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ABSTRACT

The analysis of high-dimensional sparse data is becoming increas-

ingly popular in many important domains. However, real-world

sparse tensors are challenging to process due to their irregular

shapes and data distributions. We propose the Adaptive Linearized

Tensor Order (ALTO) format, a novel mode-agnostic (general) rep-

resentation that keeps neighboring nonzero elements in the multi-

dimensional space close to each other in memory. To generate the

indexing metadata, ALTO uses an adaptive bit encoding scheme

that trades off index computations for lower memory usage and

more effective use of memory bandwidth. Moreover, by decoupling

its sparse representation from the irregular spatial distribution of

nonzero elements, ALTO eliminates the workload imbalance and

greatly reduces the synchronization overhead of tensor computa-

tions. As a result, the parallel performance of ALTO-based tensor

operations becomes a function of their inherent data reuse. On a

gamut of tensor datasets, ALTO outperforms an oracle that selects

the best state-of-the-art format for each dataset, when used in key

tensor decomposition operations. Specifically, ALTO achieves a geo-

metric mean speedup of 8× over the best mode-agnostic (coordinate

and hierarchical coordinate) formats, while delivering a geometric

mean compression ratio of 4.3× relative to the best mode-specific

(compressed sparse fiber) formats.
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1 INTRODUCTION

Many critical application domains such as healthcare [22, 59], cyber-

security [15, 25], data mining [27, 42], and machine learning [3, 46]

produce and manipulate massive amounts of high-dimensional

data. Such datasets can naturally be represented as sparse tensors,

which store the values of the nonzero tensor elements along with

indexing metadata that denote the position of each nonzero in the

tensor. Therefore, a fundamental problem in sparse tensor compu-

tations involves determining how to store, group, and organize the

nonzero elements to 1) reduce memory storage, 2) improve data

locality, 3) increase parallelism, and 4) decrease workload imbalance

and synchronization overhead. Since tensor algorithms perform

computations along different mode (i.e., dimension) orientations,

practical sparse tensor formats must be mode-agnostic to deliver

acceptable performance and scalability across all modes. Because

real-world sparse tensors are highly irregular in terms of their

shape, dimensions, and distribution of nonzero elements, achieving

these (oftentimes conflicting) goals is challenging.

To tackle this problem, researchers have proposed many sparse

tensor formats [4, 5, 29–31, 40, 41, 45, 50, 52], which can be classi-

fied based on their encoding of the multi-dimensional coordinates

into list-, block-, and tree-based formats [12]. List-based tensor rep-

resentations, such as the simple coordinate (COO) format, explicitly

store the nonzero elements along with their coordinates (i.e., the

indices of all dimensions). Therefore, they are agnostic to the dif-

ferent mode orientations of tensor algorithms and, as a result, they

remain the de facto sparse tensor storage [12] in many libraries (e.g.,

Tensor Toolbox [4], Tensorflow [1], and Tensorlab [57]). However,

the list-based COO format does not impose any order on the multi-

dimensional data and it suffers from a significant synchronization

overhead to resolve the update/write conflicts across threads [31].

Prior block-based sparse tensor representations employ multi-

dimensional tiling schemes to further compress the COO format [29,

30]. However, the efficacy of this hierarchical COO (HiCOO) storage

completely depends on the characteristics of target tensors (such

as their shape, density, and data distribution) as well as the for-

mat parameters (e.g., block size). In addition, the resulting parallel

schedule of HiCOO blocks can suffer from limited parallelism and

scalability due to conflicting updates across blocks.

Several proposals use tree-based data structures to extend tradi-

tional compressed matrix formats, such as the compressed sparse

row (CSR) format, to higher-order tensors. The most popular ex-

ample of these storage representations is the compressed sparse

fiber (CSF) format [52], which uses multiple arrays of index pointers

to compress the multi-dimensional indices of nonzero elements.
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Figure 1: A box plot of the data (nonzero elements) distribution across the multi-dimensional blocks (subspaces) of the hier-

archical coordinate storage [29]. The multi-dimensional subspace size is 128
𝑁
, where 𝑁 is the number of dimensions (modes),

as per prior work [55]. The sparse tensors are sorted in an increasing order of their size (number of nonzero elements).

While CSF-based formats can reduce memory traffic, they are mode-

specific, i.e., they are oriented to favor a specific order of tensor

modes. As the tensor order increases, these mode-specific formats

require excessive memory to store multiple tensor copies [51]

and/or different code implementations for computing along distinct

modes [50]. Moreover, such a compressed, coarse-grained format

can suffer from significant workload imbalance and limited scalabil-

ity, especially in irregularly shaped tensors with short modes [29].

In summary, the above block- and tree-based approaches for

sparse tensor storage rely on clustering the nonzero elements based
on their location in the multi-dimensional space and then partitioning
this space into non-overlapping regions to generate a compressed

indexing metadata. Hence, they are constrained by the spatial dis-

tribution of nonzero elements. To this end, Figure 1 shows the

distribution of nonzero elements in the multi-dimensional space for

a set of 3D and 4D sparse tensors.
1
Specifically, it demonstrates that

the number of nonzero elements per block fluctuates widely (note

the use of logarithmic scale). As the sparsity of tensors increases

(e.g., deli, nell-1, amazon, and reddit tensors), the location-based

clustering fails to compress tensors and introduces a substantial

memory overhead. As a result, the parallel performance and scala-

bility of such location-based formats can be severely impacted by

the irregular data distributions and unstructured sparsity patterns

that typically emerge in higher-order sparse tensors.

1.1 Adaptive Linearized Tensor Order

We propose the Adaptive Linearized Tensor Order (ALTO) format,

a mode-agnostic storage system for sparse tensors that addresses

the irregularity in sparse tensor computations and the performance

bottlenecks on modern parallel architectures. ALTO organizes and

stores the nonzero elements of a given tensor in a one-dimensional

data structure along with compact indexing metadata, such that

neighboring nonzero elements in the tensor are close to each other

in memory. Most importantly, it generates the indexing metadata

using an adaptive bit encoding scheme based on the shape and

dimensions of target tensors. Such an adaptive format trades off

index computations (i.e., de-linearization) for lower memory usage

and more efficient use of the effective memory bandwidth.

Unlike prior compressed [29, 52] and linearized [21] sparse ten-

sor formats, ALTO not only improves data locality across all mode

orientations but also eliminates workload imbalance and greatly

1
The implementation of HiCOO [29], a block-based COO format, only supports 3D

and 4D sparse tensors and it does not auto-tune the blocking sizes. We include ten

datasets from [29], and add three large-scale datasets with billions of elements.

reduces synchronization cost, which have traditionally limited the

performance and scalability of irregular sparse tensor computa-

tions. Moreover, it generates perfectly balanced partitions for ef-

fective parallel execution. Although each nonzero tensor element

is strictly mapped to one partition, the subspace coordinates of

ALTO partitions may overlap. To resolve update conflicts across

these potentially overlapping partitions, ALTO locates their posi-

tions in the multi-dimensional space and automatically selects the

appropriate synchronization mechanism based on the data reuse

of target tensors. As a result, ALTO delivers superior performance

over state-of-the-art sparse tensor formats. In what follows, we

summarize the contributions of this work:

• We introduce ALTO, a novel sparse tensor format for high-

performance and scalable execution of tensor operations.

Unlike prior location-based clustering approaches for com-

pressed sparse tensor storage, ALTO uses a single (mode-

agnostic) tensor representation that improves data locality,

eliminates workload imbalance, and greatly reduces memory

usage and synchronization overhead, regardless of the data
distribution in the multi-dimensional space (§3).

• We propose an adaptive synchronization mechanism to ef-

ficiently resolve conflicting updates (writes) across threads

based on the average data reuse of target sparse tensors (§3).
• We present effective parallel algorithms to perform Matri-

cized Tensor Times Khatri-Rao Product (MTTKRP) opera-

tions, the main tensor decomposition performance bottle-

neck [5, 11, 24, 52], on sparse tensors stored via ALTO (§3).
• We demonstrate that ALTO outperforms the state-of-the-art

sparse tensor formats via experimental evaluation over a

variety of real-world datasets. ALTO achieves a geometric

mean speedup of 8× over the best mode-agnostic format and

a geometric mean compression ratio of 4.3× over the best

mode-specific format (§4).

2 BACKGROUND

We begin with a brief overview of tensor decomposition methods

and related notations. The work by Kolda and Bader [4, 26] provides

a more in-depth discussion of tensor algorithms and applications.

2.1 Notations

Tensors are the higher-order generalization of matrices. An 𝑁 di-

mensional tensor is said to have 𝑁 modes and is called a mode-𝑁

tensor. The following notations are used in this paper:
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(1) Scalars are denoted by lower case letters (e.g., 𝑎).

(2) Vectors are mode-1 tensors denoted by bold lower case letters

(e.g., a). The 𝑖𝑡ℎ element of a vector a is denoted by 𝑎𝑖 .

(3) Matrices are mode-2 tensors denoted by bold capital letters

(e.g., A). If A is a 𝐼 × 𝐽 matrix, it can also be denoted as

A ∈ R𝐼×𝐽 , and its element at index (𝑖, 𝑗) is denoted as 𝑎𝑖, 𝑗 .

(4) Higher-order tensors are denoted by Euler script letters (e.g.,

X). A mode-𝑁 tensor whose dimensions are 𝐼1× 𝐼2× · · ·× 𝐼𝑁
can be denoted asX ∈ R𝐼1×𝐼2×···×𝐼𝑁 , and its element at index

(𝑖1, 𝑖2, . . . , 𝑖𝑁 ) is denoted as 𝑥𝑖1,𝑖2,...,𝑖𝑁 .

(5) Fibers are the higher-order analogue of matrix rows and

columns. A mode-𝑛 fiber is defined by fixing every mode

except the𝑛𝑡ℎ mode. For example, a matrix column is defined

by fixing the second mode, and is therefore a mode-1 fiber.

A fiber is denoted by using a colon for the non-fixed mode

(e.g., the 𝑗𝑡ℎ column of a matrix A is denoted by a:, 𝑗 ).

(6) Slices are the lower-order components of a tensor which

result from fixing all but two modes. For example, the slices

of a mode-3 tensor X are matrices (such as X𝑖,:,: and X:, 𝑗,:).

2.2 Canonical Polyadic Decomposition

The Canonical Polyadic Decomposition (CPD) is a widely used type

of tensor factorization, in which a mode-𝑁 tensor X is approxi-

mated by the sum of 𝑅 outer products of 𝑁 vectors. Each outer

product is called a rank-1 component, while the sum of the 𝑅 compo-

nents is said to be a rank-𝑅 decomposition ofX. The vectors forming

the rank-1 outer products each correspond to a particular tensor

mode. We may arrange the 𝑅 vectors corresponding to each of the

𝑁 modes into 𝑁 different factor matrices so that the decomposi-

tion of X is the outer product of these matrices. For example, if

X ∈ R𝐼×𝐽 ×𝐾 , we may write a decomposition of X in terms of factor

matrices A ∈ R𝐼×𝑅 , B ∈ R𝐽 ×𝑅 , and C ∈ R𝐾×𝑅 , where the columns

of A (resp. B and C) are the vectors used in forming the 𝑅 outer

products along mode-1 (resp. 2 and 3).

The CPD-Alternating Least Squares (CPD-ALS) method is a pop-

ular tensor decomposition algorithm. During each ALS iteration,

one alternates between updating each of the individual factor matri-

ces, i.e., updating a factor matrix to yield the best approximation of

X when all other factor matrices are fixed. The most expensive part

of CPD-ALS, along with many other tensor algorithms, is the matri-

cized tensor times Khatri-Rao product (MTTKRP) operation [52].

The MTTKRP operation involves two basic subroutines:

(1) Tensor matricization – a process where a tensor is unfolded or
flattened into a matrix. Moreover, the mode-𝑛 matricization

of a tensor X, denoted X(𝑛) , is obtained by laying out the

mode-𝑛 fibers of X as the columns of X(𝑛) . Hence, when
X(𝑛) is multiplied by the Khatri-Rao product (see below),

the tensor indices associated with the 𝑞-th column of X(𝑛)
match those given by the rows of the factor matrices used

to form the 𝑞-th row of the Khatri-Rao product.

(2) Khatri-Rao product [33] – the “matching column-wise” Kro-

necker product between twomatrices. That is, givenmatrices

B ∈ R𝐽 ×𝑅 and C ∈ R𝐾×𝑅 , their Khatri-Rao product K, de-

noted K = B ⊙ C, where K is a (𝐽 ·𝐾) × 𝑅 matrix, is defined

as: 𝐵 ⊙ 𝐶 = [b1 ⊗ c1 b2 ⊗ c2 . . . b𝑅 ⊗ c𝑅].

For a mode-3 tensor X, the mode-1 MTTKRP operation can be

expressed as X(1) (B ⊙ C). Typically, MTTKRP operations along

all modes are performed 10–100 times in one tensor decomposition

calculation. Since these MTTKRP operations are similar, we only

discuss mode-1 MTTKRP in this paper.

3 ALTO FORMAT

Real-world sparse tensors, which emerge in high-dimensional data

analytics, are challenging to efficiently encode and represent as

they suffer from highly irregular shapes and data distributions as

well as unstructured sparsity patterns. For example, one mode of a

tensor may represent a massive user database while another mode

represents their demographic information, their interactions, or

their (potentially incomplete) consumer preferences/ratings for a

set of products [48].

Thus, the proposed ALTO format uses an adaptive (data-aware)

recursive partitioning of the high-dimensional space that represents

a given sparse tensor to generate a mode-agnostic linearized index,

which maps a point (nonzero element) in this Cartesian space to

a point on a compact line. Specifically, ALTO splits every mode

into multiple regions based on the mode length, such that each

distinct mode has a variable number of regions to adapt to the

unequal cardinalities of different modes and to minimize the storage

requirements. This adaptive linearization and recursive partitioning

of the multi-dimensional space ensures that neighboring points

in space are close to each other on the resulting compact line,

thereby maintaining the inherent data locality of tensor algorithms.

Moreover, the ALTO format is not only locality-friendly, but also

parallelism-friendly as it decomposes the multi-dimensional space

into perfectly balanced (in terms of workload) subspaces. Further, it

intelligently arranges the modes in the derived subspaces based on

their cardinality (dimension length) to further reduce the overhead

of resolving the write conflicts that typically occur in parallel sparse

tensor computations.

What follows is a detailed description and discussion of the

ALTO format generation (§3.1) and the workload partitioning and

scheduling methods (§3.2) using a concrete walk-through exam-

ple. In addition, we present the ALTO-based sequential and parallel

algorithms as well as adaptive conflict resolution mechanisms for ef-

ficient execution of illustrative sparse tensor operations on parallel

shared-memory platforms (§3.3).

3.1 ALTO Tensor Generation

Formally, an ALTO tensor X = {𝑥1, 𝑥2, . . . , 𝑥𝑀 } is an ordered set of

nonzero elements, where each element 𝑥𝑖 = ⟨𝑣𝑖 , 𝑝𝑖 ⟩ is represented
by a value 𝑣𝑖 and a position 𝑝𝑖 . The position 𝑝𝑖 corresponds to a

compact mode-agnostic encoding of the indexing metadata, which

is used to quickly generate the tuple (𝑖1, 𝑖2, . . . , 𝑖𝑁 ) that locates a
nonzero element in the multi-dimensional Cartesian space.

The generation of an ALTO tensor is carried out in two stages:

linearization and ordering. First, ALTO constructs the indexing

metadata using a compressed encoding scheme, based on the cardi-

nalities of tensor modes, to map each nonzero element to a position

on a compact line. Second, it arranges the nonzero elements in

linearized storage according to their line positions, i.e., the val-

ues of their ALTO index. Typically, the ordering stage dominates
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4X8X2 Tensor ALTO Bit Mask i

j
k

k = 0

k = 1

Value Position

𝒙𝟏,𝟎,𝟎 2 (000010)

𝒙𝟑,𝟏,𝟏 15 (001111)

𝒙𝟎,𝟑,𝟎 20 (010100)

𝒙𝟐,𝟐,𝟏 25 (011001)

𝒙𝟑,𝟒,𝟎 42 (101010)

𝒙𝟏,𝟔,𝟏 51 (110011)

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO Tensor 
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630

3 bits2 bits1 bit

00 01 10 11

Figure 2: An example of the ALTO sparse encoding and rep-

resentation for a three-dimensional tensor.

the format conversion/generation time. However, compared to the

location-based sparse tensor formats [29, 30, 40, 41, 50, 52], ALTO
requires a minimal generation time because ordering the linearized

tensors incurs a fraction of the cost required to sort the multi-

dimensional tensor formats (due to the reduction in the comparison

operations, as detailed in §4).
Figure 2 provides an example of the ALTO format for a 4 ×

8 × 2 sparse tensor with six nonzeros (denoted 𝑥𝑖, 𝑗,𝑘 ). The multi-

dimensional indices (𝑖 , 𝑗 , and 𝑘) are color coded and the 𝑟𝑡ℎ bit of

their binary representation is denoted 𝑏𝑖/𝑗/𝑘,𝑟 . Specifically, ALTO
keeps the value of a nonzero element along with a linearized in-

dex, where each bit of this index is selected to partition the multi-

dimensional space into two hyperplanes. For example, the ALTO
encoding in Figure 2 uses a compact line of length 64 (i.e., a 6-bit

linearized index) to represent the target tensor of size 4× 8× 2. This

index consists of three groups of bits with variable sizes (resolutions)

to efficiently handle high-order data of arbitrary dimensionality.

Within each bit group, ALTO arranges the modes in increasing or-

der of their length (i.e., the shortest mode first), which is equivalent

to partitioning the multi-dimensional space along the longest mode

first. Such an encoding aims to generate a balanced linearization

of the irregular Cartesian space, where the amount of information
about the spatial position of a nonzero element decreases with every
consecutive bit, starting from the most significant bit. Therefore, the

line segments encode subspaces with mode intervals of equivalent

lengths, e.g., the line segments [0− 31], [0− 15], and [0− 7] encode
subspaces of 4×4×2, 4×2×2, and 2×2×2 dimensions, respectively.

Due to this adaptive partitioning of the multi-dimensional data,

ALTO encodes the resulting linearized index in the minimum num-

ber of bits, and it improves data locality across all modes of a

given sparse tensor. Hence, a mode-𝑁 tensor, whose dimensions

are 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 , can be efficiently represented using a single

ALTO format with indexing metadata of size:

𝑆ALTO = 𝑀 × (
𝑁∑
𝑛=1

log
2
𝐼𝑛) bits, (1)

where𝑀 is the number of nonzero elements.

𝒃𝒌,𝟐 𝒃𝒋,𝟐 𝒃𝒊,𝟐 𝒃𝒌,𝟏 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒌,𝟎 𝒃𝒋,𝟎 𝒃𝒊,𝟎

Z-curve Bit Mask 

5110

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

ALTO Bit Mask 

630

3 bits2 bits1 bit 3 bits3 bits3 bits

Figure 3: For the example in Figure 2, ALTO generates a non-

fractal, yet more compact encoding compared to traditional

space-filling curves, such as the Z-Morton order.

As a result, compared to the de facto COO format, ALTO reduces

the storage requirement regardless of the tensor’s characteristics.

That is, the metadata compression ratio of the ALTO format relative

to COO is always ≥ 1. On a hardware architecture with a word-level

memory addressing mode, this compression ratio is given by:

𝑆COO

𝑆ALTO
=

∑𝑁
𝑛=1

⌈
log

2
𝐼𝑛

𝑊𝑏

⌉⌈∑𝑁
𝑛=1 log2 𝐼𝑛
𝑊𝑏

⌉ , (2)

where𝑊𝑏 is the word size in bits. For example, on an architecture

with a byte-level addressing mode (i.e.,𝑊𝑏 = 8 bits), the sparse

tensor in Figure 2 requires three bytes to store the mode indices

of a nonzero element in the list-based COO format and a single

byte to store the linearized index of the same element in the ALTO

format: the metadata compression ratio of ALTO, compared to the

list-based formats, is three.

Most importantly, the ALTO format not only reduces the overall

memory traffic of sparse tensor computations, but also decreases

the number of memory transactions required to access the indexing

metadata of a sparse tensor, as reading the linearized index requires

fewer memory transactions compared to reading several multi-

dimensional indices. In addition, this natural coalescing of the multi-

dimensional indices into a single linearized index increases the

memory transaction size to make more efficient use of the main

memory bandwidth.

It is important to note that ALTO uses a non-fractal
2
encoding

scheme, unlike the traditional space-filling curves (SFCs) [43]. In

contrast, such SFCs (e.g., Z-Morton order [38]) are based on continu-

ous self-similar (fractal) functions that can be extremely inefficient

to encode the irregularly shaped multi-dimensional spaces that

emerge in higher-order sparse tensor algorithms, as they require

indexing metadata of size:

𝑆SFC = 𝑀 × 𝑁 × 𝑁
max

𝑛=1
(log

2
𝐼𝑛) bits. (3)

Therefore, the application of SFCs in sparse tensor computations

has been limited to reordering the nonzero elements to improve their
data locality rather than compressing the indexing metadata [29].

Figure 3 shows the compact encoding generated byALTO compared

to the fractal encoding scheme based on the Z-Morton curve. In this

example, the non-fractal encoding scheme used by ALTO reduces

the length of the encoding line by a factor of eight, which not

only decreases the overall size of the indexing metadata, but also

reduces the linearization/de-linearization time required to map the

multi-dimensional space to/from the compact encoding line.

2
A fractal pattern is a hierarchically self-similar pattern that looks the same at increas-

ingly smaller scales.
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𝟎 𝟎 𝟏 𝟎 𝟏 𝟎mode mask 

X X X X 𝒃𝒊,𝟏 𝒃𝒊,𝟎

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

mode index 

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎

X X X 𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒋,𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏

X X X X X 𝒃𝒌,𝟎

ALTO index

(a) ALTO generates its mode-agnostic linearized index using bit-level

gather operations.

𝟎 𝟎 𝟏 𝟎 𝟏 𝟎mode mask 

X X X X 𝒃𝒊,𝟏 𝒃𝒊,𝟎

𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒊,𝟏 𝒃𝒋,𝟎 𝒃𝒊,𝟎 𝒃𝒌,𝟎

mode index 

𝟏 𝟏 𝟎 𝟏 𝟎 𝟎

X X X 𝒃𝒋,𝟐 𝒃𝒋,𝟏 𝒃𝒋,𝟎
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(b) To generate the multi-dimensional indices, ALTO decodes the lin-

earized indexing metadata using bit-level scatter operations.

Figure 4: The ALTO-based bit encoding and decoding mech-

anisms for the example in Figure 2.

To allow fast indexing of the linearized tensors during sparse

tensor operations, the ALTO encoding is implemented using a set

of simple 𝑁 bit masks, where 𝑁 is the number of modes, on top of

common data processing primitives. Figure 4 shows the lineariza-

tion and de-linearization mechanisms, which are used during the

ALTO format generation and the sparse tensor computations, re-

spectively. The linearization is implemented as a bit-level gather,

while the de-linearization is performed as a bit-level scatter. Thus,

while the compressed representation of the proposed ALTO format

comes at the cost of a de-linearization (decompression) overhead,

such a computational overhead is minimal and can be effectively

overlapped with the memory accesses of the memory-intensive

sparse tensor operations, as shown in §4.

3.2 Workload Partitioning and Scheduling

The prior compressed sparse tensor formats, such as block- and

CSF-based approaches, seek to reduce the size of the indexing

metadata by clustering the nonzero elements into coarse-grained

structures (e.g., tensor blocks, slices, and/or fibers) that divide the

multi-dimensional space of a given tensor into non-overlapping

regions. However, due to the irregular shapes and distributions of

higher-order data, such coarse-grained approaches can suffer from

severe workload imbalance, in terms of nonzero elements, which

in turn leads to limited parallel performance and scalability.

Thus, the proposed ALTO representation works at the finest

granularity level (i.e., a single nonzero element), which exposes

the maximum fine-grained parallelism and allows scalable parallel

execution. While a non-overlapping space partitioning of a tensor

can be obtained from the ALTO encoding scheme, using a subset

of the index bits, the workload balance of such a partitioning still

depends on the sparsity patterns of the tensor.

To decouple the performance of sparse tensor computations

from the distribution of nonzero elements, ALTO eliminates the

workload imbalance and generates perfectly balanced partitions.

Figure 5 depicts an example of ALTO’s workload decomposition

when applied to the sparse tensor in Figure 2. Moreover, ALTO
divides the line segment containing the nonzero elements of the

Value Position

𝒙𝟏,𝟎,𝟎 2 (000010)

𝒙𝟑,𝟏,𝟏 15 (001111)

𝒙𝟎,𝟑,𝟎 20 (010100)

𝒙𝟐,𝟐,𝟏 25 (011001)
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𝒙𝟏,𝟔,𝟏 51 (110011)
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Figure 5: ALTO partitioning of the example in Figure 2,

which generates balanced partitions in terms of workload

(nonzero elements) for efficient parallel execution.

target tensor into smaller line segments, all of which have the

same number of nonzeros, thus perfectly splitting the workload.

Therefore, in Figure 5, ALTO partitions the linearized tensor into

two line segments: [2 − 20] and [25 − 51]. Although the resulting

line segments have different lengths (i.e., 18 and 26), they have the

same number of nonzeros elements.

Once the linearized sparse tensor is divided into multiple line

segments, ALTO identifies the basis mode intervals (coordinate

ranges) of the multi-dimensional subspaces that correspond to these

segments. For example, the line segments [2 − 20] and [25 − 51]
correspond to three-dimensional subspaces bounded by the mode

intervals {[0 − 3], [0 − 3], [0 − 1]} and {[1 − 3], [2 − 6], [0 − 1]},
respectively. While the derived multi-dimensional subspaces of

the line segments may overlap, as highlighted in yellow in Fig-

ure 5, each nonzero element is assigned to exactly one line segment.

That is, ALTO imposes a partitioning on a given linearized tensor

that generates a disjoint set of non-overlapping and balanced line
segments, yet it does not guarantee that such a partitioning will

decompose the multi-dimensional space of the tensor into non-

overlapping subspaces. In contrast, the prior sparse tensor formats

decompose the multi-dimensional space into non-overlapping (yet

highly imbalanced) regions, namely, tensor slices and fibers in CSF-

based formats and multi-dimensional spatial blocks in block-based

formats (e.g., HiCOO).

More formally, a set of 𝐿 line segments partitions a linearized

ALTO tensor X, which encodes a mode-𝑁 sparse tensor, such that

X = X1 ∪ X2 · · · ∪ X𝐿 and X𝑖 ∩ X𝑗 = 𝜙∀𝑖 and 𝑗 , where 𝑖 ≠ 𝑗 . Each

line segment X𝑖 is an ordered set of nonzero elements that are

bounded in an 𝑁 -dimensional space by a set of 𝑁 closed mode

intervals 𝑇𝑖 = {[𝑇 𝑠
𝑖,1
,𝑇 𝑒
𝑖,1
], [𝑇 𝑠

𝑖,2
,𝑇 𝑒
𝑖,2
], · · · [𝑇 𝑠

𝑖,𝑁
,𝑇 𝑒
𝑖,𝑁

]}, where each
mode interval 𝑇𝑖, 𝑗 is delineated by a start 𝑇 𝑠

𝑖, 𝑗
and an end 𝑇 𝑒

𝑖, 𝑗
. The

intersection of two sets of mode intervals represents the subspace

overlap between their corresponding line segments (partitions).
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3.3 Adaptive Tensor Operations

Since high-dimensional data analytics is becoming increasingly pop-

ular in rapidly evolving areas [22, 25, 42, 46], a fundamental goal

of the proposed ALTO format is to deliver superior performance

without compromising the productivity of end users to allow fast

development of tensor algorithms and operations. Algorithm 1 il-

lustrates the popular MTTKRP tensor operation using the ALTO
format. First, unlike CSF-based formats, ALTO enables end users

to perform tensor operations using a unified code implementation
that works on a single copy of the sparse tensor, regardless of the
different mode orientations of such operations. Second, by decou-

pling the representation of a sparse tensor from the distribution

of its nonzero elements, ALTO does not require manual tuning to
select the optimal format parameters for this tensor, in contrast

to block-based storage approaches such as HiCOO. Instead, the

ALTO format is automatically generated based on the shape and

dimensions of the target sparse tensor (as explained in §3.1).

Algorithm 1 Mode-1 sequential MTTKRP-ALTO algorithm.

Input: A third-order ALTO sparse tensor X ∈ R𝐼×𝐽 ×𝐾with 𝑀

nonzero elements, dense factor matrices A ∈ R𝐼×𝑅 , B ∈ R𝐽 ×𝑅 ,
and C ∈ R𝐾×𝑅

Output: Updated dense factor matrix Ã ∈ R𝐼×𝑅
1: for 𝑥 = 1, . . . , 𝑀 do

2: 𝑖 = EXTRACT(𝑝𝑜𝑠 (𝑥), 𝑀𝐴𝑆𝐾 (1)) ⊲ De-linearization.

3: 𝑗 = EXTRACT(𝑝𝑜𝑠 (𝑥), 𝑀𝐴𝑆𝐾 (2))
4: 𝑘 = EXTRACT(𝑝𝑜𝑠 (𝑥), 𝑀𝐴𝑆𝐾 (3))
5: for 𝑟 = 1, . . . , 𝑅 do

6: Ã(𝑖, 𝑟 ) + = 𝑣𝑎𝑙 (𝑥)× B( 𝑗, 𝑟 )× C(𝑘, 𝑟 )
7: end for

8: end for

9: return Ã

Because processing the nonzero elements in parallel (line 1 in

Algorithm 1) can result in write conflicts across threads (line 6 in

Algorithm 1), we devise an effective parallel execution and syn-

chronization algorithm that handles these conflicts by exploiting

the inherent data reuse of target tensors. Algorithm 2 describes

the proposed workload distribution and scheduling scheme using a

representative parallel MTTKRP operation that works on a sparse

tensor stored in the ALTO format. After ALTO imposes a partition-

ing on a given sparse tensor, as detailed in §3.2, each partition can be
assigned to a different thread. To resolve the update/write conflicts

that may happen during parallel sparse tensor computations, ALTO
uses an adaptive conflict resolution approach that automatically se-

lects the appropriate global synchronization technique (highlighted

by the different gray backgrounds) across threads based on the

reuse of the target fibers. This metric represents the average num-

ber of nonzero elements per fiber (the generalization of a matrix

row/column) and it is estimated by simply dividing the total number

of nonzero elements by the number of fibers along the target mode.

When a sparse tensor operation suffers from limited fiber reuse,

ALTO resolves the conflicting updates across its line segments (par-

titions) using direct atomic operations (line 8). Otherwise, it uses

a limited amount of temporary (local) storage to keep the local

Algorithm 2 Adaptive parallel execution of mode-1 MTTKRP-

ALTO kernel. ALTO automatically uses local storage or atomics ,

based on the reuse of output fibers, to resolve the update conflicts.

Input: A third-order ALTO sparse tensor X ∈ R𝐼×𝐽 ×𝐾with 𝑀

nonzero elements, dense factor matrices A ∈ R𝐼×𝑅 , B ∈ R𝐽 ×𝑅 ,
and C ∈ R𝐾×𝑅

Output: Updated dense factor matrix Ã ∈ R𝐼×𝑅
1: for 𝑙 = 1, . . . , 𝐿 in parallel do ⊲ ALTO line segments.

2: for ∀𝑥 ∈ X𝑙 do
3: 𝑖 = EXTRACT(𝑝𝑜𝑠 (𝑥), 𝑀𝐴𝑆𝐾 (1)) ⊲ De-linearization.

4: 𝑗 = EXTRACT(𝑝𝑜𝑠 (𝑥), 𝑀𝐴𝑆𝐾 (2))
5: 𝑘 = EXTRACT(𝑝𝑜𝑠 (𝑥), 𝑀𝐴𝑆𝐾 (3))
6: for 𝑟 = 1, . . . , 𝑅 do

7: Temp𝑙 (𝑖 −𝑇 𝑠𝑙,1, 𝑟 ) + = 𝑣𝑎𝑙 (𝑥)× B( 𝑗, 𝑟 )× C(𝑘, 𝑟 )

8: ATOMIC(Ã(𝑖, 𝑟 ) + = 𝑣𝑎𝑙 (𝑥)× B( 𝑗, 𝑟 )× C(𝑘, 𝑟 ))
9: end for

10: end for

11: end for

12: for 𝑏 = 1, . . . , 𝐼 in parallel do ⊲ Pull-based accumulation.

13: for ∀𝑙 where 𝑏 ∈ [𝑇 𝑠
𝑙,1
,𝑇 𝑒
𝑙,1
] do

14: for 𝑟 = 1, . . . , 𝑅 do

15: Ã(𝑏, 𝑟 ) + = Temp𝑙 (𝑏 −𝑇 𝑠𝑙,1, 𝑟 )
16: end for

17: end for

18: end for

19: return Ã

updates of different partitions (line 7) and then merges the con-

flicting global updates (lines 12–18) using an efficient pull-based

parallel reduction, where the final results are computed by pulling

the partial results from the ALTO partitions.

ALTO considers the fiber reuse large enough to use local staging

memory for conflict resolution, if the average number of nonzero

elements per fiber is more than the maximum cost of using this

two-stage (buffered) accumulation process, which consists of ini-

tialization (omitted for brevity), local accumulation (line 7 in Al-

gorithm 2), and global accumulation (lines 12–18). Specifically, the

buffered accumulation cost is four memory operations (two read

and two write operations) at most, i.e., in the worst (no reuse) case.

As explained in §3.2, each line segment X𝑙 is bounded in an 𝑁 -

dimensional space by a set of 𝑁 closed mode intervals 𝑇𝑙 , which

is computed during the partitioning of an ALTO tensor; thus, the

size of the temporary storage accessed during the accumulation of

X𝑙 ’s updates along a mode 𝑛 is directly determined by the mode

interval [𝑇 𝑠
𝑙,𝑛
,𝑇 𝑒
𝑙,𝑛

] (see lines 7 and 13).

Finally, ALTO allows automated generation and use of helper

flags to further reduce the conflict resolution overhead in the sparse

tensors that suffer from limited fiber reuse. That is, it exploits

the unused (do-not-care) bits in the linearized index to encode

if a nonzero element is a boundary or internal (exclusive) element

along a mode with limited fiber reuse. Based on this information,

ALTO determines whether to execute the global update (line 8 in

Algorithm 2) as an atomic operation (for boundary elements) or a

normal write (for internal elements).
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4 EVALUATION

We evaluate ALTO against the state-of-the-art sparse tensor rep-

resentations in terms of tensor storage, parallel performance and

execution time, and format generation cost. We conduct a thorough

study of key tensor decomposition operations (§2.2) and demon-

strate the performance characteristics of ALTO not only compared

to the prior formats, but also relative to an oracle that selects the best
mode-agnostic and mode-specific format for each tensor dataset.

4.1 Implementation

We implemented ALTO as a C++ library and used OpenMP [13]

for multi-threaded execution. The implementation utilizes auto-

matic vectorization and loop unrolling optimizations [6], and it uses

templates [56] for generalized support of tensors with arbitrary

sizes. Specifically, we use a generic type to represent our mode-

agnostic indexing metadata, which allows the same code to support

linearized indices of different widths. This template-based approach

avoids code duplication and reduces the time and effort required to

port ALTO to other hardware platforms.

To improve the performance of sparse tensor kernels, the state-of-

the-art tensor libraries specialize these kernels for different tensor

orders (e.g., 3D and 4D tensors). In our library, a canonical ten-

sor operation, such as MTTKRP, has an entry point that acts as

a dispatcher, which invokes the generic implementation or more

specialized versions of this implementation when available. This

malleable approach leverages the compiler to transparently gen-

erate optimized code for common tensor orders and/or for typical

decomposition ranks (called rank specialization). However, for a

fair comparison with existing tensor libraries, we report the perfor-

mance ofALTOwithout rank specialization and discuss the potential
performance improvement of such an optimization.

We also incorporatedALTO into the popular SPLATT library [52]

(i.e., replaced the CSF-based MTTKRP operation with the ALTO-

based MTTKRP) to validate its usability in the CPD-ALS algorithm.

Given the same initial values, our implementation calculates iden-

tical factor matrices as the original SPLATT implementation and

shows the same convergence properties (i.e., same number of itera-

tions to convergence and fit to the original tensor). Our implemen-

tation also shows similar fit compared to the Tensor Toolbox [4]

CPD-ALS implementation.

4.2 Experimental Setup

4.2.1 Platform. All experiments were conducted on an Intel Xeon

Platinum 8280 CPU with Cascade Lake-X (CLX) microarchitecture.

It consists of two sockets, each with 28 physical cores running at a

fixed frequency of 1.8 GHz for accurate measurements. The server

has 384 GiB of memory and it runs CentOS 7.7 Linux distribution.

The code is built using Intel C/C++ compiler (version 19.1.3) with the

optimization flags -O3 -xCORE-AVX512 -qopt-zmm-usage=high to
fully utilize vector units. Unless otherwise stated, the parallel ex-

periments use all hardware threads (112) on the target platform.

We report the performance numbers as an average over 100 itera-

tions/runs, after a warmup iteration as per prior tensor libraries.

For performance counter measurements and thread pinning, we

use the LIKWID tool suite v5.1.0 [19].

Table 1: Characteristics of the target sparse tensors.

Tensor Dimensions #NNZs Density Fib. reuse

lbnl 1.6𝐾 × 4.2𝐾 × 1.6𝐾 ×
4.2𝐾 × 868.1𝐾

1.7𝑀 4.2×10
−14

Limited

nips 2.5𝐾×2.9𝐾×14𝐾×17 3.1𝑀 1.8×10
−06

High

uber 183×24×1.1𝐾 ×1.7𝐾 3.3𝑀 3.8×10−04 High

chicago 6.2𝐾 × 24 × 77 × 32 5.3𝑀 1.5×10
−02

High

vast 165.4𝐾 × 11.4𝐾 × 2 ×
100 × 89

26𝑀 7.8×10
−07

High

darpa 22.5𝐾×22.5𝐾×23.8𝑀 28.4𝑀 2.4×10−09 Limited

enron 6𝐾 × 5.7𝐾 × 244.3𝐾 ×
1.2𝐾

54.2𝑀 5.5×10−09 High

nell-2 12.1𝐾 × 9.2𝐾 × 28.8𝐾 76.9𝑀 2.4×10−05 High

fb-m 23.3𝑀 × 23.3𝑀 × 166 99.6𝑀 1.1×10
−09

Limited

flickr 319.7𝐾 × 28.2𝑀 ×
1.6𝑀 × 731

112.9𝑀 1.1×10
−14

Limited

deli 532.9𝐾 × 17.3𝑀 ×
2.5𝑀 × 1.4𝐾

140.1𝑀 4.3×10
−15

Medium

nell-1 2.9𝑀 × 2.1𝑀 × 25.5𝑀 143.6𝑀 9.1×10−13 Medium

amazon 4.8𝑀 × 1.8𝑀 × 1.8𝑀 1.7𝐵 1.1×10
−10

High

patents 46 × 239.2𝐾 × 239.2𝐾 3.6𝐵 1.4×10
−03

High

reddit 8.2𝑀 × 177𝐾 × 8.1𝑀 4.7𝐵 4.0×10
−10

High

4.2.2 Datasets. For a comprehensive evaluation, the experiments

consider a gamut of real-world tensor datasets with various charac-

teristics. These tensors are often used in related works and they are

publicly available in the FROSTT [48] and HaTen2 [23] repositories.

Table 1 shows the detailed features of the target datasets, ordered by

size, in terms of dimensions, number of nonzero elements (#NNZs),

and density. To make the results clear and interpretable, the tensors

are classified based on the average reuse of their fibers into high,

medium, or limited reuse. We consider the fibers along a given

mode to have high reuse, if they are reused more than eight times

on average; when the fibers are reused between five to eight times,

they have medium reuse; otherwise, the fibers suffer from limited

reuse. Since the target tensor operations access fibers along all

modes, a tensor with one or more modes of limited/medium reuse

is considered to have an overall limited/medium fiber reuse.

4.2.3 Configurations. We evaluate the proposedALTO format com-

pared to the mode-agnostic COO and HiCOO formats [29] as well

as the mode-specific CSF formats [50, 52]. Specifically, we use the

latest code of the state-of-the-art sparse tensor libraries for CPUs,

namely, ParTI
3
and SPLATT.

4
We report the best-achieved perfor-

mance across the different configurations of the COO format; that

is, with or without thread privatization (which keeps local copies of

the output factor matrix). For the HiCOO format, its performance

and storage are highly sensitive to the block and superblock (SB)

sizes, which benefit from tuning. Since the current HiCOO imple-

mentation does not auto-tune the format parameters or consider the

required tuning time in the format generation cost, we use a block

size of 128 (2
7
) and two superblock sizes of 2

10
and 2

14
according

to prior work [55], and we report the performance of each format

variant (“HiCOO-SB10” and “HiCOO-SB14”). We evaluate two vari-

ants of the mode-specific formats: CSF and CSF with tensor tilling

3
Available at: https://github.com/hpcgarage/ParTI

4
Available at: https://github.com/ShadenSmith/splatt
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Figure 6: The performance metrics of the ALTO format

(higher is better) in comparison with an oracle that selects

the best mode-agnostic or mode-specific format variant for

tensor datasets.

(“CSF-tile”), both of which use 𝑁 representations (“SPLATT-ALL”)

for an order-𝑁 sparse tensor to achieve the best performance.
5

Similar to previous studies [10, 50, 52], the experiments use double-

precision arithmetic and 64-bit (native word) integers. While the

target datasets require a linearized index of size between 32 and 80

bits, we configured ALTO to select the size of its linearized index

to be multiples of the native word size (i.e., 64 and 128 bits) for

simplicity. We use a decomposition rank 𝑅 = 16 for all experiments.

4.3 Summary of Performance Metrics

Figure 6 compares the performance characteristics of the proposed

ALTO format to an oracle that selects the best format for target

tensors. The oracle considers two distinct types of sparse tensor

formats: 1) mode-agnostic or general formats (COO, HiCOO-SB10,

and HiCOO-SB14), which use a single tensor representation, and

2) mode-specific formats (CSF and CSF-tile), which keep multiple

tensor copies (one per mode) for best performance. The results

show that ALTO outperforms the best mode-agnostic as well as

mode-specific formats in terms of the speedup of tensor operations

(MTTKRP on all modes) and the tensor storage. Specifically, ALTO
achieves a geometric mean speedup of 8× compared to the best gen-

eral formats, while delivering a geometric mean compression ratio

of 4.3× relative to the best mode-specific formats. What follows is

a detailed analysis and discussion of the performance results.

4.4 Performance Results and Analysis

To evaluate the parallel performance and scalability of the ALTO
format, Figure 7 shows the speedup of the different parallel imple-

mentations of MTTKRP, which dominates the execution time of

tensor decomposition methods. Unlike prior formats, the parallel

performance of ALTO depends on the inherent data reuse of sparse

tensors rather than the spatial distribution of their nonzero ele-

ments. As explained in Algorithm 2, the parallel MTTKRP-ALTO
algorithm consists of two stages: 1) computing the output fibers of

the target mode using the input fibers along all other modes, and

2) merging the conflicting updates of output fibers across threads.

ALTO demonstrates linear scaling for the sparse tensors with high

5
In reddit dataset, SPLATT runs out of memory. While keeping fewer tensor copies

is possible, it significantly degrades the performance on non-root modes due to using

different recursion- and lock-based algorithmic variants.

reuse (on the left of the figure). Specifically, it achieves a geomet-

ric mean speedup of 47× on 56 cores (i.e., more than 80% parallel

efficiency) by exploiting the data locality of input fibers and by

locally computing the partial updates of output fibers in higher

levels of the memory system hierarchy. This way, the overhead

of merging these partial updates is amortized over the large num-

ber of output fiber reuse. The analysis of performance counters,

as detailed below, shows that most of the input/output fiber data

is accessed in the cache, which strongly reduces the pressure on

the main memory. For the amazon and reddit tensors, their ex-

treme sparsity impacts the parallel scalability compared to other

high-reuse cases, due to the reduction of useful work performed

over the application’s memory footprint. In addition, when sparse

tensors have limited/medium data reuse, as shown on the right of

Figure 7, ALTO has a sub-linear scaling (a geometric mean speedup

of 16× on 56 cores) due to the large number of accesses to main

memory. On our test platform, the STREAM Triad [36] bandwidth

is 10GB/s and 210GB/s for a single core and a full node of 56 cores,

respectively. Hence, ALTO obtains around 76% of the maximum

realizable speedup (21×) in such memory-bound cases.

On the contrary, the performance of prior sparse tensor formats

varies widely due to their sensitivity to the irregular shapes and

data distributions of higher-order tensors. As a result, the location-

based formats (HiCOO-SB10/SB14, CSF, and CSF-tile) suffer from

workload imbalance and ineffective compression depending on the

distribution of the nonzero elements of each dataset. Additionally,

based on the update conflicts across blocks/superblocks, the parallel

schedule of block-based formats (HiCOO-SB10/SB14) can encounter

serialization and/or substantial parallelization overhead. However,

in a few cases, namely, nips, amazon, and nell-1 tensors, the

mode-specific CSF format shows slightly better performance (1.2×
geometric-mean speedup) than the mode-agnostic ALTO format

by keeping multiple sparse tensor representations along different

mode orientations, which in turn significantly increases the storage

of CSF (by 2.5×–4.5× compared to ALTO, as shown in Figure 11).

4.4.1 Performance across Modes. Figure 8 demonstrates the run-

time variations of the different formats while performing MTTKRP

across tensor modes. The selected sparse tensors exhibit different

characteristics in terms of shape, size, density, and data reuse. Com-

pared to the other formats, ALTO has a relatively consistent per-

formance regardless of the mode orientation of tensor operations.

In the darpa tensor, the execution time of ALTO along mode-3 is

higher than mode-1 and mode-2 due to the limited fiber reuse of

mode-3. While fibers along all modes are read during MTTKRP

execution, only the output fibers along the target mode are updated.

Since the memory read bandwidth is typically higher than the write

bandwidth, the limited fiber reuse of mode-3 has more impact on

mode-3 MTTKRP compared to other modes. In contrast, the other

sparse formats suffer from significant performance variations across

modes (note the use of logarithmic scale). While the execution time

of the mode-specific CSF formats is expected to change based on

the characteristics of the target mode, as they use a distinct tensor

representation for each mode orientation, the results show that

the parallel performance of block-based formats varies widely due

to the different update conflicts and parallelism degrees of tensor

blocks/superblocks across modes.
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4.4.2 Roofline Analysis. To better understand the performance

characteristics of MTTKRP using the ALTO format, we created

a Roofline model [60] for the test platform and collected perfor-

mance counters across a set of representative parallel runs. For

the Roofline model, an upper performance limit Π is given by

Π = min(Π
peak

, 𝐵
peak

× 𝑂𝐼 ), where Π
peak

is the theoretical peak

performance, 𝐵
peak

is the peak memory bandwidth, and 𝑂𝐼 is the

operational intensity (i.e., the ratio of executed floating-point op-

erations per byte). In addition, we enhance our Roofline model to

consider the bandwidth of the different cache levels. While the L2

cache, L3 cache, and main memory bandwidth in our model are phe-

nomenological, i.e., measured using likwid-bench, L1 bandwidth

measurements are error-prone. Therefore, we use the theoretical

L1 load bandwidth of two cache lines per cycle per core for this par-

ticular roofline. The peak performance, Π
peak

, is calculated based

on the ability of the cores to execute two fused multiply-add (FMA)

instructions on eight-element double precision vector registers (due

to the availability of AVX-512) per cycle.

Figure 9 shows the performance of the parallel MTTKRP-ALTO
computations (lines 1-11 in Algorithm 2) for several representa-

tive cases. While the memory-intensive MTTKRP operation suffers

from low operational intensity, ALTO can still exceed the peak main

memory bandwidth by exploiting the inherent data reuse and by

efficiently resolving the update conflicts. The nips tensor 1 is rela-

tively small and it has high reuse of output fibers, which can be held

locally in L1/L2 caches. The performance counters show a superior

cache hit rate while computing output fibers, which explains the

high effective bandwidth and floating-point throughput. Mode-3 of

nell-2 2 has a smaller amount of fiber reuse and it accesses a larger

number of local output fibers compared to nips 1 . Nonetheless,
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Figure 9: The parallel performance of ALTO acrossMTTKRP

runs:nipsmode-4without 1 andwith r rank specialization,

nell-2mode-3 2 , amazonmode-1 3 , darpamode-1 4 and

mode-3 5 .

ALTO efficiently utilizes all threads to do useful work and amortizes

the parallelization overheads due to the larger number of nonzero

elements, and we observe a slightly higher performance than 1 .

While the amazon tensor 3 has high fiber reuse, its extreme spar-

sity and large size increase the memory pressure. In addition, al-

though the tensor can be encoded using a 72-bit linearized index,

our current ALTO implementation uses a 128-bit linearized index

(twice the native word size) for simplicity. Together these factors

increase the data volume and the de-linearization overhead, which
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relative to the default ALTO parallel implementation. The

sparse tensors are categorized and then sorted in an increas-

ing order of their size.

in turn reduces the effective floating-point throughput compared

to other tensors with high data reuse 1 and 2 .

In contrast, the darpa tensor has limited fiber reuse (along mode-

3) which restricts the performance compared to the previous cases.

During the computation ofMTTKRP onmode-3 5 , the limited reuse

of output fibers does not justify the use of local/temporary memory

to resolve the conflicting updates. As a result, ALTO automatically

chooses to use atomic updates for conflict resolution. While darpa

mode-1 4 has higher reuse of output fibers, comparable to 2 ,

reading the input fibers along mode-3 dominates the execution

time and results in more data traffic across the memory system

levels because of the limited temporal locality; thus, we can observe

that its performance is bounded by the memory bandwidth.

4.5 Impact of Rank Specialization

The generic (template-based) implementation of ALTO (which is

discussed in §4.1) not only allows effortless specialization of sparse

tensor kernels for common tensor orders (e.g., 3D and 4D tensors),

but also makes it possible to specialize these kernels for typical

ranks — an optimization that we call rank specialization. For a

fair comparison with the prior sparse tensor implementations, all

other performance results in this paper using ALTO do not leverage
rank specialization. Here, we show the potential of this feature

to further improve the performance by allowing the compiler to

gain more insight into the length of rank-wise update operations.

This way, the compiler can generate more optimized code, which

leads to a better overall performance, as shown for nips mode-

4 r . The analysis of the generated assembly files with OSACA [28]

shows that rank specialization results in better control structures

with fewer branches compared to the standard implementation.

Additionally, the compiler can reduce the pressure on the load units

and, thus, decreases the execution time by more than 2× in nips r .

Figure 10 shows a comprehensive comparison between the rank

specialized ALTO version and the default parallel version used in

prior experiments. For smaller tensors with high reuse, the com-

piler manages to optimize the computations and to improve the

performance by more than 2×. In larger tensors as well as tensors

with limited reuse, we can still observe a performance benefit of

more than 10%, leading to an overall geometric mean speedup of

1.4× across the different sparse tensors.

4.6 Memory Storage

Figure 11 details the relative storage of the sparse tensors using

the proposed ALTO format as well as the block-based (HiCOO-

SB10/SB14) and tree-based (CSF and CSF-tile) formats. Compared

to the de facto COO format, ALTO always requires less storage

space due to its efficient linearization of the multi-dimensional

space, as explained in §3.1. The mode-specific (CSF and CSF-tile)

formats consume more storage space than COO because they keep

multiple sparse representations for the different mode orientations.

Overall, imposing a tilling over the tensors (CSF-tile) ends up in-

creasing the storage requirements of CSF. Conversely, the memory

consumption of the block-based formats is highly variable as it

depends on the block/superblock sizes and the distribution of the

nonzero elements in the multi-dimensional space. Thus, HiCOO can

reduce the storage compared to COO when the number of nonzero

elements per block is relatively high. However, as the sparsity of

the tensors increases, the block-based formats consume more space,

such as in the deli, nell-1, amazon, and reddit tensors.

4.7 Format Generation Cost

Figure 12 compares the cost of constructing the different sparse

tensor formats from a sparse tensor in the COO format. Since ALTO
works on a linearized rather than a multi-dimensional represen-

tation of tensors, the cost of sorting the nonzero elements in its

linearized storage (which is the most expensive step in the for-

mat generation) is substantially reduced because of the decrease

in the number of comparison operations. In addition to sorting the

nonzero elements, the block-based HiCOO formats require costly

clustering of these elements based on their multi-dimensional co-

ordinates as well as scheduling of the resulting blocks/superblocks

to avoid conflicts. As a result, ALTO has more than an order-of-

magnitude speedup relative to HiCOO in terms of the format con-

version time. Although the tree-based CSF formats are generated

from presorted COO tensors, ALTO still requires less time for format

construction on average. In large-scale tensors, such as amazon

and patents, ALTO has comparable conversion cost to the tree-

based formats as the tensor sorting time increases with the number

of nonzero elements. Currently, the format generation of ALTO
leverages the C++ Standard Template Library (STL) and a further

reduction of this construction cost is possible.

5 RELATED WORK AND DISCUSSION

Due to the popularity of high-dimensional data analytics, a rich

set of work has been recently developed to efficiently store sparse

tensors and to optimize various tensor computations. Here, we

discuss the related sparse tensor formats and operations as well as

the conventional recursive data layouts.

5.1 Sparse Tensor Formats

Our study was motivated by the linearized coordinate (LCO) for-

mat [21], which also flattens sparse tensors but along a given ori-

entation of tensor modes. Hence, LCO requires either multiple

tensor copies or on-the-fly permutation of tensors for efficient com-

putation. In addition, the authors limit their focus to sequential

algorithms, and it is not clear how LCO can be used to efficiently

parallelize sparse tensor computations.
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Recent extensions [31, 45] to the list-based COO format reduce

the synchronization overhead across threads using mode-specific
scheduling/permutation arrays. However, their output-oriented tra-

versal of sparse tensors adversely affects the input data locality

and/or result in random access of the nonzero elements [45]. More-

over, storing this fine-grained scheduling information for all tensor

modes can more than double the memory consumption, compared

to the COO format [45].

The block-based formats, such as HiCOO [29], are highly sensi-

tive to the characteristics of sparse tensors as well as the block size.

When the blocking ratio (i.e., the number of blocks to the number of

nonzero elements) is high, HiCOO can use more storage space than

the simple COO format [29]. Due to the nonuniform (skewed) data

distributions in themulti-dimensional space, the number of nonzero

elements per block varies widely across HiCOO blocks, even after

expensive mode-specific tensor permutations which in practice fur-

ther increase workload imbalance [30]. Moreover, such block-based

formats, which use small data types for element indices, can end

up under-utilizing the compute units and memory bandwidth be-

cause 1) mainstream architectures are word-oriented, which leads

to limited efficiency of sub-word (narrow-width) operations [2, 37],

and 2) applications need to generate large memory transactions to

efficiently utilize the bandwidth of commodity DRAM chips [18].

The mode-specific CSF format [50, 52] clusters the nonzero ten-

sor elements into coarse-grained tensor slices and fibers, which

limits its scalability on massively parallel architectures. To improve

the performance on GPUs, recent CSF-based formats [40, 41] ex-

pose more balanced and fine-grained parallelism but at the expense

of substantial synchronization overheads and expensive preprocess-

ing and format generation costs. The sparse tensor format selection

(SpTFS) framework [55] leverages deep learning models [61, 64] to

predict the best of COO, HiCOO, and CSF formats to perform the

MTTKRP operation on a given sparse tensor.

5.2 Sparse Tensor Operations

In addition to the widely used sparse tensor decomposition, which

we extensively discussed in previous sections, other important ten-

sor algebra operations can benefit from the proposed ALTO format.

Examples of these operations include sparse tensor transposition

and contraction as well as streaming tensor analysis.

Sparse tensor transpositions are prevalent in high-dimensional

data processing and analysis algorithms [39]. The state-of-the-art

approaches [39, 58] reduce these important operations to sorting

the nonzero elements based on their multi-dimensional coordinates.

ALTO accelerates the tensor sorting process due to its linearized

representation and recursive ordering of nonzero elements, which

makes the sparse tensors stored in the ALTO format amenable to

partial radix-based sorting.

Sparse tensor contractions emerge in many critical scientific

domains [54], e.g., computational physics and quantum chemistry.

These operations need random access into tensors, which can be

supported by hash-based COO representations, such as Sparta [32].

ALTO can further improve performance by using the target subset

of encoding bits that represent the contract modes to quickly build

and access a hash-based representation of linearized tensors.

To analyze infinite data sources, streaming tensor decomposition

assembles batches of incoming data into a sequence of sparse sub-

tensors and incrementally computes factor matrices [49, 53]. As

shown in §4.7, ALTO uses a fraction of the format generation time

required by prior compressed formats, which makes it more suitable

for accelerating such streaming algorithms.

5.3 Recursive Data Layouts

Previous studies explored cache-oblivious [17, 20] data layouts for

optimizing memory-intensive operations, especially in the context

of linear algebra. These data layouts exploit the underlying memory

hierarchy without knowing its specific structure or configuration.
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Recursive algorithms and storage schemes [9, 14, 16, 44] are popular

in Basic Linear Algebra Subprogram (BLAS) kernels, due to the

regularity of such dense computations.

Yzelman et al. [62, 63] proposed recursive data layouts for sparse

matrices, based on hypergraph partitioning, to improve the per-

formance of sparse-matrix, dense-vector (SpMV) multiplication.

However, these methods require permuting the rows and columns

of sparse matrices to generate more structured sparsity patterns.

Martone et al. [34, 35] introduced the Recursive Sparse Block (RSB)

storage scheme for efficient execution of symmetric SpMV opera-

tions. On multi-core CPUs, this hierarchical representation demon-

strates comparable performance to tiled (block-based) formats, such

as Compressed Sparse Blocks (CSB) [8]. The Distributed Block Com-

pressed Sparse Row (DBCSR) library [7] adopts a hybrid approach,

in which a sparse matrix is recursively divided until it has a pre-

defined number of blocks. Moreover, the DBCSR library provides

a tensor interface [47] to execute tensor contractions using the

optimized sparse matrix multiplication kernels.

6 CONCLUSION

Motivated by the vulnerability of existing compressed formats to

the irregular characteristics of higher-order sparse data, this work

proposed the ALTO format to efficiently encode sparse tensors of ar-

bitrary dimensionality and spatial distributions using a single mode-

agnostic representation. An implementation of the ALTO-based
tensor decomposition operations (all-modes MTTKRP) proved to

outperform an oracle that selects the best state-of-the-art format,

in terms of parallel performance and tensor storage. Specifically,

ALTO delivers 8× geometric-mean speedup and 4.3× geometric-

mean compression ratio over the best general and mode-specific

formats, respectively, due to its superior workload balance, adaptive

synchronization, and compact encoding. Furthermore, the experi-

ments showed the potential of our template-based implementation

to bring extra performance improvement (1.4× geometric-mean

speedup) by specializing the ALTO-based tensor kernels for target

application features.

Our future work will investigate additional massively parallel

and distributed-memory platforms that can benefit from the supe-

rior performance characteristics of ALTO. We also plan to explore

the use of the proposed format to accelerate other common sparse

tensor algorithms, besides tensor decomposition.
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