ALTO: Adaptive Linearized Storage of Sparse Tensors

Ahmed E. Helal Jan Laukemann
Intel Labs Intel Labs
ahmed.helal@intel.com jan.laukemann@intel.com

Teresa Ranadive
Laboratory for Physical Sciences
tranadive@lps.umd.edu

ABSTRACT

The analysis of high-dimensional sparse data is becoming increas-
ingly popular in many important domains. However, real-world
sparse tensors are challenging to process due to their irregular
shapes and data distributions. We propose the Adaptive Linearized
Tensor Order (ALTO) format, a novel mode-agnostic (general) rep-
resentation that keeps neighboring nonzero elements in the multi-
dimensional space close to each other in memory. To generate the
indexing metadata, ALTO uses an adaptive bit encoding scheme
that trades off index computations for lower memory usage and
more effective use of memory bandwidth. Moreover, by decoupling
its sparse representation from the irregular spatial distribution of
nonzero elements, ALTO eliminates the workload imbalance and
greatly reduces the synchronization overhead of tensor computa-
tions. As a result, the parallel performance of ALTO-based tensor
operations becomes a function of their inherent data reuse. On a
gamut of tensor datasets, ALTO outperforms an oracle that selects
the best state-of-the-art format for each dataset, when used in key
tensor decomposition operations. Specifically, ALTO achieves a geo-
metric mean speedup of 8x over the best mode-agnostic (coordinate
and hierarchical coordinate) formats, while delivering a geometric
mean compression ratio of 4.3X relative to the best mode-specific
(compressed sparse fiber) formats.

CCS CONCEPTS

« Mathematics of computing — Mathematical software per-
formance; - Computing methodologies — Parallel algorithms.

KEYWORDS

Sparse tensors, tensor decomposition, MTTKRP, multi-core CPU

ACM Reference Format:

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, Jesmin Jahan Tithi, Teresa
Ranadive, Fabrizio Petrini, and Jeewhan Choi. 2021. ALTO: Adaptive Lin-
earized Storage of Sparse Tensors. In 2021 International Conference on Super-
computing (ICS °21), June 14-17, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3447818.3461703

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’21, June 14-17, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8335-6/21/06...$15.00
https://doi.org/10.1145/3447818.3461703

404

Fabrizio Petrini
Intel Labs
fabrizio.petrini@intel.com

Jesmin Jahan Tithi
Intel Labs
jesmin.jahan.tithi@intel.com

Fabio Checconi
Intel Labs
fabio.checconi@intel.com

Jeewhan Choi
University of Oregon
jeec@uoregon.edu

1 INTRODUCTION

Many critical application domains such as healthcare [22, 59], cyber-
security [15, 25], data mining [27, 42], and machine learning [3, 46]
produce and manipulate massive amounts of high-dimensional
data. Such datasets can naturally be represented as sparse tensors,
which store the values of the nonzero tensor elements along with
indexing metadata that denote the position of each nonzero in the
tensor. Therefore, a fundamental problem in sparse tensor compu-
tations involves determining how to store, group, and organize the
nonzero elements to 1) reduce memory storage, 2) improve data
locality, 3) increase parallelism, and 4) decrease workload imbalance
and synchronization overhead. Since tensor algorithms perform
computations along different mode (i.e., dimension) orientations,
practical sparse tensor formats must be mode-agnostic to deliver
acceptable performance and scalability across all modes. Because
real-world sparse tensors are highly irregular in terms of their
shape, dimensions, and distribution of nonzero elements, achieving
these (oftentimes conflicting) goals is challenging.

To tackle this problem, researchers have proposed many sparse
tensor formats [4, 5, 29-31, 40, 41, 45, 50, 52], which can be classi-
fied based on their encoding of the multi-dimensional coordinates
into list-, block-, and tree-based formats [12]. List-based tensor rep-
resentations, such as the simple coordinate (COO) format, explicitly
store the nonzero elements along with their coordinates (i.e., the
indices of all dimensions). Therefore, they are agnostic to the dif-
ferent mode orientations of tensor algorithms and, as a result, they
remain the de facto sparse tensor storage [12] in many libraries (e.g.,
Tensor Toolbox [4], Tensorflow [1], and Tensorlab [57]). However,
the list-based COO format does not impose any order on the multi-
dimensional data and it suffers from a significant synchronization
overhead to resolve the update/write conflicts across threads [31].

Prior block-based sparse tensor representations employ multi-
dimensional tiling schemes to further compress the COO format [29,
30]. However, the efficacy of this hierarchical COO (HiCOO) storage
completely depends on the characteristics of target tensors (such
as their shape, density, and data distribution) as well as the for-
mat parameters (e.g., block size). In addition, the resulting parallel
schedule of HiCOO blocks can suffer from limited parallelism and
scalability due to conflicting updates across blocks.

Several proposals use tree-based data structures to extend tradi-
tional compressed matrix formats, such as the compressed sparse
row (CSR) format, to higher-order tensors. The most popular ex-
ample of these storage representations is the compressed sparse
fiber (CSF) format [52], which uses multiple arrays of index pointers
to compress the multi-dimensional indices of nonzero elements.

https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1145/3447818.3461703

ICS °21, June 14-17, 2021, Virtual Event, USA

1.E+06
1.E+05
1.E+04
1.E+03
1.E+02

#Nonzeros

1.E+01

1.E+00

NIPS UBER CHICAGO DARPA ENRON

+ Ll

NELL-2
Sparse Tensors

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, et al.

i

FB-M FLICKR DELI NELL-1 AMAZON PATENTS REDDIT

Figure 1: A box plot of the data (nonzero elements) distribution across the multi-dimensional blocks (subspaces) of the hier-
archical coordinate storage [29]. The multi-dimensional subspace size is 128", where N is the number of dimensions (modes),
as per prior work [55]. The sparse tensors are sorted in an increasing order of their size (number of nonzero elements).

While CSF-based formats can reduce memory traffic, they are mode-
specific, i.e., they are oriented to favor a specific order of tensor
modes. As the tensor order increases, these mode-specific formats
require excessive memory to store multiple tensor copies [51]
and/or different code implementations for computing along distinct
modes [50]. Moreover, such a compressed, coarse-grained format
can suffer from significant workload imbalance and limited scalabil-
ity, especially in irregularly shaped tensors with short modes [29].

In summary, the above block- and tree-based approaches for
sparse tensor storage rely on clustering the nonzero elements based
on their location in the multi-dimensional space and then partitioning
this space into non-overlapping regions to generate a compressed
indexing metadata. Hence, they are constrained by the spatial dis-
tribution of nonzero elements. To this end, Figure 1 shows the
distribution of nonzero elements in the multi-dimensional space for
a set of 3D and 4D sparse tensors.! Specifically, it demonstrates that
the number of nonzero elements per block fluctuates widely (note
the use of logarithmic scale). As the sparsity of tensors increases
(e.g., DELI, NELL-1, AMAZON, and REDDIT tensors), the location-based
clustering fails to compress tensors and introduces a substantial
memory overhead. As a result, the parallel performance and scala-
bility of such location-based formats can be severely impacted by
the irregular data distributions and unstructured sparsity patterns
that typically emerge in higher-order sparse tensors.

1.1 Adaptive Linearized Tensor Order

We propose the Adaptive Linearized Tensor Order (ALTO) format,
a mode-agnostic storage system for sparse tensors that addresses
the irregularity in sparse tensor computations and the performance
bottlenecks on modern parallel architectures. ALTO organizes and
stores the nonzero elements of a given tensor in a one-dimensional
data structure along with compact indexing metadata, such that
neighboring nonzero elements in the tensor are close to each other
in memory. Most importantly, it generates the indexing metadata
using an adaptive bit encoding scheme based on the shape and
dimensions of target tensors. Such an adaptive format trades off
index computations (i.e., de-linearization) for lower memory usage
and more efficient use of the effective memory bandwidth.

Unlike prior compressed [29, 52] and linearized [21] sparse ten-
sor formats, ALTO not only improves data locality across all mode
orientations but also eliminates workload imbalance and greatly

! The implementation of HiCOO [29], a block-based COO format, only supports 3D
and 4D sparse tensors and it does not auto-tune the blocking sizes. We include ten
datasets from [29], and add three large-scale datasets with billions of elements.

405

reduces synchronization cost, which have traditionally limited the
performance and scalability of irregular sparse tensor computa-
tions. Moreover, it generates perfectly balanced partitions for ef-
fective parallel execution. Although each nonzero tensor element
is strictly mapped to one partition, the subspace coordinates of
ALTO partitions may overlap. To resolve update conflicts across
these potentially overlapping partitions, ALTO locates their posi-
tions in the multi-dimensional space and automatically selects the
appropriate synchronization mechanism based on the data reuse
of target tensors. As a result, ALTO delivers superior performance
over state-of-the-art sparse tensor formats. In what follows, we
summarize the contributions of this work:

e We introduce ALTO, a novel sparse tensor format for high-
performance and scalable execution of tensor operations.
Unlike prior location-based clustering approaches for com-
pressed sparse tensor storage, ALTO uses a single (mode-
agnostic) tensor representation that improves data locality,
eliminates workload imbalance, and greatly reduces memory
usage and synchronization overhead, regardless of the data
distribution in the multi-dimensional space (§3).

e We propose an adaptive synchronization mechanism to ef-
ficiently resolve conflicting updates (writes) across threads
based on the average data reuse of target sparse tensors (§3).

e We present effective parallel algorithms to perform Matri-
cized Tensor Times Khatri-Rao Product (MTTKRP) opera-
tions, the main tensor decomposition performance bottle-
neck [5, 11, 24, 52], on sparse tensors stored via ALTO (§3).

o We demonstrate that ALTO outperforms the state-of-the-art
sparse tensor formats via experimental evaluation over a
variety of real-world datasets. ALTO achieves a geometric
mean speedup of 8x over the best mode-agnostic format and
a geometric mean compression ratio of 4.3x over the best
mode-specific format (§4).

2 BACKGROUND

We begin with a brief overview of tensor decomposition methods
and related notations. The work by Kolda and Bader [4, 26] provides
a more in-depth discussion of tensor algorithms and applications.

2.1 Notations

Tensors are the higher-order generalization of matrices. An N di-
mensional tensor is said to have N modes and is called a mode-N
tensor. The following notations are used in this paper:

ALTO: Adaptive Linearized Storage of Sparse Tensors

(1) Scalars are denoted by lower case letters (e.g., a).

(2) Vectors are mode-1 tensors denoted by bold lower case letters
(e.g., a). The i’" element of a vector a is denoted by a;.

(3) Matrices are mode-2 tensors denoted by bold capital letters
(e.g., A). If A is a I X J matrix, it can also be denoted as
A € R and its element at index (i, j) is denoted as aij.

(4) Higher-order tensors are denoted by Euler script letters (e.g.,

X). A mode-N tensor whose dimensions are [} X I X - - - X Iy

can be denoted as X € RI¥2XXIN and its element at index

(i1, dg, ..., in) is denoted as x;, i, . in-

Fibers are the higher-order analogue of matrix rows and

columns. A mode-n fiber is defined by fixing every mode

®)

except the nt" mode. For example, a matrix column is defined
by fixing the second mode, and is therefore a mode-1 fiber.
A fiber is denoted by using a colon for the non-fixed mode
(e.g., the jt* column of a matrix A is denoted by a. ;).

Slices are the lower-order components of a tensor which
result from fixing all but two modes. For example, the slices
of a mode-3 tensor X are matrices (such as X;.. and X ;).

(6)

2.2

The Canonical Polyadic Decomposition (CPD) is a widely used type
of tensor factorization, in which a mode-N tensor X is approxi-
mated by the sum of R outer products of N vectors. Each outer
product is called a rank-1 component, while the sum of the R compo-
nents is said to be a rank-R decomposition of X. The vectors forming
the rank-1 outer products each correspond to a particular tensor
mode. We may arrange the R vectors corresponding to each of the
N modes into N different factor matrices so that the decomposi-
tion of X is the outer product of these matrices. For example, if
X € RPXK e may write a decomposition of X in terms of factor
matrices A € RI*R B € R/*R and C € RK*R where the columns
of A (resp. B and C) are the vectors used in forming the R outer
products along mode-1 (resp. 2 and 3).

The CPD-Alternating Least Squares (CPD-ALS) method is a pop-
ular tensor decomposition algorithm. During each ALS iteration,
one alternates between updating each of the individual factor matri-
ces, i.e., updating a factor matrix to yield the best approximation of
X when all other factor matrices are fixed. The most expensive part
of CPD-ALS, along with many other tensor algorithms, is the matri-
cized tensor times Khatri-Rao product (MTTKRP) operation [52].

The MTTKRP operation involves two basic subroutines:

Canonical Polyadic Decomposition

(1) Tensor matricization — a process where a tensor is unfolded or
flattened into a matrix. Moreover, the mode-n matricization
of a tensor X, denoted Xy, is obtained by laying out the
mode-n fibers of X as the columns of X(n). Hence, when
X(n) is multiplied by the Khatri-Rao product (see below),
the tensor indices associated with the g-th column of X,
match those given by the rows of the factor matrices used
to form the g-th row of the Khatri-Rao product.

Khatri-Rao product [33] - the “matching column-wise” Kro-
necker product between two matrices. That is, given matrices
B € R/*R and C € REKXR their Khatri-Rao product K, de-
noted K=B © C, where K is a (J - K) X R matrix, is defined
as:BOC=[b;®c1by®c2...bgQcg].

@

406

ICS ’21, June 14-17, 2021, Virtual Event, USA

For a mode-3 tensor X, the mode-1 MTTKRP operation can be
expressed as X (1) (B © C). Typically, MTTKRP operations along
all modes are performed 10-100 times in one tensor decomposition
calculation. Since these MTTKRP operations are similar, we only
discuss mode-1 MTTKRP in this paper.

3 ALTO FORMAT

Real-world sparse tensors, which emerge in high-dimensional data
analytics, are challenging to efficiently encode and represent as
they suffer from highly irregular shapes and data distributions as
well as unstructured sparsity patterns. For example, one mode of a
tensor may represent a massive user database while another mode
represents their demographic information, their interactions, or
their (potentially incomplete) consumer preferences/ratings for a
set of products [48].

Thus, the proposed ALTO format uses an adaptive (data-aware)
recursive partitioning of the high-dimensional space that represents
a given sparse tensor to generate a mode-agnostic linearized index,
which maps a point (nonzero element) in this Cartesian space to
a point on a compact line. Specifically, ALTO splits every mode
into multiple regions based on the mode length, such that each
distinct mode has a variable number of regions to adapt to the
unequal cardinalities of different modes and to minimize the storage
requirements. This adaptive linearization and recursive partitioning
of the multi-dimensional space ensures that neighboring points
in space are close to each other on the resulting compact line,
thereby maintaining the inherent data locality of tensor algorithms.
Moreover, the ALTO format is not only locality-friendly, but also
parallelism-friendly as it decomposes the multi-dimensional space
into perfectly balanced (in terms of workload) subspaces. Further, it
intelligently arranges the modes in the derived subspaces based on
their cardinality (dimension length) to further reduce the overhead
of resolving the write conflicts that typically occur in parallel sparse
tensor computations.

What follows is a detailed description and discussion of the
ALTO format generation (§3.1) and the workload partitioning and
scheduling methods (§3.2) using a concrete walk-through exam-
ple. In addition, we present the ALTO-based sequential and parallel
algorithms as well as adaptive conflict resolution mechanisms for ef-
ficient execution of illustrative sparse tensor operations on parallel
shared-memory platforms (§3.3).

3.1 ALTO Tensor Generation

Formally, an ALTO tensor X = {x1, x2, ..., xp} is an ordered set of
nonzero elements, where each element x; = (v;, p;) is represented
by a value v; and a position p;. The position p; corresponds to a
compact mode-agnostic encoding of the indexing metadata, which
is used to quickly generate the tuple (iy, iz, ..., in) that locates a
nonzero element in the multi-dimensional Cartesian space.

The generation of an ALTO tensor is carried out in two stages:
linearization and ordering. First, ALTO constructs the indexing
metadata using a compressed encoding scheme, based on the cardi-
nalities of tensor modes, to map each nonzero element to a position
on a compact line. Second, it arranges the nonzero elements in
linearized storage according to their line positions, i.e., the val-
ues of their ALTO index. Typically, the ordering stage dominates

ICS °21, June 14-17, 2021, Virtual Event, USA

wi 4X8X2 Tensor
C @ 00 01 10 11

J 000 «l__ /_LY_A_Y—A—\
S 2 [s [oo
001

010

ALTO Bit Mask

1bit 2bits 3 bits

011 | « N

100 e — -

101 / /

/ Ve
110 / / I
/ R A——
111 / /7 -
v ////
7 //
P .
P .
00 01 10 1 // /// ’/
000 T T ALTO Tensor
010 7 X100 2(000010)
g
ou e X311 15(001111)
10 - X030 20(010100)
! X221 25(011001)
110 <~
X340 42(101010)
111 2
X161 51(110011)

Figure 2: An example of the ALTO sparse encoding and rep-
resentation for a three-dimensional tensor.

the format conversion/generation time. However, compared to the
location-based sparse tensor formats [29, 30, 40, 41, 50, 52], ALTO
requires a minimal generation time because ordering the linearized
tensors incurs a fraction of the cost required to sort the multi-
dimensional tensor formats (due to the reduction in the comparison
operations, as detailed in §4).

Figure 2 provides an example of the ALTO format for a 4 x
8 X 2 sparse tensor with six nonzeros (denoted x; ;). The multi-

dimensional indices (i, j, and k) are color coded and the rth bit of
their binary representation is denoted b; ;/x . Specifically, ALTO
keeps the value of a nonzero element along with a linearized in-
dex, where each bit of this index is selected to partition the multi-
dimensional space into two hyperplanes. For example, the ALTO
encoding in Figure 2 uses a compact line of length 64 (i.e., a 6-bit
linearized index) to represent the target tensor of size 4 X 8 X 2. This
index consists of three groups of bits with variable sizes (resolutions)
to efficiently handle high-order data of arbitrary dimensionality.
Within each bit group, ALTO arranges the modes in increasing or-
der of their length (i.e., the shortest mode first), which is equivalent
to partitioning the multi-dimensional space along the longest mode
first. Such an encoding aims to generate a balanced linearization
of the irregular Cartesian space, where the amount of information
about the spatial position of a nonzero element decreases with every
consecutive bit, starting from the most significant bit. Therefore, the
line segments encode subspaces with mode intervals of equivalent
lengths, e.g., the line segments [0—31], [0—15], and [0 — 7] encode
subspaces of 4x4X2,4x2X2, and 2X 2 X 2 dimensions, respectively.

Due to this adaptive partitioning of the multi-dimensional data,
ALTO encodes the resulting linearized index in the minimum num-
ber of bits, and it improves data locality across all modes of a
given sparse tensor. Hence, a mode-N tensor, whose dimensions
are I; X I X - - - X I, can be efficiently represented using a single

ALTO format with indexing metadata of size:
N

SaLTOo = M X (Z log, I,) bits,

n=1

1)

where M is the number of nonzero elements.

407

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, et al.

ALTO Bit Mask Z-curve Bit Mask
1bit 2bits 3 bits 3 bits 3 bits 3 bits
FLY_A_Y—A—\ f . 1| : T : \
sz 11 Joua oo o o [oea [bya o1 o [y Jous Jono o o]
0 63 0 511

Figure 3: For the example in Figure 2, ALTO generates a non-
fractal, yet more compact encoding compared to traditional
space-filling curves, such as the Z-Morton order.

As aresult, compared to the de facto COO format, ALTO reduces
the storage requirement regardless of the tensor’s characteristics.
That is, the metadata compression ratio of the ALTO format relative
to COO is always > 1. On a hardware architecture with a word-level
memory addressing mode, this compression ratio is given by:

ZN IOgZ In
SCOO _ n=1 Wy

SALTO Pfjﬂ 10g, In }

@)
Wy

where W}, is the word size in bits. For example, on an architecture
with a byte-level addressing mode (i.e., W}, = 8 bits), the sparse
tensor in Figure 2 requires three bytes to store the mode indices
of a nonzero element in the list-based COO format and a single
byte to store the linearized index of the same element in the ALTO
format: the metadata compression ratio of ALTO, compared to the
list-based formats, is three.

Most importantly, the ALTO format not only reduces the overall
memory traffic of sparse tensor computations, but also decreases
the number of memory transactions required to access the indexing
metadata of a sparse tensor, as reading the linearized index requires
fewer memory transactions compared to reading several multi-
dimensional indices. In addition, this natural coalescing of the multi-
dimensional indices into a single linearized index increases the
memory transaction size to make more efficient use of the main
memory bandwidth.

It is important to note that ALTO uses a non-fractal® encoding
scheme, unlike the traditional space-filling curves (SFCs) [43]. In
contrast, such SFCs (e.g., Z-Morton order [38]) are based on continu-
ous self-similar (fractal) functions that can be extremely inefficient
to encode the irregularly shaped multi-dimensional spaces that
emerge in higher-order sparse tensor algorithms, as they require
indexing metadata of size:

©)

Therefore, the application of SFCs in sparse tensor computations
has been limited to reordering the nonzero elements to improve their
data locality rather than compressing the indexing metadata [29].
Figure 3 shows the compact encoding generated by ALTO compared
to the fractal encoding scheme based on the Z-Morton curve. In this
example, the non-fractal encoding scheme used by ALTO reduces
the length of the encoding line by a factor of eight, which not
only decreases the overall size of the indexing metadata, but also
reduces the linearization/de-linearization time required to map the
multi-dimensional space to/from the compact encoding line.

Sspc = M X N X ml\a{f(logz I,) bits.
n=

2 A fractal pattern is a hierarchically self-similar pattern that looks the same at increas-
ingly smaller scales.

ALTO: Adaptive Linearized Storage of Sparse Tensors

wosenies [+ 5[+ 3] [(F[3 [eis) (P
modemask‘0‘0‘1‘0‘1‘0"1‘1‘0‘1‘0‘0"0‘0‘0‘0‘0‘1‘
L

~—

ALTO index: [12 [i 10 o o]

(a) ALTO generates its mode-agnostic linearized index using bit-level
gather operations.

ALTO index |5y |5y [bir [byo [b
—
T
modemask |0 [o[1]o[1]o] [t][1]of1]ofo] [o]o]oo]o][1]
mode index | x ,\‘x‘x biy |big ‘x‘x X s,_‘s»‘m ‘ ‘ ‘ ‘ ‘ ‘ ‘

(b) To generate the multi-dimensional indices, ALTO decodes the lin-
earized indexing metadata using bit-level scatter operations.

Figure 4: The ALTO-based bit encoding and decoding mech-
anisms for the example in Figure 2.

To allow fast indexing of the linearized tensors during sparse
tensor operations, the ALTO encoding is implemented using a set
of simple N bit masks, where N is the number of modes, on top of
common data processing primitives. Figure 4 shows the lineariza-
tion and de-linearization mechanisms, which are used during the
ALTO format generation and the sparse tensor computations, re-
spectively. The linearization is implemented as a bit-level gather,
while the de-linearization is performed as a bit-level scatter. Thus,
while the compressed representation of the proposed ALTO format
comes at the cost of a de-linearization (decompression) overhead,
such a computational overhead is minimal and can be effectively
overlapped with the memory accesses of the memory-intensive
sparse tensor operations, as shown in §4.

3.2 Workload Partitioning and Scheduling

The prior compressed sparse tensor formats, such as block- and
CSF-based approaches, seek to reduce the size of the indexing
metadata by clustering the nonzero elements into coarse-grained
structures (e.g., tensor blocks, slices, and/or fibers) that divide the
multi-dimensional space of a given tensor into non-overlapping
regions. However, due to the irregular shapes and distributions of
higher-order data, such coarse-grained approaches can suffer from
severe workload imbalance, in terms of nonzero elements, which
in turn leads to limited parallel performance and scalability.

Thus, the proposed ALTO representation works at the finest
granularity level (i.e., a single nonzero element), which exposes
the maximum fine-grained parallelism and allows scalable parallel
execution. While a non-overlapping space partitioning of a tensor
can be obtained from the ALTO encoding scheme, using a subset
of the index bits, the workload balance of such a partitioning still
depends on the sparsity patterns of the tensor.

To decouple the performance of sparse tensor computations
from the distribution of nonzero elements, ALTO eliminates the
workload imbalance and generates perfectly balanced partitions.
Figure 5 depicts an example of ALTO’s workload decomposition
when applied to the sparse tensor in Figure 2. Moreover, ALTO
divides the line segment containing the nonzero elements of the

408

ICS ’21, June 14-17, 2021, Virtual Event, USA

i 4X8X2 Tensor ALTO Bit Mask
@ 1bit 2 bits 3 bits
J

00 01 10 11
2 DR DA A AN

000 [

001

1 63
—e

010

100

101

110

111

G,)
ALTO Tensor

2(000010)

00 01 10 11

010 X1,0,0

011 X311 15 (001111)

JExosoM20/(020100)8

X321 25(011001)

X340 42(101010)

X161 51(110011)

Figure 5: ALTO partitioning of the example in Figure 2,
which generates balanced partitions in terms of workload
(nonzero elements) for efficient parallel execution.

target tensor into smaller line segments, all of which have the
same number of nonzeros, thus perfectly splitting the workload.
Therefore, in Figure 5, ALTO partitions the linearized tensor into
two line segments: [2 — 20] and [25 — 51]. Although the resulting
line segments have different lengths (i.e., 18 and 26), they have the
same number of nonzeros elements.

Once the linearized sparse tensor is divided into multiple line
segments, ALTO identifies the basis mode intervals (coordinate
ranges) of the multi-dimensional subspaces that correspond to these
segments. For example, the line segments [2 — 20] and [25 — 51]
correspond to three-dimensional subspaces bounded by the mode
intervals {[0 — 3], [0 —3],[0— 1]} and {[1 - 3],[2-6],[0 — 1]},
respectively. While the derived multi-dimensional subspaces of
the line segments may overlap, as highlighted in yellow in Fig-
ure 5, each nonzero element is assigned to exactly one line segment.
That is, ALTO imposes a partitioning on a given linearized tensor
that generates a disjoint set of non-overlapping and balanced line
segments, yet it does not guarantee that such a partitioning will
decompose the multi-dimensional space of the tensor into non-
overlapping subspaces. In contrast, the prior sparse tensor formats
decompose the multi-dimensional space into non-overlapping (yet
highly imbalanced) regions, namely, tensor slices and fibers in CSF-
based formats and multi-dimensional spatial blocks in block-based
formats (e.g., HiCOO).

More formally, a set of L line segments partitions a linearized
ALTO tensor X, which encodes a mode-N sparse tensor, such that
X=X UXy---UXp and X; N Xj = ¢Viand j, where i # j. Each
line segment X; is an ordered set of nonzero elements that are
bounded in an N-dimensional space by a set of N closed mode
intervals T; = {[Tls1 Tze1] [Tls2 sz], S [TlsN TleN]} where each
mode interval T; j is delineated by a start Tls] and an end Tl.fj. The
intersection of two sets of mode intervals represents the subspace
overlap between their corresponding line segments (partitions).

ICS °21, June 14-17, 2021, Virtual Event, USA

3.3 Adaptive Tensor Operations

Since high-dimensional data analytics is becoming increasingly pop-
ular in rapidly evolving areas [22, 25, 42, 46], a fundamental goal
of the proposed ALTO format is to deliver superior performance
without compromising the productivity of end users to allow fast
development of tensor algorithms and operations. Algorithm 1 il-
lustrates the popular MTTKRP tensor operation using the ALTO
format. First, unlike CSF-based formats, ALTO enables end users
to perform tensor operations using a unified code implementation
that works on a single copy of the sparse tensor, regardless of the
different mode orientations of such operations. Second, by decou-
pling the representation of a sparse tensor from the distribution
of its nonzero elements, ALTO does not require manual tuning to
select the optimal format parameters for this tensor, in contrast
to block-based storage approaches such as HiCOO. Instead, the
ALTO format is automatically generated based on the shape and
dimensions of the target sparse tensor (as explained in §3.1).

Algorithm 1 Mode-1 sequential MTTKRP-ALTO algorithm.

Input: A third-order ALTO sparse tensor X € RP*Kywith M
nonzero elements, dense factor matrices A € RIXR ,B € R/ XR,
and C € RKXR

Output: Updated dense factor matrix A € RI*R

1: for x=1,...,Mdo
2: i = EXTRACT (pos(x), MASK(1))
3 Jj = EXTRACT (pos(x), MASK(2))

4 k = EXTRACT (pos(x), MASK(3))

5.

6

> De-linearization.

for r=1,...,Rdo
A(i,r) + = val(x)x B(j,r)x C(k,r)
7: end for
s: end for
9. return A

Because processing the nonzero elements in parallel (line 1 in
Algorithm 1) can result in write conflicts across threads (line 6 in
Algorithm 1), we devise an effective parallel execution and syn-
chronization algorithm that handles these conflicts by exploiting
the inherent data reuse of target tensors. Algorithm 2 describes
the proposed workload distribution and scheduling scheme using a
representative parallel MTTKRP operation that works on a sparse
tensor stored in the ALTO format. After ALTO imposes a partition-
ing on a given sparse tensor, as detailed in §3.2, each partition can be
assigned to a different thread. To resolve the update/write conflicts
that may happen during parallel sparse tensor computations, ALTO
uses an adaptive conflict resolution approach that automatically se-
lects the appropriate global synchronization technique (highlighted
by the different gray backgrounds) across threads based on the
reuse of the target fibers. This metric represents the average num-
ber of nonzero elements per fiber (the generalization of a matrix
row/column) and it is estimated by simply dividing the total number
of nonzero elements by the number of fibers along the target mode.
When a sparse tensor operation suffers from limited fiber reuse,
ALTO resolves the conflicting updates across its line segments (par-
titions) using direct atomic operations (line 8). Otherwise, it uses
a limited amount of temporary (local) storage to keep the local

409

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, et al.

Algorithm 2 Adaptive parallel execution of mode-1 MTTKRP-
ALTO kernel. ALTO automatically uses local storage or atomics ,
based on the reuse of output fibers, to resolve the update conflicts.

Input: A third-order ALTO sparse tensor X € RP*Kwith M
nonzero elements, dense factor matrices A € RIXR ,Be RIXR ,
and C € RKXR

Output: Updated dense factor matrix A € RI¥R

1: for I =1,...,L in parallel do > ALTO line segments.
2 for Vx € X; do

3 i = EXTRACT (pos(x), MASK(1)) » De-linearization.
4 j = EXTRACT (pos(x), MASK(2))

5 k = EXTRACT (pos(x), MASK(3))

6 for r=1,...,Rdo

7 Tempy (i — Tls1 r) + =val(x)x B(j,r)x C(k,r)

8: ATOMIC(A(i, r) + = val(x)x B(j,r)x C(k,r))

9: end for

10: end for

11: end for

12: for b=1,...,1in paralleldo » Pull-based accumulation.

13: for VI where b € [Tlsl’TIel] do

14: for r=1,...,Rdo

15: A(b,r) +=Temp;(b - T/ ,7)
16: end for ’

17: end for

18: end for

19: return A

updates of different partitions (line 7) and then merges the con-
flicting global updates (lines 12-18) using an efficient pull-based
parallel reduction, where the final results are computed by pulling
the partial results from the ALTO partitions.

ALTO considers the fiber reuse large enough to use local staging
memory for conflict resolution, if the average number of nonzero
elements per fiber is more than the maximum cost of using this
two-stage (buffered) accumulation process, which consists of ini-
tialization (omitted for brevity), local accumulation (line 7 in Al-
gorithm 2), and global accumulation (lines 12-18). Specifically, the
buffered accumulation cost is four memory operations (two read
and two write operations) at most, i.e., in the worst (no reuse) case.
As explained in §3.2, each line segment X is bounded in an N-
dimensional space by a set of N closed mode intervals T;, which
is computed during the partitioning of an ALTO tensor; thus, the
size of the temporary storage accessed during the accumulation of
X[’s updates along a mode n is directly determined by the mode
interval [Tin, Tfn] (see lines 7 and 13).

Finally, ALTO allows automated generation and use of helper
flags to further reduce the conflict resolution overhead in the sparse
tensors that suffer from limited fiber reuse. That is, it exploits
the unused (do-not-care) bits in the linearized index to encode
if a nonzero element is a boundary or internal (exclusive) element
along a mode with limited fiber reuse. Based on this information,
ALTO determines whether to execute the global update (line 8 in
Algorithm 2) as an atomic operation (for boundary elements) or a
normal write (for internal elements).

ALTO: Adaptive Linearized Storage of Sparse Tensors

4 EVALUATION

We evaluate ALTO against the state-of-the-art sparse tensor rep-
resentations in terms of tensor storage, parallel performance and
execution time, and format generation cost. We conduct a thorough
study of key tensor decomposition operations (§2.2) and demon-
strate the performance characteristics of ALTO not only compared
to the prior formats, but also relative to an oracle that selects the best
mode-agnostic and mode-specific format for each tensor dataset.

4.1 Implementation

We implemented ALTO as a C++ library and used OpenMP [13]
for multi-threaded execution. The implementation utilizes auto-
matic vectorization and loop unrolling optimizations [6], and it uses
templates [56] for generalized support of tensors with arbitrary
sizes. Specifically, we use a generic type to represent our mode-
agnostic indexing metadata, which allows the same code to support
linearized indices of different widths. This template-based approach
avoids code duplication and reduces the time and effort required to
port ALTO to other hardware platforms.

To improve the performance of sparse tensor kernels, the state-of-
the-art tensor libraries specialize these kernels for different tensor
orders (e.g., 3D and 4D tensors). In our library, a canonical ten-
sor operation, such as MTTKRP, has an entry point that acts as
a dispatcher, which invokes the generic implementation or more
specialized versions of this implementation when available. This
malleable approach leverages the compiler to transparently gen-
erate optimized code for common tensor orders and/or for typical
decomposition ranks (called rank specialization). However, for a
fair comparison with existing tensor libraries, we report the perfor-
mance of ALTO without rank specialization and discuss the potential
performance improvement of such an optimization.

We also incorporated ALTO into the popular SPLATT library [52]
(i.e., replaced the CSF-based MTTKRP operation with the ALTO-
based MTTKRP) to validate its usability in the CPD-ALS algorithm.
Given the same initial values, our implementation calculates iden-
tical factor matrices as the original SPLATT implementation and
shows the same convergence properties (i.e., same number of itera-
tions to convergence and fit to the original tensor). Our implemen-
tation also shows similar fit compared to the Tensor Toolbox [4]
CPD-ALS implementation.

4.2 Experimental Setup

4.2.1 Platform. All experiments were conducted on an Intel Xeon
Platinum 8280 CPU with Cascade Lake-X (CLX) microarchitecture.
It consists of two sockets, each with 28 physical cores running at a
fixed frequency of 1.8 GHz for accurate measurements. The server
has 384 GiB of memory and it runs CentOS 7.7 Linux distribution.
The code is built using Intel C/C++ compiler (version 19.1.3) with the
optimization flags -03 -xCORE-AVX512 -qopt-zmm-usage=high to
fully utilize vector units. Unless otherwise stated, the parallel ex-
periments use all hardware threads (112) on the target platform.
We report the performance numbers as an average over 100 itera-
tions/runs, after a warmup iteration as per prior tensor libraries.
For performance counter measurements and thread pinning, we
use the LIKWID tool suite v5.1.0 [19].

410

ICS ’21, June 14-17, 2021, Virtual Event, USA

Table 1: Characteristics of the target sparse tensors.

[Tensor { Dimensions { #NNZs { Density { Fib. reuse ‘

LBNL 1.6K x 42K X 1.6K X | 1.7M | 4.2x10™'* | Limited
4.2K x 868.1K

NIPS 2.5Kx2.9Kx14Kx17 | 3.1M 1.8x107% | High

UBER 183x24x1.1Kx1.7K | 3.3M | 3.8x107% | High

CHICAGO | 6.2KX24x77x32 | 53M | 1.5x107°2 | High

VAST 165.4K X 11.4K X2 X | 26M 7.8x1077 | High
100 x 89

DARPA 22.5Kx22.5Kx23.8M | 28.4M | 2.4x107% | Limited

ENRON 6K x5.7K X 244.3K X | 54.2M | 5.5x107% | High
1.2K

NELL-2 121K X 9.2K x 28.8K | 76.9M | 2.4x10™% | High

FB-M 23.3M x 23.3M x 166 | 99.6M | 1.1x10™% | Limited

FLICKR 319.7K x 28.2M X | 112.9M | 1.1x10~™ | Limited
1.6M x 731

DELI 532.9K x 17.3M X | 140.1M | 4.3x107" | Medium
2.5M x 1.4K

NELL-1 2.9M X 2.1M X 25.5M | 143.6M | 9.1x10713 | Medium

AMAZON | 4.8M x 1.8M x 1.8M | 1.7B 1.1x1071° | High

PATENTS | 46 X 239.2K X 239.2K | 3.6B 1.4x10% | High

REDDIT 8.2M x 177K x 8.1M | 4.7B 4.0x1071% | High

4.2.2 Datasets. For a comprehensive evaluation, the experiments
consider a gamut of real-world tensor datasets with various charac-
teristics. These tensors are often used in related works and they are
publicly available in the FROSTT [48] and HaTen2 [23] repositories.
Table 1 shows the detailed features of the target datasets, ordered by
size, in terms of dimensions, number of nonzero elements (#NNZs),
and density. To make the results clear and interpretable, the tensors
are classified based on the average reuse of their fibers into high,
medium, or limited reuse. We consider the fibers along a given
mode to have high reuse, if they are reused more than eight times
on average; when the fibers are reused between five to eight times,
they have medium reuse; otherwise, the fibers suffer from limited
reuse. Since the target tensor operations access fibers along all
modes, a tensor with one or more modes of limited/medium reuse
is considered to have an overall limited/medium fiber reuse.

4.2.3 Configurations. We evaluate the proposed ALTO format com-
pared to the mode-agnostic COO and HiCOO formats [29] as well
as the mode-specific CSF formats [50, 52]. Specifically, we use the
latest code of the state-of-the-art sparse tensor libraries for CPUs,
namely, ParTI® and SPLATT.* We report the best-achieved perfor-
mance across the different configurations of the COO format; that
is, with or without thread privatization (which keeps local copies of
the output factor matrix). For the HiCOO format, its performance
and storage are highly sensitive to the block and superblock (SB)
sizes, which benefit from tuning. Since the current HiCOO imple-
mentation does not auto-tune the format parameters or consider the
required tuning time in the format generation cost, we use a block
size of 128 (27) and two superblock sizes of 21° and 2'* according
to prior work [55], and we report the performance of each format
variant (“HiCOO-SB10” and “HiCOO-SB14”). We evaluate two vari-
ants of the mode-specific formats: CSF and CSF with tensor tilling

3 Available at: https://github.com/hpcgarage/ParTI
4 Available at: https://github.com/ShadenSmith/splatt

https://github.com/hpcgarage/ParTI
https://github.com/ShadenSmith/splatt

ICS °21, June 14-17, 2021, Virtual Event, USA

Best mode-agnostic M Best mode-specific (tensor copy/mode) ™ ALTO
10 10

8

4
o ,

Geometric mean speedup
(MTTKRP on all modes)

Speedup
Compression ratio

Geometric mean compression ratio
(Sparse tensor storage)

Figure 6: The performance metrics of the ALTO format
(higher is better) in comparison with an oracle that selects
the best mode-agnostic or mode-specific format variant for
tensor datasets.

(“CSF-tile”), both of which use N representations (“SPLATT-ALL”)
for an order-N sparse tensor to achieve the best performance.
Similar to previous studies [10, 50, 52], the experiments use double-
precision arithmetic and 64-bit (native word) integers. While the
target datasets require a linearized index of size between 32 and 80
bits, we configured ALTO to select the size of its linearized index
to be multiples of the native word size (i.e., 64 and 128 bits) for
simplicity. We use a decomposition rank R = 16 for all experiments.

4.3 Summary of Performance Metrics

Figure 6 compares the performance characteristics of the proposed
ALTO format to an oracle that selects the best format for target
tensors. The oracle considers two distinct types of sparse tensor
formats: 1) mode-agnostic or general formats (COO, HiCOO-SB10,
and HiCOO-SB14), which use a single tensor representation, and
2) mode-specific formats (CSF and CSF-tile), which keep multiple
tensor copies (one per mode) for best performance. The results
show that ALTO outperforms the best mode-agnostic as well as
mode-specific formats in terms of the speedup of tensor operations
(MTTKRP on all modes) and the tensor storage. Specifically, ALTO
achieves a geometric mean speedup of 8x compared to the best gen-
eral formats, while delivering a geometric mean compression ratio
of 4.3X relative to the best mode-specific formats. What follows is
a detailed analysis and discussion of the performance results.

4.4 Performance Results and Analysis

To evaluate the parallel performance and scalability of the ALTO
format, Figure 7 shows the speedup of the different parallel imple-
mentations of MTTKRP, which dominates the execution time of
tensor decomposition methods. Unlike prior formats, the parallel
performance of ALTO depends on the inherent data reuse of sparse
tensors rather than the spatial distribution of their nonzero ele-
ments. As explained in Algorithm 2, the parallel MTTKRP-ALTO
algorithm consists of two stages: 1) computing the output fibers of
the target mode using the input fibers along all other modes, and
2) merging the conflicting updates of output fibers across threads.
ALTO demonstrates linear scaling for the sparse tensors with high

5In REDDIT dataset, SPLATT runs out of memory. While keeping fewer tensor copies
is possible, it significantly degrades the performance on non-root modes due to using
different recursion- and lock-based algorithmic variants.

411

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, et al.

reuse (on the left of the figure). Specifically, it achieves a geomet-
ric mean speedup of 47X on 56 cores (i.e., more than 80% parallel
efficiency) by exploiting the data locality of input fibers and by
locally computing the partial updates of output fibers in higher
levels of the memory system hierarchy. This way, the overhead
of merging these partial updates is amortized over the large num-
ber of output fiber reuse. The analysis of performance counters,
as detailed below, shows that most of the input/output fiber data
is accessed in the cache, which strongly reduces the pressure on
the main memory. For the AMAZON and REDDIT tensors, their ex-
treme sparsity impacts the parallel scalability compared to other
high-reuse cases, due to the reduction of useful work performed
over the application’s memory footprint. In addition, when sparse
tensors have limited/medium data reuse, as shown on the right of
Figure 7, ALTO has a sub-linear scaling (a geometric mean speedup
of 16X on 56 cores) due to the large number of accesses to main
memory. On our test platform, the STREAM Triad [36] bandwidth
is 10 GB/s and 210 GB/s for a single core and a full node of 56 cores,
respectively. Hence, ALTO obtains around 76% of the maximum
realizable speedup (21x) in such memory-bound cases.

On the contrary, the performance of prior sparse tensor formats
varies widely due to their sensitivity to the irregular shapes and
data distributions of higher-order tensors. As a result, the location-
based formats (HICOO-SB10/SB14, CSF, and CSF-tile) suffer from
workload imbalance and ineffective compression depending on the
distribution of the nonzero elements of each dataset. Additionally,
based on the update conflicts across blocks/superblocks, the parallel
schedule of block-based formats (HiCOO-SB10/SB14) can encounter
serialization and/or substantial parallelization overhead. However,
in a few cases, namely, NIPS, AMAZON, and NELL-1 tensors, the
mode-specific CSF format shows slightly better performance (1.2x
geometric-mean speedup) than the mode-agnostic ALTO format
by keeping multiple sparse tensor representations along different
mode orientations, which in turn significantly increases the storage
of CSF (by 2.5%-4.5% compared to ALTO, as shown in Figure 11).

4.4.1 Performance across Modes. Figure 8 demonstrates the run-
time variations of the different formats while performing MTTKRP
across tensor modes. The selected sparse tensors exhibit different
characteristics in terms of shape, size, density, and data reuse. Com-
pared to the other formats, ALTO has a relatively consistent per-
formance regardless of the mode orientation of tensor operations.
In the DARPA tensor, the execution time of ALTO along mode-3 is
higher than mode-1 and mode-2 due to the limited fiber reuse of
mode-3. While fibers along all modes are read during MTTKRP
execution, only the output fibers along the target mode are updated.
Since the memory read bandwidth is typically higher than the write
bandwidth, the limited fiber reuse of mode-3 has more impact on
mode-3 MTTKRP compared to other modes. In contrast, the other
sparse formats suffer from significant performance variations across
modes (note the use of logarithmic scale). While the execution time
of the mode-specific CSF formats is expected to change based on
the characteristics of the target mode, as they use a distinct tensor
representation for each mode orientation, the results show that
the parallel performance of block-based formats varies widely due
to the different update conflicts and parallelism degrees of tensor
blocks/superblocks across modes.

ALTO: Adaptive Linearized Storage of Sparse Tensors

COO

0 |mm— I| - l| — I|

NIPS UBER CHICAGO VAST

m HiCOO-SB10

izt

Speedup (vs. ALTO-Sequential)

ENRON NELL-2 AMAZON

HIGH REUSE

Sparse Tensors

® HiCOO-SB14

PATENTS

ICS ’21, June 14-17, 2021, Virtual Event, USA

CSF mCSF-tile ®mALTO

Out of memory

Out of memory
—
]

No su

N 1

REDDIT LBNL DARPA FB-M FLICKR DELI NELL-1

LIMITED/MEDIUM REUSE

Figure 7: The overall parallel performance/speedup of MTTKRP (all modes) using the different sparse tensor formats. The
speedup is reported compared to the optimized sequential MTTKRP-ALTO version to show the parallel scalability. The sparse
tensors are categorized and then sorted in increasing order of their size (number of nonzero elements).

COoOo
1.E+03

1.E+02
1.E+01
1.E+00
1.E-01
1.E-02
1.E-03
1.E-04

Iteration time [s]

MODE-1 MODE-2 MODE-3 MODE-4 MODE-1 MODE-2

NIPS DARPA

® HiCOO-SB10

m HiCOO-SB14

CSF ®CSF-tile ®ALTO

MODE-3

MODE-1 MODE-2 MODE-3 MODE-1 MODE-2 MODE-3

NELL-2 AMAZON

Sparse Tensors

Figure 8: The execution time of parallel MTTKRP implementations across different modes for select tensors with various

characteristics.

4.4.2 Roofline Analysis. To better understand the performance
characteristics of MTTKRP using the ALTO format, we created
a Roofline model [60] for the test platform and collected perfor-
mance counters across a set of representative parallel runs. For
the Roofline model, an upper performance limit IT is given by
IT = min(Tpeqk. Bpeak X OI), where IL,cq is the theoretical peak
performance, By, is the peak memory bandwidth, and OI is the
operational intensity (i.e., the ratio of executed floating-point op-
erations per byte). In addition, we enhance our Roofline model to
consider the bandwidth of the different cache levels. While the L2
cache, L3 cache, and main memory bandwidth in our model are phe-
nomenological, i.e., measured using likwid-bench, L1 bandwidth
measurements are error-prone. Therefore, we use the theoretical
L1 load bandwidth of two cache lines per cycle per core for this par-
ticular roofline. The peak performance, Il is calculated based
on the ability of the cores to execute two fused multiply-add (FMA)
instructions on eight-element double precision vector registers (due
to the availability of AVX-512) per cycle.

Figure 9 shows the performance of the parallel MTTKRP-ALTO
computations (lines 1-11 in Algorithm 2) for several representa-
tive cases. While the memory-intensive MTTKRP operation suffers
from low operational intensity, ALTO can still exceed the peak main
memory bandwidth by exploiting the inherent data reuse and by
efficiently resolving the update conflicts. The N1Ps tensor @ is rela-
tively small and it has high reuse of output fibers, which can be held
locally in L1/L2 caches. The performance counters show a superior
cache hit rate while computing output fibers, which explains the
high effective bandwidth and floating-point throughput. Mode-3 of
NELL-2 @ has a smaller amount of fiber reuse and it accesses a larger
number of local output fibers compared to N1ps @. Nonetheless,

412

LA T T T T 1T T T T T 11717 T]
[DP peak performance (3.2 Tl-lLOP/s) il
[B R SRLILIL AL IR
8 $$, ’ N
e,
d}y,. & .
= LE+03 - Gt —
Ev: r \".\/, \)‘1;/ E
@] = R) B
= e 1
S, S ’./) i
4
s e 1
g . .
g LEe2p T g
= E .2 ' .
e L. - B
E r . Pull-based accumulation ||
A [‘," ¢ Atomic accumulation 1
| 7 & 64-bit ALTO index
1E+01 | > 128-bit ALTO index H
E LA 1l Lol Lol I]
1.E-02 1.E-01 1.E+00 1.E+01

Operational Intensity [FLOP/Byte]

Figure 9: The parallel performance of ALTO across MTTKRP
runs: NIPs mode-4 without @ and with Q rank specialization,
NELL-2 mode-3 @, AMAZON mode-1 @, DARPA mode-1 @ and
mode-3 @.

ALTO efficiently utilizes all threads to do useful work and amortizes
the parallelization overheads due to the larger number of nonzero
elements, and we observe a slightly higher performance than .
While the AMAZON tensor @ has high fiber reuse, its extreme spar-
sity and large size increase the memory pressure. In addition, al-
though the tensor can be encoded using a 72-bit linearized index,
our current ALTO implementation uses a 128-bit linearized index
(twice the native word size) for simplicity. Together these factors
increase the data volume and the de-linearization overhead, which

ICS °21, June 14-17, 2021, Virtual Event, USA

4
) A ALTO (rank specialized)
5 3 27 28
< 99 A 4
ERP 17 s
A 14 R ;
g A L1o11oa 11 2oy 0qg 120y
A N A
"g 1 A A A A A A A
L
|9
7

S O S RN D R O S o & > A

$° P R AN RN AT R S S B N F Y W

¥ \\";\\\k?v ~ “(/@2\ é\w\} %\\?‘L\’X\&\‘% {\9 W Q?& A \x’\\ Q é\’\)
C >

HIGH REUSE LIMITED/MEDIUM REUSE

Sparse Tensors

Figure 10: The speedup of ALTO using rank specialization
relative to the default ALTO parallel implementation. The
sparse tensors are categorized and then sorted in an increas-
ing order of their size.

in turn reduces the effective floating-point throughput compared
to other tensors with high data reuse @ and @.

In contrast, the DARPA tensor has limited fiber reuse (along mode-
3) which restricts the performance compared to the previous cases.
During the computation of MTTKRP on mode-3 @, the limited reuse
of output fibers does not justify the use of local/temporary memory
to resolve the conflicting updates. As a result, ALTO automatically
chooses to use atomic updates for conflict resolution. While pArprA
mode-1 @ has higher reuse of output fibers, comparable to @,
reading the input fibers along mode-3 dominates the execution
time and results in more data traffic across the memory system
levels because of the limited temporal locality; thus, we can observe
that its performance is bounded by the memory bandwidth.

4.5 Impact of Rank Specialization

The generic (template-based) implementation of ALTO (which is
discussed in §4.1) not only allows effortless specialization of sparse
tensor kernels for common tensor orders (e.g., 3D and 4D tensors),
but also makes it possible to specialize these kernels for typical
ranks — an optimization that we call rank specialization. For a
fair comparison with the prior sparse tensor implementations, all
other performance results in this paper using ALTO do not leverage
rank specialization. Here, we show the potential of this feature
to further improve the performance by allowing the compiler to
gain more insight into the length of rank-wise update operations.
This way, the compiler can generate more optimized code, which
leads to a better overall performance, as shown for N1Ps mode-
4 @. The analysis of the generated assembly files with OSACA [28]
shows that rank specialization results in better control structures
with fewer branches compared to the standard implementation.
Additionally, the compiler can reduce the pressure on the load units
and, thus, decreases the execution time by more than 2x in N1Ps @.

Figure 10 shows a comprehensive comparison between the rank
specialized ALTO version and the default parallel version used in
prior experiments. For smaller tensors with high reuse, the com-
piler manages to optimize the computations and to improve the
performance by more than 2x. In larger tensors as well as tensors
with limited reuse, we can still observe a performance benefit of
more than 10%, leading to an overall geometric mean speedup of
1.4% across the different sparse tensors.

413

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, et al.

4.6

Figure 11 details the relative storage of the sparse tensors using
the proposed ALTO format as well as the block-based (HiCOO-
SB10/SB14) and tree-based (CSF and CSF-tile) formats. Compared
to the de facto COO format, ALTO always requires less storage
space due to its efficient linearization of the multi-dimensional
space, as explained in §3.1. The mode-specific (CSF and CSF-tile)
formats consume more storage space than COO because they keep
multiple sparse representations for the different mode orientations.
Overall, imposing a tilling over the tensors (CSF-tile) ends up in-
creasing the storage requirements of CSF. Conversely, the memory
consumption of the block-based formats is highly variable as it
depends on the block/superblock sizes and the distribution of the
nonzero elements in the multi-dimensional space. Thus, HiCOO can
reduce the storage compared to COO when the number of nonzero
elements per block is relatively high. However, as the sparsity of
the tensors increases, the block-based formats consume more space,
such as in the DELI, NELL-1, AMAZON, and REDDIT tensors.

Memory Storage

4.7 Format Generation Cost

Figure 12 compares the cost of constructing the different sparse
tensor formats from a sparse tensor in the COO format. Since ALTO
works on a linearized rather than a multi-dimensional represen-
tation of tensors, the cost of sorting the nonzero elements in its
linearized storage (which is the most expensive step in the for-
mat generation) is substantially reduced because of the decrease
in the number of comparison operations. In addition to sorting the
nonzero elements, the block-based HiCOO formats require costly
clustering of these elements based on their multi-dimensional co-
ordinates as well as scheduling of the resulting blocks/superblocks
to avoid conflicts. As a result, ALTO has more than an order-of-
magnitude speedup relative to HiCOO in terms of the format con-
version time. Although the tree-based CSF formats are generated
from presorted COO tensors, ALTO still requires less time for format
construction on average. In large-scale tensors, such as AMAZON
and PATENTS, ALTO has comparable conversion cost to the tree-
based formats as the tensor sorting time increases with the number
of nonzero elements. Currently, the format generation of ALTO
leverages the C++ Standard Template Library (STL) and a further
reduction of this construction cost is possible.

5 RELATED WORK AND DISCUSSION

Due to the popularity of high-dimensional data analytics, a rich
set of work has been recently developed to efficiently store sparse
tensors and to optimize various tensor computations. Here, we
discuss the related sparse tensor formats and operations as well as
the conventional recursive data layouts.

5.1 Sparse Tensor Formats

Our study was motivated by the linearized coordinate (LCO) for-
mat [21], which also flattens sparse tensors but along a given ori-
entation of tensor modes. Hence, LCO requires either multiple
tensor copies or on-the-fly permutation of tensors for efficient com-
putation. In addition, the authors limit their focus to sequential
algorithms, and it is not clear how LCO can be used to efficiently
parallelize sparse tensor computations.

ALTO: Adaptive Linearized Storage of Sparse Tensors

® HiCOO-SB10

o |22 ‘I (T ‘l (T |l (T ‘l

LBNL NIPS UBER CHICAGO

)
t for 5D tensors
) tensor

Storage (vs. COO)

Z Z

VAST DARPA ENRON

® HiCOO-SB14

NELL-2

ICS ’21, June 14-17, 2021, Virtual Event, USA

CSF H CSF-tile EALTO

»f memory

Out o
Out ¢

FB-M FLICKR DELI NELL-1 AMAZON PATENTS REDDIT

Sparse Tensors

Figure 11: The sparse tensor storage using the different formats compared to COO. The tensors are sorted in an increasing

order of their size.

LBNL NIPS UBER CHICAGO

mHiCOO-SB10
1.E+04

1.E+03
1.E+02

1.E+01

Time [s]

1.E+00

1.E-01

\ suppo ort for 5D tensors
\ suppe ort for 5D tensors

1.E-02

VAST DARPA

Recent extensions [31, 45] to the list-based COO format reduce
the synchronization overhead across threads using mode-specific
scheduling/permutation arrays. However, their output-oriented tra-
versal of sparse tensors adversely affects the input data locality
and/or result in random access of the nonzero elements [45]. More-
over, storing this fine-grained scheduling information for all tensor
modes can more than double the memory consumption, compared
to the COO format [45].

The block-based formats, such as HICOO [29], are highly sensi-
tive to the characteristics of sparse tensors as well as the block size.
When the blocking ratio (i.e., the number of blocks to the number of
nonzero elements) is high, HICOO can use more storage space than
the simple COO format [29]. Due to the nonuniform (skewed) data
distributions in the multi-dimensional space, the number of nonzero
elements per block varies widely across HiCOO blocks, even after
expensive mode-specific tensor permutations which in practice fur-
ther increase workload imbalance [30]. Moreover, such block-based
formats, which use small data types for element indices, can end
up under-utilizing the compute units and memory bandwidth be-
cause 1) mainstream architectures are word-oriented, which leads
to limited efficiency of sub-word (narrow-width) operations [2, 37],
and 2) applications need to generate large memory transactions to
efficiently utilize the bandwidth of commodity DRAM chips [18].

The mode-specific CSF format [50, 52] clusters the nonzero ten-
sor elements into coarse-grained tensor slices and fibers, which
limits its scalability on massively parallel architectures. To improve
the performance on GPUs, recent CSF-based formats [40, 41] ex-
pose more balanced and fine-grained parallelism but at the expense
of substantial synchronization overheads and expensive preprocess-
ing and format generation costs. The sparse tensor format selection
(SpTFS) framework [55] leverages deep learning models [61, 64] to
predict the best of COO, HiCOO, and CSF formats to perform the
MTTKRP operation on a given sparse tensor.

m HiCOO-SB14

ENRON

CSF mCSF-tile ®mALTO

Out of memory

NELL-2 FB-M FLICKR DELI NELL-1 AMAZON PATENTS REDDIT

Sparse Tensors

Figure 12: The format construction cost in seconds. The sparse tensors are sorted in an increasing order of their size.

414

5.2 Sparse Tensor Operations

In addition to the widely used sparse tensor decomposition, which
we extensively discussed in previous sections, other important ten-
sor algebra operations can benefit from the proposed ALTO format.
Examples of these operations include sparse tensor transposition
and contraction as well as streaming tensor analysis.

Sparse tensor transpositions are prevalent in high-dimensional
data processing and analysis algorithms [39]. The state-of-the-art
approaches [39, 58] reduce these important operations to sorting
the nonzero elements based on their multi-dimensional coordinates.
ALTO accelerates the tensor sorting process due to its linearized
representation and recursive ordering of nonzero elements, which
makes the sparse tensors stored in the ALTO format amenable to
partial radix-based sorting.

Sparse tensor contractions emerge in many critical scientific
domains [54], e.g., computational physics and quantum chemistry.
These operations need random access into tensors, which can be
supported by hash-based COO representations, such as Sparta [32].
ALTO can further improve performance by using the target subset
of encoding bits that represent the contract modes to quickly build
and access a hash-based representation of linearized tensors.

To analyze infinite data sources, streaming tensor decomposition
assembles batches of incoming data into a sequence of sparse sub-
tensors and incrementally computes factor matrices [49, 53]. As
shown in §4.7, ALTO uses a fraction of the format generation time
required by prior compressed formats, which makes it more suitable
for accelerating such streaming algorithms.

5.3 Recursive Data Layouts

Previous studies explored cache-oblivious [17, 20] data layouts for
optimizing memory-intensive operations, especially in the context
of linear algebra. These data layouts exploit the underlying memory
hierarchy without knowing its specific structure or configuration.

ICS °21, June 14-17, 2021, Virtual Event, USA

Recursive algorithms and storage schemes [9, 14, 16, 44] are popular
in Basic Linear Algebra Subprogram (BLAS) kernels, due to the
regularity of such dense computations.

Yzelman et al. [62, 63] proposed recursive data layouts for sparse
matrices, based on hypergraph partitioning, to improve the per-
formance of sparse-matrix, dense-vector (SpMV) multiplication.
However, these methods require permuting the rows and columns
of sparse matrices to generate more structured sparsity patterns.
Martone et al. [34, 35] introduced the Recursive Sparse Block (RSB)
storage scheme for efficient execution of symmetric SpMV opera-
tions. On multi-core CPUs, this hierarchical representation demon-
strates comparable performance to tiled (block-based) formats, such
as Compressed Sparse Blocks (CSB) [8]. The Distributed Block Com-
pressed Sparse Row (DBCSR) library [7] adopts a hybrid approach,
in which a sparse matrix is recursively divided until it has a pre-
defined number of blocks. Moreover, the DBCSR library provides
a tensor interface [47] to execute tensor contractions using the
optimized sparse matrix multiplication kernels.

6 CONCLUSION

Motivated by the vulnerability of existing compressed formats to
the irregular characteristics of higher-order sparse data, this work
proposed the ALTO format to efficiently encode sparse tensors of ar-
bitrary dimensionality and spatial distributions using a single mode-
agnostic representation. An implementation of the ALTO-based
tensor decomposition operations (all-modes MTTKRP) proved to
outperform an oracle that selects the best state-of-the-art format,
in terms of parallel performance and tensor storage. Specifically,
ALTO delivers 8x geometric-mean speedup and 4.3X geometric-
mean compression ratio over the best general and mode-specific
formats, respectively, due to its superior workload balance, adaptive
synchronization, and compact encoding. Furthermore, the experi-
ments showed the potential of our template-based implementation
to bring extra performance improvement (1.4X geometric-mean
speedup) by specializing the ALTO-based tensor kernels for target
application features.

Our future work will investigate additional massively parallel
and distributed-memory platforms that can benefit from the supe-
rior performance characteristics of ALTO. We also plan to explore
the use of the proposed format to accelerate other common sparse
tensor algorithms, besides tensor decomposition.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Tamara G. Kolda for setting us
on the direction of tensor linearzation and for providing valuable
feedback.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaogiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI’'16). USENIX Association,
USA, 265-283. https://dl.acm.org/doi/10.5555/3026877.3026899

Andreas Abel and Jan Reineke. 2019. uops.info: Characterizing Latency, Through-
put, and Port Usage of Instructions on Intel Microarchitectures. In ASPLOS
(Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 673-686. https:
//doi.org/10.1145/3297858.3304062

&,

415

Ahmed E. Helal, Jan Laukemann, Fabio Checconi, et al.

[3] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus
Telgarsky. 2014. Tensor Decompositions for Learning Latent Variable Models. 7.
Mach. Learn. Res. 15, 1 (Jan. 2014), 2773-2832. https://dl.acm.org/doi/10.5555/
2627435.2697055

Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB computations with
sparse and factored tensors. SIAM JOURNAL ON SCIENTIFIC COMPUTING 30, 1
(2007), 205-231. https://doi.org/10.1137/060676489

M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. 2012. Efficient and Scalable
Computations with Sparse Tensors. In 2012 IEEE Conference on High Performance
Extreme Computing. 1-6. https://doi.org/10.1109/HPEC.2012.6408676

Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. 2002. Automatic
Intra-Register Vectorization for the Intel Architecture. Int. J. Parallel Program.
30, 2 (April 2002), 65-98. https://dl.acm.org/doi/10.5555/586554.586555

Urban Borstnik, Joost VandeVondele, Valéry Weber, and Jiirg Hutter. 2014. Sparse
matrix multiplication: The distributed block-compressed sparse row library. Par-
allel Comput. 40, 5-6 (2014), 47-58. https://doi.org/10.1016/j.parco.2014.03.012
Aydin Bulug, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E.
Leiserson. 2009. Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector
Multiplication Using Compressed Sparse Blocks (SPAA ’09). Association for
Computing Machinery, New York, NY, USA, 233-244. https://doi.org/10.1145/
1583991.1584053

S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. 2002. Recursive
Array Layouts and Fast Matrix Multiplication. IEEE Transactions on Parallel and
Distributed Systems 13, 11 (2002), 1105-1123. https://doi.org/10.1109/TPDS.2002.
1058095

J. Choi, X. Liu, S. Smith, and T. Simon. 2018. Blocking Optimization Techniques for
Sparse Tensor Computation. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 568-577. https://doi.org/10.1109/IPDPS.2018.
00066

Joon Hee Choi and S. V. N. Vishwanathan. 2014. DFacTo: Distributed Factor-
ization of Tensors. In Proceedings of the 27th International Conference on Neural
Information Processing Systems (Montreal, Canada) (NIPS’14). MIT Press, Cam-
bridge, MA, USA, 1296-1304. https://dl.acm.org/doi/10.5555/2968826.2968971
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstrac-
tion for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2, OOPSLA,
Article 123 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276493

L. Dagum and R. Menon. 1998. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering 5, 1 (1998),
46-55. hitps://doi.org/10.1109/99.660313

Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kagstrom. 2004. Recursive
Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library Soft-
ware. SIAM Rev. 46, 1 (2004), 3-45. https://doi.org/10.1137/S0036144503428693
Hadi Fanaee-T and Jodo Gama. 2016. Tensor-based anomaly detection: An
interdisciplinary survey. Knowledge-Based Systems 98 (2016), 130 — 147. https:
//doi.org/10.1016/j.knosys.2016.01.027

Jeremy D. Frens and David S. Wise. 1997. Auto-Blocking Matrix-Multiplication
or Tracking BLAS3 Performance from Source Code. SIGPLAN Not. 32, 7 (June
1997), 206-216. https://doi.org/10.1145/263767.263789

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. 1999. Cache-oblivious
algorithms. In 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039). 285-297. https://doi.org/10.1109/SFFCS.1999.814600

Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu.
2019. Demystifying Complex Workload-DRAM Interactions: An Experimental
Study. 3, 3, Article 60 (Dec. 2019), 50 pages. https://doi.org/10.1145/3366708
Thomas Gruber, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2020. RRZE-
HPC/likwid: likwid-5.1.0. https://doi.org/10.5281/zenodo.4282696

F. G. Gustavson. 1997. Recursion leads to automatic variable blocking for dense
linear-algebra algorithms. IBM Journal of Research and Development 41, 6 (1997),
737-755. https://doi.org/10.1147/rd.416.0737

A. P. Harrison and D. Joseph. 2018. High Performance Rearrangement and
Multiplication Routines for Sparse Tensor Arithmetic. SIAM Journal on Scientific
Computing 40, 2 (2018), C258-C281. https://doi.org/10.1137/17M1115873

Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-Throughput
Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor
Factorization. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (New York, New York, USA) (KDD '14).
Association for Computing Machinery, New York, NY, USA, 115-124. https:
//doi.org/10.1145/2623330.2623658

L. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos. 2015. HaTen2: Billion-
scale tensor decompositions. In 2015 IEEE 31st International Conference on Data
Engineering. 1047-1058. https://doi.org/10.1109/ICDE.2015.7113355

U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012. Gi-
gaTensor: Scaling Tensor Analysis up by 100 Times - Algorithms and Discoveries.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Association for Computing Machinery, New York,
NY, USA, 316-324. https://doi.org/10.1145/2339530.2339583

Teruyoshi Kobayashi, Anna Sapienza, and Emilio Ferrara. 2018. Extracting the
multi-timescale activity patterns of online financial markets. Scientific Reports 8,

—
B

7

8

[

=
2

[11

[12

(13]

[14

(15]

[16

(17

(18

=
)

[20]

[21]

[22

[23

[24

[25

https://dl.acm.org/doi/10.5555/3026877.3026899
https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1145/3297858.3304062
https://dl.acm.org/doi/10.5555/2627435.2697055
https://dl.acm.org/doi/10.5555/2627435.2697055
https://doi.org/10.1137/060676489
https://doi.org/10.1109/HPEC.2012.6408676
https://dl.acm.org/doi/10.5555/586554.586555
https://doi.org/10.1016/j.parco.2014.03.012
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1109/TPDS.2002.1058095
https://doi.org/10.1109/TPDS.2002.1058095
https://doi.org/10.1109/IPDPS.2018.00066
https://doi.org/10.1109/IPDPS.2018.00066
https://dl.acm.org/doi/10.5555/2968826.2968971
https://doi.org/10.1145/3276493
https://doi.org/10.1109/99.660313
https://doi.org/10.1137/S0036144503428693
https://doi.org/10.1016/j.knosys.2016.01.027
https://doi.org/10.1016/j.knosys.2016.01.027
https://doi.org/10.1145/263767.263789
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/3366708
https://doi.org/10.5281/zenodo.4282696
https://doi.org/10.1147/rd.416.0737
https://doi.org/10.1137/17M1115873
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1109/ICDE.2015.7113355
https://doi.org/10.1145/2339530.2339583

ALTO: Adaptive Linearized Storage of Sparse Tensors

1(2018), 1-11. https://doi.org/10.1038/s41598-018-29537-w

[26] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Appli-
cations. SIAM Rev. 51, 3 (September 2009), 455-500. https://doi.org/10.1137/
07070111X

[27] T. G.Kolda and J. Sun. 2008. Scalable Tensor Decompositions for Multi-aspect
Data Mining. In 2008 Eighth IEEE International Conference on Data Mining. 363—
372. https://doi.org/10.1109/ICDM.2008.89

[28] J. Laukemann, J. Hammer, G. Hager, and G. Wellein. 2019. Automatic Throughput
and Critical Path Analysis of x86 and ARM Assembly Kernels. In 2019 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS). 1-6. https://doi.org/10.1109/PMBS49563.2019.00006

[29] J.Li J. Sun, and R. Vuduc. 2018. HiCOO: Hierarchical Storage of Sparse Tensors.
In SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis. 238-252. https://doi.org/10.1109/SC.2018.00022

[30] Jiajia Li, Bora Ugar, Umit V. Catalyiirek, Jimeng Sun, Kevin Barker, and Richard
Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In Proceedings
of the ACM International Conference on Supercomputing (Phoenix, Arizona) (ICS
’19). Association for Computing Machinery, New York, NY, USA, 227-237. https:
//doi.org/10.1145/3330345.3330366

[31] B.Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. 2017. A Unified Optimization
Approach for Sparse Tensor Operations on GPUs. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER). 47-57. https://doi.org/10.1109/
CLUSTER.2017.75

[32] Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021. Sparta:
High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous
Memory. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Virtual Event, Republic of Korea) (PPoPP
°21). Association for Computing Machinery, New York, NY, USA, 318-333.
https://doi.org/10.1145/3437801.3441581

[33] Shangzhi Liu and Gétz Trenkler. 2008. Hadamard, Khatri-Rao, Kronecker, and

Other Matrix Products. International Journal of Information and Systems Sciences

4,1 (2008), 160-177. https://doi.org/10.1155/2016/8301709

Michele Martone. 2014. Efficient multithreaded untransposed, transposed or

symmetric sparse matrix—vector multiplication with the Recursive Sparse Blocks

format. Parallel Comput. 40, 7 (2014), 251-270. https://doi.org/10.1016/j.parco.

2014.03.008 7th Workshop on Parallel Matrix Algorithms and Applications.

[35] M. Martone, S. Filippone, M. Paprzycki, and S. Tucci. 2010. On BLAS Operations
with Recursively Stored Sparse Matrices. In 2010 12th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing. 49-56. https:
//doi.org/10.1109/SYNASC.2010.72

[36] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19-25. http://tab.computer.
org/tcca/NEWS/DEC95/dec95_mccalpin.ps

[37] Sparsh Mittal. 2017. A Survey of Techniques for Designing and Managing CPU
Register File. Concurrency and Computation: Practice and Experience 29, 4 (2017),
€3906. https://doi.org/10.1002/cpe.3906

[38] Guy M Morton. 1966. A computer Oriented Geodetic Data Base; and a New
Technique in File Sequencing. Technical Report. IBM Ltd., 150 Laurier Ave., Ottawa,
Ontario, Canada. https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf

[39] Suzanne Mueller, Peter Ahrens, Stephen Chou, Fredrik Kjolstad, and Saman

Amarasinghe. 2020. Sparse Tensor Transpositions. In Proceedings of the 32nd

ACM Symposium on Parallelism in Algorithms and Architectures (Virtual Event,

USA) (SPAA °20). Association for Computing Machinery, New York, NY, USA,

559-561. https://doi.org/10.1145/3350755.3400245

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram

Krishnamoorthy, and P. Sadayappan. 2019. An Efficient Mixed-Mode Represen-

tation of Sparse Tensors. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (Denver, Colorado)

(SC ’19). Association for Computing Machinery, New York, NY, USA, Article 49,

25 pages. https://doi.org/10.1145/3295500.3356216

[41] L Nisa, J. Li, A. Sukumaran-Rajam, R. Vuduc, and P. Sadayappan. 2019. Load-

Balanced Sparse MTTKRP on GPUs. In 2019 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). 123-133. https://doi.org/10.1109/

IPDPS.2019.00023

Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropoulos. 2016.

Tensors for Data Mining and Data Fusion: Models, Applications, and Scalable

Algorithms. ACM Trans. Intell. Syst. Technol. 8, 2, Article 16 (Oct. 2016), 44 pages.

https://doi.org/10.1145/2915921

[43] Giuseppe Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Math.
Ann. 36, 1 (1890), 157-160. https://doi.org/10.1007/BF01199438

[44] Elmar Peise and Paolo Bientinesi. 2017. Algorithm 979: Recursive Algorithms for

Dense Linear Algebra—The ReLAPACK Collection. ACM Trans. Math. Softw. 44,

2, Article 16 (Sept. 2017), 19 pages. https://doi.org/10.1145/3061664

Eric T. Phipps and Tamara G. Kolda. 2019. Software for Sparse Tensor Decom-

position on Emerging Computing Architectures. SIAM Journal on Scientific

Computing 41, 3 (2019), C269-C290. https://doi.org/10.1137/18M1210691

[34

[40

[42

[45

416

[46

[47

[48

[50

[51

[52

[53

(54

[55

o
2

[57

[58

[60

[61

ICS ’21, June 14-17, 2021, Virtual Event, USA

N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos. 2017. Tensor Decomposition for Signal Processing and Machine
Learning. IEEE Transactions on Signal Processing 65, 13 (2017), 3551-3582. https:
//doi.org/10.1109/TSP.2017.2690524

Ilia Sivkov, Patrick Seewald, Alfio Lazzaro, and Jirg Hutter. 2019. DBCSR:
A Blocked Sparse Tensor Algebra Library. CoRR abs/1910.13555 (2019).
arXiv:1910.13555 http://arxiv.org/abs/1910.13555

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

Shaden Smith, Kejun Huang, Nicholas D. Sidiropoulos, and George Karypis.
2018. Streaming Tensor Factorization for Infinite Data Sources. In Proceedings
of the 2018 SIAM International Conference on Data Mining (SDM). SIAM, 81-89.
https://doi.org/10.1137/1.9781611975321.10

Shaden Smith and George Karypis. 2015. Tensor-Matrix Products with a Com-
pressed Sparse Tensor. In Proceedings of the 5th Workshop on Irregular Ap-
plications: Architectures and Algorithms (Austin, Texas) (IA* ’15). Association
for Computing Machinery, New York, NY, USA, Article 5, 7 pages. https:
//doi.org/10.1145/2833179.2833183

Shaden Smith and George Karypis. 2017. Accelerating the Tucker Decomposition
with Compressed Sparse Tensors. In Euro-Par 2017: Parallel Processing, Francisco F.
Rivera, Tomas F. Pena, and José C. Cabaleiro (Eds.). Springer International Pub-
lishing, Cham, 653-668. https://doi.org/10.1007/978-3-319-64203-1_47

S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis. 2015. SPLATT:
Efficient and Parallel Sparse Tensor-Matrix Multiplication. (2015), 61-70. https:
//doi.org/10.1109/IPDPS.2015.27

Yongseok Soh, Patrick Flick, Xing Liu, Shaden Smith, Fabio Checconi, Fabrizio
Petrini, and Jee Choi. 2021. High Performance Streaming Tensor Decomposi-
tion. In 35th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’21).

Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton, and James
Demmel. 2014. A Massively Parallel Tensor Contraction Framework for Coupled-
Cluster Computations. J. Parallel and Distrib. Comput. 74, 12 (2014), 3176-3190.
https://doi.org/10.1016/.jpdc.2014.06.002 Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing.

Qingxiao Sun, Yi Liu, Ming Dun, Hailong Yang, Zhongzhi Luan, Lin Gan, Guang-
wen Yang, and Depei Qian. 2020. SpTFS: Sparse Tensor Format Selection for
MTTKRP via Deep Learning. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC °20). IEEE Press, Article 18, 14 pages. https://dl.acm.org/doi/abs/10.5555/
3433701.3433724

David Vandevoorde and Nicolai M Josuttis. 2002. C++ Templates: The Complete
Guide, Portable Documents. Addison-Wesley Professional. https://cds.cern.ch/
record/781664/files/0201734842_TOC.pdf

N. Vervliet, O. Debals, and L. De Lathauwer. 2016. Tensorlab 3.0 — Numerical
optimization strategies for large-scale constrained and coupled matrix/tensor
factorization. In 2016 50th Asilomar Conference on Signals, Systems and Computers.
1733-1738. https://doi.org/10.1109/ACSSC.2016.7869679

Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. 2016. Parallel Transposi-
tion of Sparse Data Structures. In Proceedings of the 2016 International Conference
on Supercomputing (Istanbul, Turkey) (ICS ’16). Association for Computing Ma-
chinery, New York, NY, USA, Article 33, 13 pages. https://doi.org/10.1145/
2925426.2926291

Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C. Denny, Abel Kho, You
Chen, Bradley A. Malin, and Jimeng Sun. 2015. Rubik: Knowledge Guided Tensor
Factorization and Completion for Health Data Analytics (KDD ’15). Association
for Computing Machinery, New York, NY, USA, 1265-1274. https://doi.org/10.
1145/2783258.2783395

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (2009), 65-76. https://doi.org/10.1145/1498765.1498785

Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2019. IA-SpGEMM:
An Input-Aware Auto-Tuning Framework for Parallel Sparse Matrix-Matrix Mul-
tiplication. In Proceedings of the ACM International Conference on Supercomputing
(Phoenix, Arizona) (ICS '19). Association for Computing Machinery, New York,
NY, USA, 94-105. https://doi.org/10.1145/3330345.3330354

AN. Yzelman and Rob H. Bisseling. 2011. Two-Dimensional Cache-Oblivious
Sparse Matrix-Vector Multiplication. Parallel Comput. 37, 12 (2011), 806-819.
https://doi.org/10.1016/j.parco.2011.08.004 6th International Workshop on Paral-
lel Matrix Algorithms and Applications (PMAA’10).

A.N. Yzelman and Rob H. Bisseling. 2009. Cache-Oblivious Sparse Matrix—Vector
Multiplication by Using Sparse Matrix Partitioning Methods. SIAM Journal on
Scientific Computing 31, 4 (2009), 3128-3154. https://doi.org/10.1137/080733243
Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging the Gap
between Deep Learning and Sparse Matrix Format Selection. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Vienna, Austria) (PPoPP ’18). Association for Computing Machinery, New York,
NY, USA, 94-108. https://doi.org/10.1145/3178487.3178495

https://doi.org/10.1038/s41598-018-29537-w
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/ICDM.2008.89
https://doi.org/10.1109/PMBS49563.2019.00006
https://doi.org/10.1109/SC.2018.00022
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1145/3437801.3441581
https://doi.org/10.1155/2016/8301709
https://doi.org/10.1016/j.parco.2014.03.008
https://doi.org/10.1016/j.parco.2014.03.008
https://doi.org/10.1109/SYNASC.2010.72
https://doi.org/10.1109/SYNASC.2010.72
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps
http://tab.computer.org/tcca/NEWS/DEC95/dec95_mccalpin.ps
https://doi.org/10.1002/cpe.3906
https://dominoweb.draco.res.ibm.com/reports/Morton1966.pdf
https://doi.org/10.1145/3350755.3400245
https://doi.org/10.1145/3295500.3356216
https://doi.org/10.1109/IPDPS.2019.00023
https://doi.org/10.1109/IPDPS.2019.00023
https://doi.org/10.1145/2915921
https://doi.org/10.1007/BF01199438
https://doi.org/10.1145/3061664
https://doi.org/10.1137/18M1210691
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/TSP.2017.2690524
https://arxiv.org/abs/1910.13555
http://arxiv.org/abs/1910.13555
http://frostt.io/
https://doi.org/10.1137/1.9781611975321.10
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1007/978-3-319-64203-1_47
https://doi.org/10.1109/IPDPS.2015.27
https://doi.org/10.1109/IPDPS.2015.27
https://doi.org/10.1016/j.jpdc.2014.06.002
https://dl.acm.org/doi/abs/10.5555/3433701.3433724
https://dl.acm.org/doi/abs/10.5555/3433701.3433724
https://cds.cern.ch/record/781664/files/0201734842_TOC.pdf
https://cds.cern.ch/record/781664/files/0201734842_TOC.pdf
https://doi.org/10.1109/ACSSC.2016.7869679
https://doi.org/10.1145/2925426.2926291
https://doi.org/10.1145/2925426.2926291
https://doi.org/10.1145/2783258.2783395
https://doi.org/10.1145/2783258.2783395
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/3330345.3330354
https://doi.org/10.1016/j.parco.2011.08.004
https://doi.org/10.1137/080733243
https://doi.org/10.1145/3178487.3178495

	Abstract
	1 Introduction
	1.1 Adaptive Linearized Tensor Order

	2 Background
	2.1 Notations
	2.2 Canonical Polyadic Decomposition

	3 ALTO Format
	3.1 ALTO Tensor Generation
	3.2 Workload Partitioning and Scheduling
	3.3 Adaptive Tensor Operations

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Summary of Performance Metrics
	4.4 Performance Results and Analysis
	4.5 Impact of Rank Specialization
	4.6 Memory Storage
	4.7 Format Generation Cost

	5 Related Work and Discussion
	5.1 Sparse Tensor Formats
	5.2 Sparse Tensor Operations
	5.3 Recursive Data Layouts

	6 Conclusion
	Acknowledgments
	References

