflict resolution for the BLCO tensor from
Figure 6b. For register-based conflict resolution, step (6) is
the last one, where the results are written directly, bypassing
the local accumulation in step (5), to the factor matrix in
global memory using atomic updates, as opposed to writing
to temporary factor matrix copies. In all conflict resolution
mechanisms, steps (1) – (4) are common and writing the up-
dates happens at segment boundaries.

to the number of non-zero elements that can be processed at one
time, which is reused across BLCO blocks assigned to the same
queue. In our experiments, we use up to 8 device queues and set the
maximum number of non-zero elements per block to 227 to fill the
GPU; these parameters allow for enough concurrency and further
tuning them has negligible performance impact.

Hypersparse tensors may generate several BLCO blocks that
can fit in the same memory reservation of a single device queue.
Launching these blocks across multiple queues can potentially incur
kernel launch overhead on some GPU architectures. To address this,
we batch all BLCO blocks that can be processed by one device queue
into a GPU kernel and explicitly store block mappings and element
offsets at the work-group (thread block) boundaries. This additional
batching information is calculated during format construction and
thus creates minimal overhead during tensor computations.

5 BLCO-BASED SPARSE MTTKRP
On massively parallel systems such as GPUs, atomic updates to
global memory can be expensive because of the sheer number of
concurrently executing threads that could conflict and the long
data access latency. Therefore, prior studies focused on reducing
atomic operations by storing the data in a mode-specific form [12,
30, 36, 38] and/or keeping mode-specific mapping/scheduling in-
formation [12, 30, 40]. However, these strategies lead to drastic
performance variation across modes, substantial memory overhead
for extra tensor copies, and/or complex algorithms and implemen-
tations (c.f. Section 3).

Here, we describe a novel massively parallel MTTKRP algorithm
that eliminates control-flow andmemory-access irregularities while
resolving update conflicts (RAW hazards) using an opportunistic
on-the-fly update mechanism, which reduces atomic operations
without requiring extra tensor copies or mode-specific information.
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5.1 Hierarchical Conflict Resolution
Figure 7 illustrates our massively parallel algorithm for mode-1
MTTKRP kernel on the third-order sparse tensor from Figure 4a.
Note that the non-zero elements are linearized and grouped accord-
ing to the BLCO format (Figure 6b). For simplicity, we assume a
work-group (thread-block) size of 12 and tile size of 6 work-items
(threads) in the figure.

To eliminate control-flow and memory-access irregularities, the
proposed algorithm has two phases: processing and computing.
In the processing phase, steps (1) – (3), each thread is assigned to
a non-zero element and threads collaborate to perform on-the-fly
de-linearization and reordering of non-zero elements as well as
generation of segmented scan flags. In the computing phase, steps
(4) – (7), threads are reassigned to perform the rank-wise MTTKRP
computations and merge conflicting updates at the register, local
memory, and global memory levels. In each phase, the threads and
their global memory accesses are coalesced.

5.1.1 Processing Phase. In step (1), a group of threads (work-group
or thread-block) is assigned to a certain number of non-zero el-
ements and they first collaborate so that each thread loads a lin-
earized non-zero element (i.e., a linear index and its correspond-
ing value) from the global memory in a coalesced manner. Each
thread then proceeds to de-linearize the linear index and recover
the multi-dimensional coordinates, where each coordinate can be
calculated independently to expose more instruction-level paral-
lelism. In step (2), the threads are partitioned into multiple tiles,
where a tile size is no more than the sub-group (warp) size. Next, in
step (3), the threads within a tile collaborate to reorder the non-zero
elements into groups (segments) according to their target mode
indices (mode-1 in the example) and then generate segmented scan
flags, where 1 indicates the start of a new segment. To minimize
thread divergence and data access latency, we implement the re-
ordering of non-zero elements via parallel histogram and prefix
sum, using sub-group (warp-level) data exchange primitives (e.g.,
shuffle operations), and broadcast/store the segmented scan flags
across threads in a low-latency register. After each thread completes
the on-the-fly processing phase, the non-zero elements are stored,
according to their new order, in local memory for later access.

5.1.2 Computing Phase. Once the data has been processed, we
reassign the threads to calculate the rank-wise MTTKRP computa-
tions in step (4), where each thread is responsible for one or more
elements along the decomposition rank (i.e., threads process the
same non-zero element and perform rank-wise operations in paral-
lel). The algorithm iterates over the non-zero elements using the
segmented scan flags, so that each thread accumulates its partial
results to a register as long as the target mode index remains the
same. At the end of each segment, i.e., when the index changes,
each thread writes the accumulated result to the stash (a software-
controlled cache) in local memory (shown as “step (5)” in the figure).
In step (6), when all the non-zero elements have been processed,
the results are copied from the stash (local memory) to one of the
multiple copies of the factor matrix in global memory. By using
multiple copies of the factor matrix, we can minimize the prob-
ability of conflict when multiple thread blocks are copying their
results back to global memory at the same time. Finally, in step (7),

the multiple factor matrix copies are merged in global memory to
produce the final result.

5.2 Register-based Conflict Resolution
Our register-based conflict resolution is a subset of the hierarchical
algorithm, discussed above. It bypasses the local memory entirely
and writes the accumulated result in registers to global memory,
without the need for a final global reduction. Specifically, after
each thread calculates and accumulates the result in its register and
reaches a segment boundary, it bypasses step (5) and completes
execution at step (6) after writing the updates to the final factor
matrix, as opposed to one of its copies, using atomic operations.

5.3 Adaptation Heuristic
The proposed synchronization mechanisms use different number
of atomic operations to perform MTTKRP. Register-based conflict
resolution requires more atomic operations, as updates at each
segment boundary need atomic add operations to the factor matrix
in global memory. Hierarchical conflict resolution uses fewer atomic
operations, as updates at each segment boundary are copied first
to the local-memory stash, and then atomic operations are used
only at the end of the work-group (thread-block) execution to write
the accumulated result in the stash to the factor matrix in global
memory. Furthermore, multiple copies of the factor matrix can be
used to reduce the probability of an update conflict, at the cost of a
final global reduction.

We propose a simple heuristic for selecting the best conflict res-
olution mechanism based on the characteristics of target modes
and GPU devices. In modern GPUs [1, 8], the execution units (EUs)
are aggregated into subslices or streaming multi-processors (SMs).
Multiple subslices are grouped into a GPU slice or a graphics pro-
cessing cluster (GPC). Our heuristic selects the hierarchical conflict
resolution, when the target mode length is less than the number of
subslices (SMs). At this mode length, the contention from atomic
operations to global memory is severe, and using a local-memory
stash and factor matrix copies (one copy for each slice or GPC) alle-
viates this contention. For all other cases, we use the register-based
conflict resolution.

6 EXPERIMENTS
We evaluate the proposed sparse MTTKRP and BLCO format4 using
a representative set of in-memory and out-of-memory tensors with
different characteristics. We compare our performance to the state-
of-the-art sparse tensor frameworks for massively parallel GPUs,
namely, MM-CSF [36], GenTen [40], and F-COO [30]. While the
other frameworks only support tensors that can fit in the device
memory, BLCO can process both in- and out-of-memory tensors
and delivers superior performance across all in-memory tensors.

6.1 Evaluation Setup
6.1.1 Test Platform. We conduct the experiments on the latest
Intel discrete GPU with a single-tile (denoted Intel Device1) and two
NVIDIA GPUs from themost recent micro-architecture generations:
A100 (Ampere) and V100 (Volta). For the format generation, we use

4Available at https://github.com/jeewhanchoi/blocked-linearized-coordinate
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Table 1: Hardware and software setup.
CPU GPU

Model AMD NVIDIA NVIDIA
EPYC 7662 A100 V100

𝜇-arch Zen 2 Ampere Volta
Frequency 3.3 GHz 1.41 GHz 1.38 GHz
Cores 64 (×2 sockets) 108 (SM1 ) 80 (SM)

6912 (CC2 ) 5120 (CC)
Caches 2MB L1, 15MB L1D, 10MB L1D,

32MB L2, 40MB L2 6MB L2
256MB L3

DRAM 256 GB 40 GB 32 GB
(Bandwidth) (1555 GB/s) (900 GB/s)
Interconnect PCI-e Gen 4 NVLink 3.0 NVLink 2.0
OS/Driver RHEL Driver Driver
(version) (8.3) (470.42.01) (440.33.01)
Compiler gcc 9.3.0 nvcc 11.4 nvcc 11.0
1 Streaming Multiprocessor 2 CUDA Cores

Table 2: The sparse tensor data sets used for evaluation, or-
dered by the number of non-zero elements.

Tensor Dimensions NNZs Density
NIPS 2.5𝐾 × 2.9𝐾 × 14𝐾 × 17 3.1𝑀 1.8×10−06
Uber 183 × 24 × 1.1𝐾 × 1.7𝐾 3.3𝑀 3.8×10−04
Chicago 6.2𝐾 × 24 × 77 × 32 5.3𝑀 1.5×10−02
Vast-2015 165.4𝐾 × 11.4𝐾 × 2 26𝑀 7.8×10−07
DARPA 22.5𝐾 × 22.5𝐾 × 23.8𝑀 28.4𝑀 2.4×10−09
Enron 6𝐾 × 5.7𝐾 × 244.3𝐾 × 1.2𝐾 54.2𝑀 5.5×10−09
NELL-2 12.1𝐾 × 9.2𝐾 × 28.8𝐾 76.9𝑀 2.4×10−05
FB-M 23.3𝑀 × 23.3𝑀 × 166 99.6𝑀 1.1×10−09
Flickr 319.7𝐾 ×28.2𝑀 ×1.6𝑀 ×731 112.9𝑀 1.1×10−14
Delicious 532.9𝐾×17.3𝑀×2.5𝑀×1.4𝐾 140.1𝑀 4.3×10−15
NELL-1 2.9𝑀 × 2.1𝑀 × 25.5𝑀 143.6𝑀 9.1×10−13
Amazon 4.8𝑀 × 1.8𝑀 × 1.8𝑀 1.7𝐵 1.1×10−10
Patents 46 × 239.2𝐾 × 239.2𝐾 3.6𝐵 1.4×10−03
Reddit 8.2𝑀 × 177𝐾 × 8.1𝑀 4.7𝐵 4.0×10−10

a dual-socket AMD Epyc 7662 CPU system and employ 128 threads.
Our prototype is implemented in Data Parallel C++ (DPC++) [41]
as well as CUDA [23]. Since the current sparse tensor frameworks
lack portability across GPU architectures, we ported the state-of-
the-art MM-CSF to DPC++ using the Intel DPC++ Compatibility
Tool [2]. Due to confidentiality requirements, Table 1 summarizes
the publicly available specifications of the target hardware and
software environment.

6.1.2 Data Sets. We consider 14 real-world tensor data sets from
the FROSTT [46] and HaTen2 [19] open-source repositories that
cover a wide range of tensor properties and sparsity structures—
number of modes, mode lengths, number of non-zero elements, and
density. Table 2 lists the sparse tensor data sets used for evalua-
tion, ordered by increasing number of non-zero elements (NNZs).
The large-scale tensors with billions of non-zero elements (namely,
Amazon, Patents, and Reddit) are considered out-of-memory as
they fail to execute on current tensor decomposition frameworks,
which need to keep the entire tensor and factor matrices in device
memory, producing memory allocation errors on target GPUs.

6.1.3 Configurations. The experiments use a decomposition rank
of 32 for MTTKRP, as per prior work [36]. Using double-precision

values and 64-bit integers, we report the performance as an average
over 25 iterations.We tune each sparse tensor framework to the best
of our abilities. For the state-of-the-art MM-CSF, we exhaustively
tune the number of warps per fiber and the thread-block size and
report the best execution time.While BLCO can benefit from tuning,
we use our adaptation heuristic (Section 5.3) and set the thread-
coarsening factor (NNZs per thread) for the hierarchical conflict
resolution mechanism (Section 5.1) to 4 and 2 on Intel and NVIDIA
GPUs, respectively.

6.2 Comparison Against TD Frameworks
We first compare our BLCO-based MTTKRP against the other pop-
ular sparse tensor decomposition frameworks. Figure 8 shows the
MTTKRP execution time for all modes, across the GPU frameworks,
normalized by the execution time of the state-of-the-art MM-CSF.
The results demonstrate that BLCO consistently outperforms all
other frameworks, achieving a geometric mean speedup between
2.12× and 2.6× over MM-CSF across the different GPU devices. For
the other CUDA frameworks, GenTen has comparable performance
to MM-CSF, outperforming MM-CSF on six out of 11 data sets,
whereas F-COO has lower performance on average compared to
MM-CSF, especially on the V100 GPU. The missing data points for
F-COO is due to its limited support for higher-order tensors (i.e.,
3-D only) and "segfault" errors.

Our performance analysis indicates that the performance of MM-
CSF (as well as GenTen) can substantially decrease with higher
synchronization cost, which leads to lower average performance
than BLCO on the GPU devices with more expensive synchroniza-
tion. Since MM-CSF reorders non-zero elements to increase tensor
compression, its performance is sensitive to the number of non-zero
elements per fiber. On large-scale data sets with low fiber density,
such as DARPA, Enron, and FB-M, MM-CSF has lower compression,
leading to significant performance degradation compared to BLCO.

6.3 Comparison Against State of the Art
For a comprehensive evaluation against the state-of-the-art MM-
CSF, Figure 9 demonstrates the speedup achieved by our BLCO-
based MTTKRP for every mode of the tensors that can fit in the
device memory of target GPUs. The results demonstrate that our
BLCO format achieves better or comparable performance to MM-
CSF for every mode (up to 33.35× speedup) across all data sets,
except Uber and NIPS. These data sets are not only small, but they
also have exceptionally short modes, allowing the data to fit in
cache; thus, the higher compression achieved by MM-CSF, due to
its mode-specific nature (c.f. Table 3), translates to better perfor-
mance. Yet, such a mode-specific compression leads to substantial
performance variations across different modes, as shown in Fig-
ure 1, and as a result, BLCO still outperforms MM-CSF for all-mode
MTTKRP (c.f. Figure 8).

6.4 Memory Traffic Analysis
Since sparse tensor decomposition is a memory-boundworkload, its
performance is largely limited by the data volume and the effective
memory throughput. Hence, we provide detailed analysis of these
memory metrics across both in- and out-of-memory tensors.
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Figure 8: Comparison of BLCO-based MTTKRP against popular GPU frameworks on the data sets that fit in GPU memory.
Each bar represents the speedup obtained against MM-CSF for computing MTTKRP on all modes. The right-most group of bars
show the geometric mean speedup.
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Figure 9: The per-mode speedup of BLCO-based MTTKRP against MM-CSF across every tensor mode for the data sets that fit in
GPU memory.

6.4.1 In-Memory Tensors. Table 3 details the memory metrics of
BLCO-based MTTKRP compared to MM-CSF on the A100 GPU.
The metrics are collected using the Nsight Compute profiler [3].
The memory analysis shows that MM-CSF achieves higher com-
pression than BLCO thanks to its tree-like data structure, and the
total volume of data fetched from memory (as shown in column
“Vol”) is lower in most cases. However, due to the irregular memory
access and expensive synchronization associated with traversing a
tree-like tensor representation, MM-CSF under-utilizes the mem-
ory system compared to BLCO and has lower memory through-
put (as shown in column “TP”). In addition, both the memory vol-
ume and throughput of MM-CSF vary significantly across modes
because of its mode-specific traversal and processing of tensors,
which leads to substantial performance variations (c.f. Figure 1).
In contrast, while BLCO requires more data volume because of
its mode-agnostic form, it achieves higher memory throughput
by eliminating memory-access irregularities, exploiting data local-
ity, and merging conflicting updates across threads in low-latency

registers and memories. Thereby, BLCO fetches/writes more data
from/to higher levels of the memory hierarchy in a coalesced way,
leading to improved performance by up to an order of magnitude
compared to MM-CSF.

6.4.2 Out-of-Memory Tensors. Figure 10 demonstrates thememory
throughput of BLCO-based MTTKRP for out-of-memory tensors
(Amazon, Patents, and Reddit) on the A100 GPU. Since no other
GPU framework supports these tensors, a direct comparison is
not possible; instead, we report the overall throughput as well as
the throughput without host-device data exchange (in-memory
throughput) of our BLCO-based MTTKRP, as measured using the
Nsight Systems profiler [4]. The overall throughput is measured
based on the total execution time (both MTTKRP computations and
host-device data transfers), while the in-memory throughput only
includes MTTKRP computations. Without the overhead of host-
device communication resulting from the limited GPU memory, the
in-memory throughput is on par with the performance observed
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Table 3: Comparison of the memory related metrics between
BLCO and MM-CSF for MTTKRP on the A100 GPU.

Data Set Format 𝑛 Vol1 TP2 Data Set Format 𝑛 Vol1 TP2

Uber

BLCO

1 2.78 3.60

Enron

BLCO

1 44.82 4.11
2 2.75 3.61 2 46.23 4.62
3 2.75 3.53 3 47.88 4.92
4 2.73 2.77 4 47.22 4.70

MM-CSF

1 1.68 1.68

MM-CSF

1 41.39 0.31
2 1.33 2.03 2 62.83 3.16
3 1.33 1.93 3 37.15 2.29
4 2.12 0.32 4 37.05 3.01

Vast-2015

BLCO
1 16.91 3.92

NELL-1

BLCO
1 107.5 2.44

2 16.73 3.77 2 104.5 2.32
3 13.92 2.90 3 110.7 2.39

MM-CSF
1 9.19 1.19

MM-CSF
1 123.1 2.21

2 8.36 1.57 2 118.5 2.19
3 8.36 1.45 3 122.1 0.86

1 Memory volume in GB, measured by l1tex__t_bytes.sum in Nsight Compute [3]
2 Memory throughput in TB/s, calculated by (Vol / total execution time)
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Figure 10: Thememory throughput of BLCO-based MTTKRP
(with and without host-device data exchange) for out-of-
memory tensors across every mode on the A100 GPU.

for the tensors that can fit in the GPU (c.f. Table 3). However, the
overall throughput is lower due to the limited bandwidth of the host-
device interconnect compared to the device memory bandwidth.
While BLCO achieves perfect overlap between host-device transfers
and MTTKRP computations, the communication overhead still
dominates the execution time, leading to lower overall throughput
(57%–75% of the memory bandwidth). This result demonstrates that
our framework handles out-of-memory tensors as efficiently as
in-memory tensors, but the overall performance for out-of-memory
tensors is limited by the bandwidth of the host-device interconnect.

6.5 Format Construction
Figure 11 shows the generation time of the GPU sparse formats,
namely, BLCO, GenTen, and MM-CSF, as well as the CPU-based
ALTO format. Furthermore, Figure 12 details the run-time distri-
bution across the different format generation stages of BLCO. The
tensor formats are generated from raw data, in the COO representa-
tion, on the host CPU listed in Table 1. By adopting a mode-agnostic
linearized form rather than a multi-dimensional representation,
BLCO significantly decreases the format generation cost, which is
typically dominated by sorting and clustering non-zero elements.
Additionally, BLCO does not require extra mode-specific mapping
or scheduling information for reducing synchronization. As a result,
BLCO is several times (up to 13.6×) cheaper to generate than the

state-of-the-art MM-CSF format. On the A100 GPU, BLCO needs
approximately 12 full (all-mode) MTTKRP iterations on average to
amortize its format generation time, while the other GPU formats
require up to an order of magnitude more iterations to amortize
their construction cost.

Compared to ALTO, BLCO enables efficient execution of tensor
operations on massively parallel architectures by (i) re-encoding
linearized indices for fast decoding on GPUs and (ii) blocking the
tensor into smaller chunks that fit in limited device memory and
require at most 64 bits for indices. However, these additional stages
typically consume less than 25% of the overall format construction
cost, as shown in Figure 12.

7 RELATED WORK
Optimizing sparse tensor decomposition and MTTKRP operations
has been the subject of several prior studies, which propose various
sparse tensor formats along with parallel algorithms to process and
analyze the multi-modal data on CPU- and GPU-based hardware
architectures. List-based formats, such as F-COO [31], GenTen [40],
and TB-COO [12], explicitly store the multi-dimensional coordi-
nates of each non-zero element. To reduce atomic operations, these
formats keep multiple mode-specific copies of the tensor and/or
extra scheduling information, which substantially increases their
memory footprint. Tree-based formats, including CSF [47, 49], B-
CSF [38], and MM-CSF [35], extend the compressed sparse row
(CSR) matrix format to higher-order tensors. While these mode-
specific formats can compress the sparse data, they have load im-
balance issues and significant performance variation across various
modes of execution.

Block-based formats (e.g., HiCOO [28]) cluster non-zero ele-
ments to compress the sparse tensor and to exploit data locality.
However, as the number of tensor modes and sparsity increase,
the majority of HiCOO blocks consist of a few non-zero elements,
leading to more memory usage than COO [17, 28]. In addition, the
irregular spatial distributions of sparse data result in severe load im-
balance and synchronization issues across HiCOO blocks [17, 28],
and as a result, it has no GPU implementation [27]. In contrast,
BLCO addresses these limitations by generating coarse-grained
blocks that fit in the GPU memory, while efficiently utilizing the
GPU resources by encoding the non-zero elements within each
block in a fine-grained linearized form, amenable to caching and
parallel execution.

CPU-based tensor linearization approaches, such as the LCO [15]
and ALTO [17] formats, compress the tensor by mapping the multi-
dimensional coordinates of a non-zero element into a single index.
In particular, ALTO enables high-performance tensor operations by
(i) leveraging the efficient bit-level scatter/gather instructions and
large integers on CPUs, and (ii) using adaptive atomic- and reduc-
tion-based conflict resolution algorithms, tailored for architectures
with coarse-grained cores/threads. However, massively parallel
GPUs lack native support for the bit manipulation instructions and
large integer arithmetic that are needed for efficient processing of
prior linearized formats. Additionally, GPUs suffer from limited
device memory and require sophisticated conflict resolution, due
to their massive fine-grained parallelism and substantial synchro-
nization overhead. BLCO directly addresses these issues to allow
efficient execution of large-scale tensors on accelerators.
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Figure 11: Comparison of the BLCO construction/generation cost against popular GPU formats as well as the CPU-based ALTO
format on the data sets that fit in GPU memory.
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Figure 12: Breakdown of the BLCO construction cost for the data sets that fit in GPU memory. Compared to ALTO, BLCO
requires additional blocking and re-encoding to enable efficient execution on GPUs.

Segmented scan and reduction [44, 54] have been used to reduce
the synchronization cost of sparse workloads [6, 12, 30, 53, 55] on
parallel architectures. Prior studies apply these primitives to mode-
specific formats with delineated and/or sorted groups of non-zero
elements according to the target mode. In contrast, we devise an
opportunistic algorithm that leverages the mode-agnostic BLCO
format to reduce synchronization by discovering conflicts and per-
forming segmented scan on-the-fly and without needing sorted
non-zero elements or keeping extra scheduling information. In
addition, our novel conflict resolution algorithm eliminates control-
flow and memory-access irregularities by specializing threads to
perform different operations at each execution phase.

The TACO compiler [24] automatically generates various sparse
matrix and tensor algebra kernels, including sparse MTTKRP. How-
ever, prior work showed that hand-optimized implementations
of CSF-based formats (namely, B-CSF) still outperform the auto-
generated TACO code on GPU architectures, even with extensive
auto-scheduling and optimization [43].

Awealth of work performMTTKRP computations on distributed-
memory platforms using MPI [11, 22, 45, 48, 50], or the MapRe-
duce [7, 21] framework. Other studies [51, 52, 56] explore format
selection based on machine learning models to efficiently leverage
existing sparse formats.

8 CONCLUSION AND FUTUREWORK
To enable high-performance sparse tensor decomposition on mas-
sively parallel GPU architectures, this work proposes the BLCO
format. In contrast to prior approaches, which have been restricted
to in-memory tensors, BLCO allows efficient processing of both in-
memory and out-of-memory tensors. By discovering and merging
conflicting updates on-the-fly, without any mode-specific informa-
tion or ordering of non-zero elements, our BLCO-based MTTKRP
demonstrated substantial speedup (up to 33.35×) over the state-
of-the-art MM-CSF. Our future work will explore heterogeneous
distributed-memory systems as well as other tensor algorithms.
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