2022 International Symposium on Medical Robotics (ISMR) | 978-1-6654-6928-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISMR48347.2022.9807580

Moving Past Principal Component Analysis: Nonlinear Dimensionality
Reduction Towards Better Hand Pose Synthesis

Edoardo Battaglia, Michael Kasman and Ann Majewicz Fey

Abstract— Despite their complex Kinematic structure with
many degrees of freedom, human hands have been shown to
have synergistic behavior, with coordinated joint movements
being able to explain a large amount of the variance in hand
posture measurements. This phenomenon has traditionally been
analyzed through Principal Component Analysis (PCA), and
has led to important applications in medical robotics, such
as the design and control of upper limb prostheses and mea-
surement of hand posture with a reduced number of sensors.
However, the use of more complex, nonlinear dimensionality
reduction techniques for hand joint measurements has been
under-explored in the literature. In this paper, we aim to fill
this gap by comparing Principal Component Analysis, Kernel
Principal Component Analysis (KPCA), and autoencoders on
the same data set, evaluating the performance in terms of Mean
Square Error of reconstructed hand poses with respect to the
original data set. Results show a better performance for the
nonlinear techniques, lowering Mean Square Error up to 25%
for the KPCA and 50% for the autoencoders when compared
to PCA. Visualization of the reconstructed poses shows a better
ability from the autoencoder to reconstruct hand shapes when
compared to the two other methods.

I. INTRODUCTION

Human hands are, at the same time, simple and complex.
Simple in the way that they are used, performing advanced
grasping and manipulation tasks in everyday life without too
much thought from the human user. Yet, they are complex
in their anatomy and have a complicated kinematic structure
with several degrees of freedom. This dual nature has been
highlighted by numerous studies in neurophysiology, which
have shown evidence of the existence of postural hand syner-
gies, i.e., kinematic patterns in hand postures that can explain
complex hand movements with a reduced set of degrees of
freedom. This has been observed for static poses [1], reach to
grasp [2] and grasping movements [3]. Interestingly, similar
patterns can also be observed in muscular activation [4] and
there is indication of an overall synergistic framework that
begins from the brain and ends in physical grasp postures [5].
Of note, all these studies used Principal Component Analysis
(PCA) to linearly reduce the dimensionality of hand pose
datasets.

These results from neuroscience have been a source of
inspiration for the design of artificial hands, with applica-
tions in upper limb prosthetics and robotic end-effectors. A

This work was supported in part by NSF #1846726.

E.B. is with the Department of Mechanical Engineering, University of
Utah, UT 84112, USA. edoardo.battaglia@utah.edu

M.K. is with the Department of Electrical and Computer Engineering,
The University of Texas at Dallas, Richardson, TX 75080, USA

A.MF is with the Department of Mechanical Engineering, The Univer-
sity of Texas at Austin, TX 78712, and the Department of Surgery, UT
Southwestern Medical Center, Dallas, TX 75390, USA

synergy-inspired robotic hand was first presented by Brown
and Asada in [6], where synergies extracted from measured
human hand postures were used to design a 17 degree
of freedom hand with two degrees of actuation. Gabiccini
et al. formalized a mathematical model of soft synergies,
which added compliance to the synergistic behavior[7]. An
underactuated robotic hand with 19 joints and one degree of
actuation was designed based on this model [8], which was
later adapted as a prosthetic system [9], [10]. Other groups
have proposed similar approaches [11], [12], [13], [14].

In addition to informing the design, synergies have in-
spired solutions for control of actuated robotic hands. Ciocar-
lie and Allen first proposed this approach in [15], where they
showed the advantages of using a reduced dimensionality
framework and implemented in an online grasp planning.
This approach led to several works that mapped human hand
measurements to artificial hands [16], [17], [18], while others
used similar methods to synthetize grasps without a human
in the loop [19], [20].

These concepts were also translated to muscular synergies
and used for the control of upper limb prostheses [21],
and similar ideas have been explored for hand exoskeletons
in rehabilitation [22] and hand posture estimation from
a reduced number of sensors [23]. Synergies could also
potentially be used to simplify mapping of kinematic data
to surgery skill level in robotic surgery [24].

In this paper we compare the performance of PCA and
nonlinear reduction techniques on human hand poses, with
the evaluation being done on joint angles, and using the
difference between reconstructed and original hand poses as
a benchmark. We used the open data set released by Glauser
at al. in [25], which is a large (over 1 million samples) data
set of 10 subjects performing hand movements covering a
wide kinematic range, instead of a limited number of grasp
shapes. We also focus on reconstruction using a limited
number of degrees of freedom (up to three), which is a
desirable feature in most medical robotics applications to
reduce complexity and keep control easy for the user (e.g.,
in upper-limb prosthetics [26]). We aim for the results of
this work to be general and relevant for multiple synergy-
inspired applications, rather than focus on a single specific
application. To the best of our knowledge, this is the first
work that compares Principal Component Analysis to non-
linear approaches for dimensionality reduction of a hand pose
dataset.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

II. DIMENSIONALITY REDUCTION TECHNIQUES
A. Principal Component Analysis

Principal Component Analysis can be seen geometrically
as describing a data set through a coordinate system where
the first axis accounts for the largest amount of variance,
the second accounts for the largest amount of remaining
variance, and so on until the complete dimensionality of the
data is reached [27]. For dimensionality reduction a subset
of these principal components is chosen, and the data is
described through only this subset of coordinates, effectively
projecting it on a lower dimension hyperplane [28].

From an operative point of view, PCA is performed
by doing a Singular Value Decomposition (SVD) of the
covariance matrix of the centered data, obtained by stacking
the data by columns in a matrix and subtracting the mean.
This can also be equivalently approached using eigenvector
decomposition; we refer to the tutorial from Shlens [29] for
more details. Because of this, PCA is a linear technique,
and while its use is standard and allowed to obtain important
results for what concerns hand dimensionality reduction, here
we are interested in considering more complex techniques
and see if their use can increase performance in hand posture
decomposition. To the best of our knowledge, such analysis
was never done before.

B. Kernel Principal Component Analysis

The first nonlinear technique that we will consider is
the Kernel PCA (KPCA). This technique is similar to the
PCA, but is made nonlinear by transforming the data via
a nonlinear function, with the PCA being performed in the
transformed feature space [30]. More formally, we consider
a mapping ¢ : R" — F, where R” is the original space for
the data set (i.e., measured joint angles) and F is the feature
space. It can be shown that as long as a function k respects
certain conditions, the relation k(x,y) = ¢ (x)” ¢ (y) holds for
some @[27]. In this case k is called kernel function, and it
allows to calculate a kernel matrix K directly in the feature
space. Thanks to this kernel trick, it is possible to perform
PCA in the feature space (i.e., KPCA) without actually
calculating, or even knowing, the function ¢.

Because it injects a nonlinearity through the feature space
mapping, KPCA can expose patterns in data sets that lie
on nonlinear manifolds, which the PCA would not be able
to unravel [31]. However, this comes with the drawback of
a more complex process for reconstruction of the original
data in R" from its mapping in F' [27]. Furthermore, KPCA
comes with a significant additional computational load when
compared to PCA, causing problems with large data sets as
shown by Kim in [32] and Chin and Suter in [33].

C. Autoencoders: neural networks for dimensionality reduc-
tion

Autoencoders are artificial neural networks that map some
input data to itself, and in doing so highlight patterns in the

data [34]. In their simplest form, they are composed by two
layers: an encoder, which usually has a number of neurons

lower than the size of the input, and maps it to a lower di-
mensionality representation known as latent representation’';
and a decoder, which maps the latent representation back to
the original input [27].

Interestingly, when no activation functions are used and
the Mean Square Error is used as cost function for training,
such a network builds a latent representation that spans the
same subspace that would be represented by a PCA. This
makes autoencoders particularly interesting for a comparison
that has PCA as baseline, since one can gradually increase
the complexity of the basic autoencoder and see how this
affects the reconstruction. Such increase in complexity can be
achieved by using nonlinear activation functions and adding
layers, making the network deep. In the following sections
we will show how we designed the network architecture
using the suggestions laid out by Charte et al. in [34] as
general guidelines.

III. EVALUATION METHODS

The comparison was done on an open” data set of hand
pose measurements, introduced by Glauser et al. in [25],
where it was used as ground truth to calibrate a sensing
glove for hand pose reconstruction. It contains joint angles
in radians that were obtained from a depth camera through
an off-the-shelf hand tracking algorithm described by Tkach
et al. in [35], with 10 participants performing a variety of
hand poses that were shown to them during the recording.
The hand model used, as introduced in [35], [25], has 25
degrees of freedom and is shown in Figure 1.

Fig. 1: Hand model as defined in [35], [25] (right hand, view
from above).

Compared to other data sets in the state of the art (e.g.,
[11, [36], [37]), the data from [25] contains a very high
number of samples (over one million across all participants).

'Tt is possible to have a number of neurons bigger than the size of the
input in the encoder, leading to an overcomplete autoencoder. Since we
want to use autoencoder for dimensionality reduction here we will focus on
undercomplete autoencoders.

2https://igl.ethz.ch/projects/stretch-glove

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

Additionally, the target poses that were shown to participants
were designed to encourage them to explore the complete
kinematic range of the hand, instead of being limited to a
few target grasp shapes, making this data set well suited
to capturing a wider range of kinematic capabilities of the
human hand.

The data set was divided in three subsets: a training set,
that was used to train the dimensionality reduction techniques
that we are comparing, a validation set, which was used to
tune hyperparameters and the autoencoder weights, and a
test set, on which the final evaluation was done for each
technique. We used the data from eight participants for
training, while data from the two remaining participants was
used for validation and testing, respectively. The hand size of
each participant was described in [25] through the bounding
box volume in cm?, and we used this as an identifier for the
geometry of the hand. In order to preserve as much generality
as possible in the training set, we used the median sized
subject as test set, and the one that was median once the
previous one was dropped as validation set.

A. Comparison procedure and error metric

A generic dimensionality reduction procedure can be seen
as a function that maps a set of joint angles from 8 € RV to
¢ €RM, where M < N and { is a set of parameters in RM.
If we assume that this function is invertible, we can obtain a
measure of how good a reconstruction in the reduced space
is with the following steps:

o Take a numeric vector § and apply the dimensionality
reduction technique to obtain the corresponding {;
« Use the inverse transform to obtain an estimation of the

original 6 from . Let us call this estimation 6,;
« Calculate the Mean Square Error of 6, and 6.

We can then evaluate performances of different dimension-
ality reduction procedures on the data set by considering the
overall Mean Square Error (which is also the metric being
minimized by PCA).

In addition to the quantitative comparison, we also de-
veloped a hand visualizer in C++, using the haptic library
CHAI3D [38] to link simple 3D geometries according to
the hand model, and used it to compare reconstructed hand
poses with the originals. Note that, while the bounding
box measurements for participants’ hands are provided in
the data set, measurements of phalanxes lengths are not
available. In order to have a realistically proportionate hand
for visualization purposes we built the geometry according
to average hand proportions as reported by Alexander et al.
in [39]. All data analysis was done in Python, using the
scikit-learn and tensorflow libraries [40], [41].

B. Principal Component Analysis

We used the PCA method implemented by scikit-learn,
which centers the data without scaling it. This is reason-
able since all variables have the same dimensionality, and
is consistent with the state of the art on dimensionality
reduction for joint angles (see e.g. [1]). We then used the
scikit-learn method fit_transform to obtain the reduced

dimensionality representation from the train data, and the
scikit-learn method inverse_transform to obtain esti-
mates in the original space for the training, validation and
test data. This was done for one, two and three principal
components. Throughout the paper we will indicate the
number of principal components with n.. Results will be
reported for the full dataset as well as a few subsampled set,
obtained through the pandas library sample method while
specifying a fixed random_state for consistency, in order
to show the effect of data set size.

C. Kernel Principal Component Analysis

As mentioned earlier, KPCA presents two main challenges
for application to the problem that we are considering: (i) it
is computationally heavy for big data sets, and (ii) obtaining
the inverse transformation back to the original joint angles
space is not as straightforward as it is for the PCA. There
are works that address (i) [33], however doing so while also
mantaining (ii) is not trivial. For this reason in this work
we decided to use the standard scikit-learn methods, and
subsample the data set to deal with the computational burden
issues (we considered up to 40000 samples for the KPCA).

We considered as kernel functions the commonly used
gaussian radial basis function (RBF), polynomial and sig-
moid activation functions in our analysis (Table I). For
each we tuned the parameter 7y, the coefficient r for poly-
nomial and sigmoid function, and the exponent d for the
polynomial kernel function, by doing a grid search on a
20k subsample and choosing the values that yielded the
lowest reconstruction errors on the training and validation
sets. We then compared the results on the validation set and
chose the kernel function that provided the lowest error as
best representative for the KPCA case. All previous steps
were followed for one, two and three principal components
(n. =1,2,3), as well as a variety of sample sizes as shown
in Section IV.

Kernel Function b4 r d

Gaussian RBF K(x,y) =exp(—y|lx—y[?) 0.05 - -
K(x,y) = (»x"y+r) 002 50 50
K(x,y) = tanh(yxTy +r) 005 01 -

Polynomial

Sigmoid

TABLE I: Kernel PCA design.

D. Autoencoders

There are multiple architectures that could be feasible for
an application of autoencoders to our problem. We focused
on fully connected layers, and used the suggestions provided
in [34] as general guidelines to guide the design process.
Some preliminary tests showed indication of a deep archi-
tecture giving higher performance than a shallow network,
and for this reason we only considered deep autoencoders de-
signs. Similarly, we considered tanh and sigmoid as possible
activation functions for the hidden layers in the encoder, and
selu and relu for the hidden layers in the decoder. Figure 2
shows the two types of architectures that were examined. The

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

assignment of an activation function to each layer was chosen
through a grid search and corresponds to the lowest training
and validation errors from trying the different combinations
in each layer. For architecture B in particular, we found
that using relu for the first layer in the decoder improved
performance when compared with using selu as activation
function in both layers.

=) tanh selu

sigmoid

® @
A E . —>»
o @
@ O e @
@ n @
— u ~—
_____ sigmoid selu —
Y
@ @
® o @
B — —»

@ .
. n,/2 n,/2
~—

n n,

u

@) @)
Fig. 2: Autoencoder architectures. Here n. is the number of
neurons in the innermost inner layer and correspons to the

number of principal components considered for PCA and
KPCA, while n, is a design parameter.

All networks were trained using the Adam optimizer [42],
which has been shown to be generally robust and reliable
for most data sets, and by using Mean Square Error as loss
function to ensure a fair comparison with PCA and KPCA.
In order to limit overfitting, an early stopping callback was
added to the training, to stop it if there was no improvement
in the validation loss after 30 epochs and restore the weights
to the values that yielded the lowest validation error. To
simplify the design, the number of units in each layer was
determined based on a parameter n, as shown in Figure 2,
which was set to 16 for architecture A and to 22 for
architecture B, and was fine tuned at the end of the design
process through a final grid search. The number of units in
the last hidden layer of the encoder was assigned equal to
ne, to produce results to be compared with a PCA with the
corresponding number of principal components.

IV. RESULTS AND DISCUSSIONS
A. Principal Component Analysis

Table I shows results from PCA. The MSE obtained when
fitting the PCA trained from the training set is reported for
the training, validation and testing sets. Values are reported
for fitting done with one, two and three principal compo-
nents, and were obtained from the subsampled 40k data set
(as we will show later, changing the data set size had no
effect on performance for the PCA).

n. Training Validation Test

1 0.0895 0.0998 0.0870
2 0.0630 0.0702 0.0636
3 0.0487 0.0534 0.0486

TABLE II: Mean Square Errors for PCA for the 40k sub-
samples dataset.

70%

60%

50%

40%

30%

20%

Variance Explained

10%

0%
1 2 3 4 5 6 7 8 9 10
Principal Component

Fig. 3: Explained variance for each Principal Component.

Figure 3 shows the explained variance for the first 10
Principal Components (PCs).The first PC dominates over the
others by explaining 59.4% of variance, while the second
and third PC explain 11.9% and 7.1% of the variance
respectively. This is in line with the results found in the
literature, for example by Santello et al. (see e.g. Table 2 in

[1D.
B. Kernel Principal Component Analysis

Polynomial Kernel PCA performed better than RBF and
sigmoid in every instance, and for this reason was chosen as
the best case representation for using Kernel PCA. Table III
shows MSE for polynomial Kernel PCA after training it on
the 40k subsample of the training data. When compared with
results from the PCA, polynomial KPCA always yields a
lower MSE, with the difference being larger when consider-
ing three principal components and fitting the testing set (up
to 25%).

ne Training Validation Test

1 0.0819 0.0923 0.0787
2 0.0533 0.0625 0.0513
3 0.0375 0.0463 0.0366

TABLE III: Mean Square Errors for KPCA for the 40k
subsamples dataset.

C. Autoencoders

Table IV shows an overview of the results for the two
autoencoder architectures considered, for the 40k subsampled

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

dataset. Architecture B performs better than A in every case.
Both architectures consistently show lower MSE than both
PCA and KPCA, with up to a 50% improvement when
comparing architecture B with the PCA. Table V shows a
final overview of results for PCA, KPCA and autoencoders.

ne Training Validation Test

1 A 0.0698 0.0796 0.0675
B 0.0586 0.0653 0.0552

2 A 0.0462 0.0507 0.0422
B 0.0371 0.0428 0.0342

3 A 0.0341 0.0388 0.0317
B 0.0288 0.0348 0.0262

TABLE IV: Mean Square Errors for the autoencoders for the
40k subsamples dataset.

Ground Truth PCA

el
b
2o
2P
@

Fig. 4: Hand pose reconstructions comparison for a few hand
poses (obtained with n, = 3 principal components/degrees of
freedom).

Kernel PCA Autoencoder

a)

b)

©)

d)

e)

@ G ¢

D. Visual Comparison

We have shown in the previous section that both KPCA
and autoencoders yield lower MSE than the PCA in every
instance, with autoencoders in particular showing the highest
quantitative improvement in performance. Here we will show
visual reconstruction of a few hand poses for a qualitative
comparison, referring to the video® for more views taken
from the data set. Figure 4 shows reconstructed hand poses
from the original data, taken for a few samples and fitted with

3https://www.dropbox.com/s/i6fmb6m8xeybvad/ISMR_
2021_DimensionalityReduction_video.mp4?d1l=0

ne=1 ne=2 n.=3
Training
PCA - 40k 0.0895 0.0630 0.0487
PCA - full 0.0892 0.0630 0.0487
KPCA - 40k 0.0819 0.0533 0.0375
KPCA - full N/A N/A N/A
AE-B - 40k 0.0586 0.0371 0.0288
AE-B - full 0.0490 0.0357 0.0261
Validation
PCA - 40k 0.0998 0.0702 0.0534
PCA - full 0.0999 0.0702 0.0532
KPCA - 40k 0.0923 0.0625 0.0463
KPCA - full N/A N/A N/A
AE-B - 40k 0.0653 0.0428 0.0348
AE-B - full 0.0559 0.0411 0.0334
Test
PCA - 40k 0.0870 0.0636 0.0486
PCA - full 0.0872 0.0635 0.0486
KPCA - 40k 0.0787 0.0513 0.0366
AE-B - 40k 0.0552 0.0342 0.0262
AE-B - full 0.0453 0.0333 0.0244

TABLE V: Final overview of MSE for each technique. Note
that, as shown in Figure 5a, PCA and Kernel PCA do not
increase performance with an increase in the number of
samples, and that KPCA could not be applied to the full
dataset because of its demanding computational load for
large datasets.

n. =3 for the PCA, polynomial Kernel PCA and the autoen-
coder network A. It can be seen that reconstructions from
the autoencoders shows a more realistic reconstructions of
the shape of the original poses, while both Kernel PCA and
PCA struggle to capture some of the shapes. More examples
of this can be seen in the attached video. This is an important
complement to the outcome of the MSE evaluation which,
while representative of an overall quantitative evaluation of
performance, fails to capture the effect that each joint angle
has on defining the overall hand grasp shape. The difference
in performance between autoencoders and the other two
methods for what concerns this aspect appears remarkable.
However, the video also highlights a drawback of the current
implementation of the autoencoder method, which being
static treats each grasp separately rather than considering
them as an evolution over time. This could explain the
discontinuities that can be seen when transitioning between
some of the hand shapes.

E. Effect of Sample Size

In the previous subsections we reported results for analysis
done on a subset of 40000 samples taken from the original
dataset, and the outcome for the full data set was only
mentioned for the autoencoder in Table V. The reason for
this was that 40000 was the highest number of samples that
the KPCA was able to handle, and a fair comparison requires
using the different techniques on the same data set.

On the other hand, being unable to deal with larger data
sets is a drawback of the KPCA when compared to other
methods, and if using more data leads to an increase in

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

I 0.084
~0.05 1
=

£ 0.03 1

L
%3}
= 0.00-

o~
I 0.081

e
(=]
a

MSE (test), n,
o
o
w

0.00-
m
1 0.081 mmm PCA ®EE KPCA [AE
o
—0.05 1
-
%]
[
£0.03
L
%]
= 0.004
Cc O O O O C O O o o o O M~
c O O O O C O C o o o m
o O O O O © O O O o o O o
N 1n O 1N O un O n O o O O u
A H N N MMM O O O O
— M O o

Number of samples in training set

(a) MSE for n. ranging from 1 to 3 and different values of the
number of samples.

0.10

I PCA B KPCA [1 AE

0.08 A
0.06
0.04

0.02 1

MSE (test), 10000 samples

0.00-

— (o] m < mn [te] r~
Number of components

(b) MSE for difference values of n., with number of samples
set to 10000.

Fig. 5: Reconstruction error for different numbers of princi-
pal components/degrees of freedom (n.), as function of the
number of samples used for the training set.

performance, that would be a point in favor of using the other
two techniques. In this section we show how the number of
samples changed performance for each technique.

Figure 5a shows a detailed overview of the effect of
training sample size on the MSE for the test subset, for
n. varying between 1 and 3 and a sample size for the
training set ranging from 1000 to 905837 (which is the
size of the full set). It can be noted that there is no
change in performance for the PCA with an increase in the
number of samples. KPCA behaves similarly with a small
improvement when increasing the number of samples from
1000 to 5000, followed by no increase in performance with
further increases in the number of samples considered (up
to 40k, which is the maximum that could be analyzed with

this technique). Finally, autoencoders show some fluctuations
with a general trend towards improvement of performance for
a larger dataset. It is worth pointing out that autoencoders
always outperform the other methods no matter the sample
size, although the difference becomes noticeably larger as
the sample size increases.

In this paper we focused in n, < 3, which is desirable in
order to keep the complexity low (e.g., in a prosthetic hand
or for hand pose sensing with a reduced number of sensors
[8], [23]). However, as shown in Figure 5b autoencoders
outperform the other techniques for n, > 3 as well. Finally,
while MSE was chosen as a main metric of comparison
because of the fact that it is the metric being minimized
by the PCA, the improvement in performance on MSE also
translated to better errors in fingertip distances (17.2+£5.3,
14.6 4.9 and 13.3 4.2 average errors for PCA, Kernel
PCA and autoencoders, respectively).

V. CONCLUSIONS

In this work we present a comparison of performance for
the application of Principal Components Analysis, Kernel
Principal Components Analysis and autoencoders on a large
data set of hand postures, described by measurements of
joint angles. Results show lower Mean Square Errors from
KPCA and autoencoders when compared to the traditional
PCA, with a reduction of up to 25% and 50% for KPCA
and autoencoders, respectively. Autoencoders in particular
seem to offer more realistic reconstructions of hand shapes,
as shown by the hand pose visualizer that we developed for
this purpose, and show a noticeable increase of performance
when using a larger dataset.

The results presented in this paper show the potential of
using nonlinear techniques for dimensionality reduction of
hand poses, and we hope that this can spark a larger interest
from the community towards this under-explored treatment
of hand kinematics. We think that the difference in the ability
to reconstruct shapes shown through visual reconstruction
is especially remarkable. It is worth pointing out that such
difference in performance could be increased by the fact that
we chose a data set rich in different grasping shapes. The
simpler PCA might still be preferrable for smaller and more
application specific data sets, where just a few grasp shapes
are present.

Future work will focus on using autoencoders to develop
a hand sensing method that uses a low number of sensors
to capture the whole hand pose, inspired by the approach
that was used by Ciotti et al. in [43]. Additionally, we will
evaluate the robustness of our analysis by testing the fitting
obtained from this data set with autoencoders to other data
sets. One limitation of the autoencoder approach is the fact
that it is a static technique, and as such does not take into
account the evolution of hand shapes over time, potentially
causing some of the discontinuities that can be seen in
the video reconstruction. To try and address this we will
consider a replacement of fully connected layers with Long-
Short-Term Memory (LSTM) units [44], which are better at
modeling time sequences.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[5

=

[6]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

M. Santello, M. Flanders, and J. F. Soechting, “Postural hand synergies
for tool use,” Journal of neuroscience, vol. 18, no. 23, pp. 10105-
10115, 1998.

C. R. Mason, J. E. Gomez, and T. J. Ebner, “Hand synergies during
reach-to-grasp,” Journal of neurophysiology, vol. 86, no. 6, pp. 2896—
2910, 2001.

M. Santello, M. Flanders, and J. F. Soechting, ‘“Patterns of hand motion
during grasping and the influence of sensory guidance,” Journal of
Neuroscience, vol. 22, no. 4, pp. 1426-1435, 2002.

E. J. Weiss and M. Flanders, “Muscular and postural synergies of the
human hand,” Journal of neurophysiology, vol. 92, no. 1, pp. 523-535,
2004.

M. Santello, G. Baud-Bovy, and H. Jorntell, “Neural bases of hand
synergies,” Frontiers in computational neuroscience, vol. 7, p. 23,
2013.

C. Y. Brown and H. H. Asada, “Inter-finger coordination and postural
synergies in robot hands via mechanical implementation of principal
components analysis,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2007, pp. 2877-2882.

M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi, “On the
role of hand synergies in the optimal choice of grasping forces,”
Autonomous Robots, vol. 31, no. 2-3, p. 235, 2011.

M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, and
A. Bicchi, “Adaptive synergies for the design and control of the pisa/iit
softhand,” The International Journal of Robotics Research, vol. 33,
no. 5, pp. 768-782, 2014.

S. B. Godfrey, M. Bianchi, K. Zhao, M. Catalano, R. Breighner,
A. Theuer, K. Andrews, G. Grioli, M. Santello, and A. Bicchi, “The
softhand pro: Translation from robotic hand to prosthetic prototype,” in
Converging Clinical and Engineering Research on Neurorehabilitation
II. Springer, 2017, pp. 469-473.

E. Battaglia, J. P. Clark, M. Bianchi, M. G. Catalano, A. Bicchi, and
M. K. O’Malley, “The rice haptic rocker: skin stretch haptic feedback
with the pisa/iit softhand,” in 2017 IEEE World Haptics Conference
(WHC). IEEE, 2017, pp. 7-12.

K. Mitsui, R. Ozawa, and T. Kou, “An under-actuated robotic hand
for multiple grasps,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2013, pp. 5475-5480.

K. Xu, H. Liu, Y. Du, and X. Zhu, “Design of an underactuated anthro-
pomorphic hand with mechanically implemented postural synergies,”
Advanced Robotics, vol. 28, no. 21, pp. 1459-1474, 2014.

R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of
Robotics Research, vol. 35, no. 1-3, pp. 161-185, 2016.

F. Ficuciello, G. Pisani, S. Marcellini, and B. Siciliano, “The prisma
hand i: A novel underactuated design and emg/voice-based multimodal
control,” Engineering Applications of Artificial Intelligence, vol. 93,
p. 103698, 2020.

M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” The International Journal of Robotics Research,
vol. 28, no. 7, pp. 851-867, 2009.

T. Geng, M. Lee, and M. Hiilse, “Transferring human grasping
synergies to a robot,” Mechatronics, vol. 21, no. 1, pp. 272-284, 2011.
T. Wimbock, J. Reinecke, and M. Chalon, “Derivation and verification
of synergy coordinates for the dlr hand arm system,” in 2012 IEEE
International Conference on Automation Science and Engineering
(CASE). IEEE, 2012, pp. 454-460.

G. Gioioso, G. Salvietti, M. Malvezzi, and D. Prattichizzo, “An object-
based approach to map human hand synergies onto robotic hands with
dissimilar kinematics,” in Robotics: Science and Systems VIII. The
MIT Press Sydney, NSW, 2012, pp. 97-104.

F. Ficuciello, G. Palli, C. Melchiorri, and B. Siciliano, “Postural
synergies of the ub hand iv for human-like grasping,” Robotics and
Autonomous Systems, vol. 62, no. 4, pp. 515-527, 2014.

G. Salvietti, “Replicating human hand synergies onto robotic hands:
A review on software and hardware strategies,” Frontiers in neuro-
robotics, vol. 12, p. 27, 2018.

R. Garcia-Rosas, D. Oetomo, C. Manzie, Y. Tan, and P. Choong,
“On the relationship between human motor control performance and
kinematic synergies in upper limb prosthetics,” in 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). 1EEE, 2018, pp. 3194-3197.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43

[t

[44]

M. K. Burns, K. Van Orden, V. Patel, and R. Vinjamuri, “Towards a
wearable hand exoskeleton with embedded synergies,” in 2017 39th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). 1EEE, 2017, pp. 213-216.

M. Bianchi, P. Salaris, and A. Bicchi, “Synergy-based hand pose
sensing: Reconstruction enhancement,” The International Journal of
Robotics Research, vol. 32, no. 4, pp. 396-406, 2013.

Z. Wang and A. M. Fey, “Deep learning with convolutional neural
network for objective skill evaluation in robot-assisted surgery,” Inter-
national journal of computer assisted radiology and surgery, vol. 13,
no. 12, pp. 1959-1970, 2018.

O. Glauser, S. Wu, D. Panozzo, O. Hilliges, and O. Sorkine-Hornung,
“Interactive hand pose estimation using a stretch-sensing soft glove,”
ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1-15, 2019.
E. Biddiss and T. Chau, “Upper-limb prosthetics: critical factors
in device abandonment,” American journal of physical medicine &
rehabilitation, vol. 86, no. 12, pp. 977-987, 2007.

A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems. O’Reilly Media, 2019.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37-52, 1987.

J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

B. Scholkopf, A. Smola, and K.-R. Miiller, “Kernel principal com-
ponent analysis,” in International conference on artificial neural
networks. Springer, 1997, pp. 583-588.

A. Ghodsi, “Dimensionality reduction a short tutorial,” Department of
Statistics and Actuarial Science, Univ. of Waterloo, Ontario, Canada,
vol. 37, no. 38, p. 2006, 2006.

B.-j. Kim, “Active visual learning and recognition using incremental
kernel pca,” in Australasian Joint Conference on Artificial Intelligence.
Springer, 2005, pp. 585-592.

T.-J. Chin and D. Suter, “Incremental kernel principal component
analysis,” IEEE transactions on image processing, vol. 16, no. 6, pp.
1662-1674, 2007.

D. Charte, F. Charte, S. Garcia, M. J. del Jesus, and F. Herrera,
“A practical tutorial on autoencoders for nonlinear feature fusion:
Taxonomy, models, software and guidelines,” Information Fusion,
vol. 44, pp. 78-96, 2018.

A. Tkach, A. Tagliasacchi, E. Remelli, M. Pauly, and A. Fitzgibbon,
“Online generative model personalization for hand tracking,” ACM
Transactions on Graphics (ToG), vol. 36, no. 6, pp. 1-11, 2017.

J. Romero, T. Feix, C. H. Ek, H. Kjellstrom, and D. Kragic, “Ex-
tracting postural synergies for robotic grasping,” IEEE Transactions
on Robotics, vol. 29, no. 6, pp. 1342-1352, 2013.

J. Starke, C. Eichmann, S. Ottenhaus, and T. Asfour, “Synergy-based,
data-driven generation of object-specific grasps for anthropomorphic
hands,” in 2018 IEEE-RAS 18th International Conference on Hu-
manoid Robots (Humanoids). 1EEE, 2018, pp. 327-333.

F. Conti, F. Barbagli, R. Balaniuk, M. Halg, C. Lu, D. Morris,
L. Sentis, J. Warren, O. Khatib, and K. Salisbury, “The chai libraries,”
in Proceedings of Eurohaptics 2003, Dublin, Ireland, 2003, pp. 496—
500.

B. Alexander and K. Viktor, “Proportions of hand segments,” Inter-
national Journal of Morphology, vol. 28, no. 3, pp. 755-758, 2010.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system
for large-scale machine learning,” in /2th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), 2016, pp.
265-283.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

S. Ciotti, E. Battaglia, N. Carbonaro, A. Bicchi, A. Tognetti, and
M. Bianchi, “A synergy-based optimally designed sensing glove for
functional grasp recognition,” Sensors, vol. 16, no. 6, p. 811, 2016.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 24,2022 at 00:56:24 UTC from IEEE Xplore. Restrictions apply.

