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Adaptive Surgical Robotic Training Using
Real-Time Stylistic Behavior Feedback Through
Haptic Cues

Marzieh Ershad, Robert Rege, and Ann Majewicz Fey

Abstract—Surgical skill directly affects surgical procedure
outcomes; thus, effective training is needed to ensure satisfactory
results. Many objective assessment metrics have been developed
that provide the trainee with descriptive feedback about their
performance however, often lack feedback on how to improve
performance. The most effective training method is one that
is intuitive, easy to understand, personalized to the use, and
provided in a timely manner.

We propose a framework to enable user-adaptive training
using near real-time detection of performance, based on intuitive
styles of surgical movements, and design a haptic feedback
framework to assist with correcting styles of movement. We
evaluate the ability of three types of force feedback (spring,
damping, and spring plus damping feedback), computed based
on prior user positions to improve different stylistic behaviors
of the user during kinematically constrained reaching movement
tasks. The results indicate that five out of six styles studied here
were improved using at least one of the three types of force
feedback.

Task performance metrics were compared in the presence
of the three types of feedback. Task time was statistically
significantly lower when applying spring feedback, compared to
the other two types of feedback. Path straightness and targeting
error were statistically significantly improved when using spring-
damping feedback compared to the other two types of feedback.
This study presents a groundwork for adaptive training in robotic
surgery based on near real-time human-centric models of surgical
behavior.

Index Terms—Surgical Robotics, Force Feedback, Adaptive
and Intelligent Educational Systems

I. INTRODUCTION

Surgical outcomes are highly dependent on surgeon skill
levels. Efficient training that provide trainees with appropriate
feedback and assist them with achieving expert-like perfor-
mance is critical for mastering technical skills in surgery
and achieving successful procedural outcomes [1]. Traditional
methods in surgical training typically involve observation and
evaluation of trainees’ performance in the operating room by
experts. [2]. Automating skill assessment can alleviate the
time intensiveness and subjectiveness of these methods; Fur-
thermore, finding an effective and efficient feedback method,
which is intuitive and easy to understand is crucial [3].
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For patient-free and more objective training environments,
virtual reality (VR) simulators have begun to find their way
into surgical training [4, 5]. Simulators provide factual and
quantitative data to the human user upon completion of each
simulated task, such as number of instrument collisions, time
to complete the task, and the number of missed targets. These
metrics indicate the success rate of the trainee but do not
necessarily provide them with meaningful feedback on how
to modify their movements to improve performance [6].

To address this issue, an ongoing development in surgical
simulators is to enable real-time feedback to users based on
calculated metrics. Errors are computed from comparing user’s
performance in interaction with the virtual environment with
a desired performance and to correct this error, feedback is
provided to the user accordingly.

The error can be calculated based on deviation from an
expected trajectory or a desired performance variable. Hap-
tic feedback has been widely used for training purposes in
simulators to assist with following a specified trajectory or
providing a sense of touch in tool-tissue interaction while
performing a task. An example of providing haptic feedback
in tool-tissue interaction is the work from Pezzementi et
al. They implemented a platform for interaction with soft
tissue in a simulated environment using the Phantom Omni
haptic device by training a linear 2D mass-spring-damper
system which performs similar to a nonlinear finite element
(FE) model [7]. For trajectory guidance, Ko et al. developed
a training simulator to assist the trainee with following a
desired catheter insertion path through haptic feedback by
calculating forces during catheter insertion [8]. These methods
have proved to be effective in improving performance however,
do not incorporate user’s behavior or movement style which
provide rich information regarding user’s proficiency, and can
lead to more intuitive training methods.

An effective training method should be easily interpretable
by the user. In an earlier study [9], we showed that the quality
of movement during task performance which is intuitively
perceived by a human observer can be used to distinguish
different expertise levels; thus the user’s style of movement
includes valuable information regarding his/her skill level,
and deviations from expert-like movements can be used to
calculate relevant feedback for training.

Another recently explored source for improvement in virtual
reality surgical simulators is adaptive training which provides
relevant and customized training feedback to trainees, based
on individual strengths and weaknesses, and could enhance
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learning outcomes. The large amount of data recorded and
stored by VR simulators enables data-driven analysis and au-
tomatic performance evaluation. This enables adaptive training
based on each individual’s performance [10]. An example of
an adaptive robotic surgical training framework is presented
in [11]. This study compares adaptive curriculum training to
self-managed training and shows significant improvement in
performance and learning skill using an adaptive framework.
However, these performance assessment and adaptive feedback
methods are largely task-dependent, which limit the general-
izability of these approaches.

In the following, we will discuss previous studies in this
field and describe our proposed methodology which addresses
the issues mentioned above to assist with improving training in
robotic surgery. The rest of the paper is structured as follows.
In section II we summarize related work in adaptive training,
force-reflective feedback, and guidance force feedback. In
section III our proposed stylistic assessment and feedback
method is discussed in detail. It includes a deficiency detection
phase and a feedback applying phase. A deficiency in style
is detected from user’s hand position and velocity data, by
comparing to expert style for a variety of stylistic descriptors.
Subjects are randomly assigned to one of the feedback groups
and provided with either spring, damping, or spring-damping
force feedback. We evaluate the effectiveness of our adaptive
stylistic force feedback using both performance metrics as well
as stylistic changes over the duration of the experimental study.
Section IV describes the experiment design and tools used to
conduct the experiment. In section V, we present the results
of the proposed training method, and discuss the effect of the
different types force feedback on styles of movement. Section
VI concludes the paper and suggests future work in this field.

II. RELATED WORK
A. Adaptive Training

Adaptive technology can be introduced into training devices
to develop user-specific training that results in more effective
learning. An adaptive system can be seen as a supervisor that
instructs each trainee based on his/her unique performance and
provides specific instructions on how to proceed, or adjusts
the training task for each individual to ensure best results
for each trainee. These systems consist of a control loop that
detect changes in the output from a desired point, this can be
done using machine learning approaches that enable deficiency
detection or performance classification. Feedback is then ap-
plied to modify the response to move it towards the desired
performance levels [10]. Adaptive systems require three main
elements including constant monitoring and measurement of
performance, an adaptive variable, and a methodology to
adjust the variable to enhance performance [12].

In adaptive training, user’s performance is evaluated based
on specific criteria (detection phase), and in the next step
training is adapted accordingly (feedback or training phase).
Task difficulty level is one element of focus in the training
phase. The difficulty of the task can be updated based on
user’s performance to adjust the level of challenge and enhance
learning. This has been studied in digital games [13]. The
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stimulus or the type of feedback provided to the user is another
element of focus in the training phase in which the feedback
is adapted based on the user’s performance. Visual, audio,
and haptic feedback are some of types of feedback used in
the training phase. Different types of haptic feedback used in
training systems will be discussed in the following section.

B. Haptic Feedback for Training

To study the effect of haptic feedback on user’s perfor-
mance, two types of haptic feedback are noticeable: reflective
feedback and guidance feedback.

1) Reflective Feedback: Provides the user with a feeling of
touch and force in interacting with an object in environments
where these senses are missing. In virtual environments, this
is done through haptic rendering. Haptic feedback in VR
simulators improves training [14]. The lack of haptic feedback
(both force and tactile) causes an inappropriate level of force
applied to the tissue which can lead to safety issues [15].
Tactile feedack decreases the force applied to the tissue and
hence reduces tissue damage. A study was conducted to
show this effect on robot manipulation by mounting force
feedback onto a da Vinci surgical robotic system performing
multiple peg transfer tasks [16]. This study showed that all
subjects applied higher force in the absence of haptic feedback;
thus, indicating that haptic information in the form of tactile
feedback assists surgeons with tissue handling by applying an
appropriate amount force to the tissue. In another study, the
effect of tactile force feedback was evaluated in vivo [17].
This study also showed a significant reduction in grasping
forces and thus, tissue damage in the presence of an integrated
tactile feedback. A study by Abiri et al. showed that a multi-
modal feedback including tactile, kinesthetic, and vibrotactile
feedback for providing a sense of touch in tissue grasping and
manipulation tasks resulted in an average of 50% reduction in
force compared to a no feedback scenario [18].

This type of reflective feedback though proving to be helpful
in providing the user with a feeling of touch and force in
teleoperated environments where these sense are missing, do
not provide any cues to the user on how to modify movement
to improve performance.

2) Guidance Feedback: Provides the user with haptic cues,
and assists in correcting movements to improve performance.
Haptic guidance can enhance learning new motor skills in
robotic environments where an instructor is not present to
guide the user on how to modify his/her movement. Different
studies have shown the effectiveness of haptic feedback in
developing motor skills [19] and movement guidance [20]. A
common type of training motor skills using haptic feedback
is transferring expert skills in which an expert’s movements
are recorded and played back to train a novice [21]. However,
Gibo et al. showed that haptic feedback can help discover new
movement strategy rather than following a specific trajectory
or enforcing a specific movement [22]. They provided the
subjects with an environment to explore different types of
movement using haptic feedback and adopt the best strategy.
Haptic disturbances that suggest disturbing the movement
instead of guiding the user can also improve motor skills [23].



This article has been accepted for publication in IEEE Transactions on Medical Robotics and Bionics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMRB.2021.3124128

while all these methods prove the effectiveness of haptic
feedback in movement guidance, they do not focus on perfor-
mance feedback. Jantscher et al. designed and implemented a
framework that provides vibrotactile feedback method based
on movement smoothness. They proved that the smoothness-
based feedback improved accuracy compared to trajectory
based feedback methods [24]. They provided the subjects with
vibrotactile cues with a degree of pleasantness relative to their
performance; however, results in the literature show scenarios
in which force feedback assists the user with performing a
task, yet is perceived negatively by the human user [25], and
other scenarios in which force feedback does not improve
performance, yet is preferred [26]. These results indicate that
objective performance metrics and subjective user response
surveys may not be sufficient for understanding the intuitive-
ness of a control interface.

Similar to [24], we investigate the effect of performance
based haptic feedback on overall task performance. In addition
to smoothness-based feedback studied by [24], we further
examine the effect of haptic cues on five other stylistic
performance behaviors. Furthermore, we study three different
types of feedback to find the best type that contributes most
to the improvement of each movement style. We propose
a framework to provide task-independent stylistic feedback
to the human user during movement-based training tasks to
provide the user with a more intuitive and global understanding
of their movement styles. We designed, implemented, and
evaluated an adaptive training method composed of the fol-
lowing elements: (1) Our proposed framework first evaluates
the user’s stylistic behavior performance in near real time and
detects deficiencies in some movement styles [27]. (2) Next, it
provides the user with haptic cues to modify their movement
to improve performance. We also evaluate the effectiveness
of three common types of haptic feedback, namely, spring,
damping and spring-damping feedback that is computed from
prior user positions and velocities. The goal of our study is to
find intuitive ways to communicate with the user on how to
modify his/her movement to enhance performance. We evalu-
ate the user performance, based on the quality of movement
through monitoring their styles of movement (movement styles
are is described in section III.A) while performing a task. We
then provide haptic feedback to help correct user’s style in
near real-time.

IIT. METHODS

Our goal is to improve robot assisted training to help achieve
mastery in surgical robotics. For this purpose, we aim to (1)
introduce a customized framework in which each individual is
provided training based on his/her performance, (2) provide
the trainee with feedback in a timely manner and in near
real-time, (3) introduce a generalizable and task-independent
framework which evaluates performance based on the user’s
style of movement, and (4) develop a more understandable and
intuitive way to communicate with the user on how to modify
movement to improve performance.

A systematic framework for recognizing the quality of
movement through stylistic behavior and applying appropriate
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feedback for correcting the style was developed using a human
machine interface (i.e., a haptic device) and a simulated task.
Fig. 1 shows the block diagram of the proposed method.

In the following, we first briefly discuss our previous study
that introduced a novel method for surgical skill assessment
using stylistic behavior. We then discuss how these styles of
movement are used in this study to develop a customized
training framework based on user’s performance.

A. Surgical Skill Assessment Using Stylistic Behavior

In a previous study, we introduced the concept of surgi-
cal skill assessment based on user’s stylistic behavior [9].
These styles represent the appearance of movement in action
described by common adjectives that indicate the quality of
movement such as smoothness, fluidity, decisiveness, etc.,
that are easily distinguishable to a casual observer. The idea
behind this method is that the quality of movement holds
fundamental information about a subject’s skill; thus, quanti-
fying these universally understandable movement descriptors
enables the development of effective and intuitive training
strategies. We proposed a lexicon of contrasting adjectives
representing surgical styles through consultation with expert
surgeons (Table I). To evaluate the ability of these stylistic
descriptors in differentiating among different expertise levels,
we used crowd-sourced assessment which has proven to show
comparable results to expertise evaluation in different studies
including surgical skill assessment [29, 30, 31]. Paired videos
of a subject performing a simulated surgical task and the
task being performed was posted to Amazon Mechanical Turk
and crowd workers rated the videos based on the stylistic
descriptors.

To quantify the qualitative assessment based on stylistic
behavior, we found data metrics associated with each stylis-
tic behavioral adjective in the lexicon through an extensive
search among different calculated metrics. For each adjective,
we found the metric that correlated best with the crowd
ratings. These metrics were calculated from kinematic and
physiological measurements recorded from multiple sensors
from users’ hand movements while performing a simulated
task on the da Vinci® Skills Simulator™ . Furthermore, we
evaluated the ability of the stylistic descriptors to differentiate
between different expertise levels. For this purpose, the metrics
associated with the stylistic behavior were used to train a
classifier which was then used to distinguish among four levels
of expertise (novice, intermediate, expert, fellow) [27]. The
results showed that these styles of movement were able to
distinguish among different expertise levels.

In the next step, to avoid the feature engineering required in
the previous study for identifying the stylistic behavior and to
detect the deficiency in the styles of movement during user’s
performance, we proposed an automatic method for extracting
underlying structures that represent stylistic behavior from raw
kinematic data within 0.25 seconds of movement [28].

In this study, we design an experiment, to implement, and
test the framework for automatically detecting the deficiency
in movement styles in near real-time. In addition, to assist
with correcting the style of movement as a ground work for
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Figure 1: System Block Diagram: The human user interacts with a haptic device and the simulation environment (a). Before
the experiment, training movement data is used to learn a dictionary of stylistic features and a classifier is trained to predict
stylistic deficiencies in near real-time [28] (b). During the experiment, kinematic measurements from the haptic device is
represented into stylistic behaviors by projecting it on the learned dictionary (c). The quality of the user’s style is detected
using a classifier which takes the coefficients of the new representation of the data as an input (d). Finally, force feedback is
provided to the user if negative performance is detected. Three different types of force feedback were evaluated in this study
for their effectiveness in improving user style. Feedback is computed from prior user positions and velocities (e).

developing a training framework, we examine the effect of
haptic guidance using three different types of force feedback
(spring, damping, spring and damping) on the six different
styles of movement in Table I.

Table I: Lexicon of Stylistic Behavior

Positive Adjective | Negative Adjective
Fluid Viscous
Smooth Rough
Crisp Jittery
Relaxed Tense
Deliberate Wavering
Coordinated Uncoordinated

B. Detecting Deficiencies in Stylistic Behavior

A framework for detecting the stylistic behavior perfor-
mance is described in [28]. A similar approach is used in this
study however; a different data set is used and the model is
tuned to best fit the new data set. This approach is discussed
in the following.

1) Crowd-Sourced Assessment for Positive and Negative
Performance for Each Style: To be able to train a model to
recognize a deficiency in movement styles, we first label the
data based on a positive or negative performance of the stylistic
behavior. For this purpose, we use the JIGSAWS data set [32],
which is a publicly available data set that contains robotic
surgical training videos and kinematic recordings. JIGSAWS
videos were uploaded to Amazon Mechanical Turk and crowd

© 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

workers rated the videos based on the quality of performance
of the six styles of movement in Table I. The crowd workers
were asked to rate the video based on either a positive or
negative adjective for a given stylistic descriptor (e.g., smooth
v.s. rough movement, crisp vs. jittery movement). Each video
was rated by 20 crowd workers. A video was eventually
assigned a positive label if it was rated positive by more than
or equal to 50 % of the crowd-workers and was otherwise
assigned as negative.

2) Dictionary Training and Classifier Model Training:
Similar to [28], in order to represent good or poor performance
for each style of movement, we used a dictionary containing
an over-complete set of basis vectors. These basis vectors,
as opposed to pre-defined dictionaries, were learned using
the kinematic data from the right hand manipulator of the
da Vinci® Skills Simulator™ from the JIGSAWS data set.
This data set includes position, velocity, and angular velocity
from the robot end effectors. A separate dictionary was learned
from the positive and negative performance and then the total
dictionary was obtained from the concatenation of the these
two sets of dictionary such that the first half of the basis
vectors were dictionary learned from the good performance
and the second half were the dictionary learned from the bad
performance. The positive and negative labels for each stylistic
behavior adjective used to train the model were obtained
from crowd-sourced assessment of the JIGSAWS video data
set (section III-B1). The input data is then represented as
a linear combination of the basis vectors in the dictionary.
The dictionary and the coefficients are calculated using an



This article has been accepted for publication in IEEE Transactions on Medical Robotics and Bionics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMRB.2021.3124128

optimization algorithm that iterates between two problems: 1)
finding the basis vectors such that the reconstructed signal
is as similar as possible to the input signal, and 2) finding
the coefficients such that they are sparse. The sparseness
reduces the computational complexity and enables near real-
time implementation. These sparse codes are then used to
train a support vector machine (SVM) classifier. Six separate
dictionaries are learned for each of the six stylistic behavior
adjectives, leading to six trained classifiers.

3) Coefficient Calculation: For a new set of input data (i.e.,
a frame of 30 samples), dimensionality reduction is done using
principle component analysis (PCA) to remove correlations in
the data set, then this reduced dimension data set is projected
onto the learned dictionary (described in section III-B2). The
new representation of the input signal is sparse. The sparse
codes form the new data frame at each point of time, which are
then fed into the trained classifier (described in section I1I-B2)
for performance evaluation. Algorithm 1 shows the pseudo
code for this method.

Algorithm 1 Style Performance Detection Algorithm
Input: new data
Output: stylistic behavior performance S;

1: while trial not finished do
2:  Get every data frame of 30 samples (df)
3:  perform PCA on the new data frame (d fpca)
4:  Project the reduced dimension data set onto the dictio-
nary
D= [D[NDN]’
D, €R and Dy € R,
1: Number of basis vectors in the dictionary,
d fpca = Wp1Dp1,Wy1Dn1 + W2 Do, Wya Dz +
e Wi Dy, Wy Dy
5:  use the sparse codes (W1, W1, ..., Wy, Wy;) as input to
the pre-trained classifier
6: S; = classifier output
S; = 1 if good performance is detected),
S; = 0 if poor performance is detected,
7: end while

C. Providing Feedback for Correcting Stylistic Behavior

To avoid confusing the operator with multiple, potentially
competing feedback cues, the experiment was divided into 6
blocks and only one stylistic deficiency was detected within
this set of movement trials. Based on which style detection
algorithm was activated for a given block in the experiment
protocol, when a poor performance was detected using the
proposed near real-time algorithm, one of the three type of
force feedback was turned on. In the following the three types
of force feedback compared in this study (Fig. 2) are discussed.

« Spring Feedback: This was calculated using the difference
between the position of the hand at time t (D;), and the
position at time t-1 (D;_).

FY:KS(D,*D,,Q (1)
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The gain K; was obtained through trial and error and
chosen to be 30. The gain was chosen to be high enough
so that the user would be able to feel the feedback, but
also maintain the stability of the system. This gain was
fixed throughout the experiment.

o Damping Feedback: Was calculated using the difference
between the velocity of the hand at time t (V;), and the
velocity at time t-1 (V;—1).

Fy=B,(Vi —V,) 2)

The gain, B; was chosen through trial and error and was
set to be 15. A lowpass filter with a cutoff frequency of
100 HZ was used to remove noise and smooth the velocity
signal and prevent the system from becoming unstable.

o Spring + Damping Feedback: Was calculated using the
difference between the velocity of the hand at time t (D;),
and the velocity at time t-1 (D;_).

Fid = Kyq(D1 — D2) + By (Vi — V2) 3)

The gains, Ky; and By; were chosen through trial and
error and set to be 10 and 5. A lowpass filter with a
cutoff frequency of 100 HZ was used to remove noise,
smooth the velocity signal and prevent the system from
becoming unstable.
Algorithm 2 shows the pseudo code for the haptic feedback
algorithm.

Algorithm 2 Feedback Generation Algorithm

Input: S;: style performance , O otherwise
S; =1 if good performance is detected,
S; = 0 if poor performance is detected,
Output: f,,: force feedback to be applied

1: define feedback type (F)
F = F;: Spring Feedback,
F = F;: Damping Feedback,
F = Fd: Spring+Damping Feedback
2: while trial not finished do
3:  if S; =0 then
4 Jou =F
5:  end if
6: end while

IV. EXPERIMENTAL SETUP
A. Data Acquisition and Simulated Task

The Geomagic Touch haptic device (3D Systems, Rock Hill,
SC) was used in this study. This device allows for 3-degree-of-
freedom force feedback and 6-degree-of-freedom sensing. It is
used to both provide the user with the desired movement tasks,
as well as force feedback guidance cues based on stylistic
deficiencies. Position, linear and angular velocity measure-
ments were recorded from the stylus of the haptic device at a
frequency of 256 Hz. To enable near real-time performance,
stylistic detection was performed on every frame of 30 samples
of incoming data (representing 0.12 seconds). The simulated
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Figure 2: Three types of haptic feedback: spring, damping, and spring + damping feedback were studied here for their ability
to provide stylistic cues to the human operator. A force feedback was generated based on the user’s prior position in time.

task consisted of reaching a set of targets under a kinematically
constrained environment, simulating the control of a steerable
needle using Cartesian Space teleoperation [33]. This task was
chosen due to its complexity as a single-handed movement
and one that naturally hinders movement in a straight-line
path, which we felt would not be difficult enough to illicit
stylistic changes in the user’s movements. The movement tasks
were developed using C++ and the CHAI 3D haptic rendering
library. Users were asked to reach four 5 mm targets, mirrored
vertically, at predefined locations which were presented to the
user at random. The user was instructed to initialize each
trial by moving the virtual stylus to the starting point. After
reaching the target the user would end the trial by pressing
a button on the stylus. Data was collected from the time the
user initialized the haptic device until they defined the end of
the trial (Fig. 3).

B. Experimental Protocol

The experiment was divided into six blocks of kinemati-
cally constrained movement trials (e.g., controlling a steerable
needle under cartesian space teleoperation), each block cor-
responding to one of the six stylistic adjectives. Each block
includes a baseline segment consisting of two repetitions for
each target (a total of 16 reaching trials) with no force feed-
back, and a segment that contains an applied force feedback
for five repetitions of movements for each target (a total of 40
reaching trials). This resulted in 336 trials (6 blocks x 56 trials
per block) for each participant. In each block, force feedback
was provided when a stylistic deficiency was detected for the
given adjective corresponding to the block. A 20 sec break was
provided to the user between each block. Both target location
and ordering of stylistic blocks were randomized. Figure 4
shows an example of the experiment protocol.

C. Participants

A total of 21 subjects participated in this study. The study
protocol was approved by UTD IRB office (UTD # 14-
57). Participants had no previously reported muscular-skeletal
injuries or diseases, or neurological disorders. The subjects
were divided into 3 groups of 7 subjects each. Each group
was assigned the same randomized movement task, but only
received either spring, damping, or spring-damping feedback
for each of the stylistic adjective blocks. This parallel study
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design was chosen to allow us to evaluate the effect of the
type of haptic feedback on corresponding changes in stylistic
behavior.

D. Stylistic Behavior Performance Detection

The kinematic data recorded from the haptic device includes
user hand position, velocity, and angular velocity all in X,
Y, and Z directions, resulting in 9 signal channels which are
similar to the class of signals used to train the performance
detection model from the JIGSAWS dataset, described in
Section III-B2. These set of basis vectors are used here for
obtaining the new spars representation of the input signal. The
basis vector obtained from a class of signal similar to the input
signal, better enables capturing the underlying information in
the signal as opposed to using predefined dictionaries (e.g.
Fourier, Wavelet, etc.) Based on the style detection algorithm
activated in each block, the new frame of data was projected
onto the set of an over complete dictionary that was calculated
as discussed in Section III-B2. The sparse codes for each
incoming frame of data was calculated and used as input to
a classifier to detect the performance quality based on the
activated detection algorithm for the specific style. The clas-
sifier returns O if a poor performance is detected and returns
1 otherwise. The detection algorithms were implemented in
MATLAB.

E. Providing Feedback to the User

For each frame of incoming data if a poor performance was
detected (output of the classifier was 0), one type of force
feedback (spring force feedback, damping force feedback, or
spring-damping force feedback), was activated and applied
to the user’s hand. A custom C++ code was developed to
apply the force through the Geomagic Touch device. Robot
Operating System (ROS) was used to build the connection
between detection algorithm in MATLAB and applying the
force to the user through the Geomagic Touch haptic device
in C++. Three types of forces, as discussed in section III-C,
were studied in this experiment. Each group of subjects was
provided with one type of force feedback throughout the whole
experiment for all different blocks of style detection.
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Figure 3: (a) User interface: user interacting with simulated environment using the Geomagic Touch haptic device. The task
was initiated by moving the virtual stylus to the red doughnut and would end by reaching the specified target. (b) Target layout.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
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S X )
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Feedback Feedback

Figure 4: An example of an experiment protocol for one subject. The protocol consists of six blocks, each related to one
stylistic behavior detection algorithm that was activated for that block. For each block, the user first performed a set of
reaching movements with no feedback to enable a baseline computation of style, followed by a set of trials with feedback that
was provided, based on measured stylistic deficiencies. For each subject, a single feedback method was provided throughout
the whole experiment, but at different points of time, depending on the style detection algorithm for that subject. Hence, a

unique feedback relevant to style was provided to each subject.

E. User Performance Evaluation Metrics

To quantify the quality of performance in each trial in
which a feedback was applied, the performance quantity P
was calculated. For each style (i.e., each block in the protocol
in Fig 4), the first section of the block where no feedback is
applied is used as a baseline for that style. For each trial, the
performance of the user was evaluated by the sum of number
of times a one was detected (good performance), divided by
the total number of detections in that trial. This was done
for the baseline trials for each style and averaged over all
force-feedback trials for the same style.

B ):fv =40 (num_positive_WF [num_total_WF)/N
N ):]}’[ =16 (num_positive_NF [num_total_NF)/M

p “4)

Where: num_positive_WF is the number of good performance
detected in a trial with feedback, num_total_WF is the number
of total detections in a trial with feedback, i is the trial
index for feedback trials, and N is the total number of
trials with feedback for one style. In the denominator, we
defined:num_positive_NF as the number of good performance
detected in the baseline trial (no feedback), num_total_NF
as the number of total detections in the baseline trial (no
feedback), j as the trial index for baseline trials, and M as
the total number of baseline trials.
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G. Task Performance Evaluation Metrics

To compare the effect of the three types of feedback on the
task performance, three metrics were calculated including: (1)
time taken to reach the target, (2) needle trajectory straightness
(the distance traveled by the needle divided by a straight line
to the target), and (3) the needle position error (the distance
between the needle and the target at the end of the trial).

V. RESULTS AND DISCUSSION

We collected a total of 7056 trials (21 subjects, 336 each).
Data analysis was carried out for all trials. The results include
the evaluation of stylistic behavior improvement, as well
as an evaluation of task performance as a function of the
different types of haptic force feedback. A NASA Task Load
index survey was conducted to show how users perceived the
feedback provided to them in terms of workload.

A. Effect of Force Feedback on Styles

The effect of each type of force feedback on each style of
movement is shown in Figure 5. The mean and standard devia-
tion of the quantity associated with good performances (P) for
the three different types of force feedback (spring, damping,
spring-damping) are plotted. This is the average number of
good performances detected in the feedback segment of one
block i.e., in one style detection algorithm, normalized to
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Figure 5: Comparing the effects of three different types of
haptic feedback on each style. For each group of subjects
receiving the same type of feedback, the mean and standard
deviation is shown for the number of positive performance
normalized to the total number of detections and divided by
the baseline stylistic positive performance, for each style. The
values above 1 show an improvement in the performance when
applying feedback compared to the no feedback condition.

the average of the number of good performances detected in
the baseline i.e., no feedback, segment of the same block.
The values above the horizontal line crossing at 1 show the
improvement of the movement style when applying feedback
with respect to the no feedback condition and the values below
this line indicate that receiving feedback did not improve the
movement style compared to not receiving any feedback.

This plot indicates that the spring force feedback was able
to improve the average performance of the styles “crisp”,
“deliberate”, and “relaxed”. The damping force feedback im-
proved the “crisp” and “deliberate” styles on average, and
the spring+damping force feedback was able to improve the
“smooth”, “calm”, “deliberate” styles on average.

Overall, all styles except for “fluid”, showed an average
improvement by applying one or more types of force feedback.
The “fluid” style however showed the best performance in the
absence of the forces studied here. This can be due to the
fact that other kinematic metrics, rather than the position and
velocity, contribute to the fluidness of movement. In this study
only force feedback associated with position and velocity were
studied. According to our previous study [27], the rotational
velocity of the hand movement is related to the fluidity of
the movement. Thus, in future work, applying other types
of force feedback which incorporate the effect of angular
velocity might help to improve the fluidity of movement.
This study was limited by the fact that the haptic device
used was not able to provide rotational feedback cues. The
style “deliberate” was improved by all types of forces when
compared to the no feedback condition; however the most
improvement occurred when applying spring force feedback.

A statistical analysis was done to determine significant
differences in the three types of force feedback, different tar-
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gets, and task repetitions for each stylistic behavior adjective.
Normality test was applied to test for normal distribution in the
data and was rejected thus, the Kruskal Wallis test was used
to identify significantly different groups. Effect significance is
identified for p-values less than 0.05.

The results from the statistical analysis on different styles of
movement (Table II) indicate that for the styles, Fluid/Viscous,
Relaxed/Tense, Deliberate/Wavering, the spring force feed-
back showed significant difference in improving the user
performance compared to the other two types of feedback. For
the Crisp/Jittery style, both the spring feedback and damping
feedback showed significant improvement in performance. For
the Calm/Anxious styles, the spring+damping force feedback
showed significant improvement in performance.

The statistical analysis indicate that task repetition shows no
statistically significant effect on the different types of stylistic
behavior as opposed to the target location which show visible
statistically significant effects on different styles. This is done
using pair-wised comparison from a multiple comparison test.
This is shown in the third and fourth column of Table II.

B. Effect of Force Feedback on Task Performance

Target configuration and needle trajectory for all trials are
shown in Figure 6, grouped by the force feedback and color-
coded by target error. This figure shows the traces from all
trials receiving each type of force feedback regardless of
the style. The plot visually demonstrates that in general, the
needle trajectory is more confined when applying spring force
feedback compared to the other two types of feedback.

For each trial, task-specific metrics including the time taken
to complete the task, needle trajectory straightness, and target
error, were calculated to evaluate the effects of different types
of feedback, as well as the no feedback condition, on task
performance. The mean and standard deviation of each of these
metrics were calculated. Figure 7a shows that the time taken
to reach the target is improved using all three types of force
feedback compared to the no feedback condition. For targets
1 and 2, the group with spring force feedback showed the
least time taken to reach the target, and for targets 3 and 4,
the group with the spring-damping force feedback showed the
least time taken to complete the task.

The target positioning error in all four targets was improved
using all three groups that received force feedback compared to
the no feedback condition; however, the group which received
the spring+damping force feedback showed the least error
(Fig. 7b). This indicates that applying force feedback increases
the accuracy reaching task regardless of the target.

The straightness of the trajectory traveled by the needle
is compared in Fig. 7c. This figure indicates that for all
four targets, the group which received the damping feedback
showed a straighter needle path compared to the other two
feedback groups and the no feedback condition; however,
spring feedback and spring+damping force feedback caused
less straightness in the needle trajectory compared to the no
feedback condition.

In general, the time to complete the task and the target
error are improved by applying at least one of the forces. The
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Table II: Statistical analysis summary of the effect of different force feedback types, targets, and task repetitions on the stylistic

behavior
Force Feedback Target Repetition
Style p Significance P Significance P Significance
Fluid/Viscous <0.0035 S>SD, D 0.64259 N/A 0.9916 N/A
Smooth/Rough 0.2008 N/A 0.0045 1>2 0.3854 N/A
Crisp/Jittery <0.0035 S,D > SD 0.0045 1>234 0.6953 N/A
Calm/Anxious <0.0035  SD>D>S 0.2987 N/A 0.7711 N/A
Deliberate/Wavering | <0.0035 S>D, SD <0.0035 1>2>3>4 04111 N/A
Relaxed/Tense <0.0035 S>D, SD <0.0035 1>234,2>3 | 0.6892 N/A
S — Spring, D — Damping, SD — Spring+Damping
TargetPos Spring FF Damping FF Spring Damping FF
N S| max = 0.05 mm
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Figure 6: Target layout and resulting needle paths for all subjects. Green paths indicating smallest error.
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Figure 7: Three metrics including (a) time to complete the task, (b) target positioning error, (c) and needle trajectory straightness
were used to evaluate the effect of the haptic cues on task performance. For each group (who received the same type of force
feedback), the mean and standard deviation of each task performance metric is calculated and compared for 4 target locations.

straightness of the trajectory, computed by dividing the needle
path length to the straight path, however, is only improved
compared to absence of feedback only when the damping
feedback is applied. A statistical analysis was also done for
task performance metrics, to determine significant differences
in the three types of force feedback, different targets, and task
repetitions. For all three types if force feedback, normality
test was rejected and Kruskal Wallis test was used to identify
significantly different groups. Effect significance is identified
for p-values less than 0.05. For the task performance metrics,
the statistical analysis indicates that for the target positioning
error, spring+damping feedback shows significant difference
in reducing the error compared to damping feedback but
is not significant compared to spring feedback; however, it
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results in a statistically significant less straighter path traveled
by the needle compared to damping feedback. The spring
feedback results in statistically significant less task completion
time compared to damping feedback and spring+damping
feedback (Table IIT). No statistically significant effect in task
performance metrics, were found due to task repetition; how-
ever the target location shows significant importance in task-
specific metrics.

C. Subject Survey

The results from user survey (NASA-TLX) indicate that
subjects who received the spring force feedback found the
feedback unpleasant and the tasks more demanding compared
to subjects who received the other two types of feedback. This
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Table III: Statistical analysis summary of the effects of force feedback types, targets, task repetition on performance metrics

Force Feedback Target Repetition
Performance Metric P Significance p Significance p Significance
Target Error 0.0389 D>SD <0.0035 2>3>1>4 .02033 N/A
Needle Trajectory Straightness 0.0398 SD>D <0.0035 1>234,3>14 0.914 N/A
Time taken to complete the task | <0.0035 SD, D>S <0.0035 234 >1 0.0498 N/A

S — Spring, D — Damping, SD — Spring+Damping

indicates that a haptic feedback can improve task and user
performance but still be unpleasant to the user.
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Figure 8: NASA-TLX

VI. CONCLUSION

In this study we proposed an automatic training framework
in a simulated environment which detects a poor behavioral
performance in the user’s style of movement in near real-
time and applies force feedback using a haptic device to help
correct the style of movement. We conducted a human subject
study to evaluate the effect of three different types of force
feedback: spring force feedback, damping force feedback, and
spring+damping force feedback on six different behavioral
styles. The relation between the quality/style of movement
and user’s skill level was investigated in a previous study [27].
The method for a near real-time detection of a good or poor
performance based on the styles of movement was developed
in [28]. Although a classification accuracy of above 71% was
achieved for all stylistic behavior adjectives, an improvement
in the classification accuracy can potentially improve the per-
formance feedback and training framework. This study builds
the groundwork for using haptic as “performance feedback”
(as opposed to reflective or guidance feedback) for improving
stylistic behavior and hence, quality of movement.

The results indicated that “Spring” force feedback resulted
in less time to complete the task, hence faster performance
speed. It also helped demonstrate a more fluid, crisp, calm,
and deliberate behavior in the user’s movement.

“Spring+Damping” feedback reduced the target error result-
ing in a more accurate performance; however, it resulted in a
less straight needle path and more time to complete the task.
It helped demonstrate a more relaxed performance.

“Damping” force feedback resulted in a straighter line
traveled by the needle in the simulated task towards the target;
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however, it led to an increased target error and a slower speed
resulting in more time taken to complete the task. It helped
the user to demonstrate a more crisp performance.

This study considered only three type of force feedback
related to position and velocity; however, this might not be
sufficient for all styles, since other kinematic metrics can also
be associated with some styles. We believe considering other
types of force feedback can help improve the performance of
the styles that were not improved using only a position or
velocity force feedback.

Another area of focus in the future will be to evaluate
the effectiveness of the proposed haptic training method for
improving stylistic behavior in long term. For this purpose,
subjects will be trained in three groups, each group will be
receiving a different type of haptic feedback and the their
performance will be monitored and measured over time. In
addition, the haptic feedback in this study was adaptive and
applied based on the detection of stylistic behavior from
a user’s performance; however, future work can focus on
comparing our proposed adaptive feedback frame work to
similar types of non adaptive force feedback to assess their
effect on the styles of movement.

Furthermore this study was carried out in a simulation envi-
ronment which has limitations in representing a real surgical
task. Future studies will focus on addressing this issue by
implementing the proposed method on the da Vinici research
kit (dvrk) along with a training task.

This study provides the groundwork for continued research
on user performance based feedback for adaptive training.
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