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Abstract

The exponential family random graph modeling (ERGM) framework provides a highly flexi-
ble approach for the statistical analysis of networks (i.e., graphs). As ERGMs with dyadic
dependence involve normalizing factors that are extremely costly to compute, practical strat-
egies for ERGMs inference generally employ a variety of approximations or other work-
arounds. Markov Chain Monte Carlo maximum likelihood (MCMC MLE) provides a powerful
tool to approximate the maximum likelihood estimator (MLE) of ERGM parameters, and is
generally feasible for typical models on single networks with as many as a few thousand
nodes. MCMC-based algorithms for Bayesian analysis are more expensive, and high-qual-
ity answers are challenging to obtain on large graphs. For both strategies, extension to the
pooled case—in which we observe multiple networks from a common generative process—
adds further computational cost, with both time and memory scaling linearly in the number
of graphs. This becomes prohibitive for large networks, or cases in which large numbers of
graph observations are available. Here, we exploit some basic properties of the discrete
exponential families to develop an approach for ERGM inference in the pooled case that
(where applicable) allows an arbitrarily large number of graph observations to be fit at no
additional computational cost beyond preprocessing the data itself. Moreover, a variant of
our approach can also be used to perform Bayesian inference under conjugate priors, again
with no additional computational cost in the estimation phase. The latter can be employed
either for single graph observations, or for observations from graph sets. As we show, the
conjugate prior is easily specified, and is well-suited to applications such as regularization.
Simulation studies show that the pooled method leads to estimates with good frequentist
properties, and posterior estimates under the conjugate prior are well-behaved. We
demonstrate the usefulness of our approach with applications to pooled analysis of brain
functional connectivity networks and to replicated x-ray crystal structures of hen egg-white
lysozyme.
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1 Introduction

Networks are relational structures composed of individual entities (vertices or nodes) together
with a set of pairs or ordered pairs of entities (ties or edges) that share a specific relationship.
Networks arise in many scientific fields, ranging from biology and epidemiology to social sci-
ence and engineering. For example, social science researchers are frequently interested in
interpersonal networks, in which nodes correspond to individuals and edges represent per-
sonal relationships (e.g., friendship [1], advice-seeking [2], etc.); in biology, there has been
research interest in using networks to represent complex phenomena such as transcriptional
regulation [3], trophic systems [4], interspecific competition [5], animal social interaction [6],
protein structure [7] and aggregation [8], and the structure and function of neural systems [9].
As these disparate examples illustrate, networks have proven to be a fruitful framework for
treating a wide range of phenomena, and research on network structure has grown apace.

Accompanying this growth has been a corresponding literature on techniques for network
measurement, modeling, and analysis. Recent advances in inferential methods for models with
complex dependencies have enabled the statistical modeling and analysis of network data to
become a practical tool for a growing range of research applications [10-12]. A variety of
modeling approaches have benefited from these advances, particularly exponential family ran-
dom graph models (ERGMs) [13], parametric model families that are capable of capturing the
complex dependence structure that is typical of network data. ERGMs (known in older work
as p* models, e.g., [14]) gradually developed from early tools for testing dependence hypothe-
ses to a general framework for modeling networks with heterogeneity and complex depen-
dence [15-19], and have spawned a growing body of theoretical [20-27] and methodological
work [28-34]. (See [35] for a recent review.) ERGMs have been widely applied in many scien-
tific fields, for example, including (but not limited to) sociology [1, 36, 37], political science
[38], bioinformatics [3], public health [39], biophysics [8, 40], and neuroscience [41, 42].

Research on statistical network models has been particularly concerned with the case of
inference from a single network observation, but multiple random network realizations are
also increasingly common in practice, and can be divided into major two categories depending
upon the nature of the underlying vertex set. The first category involves cases such as networks
from independently solved protein structures or molecular dynamics (MD) simulations, brain
functional connectivity networks [41-43], or dynamic friendship networks within fixed groups
[44], where the node sets on which the relationship is defined are constant across observations.
There are also cases where node sets across different observations are potentially non-equiva-
lent, including comparative studies of networks across groups [45] or species [46], intervention
studies for education research [47, 48] and friendship network studies across different schools
[36], or studies of emergent multi-organizational networks with changing composition [49]. A
second useful distinction involves cases in which multiple independent (or approximately
independent) networks are observed (e.g., from populations of subjects or organizations, or
from well-spaced snapshots of equilibrium dynamics), versus time series data in which draws
are strongly autocorrelated. The latter is heavily studied as a case in its own right (e.g., [50-
55]), with a primary focus on uncovering the mechanisms governing network dynamics. Mod-
els for the former case generally seek to either strictly summarize structural variation in a pop-
ulation of graphs (e.g., [46, 56]) or pool information in a common population model (e.g., [45,
47,48, 57]) that infers common structural tendencies in a more generative fashion. As we
detail below, our focus in this paper is on models for the equivalent vertex set/non-autocorre-
lated pooled case.

Despite considerable progress in this area, there remains room for improvement in
approaches for inference based on multiple network observations with ERGMs. Broadly
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speaking, existing approaches based on full likelihood calculations (as opposed to composite/
pseudo-likelihood methods, e.g., [38, 40, 46]) can be divided into two categories, unpooled
and pooled estimates. Unpooled estimation employs an essentially meta-analytic approach, in
which a proposed model is fit to each network observation separately, with the resulting
parameter estimates being jointly analyzed in a second stage. For example, motivated by the
goal of finding a model for brain-connectivity networks at the group level [42], specified an
ERGM model for brain-connectivity networks and then fit the model to each individual sepa-
rately, subsequently combining the resulting estimates by taking their respective means and
medians as point estimates of the parameters of a group-level representative model. A similar
approach was used by [36] in studying friendship across schools, with separate models fit to
each network and the resulting statistics then summarized to infer general patterns. Under
such a framework, the time complexity of inference scales linearly in the number of graphs,
making this generalization expensive as the number of networks grows (particularly if the indi-
vidual networks are themselves large). A second problem with the unpooled approach is that it
may be difficult or impossible to find a model that is both estimable on each individual net-
work and that includes all effects of substantive interest. For instance, where the model suffi-
cient statistics for a particular network are sufficiently extreme (in a sense to be clarified
below), the MLE may not exist; this condition is common for effects involving subgroup inter-
actions when said subgroups are small. Importantly, this failure need not mean that the model
family is generally inappropriate or ill-behaved, instead stemming from limitations in the abil-
ity to fit some models to a single graph realization. A natural way to avoid such problems is by
pooled estimation. In the ERGM context, pooled estimation has been studied in cases such as
independently observed intraschool friendship networks [58], where the adjacency matrices
representing the observed networks of each distinct school are aggregated to a block-diagonal
matrix with structural zeros assumed for all off-diagonal blocks. However, the high cost of per-
forming MCMC MLE on such a pooled network greatly limits the scale of cases that can be
considered in this way. Similar schemes using hierarchical Bayesian models have also been
proposed [59], but require high-quality MCMC simulations that can be computationally
demanding when the number of network observations is large. Importantly, all of these meth-
ods share the property that likelihood calculations must de facto be performed for each net-
work separately (whether those networks are notionally joined together in one large synthetic
network as part of a pooling scheme or treated separately), which greatly increases both storage
and time complexity (especially for large graphs).

This cost poses a substantial barrier in applications such as neuroscience or biophysics,
where pooled inference on large collections of networks is of potential interest. Importantly,
however, some of these cases have the special property that the collections of networks to be
analyzed (or large subsets thereof) involve equivalent vertex sets (with either absent or equiva-
lent covariates). For instance, [40] study two collections of approximately 1,000 networks rep-
resenting independently drawn local energy minima for structures of wild type and E22G
variants of Af};_4, a protein that plays a key role in the etiology of Alzheimer’s disease. Each
collection represents a series of independent draws from a respective common graph distribu-
tion, with identical vertex properties for graphs in each set. Likewise, in neuroscience settings
one may (as in e.g., [41]) observe anatomically defined networks on collections of subjects that
are (at least provisionally) considered exchangeable within groups, and that can be usefully
modeled as draws from a common graph generating process. Although less common to date
in social science settings, collections of exchangeable networks with equivalent vertex sets can
arise for example from behavior in human subject experiments [60], semantic networks
extracted experimentally or from texts [61], or as the result of replicated outcomes of agent-
based simulations [62]. In such cases, it is possible to perform pooled ERGM inference at vastly
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lower cost than is possible with conventional techniques—indeed, obtaining computational
costs for estimation that are identical to the single-graph case.

In this paper, we propose a novel method for fitting multiple graph observations embedded
in equivalent node sets using a pooled ERGM approach. By exploiting a simple property of sta-
tistical exponential families, we are able to convert the problem of pooled inference for a (pos-
sibly large) graph set to the problem of inference for a single pseudo-graph of size equal to an
individual input graph, subsequently correcting the single graph information matrix for the
sample size of the pooled data set. We also show that a minor adjustment to this technique can
be used to perform maximum a posteriori (MAP) estimation under conjugate priors at no
additional cost, either for a single graph or for multiple graph observations. Because our tech-
nique works entirely within the mean value space of the chosen ERGM family, it can be per-
formed via data adjustments with existing software intended for single-graph estimation, and
is compatible with any estimation method that works via sufficient statistics (including the
widely used Geyer-Thompson [63, 64] and stochastic approximation [65] methods). In addi-
tion to pooling information and providing inexpensive Bayesian answers (using the Laplace
approximation to the posterior distribution), our approach provides a simple and effective
mechanism for regularization, with particular virtue in resolving the “convex hull problem”
that frequently arises in discrete exponential families (see Section 2.2); we describe a simple
approach to prior specification that is well-suited to this purpose, and that can be easily
extended to provide more informative priors when appropriate background information is
available.

The remainder of this paper is organized as follows. We begin with general concepts and
notation for ERGMs in Section 1.1, and present our framework for scalable inference under
both frequentist and Bayesian settings (including issues of prior specification) in Section 2. In
Section 3, we employ simulation studies to examine the performance of our approach, and the
behavior of posterior inference as a function of prior weight. In Section 4, our proposed meth-
ods are demonstrated on two different multiple network applications: brain functional con-
nectivity networks from multiple subjects (Section 4.1); and protein structure networks from
replicated x-ray crystal structures of hen egg-white lysozyme (Section 4.3). Finally, we close
with a brief discussion and comment on potential future work.

1.1 Exponential family random graph models

Consider an order-n graph, G, represented via adjacency matrix Y on support )/, such that Yj;
corresponds to the state of the edge between vertices i and j; we make no particular assump-
tions about ), (e.g., it may consist of directed or undirected graphs, with or without loops,
and may be valued), save that all elements of y € ), are real and finite. An exponential family
random graph model (ERGM) for Y is then given by

P,(Y = y) = h(y)exp{n(0)'g(y) — w(n(6))} (1)

where g : ), — R? is a vector of real-valued sufficient statistics capturing network features of
interest (which may implicitly incorporate e.g., nodal or dyadic covariates) and € ® C R?is
vector of (curved) model parameters mapped to canonical parameters 17 : 0 — R? [19]. The
reference measure h determines the baseline behavior of the ERGM distribution when 7(0) =
0, and plays an important role in fixing the shape of the distribution when edges are valued
[32]. In general, computation involving (1) is challenging due to the intractable nature of the

log-partition function (i.e., normalizing factor), ¥ (n(0)) = logzy,eynh(y’)exp{n(@)Tg(y’)}, as

|V,| is extremely large (O(2") in the binary case), the summand is generally too rough for
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naive Monte Carlo strategies to converge well, and y rarely has a closed-form solution. In the
context of iid draws from the same ERGM pmf, we obtain the (homogeneous) pooled ERGM,

P(Y=y) —eXP{ Zg(y +210gh(y myp (n(6 ))}, (2)

where Y = (Y, ..., Y") is a vector of random graphs with realizations y = (yl, sy
Although most work focuses on the single-graph case, our emphasis here is on the case where
m > 1 (either because of multiple graph observations, or—in the case of conjugate prior infer-
ence—because of “effective” prior observations that are equivalent to an increased m).

As exponential families, the ERGMs have a number of convenient properties of which we
will make use [35]. Subject to mild regularity conditions, we may define an invertible function
w(n) = E,g(Y) that provides the mean value parameterization of an ERGM on random graph
Y. From Eq 2 it is evident that the corresponding function u,, (1) = E,¢(Y) = mpu(n) is simply
a constant multiple of the base mean value function for a single graph (foreshadowing a prop-
erty that we employ below). Likewise, the Fisher information matrix of Y is given by
I(n) = E,[VInP,(Y)(VInP, Y)'= Var, g(Y), with the pooled equivalent being I,,,(n) = m I
().

2 Mean value inference for pooled ERGMs

Although a number of variants exist, standard approaches to inference for pooled ERGMs
share the basic approach of computing likelihoods (or in some cases pseudo-likelihoods) for
all observed graphs, and using the resulting joint likelihood for inference. Computationally,
this may involve (as e.g., in [58]) combining the observed graphs into a single large synthetic
network of order | V| = mn (with support constraints prohibiting cross-graph ties), and then
performing MCMC MLE or comparable Bayesian analyses on the synthetic graph; for pseudo-
likelihood methods (e.g., [30, 66]), edge variables may simply be combined across networks,
possibly with resampling over networks (as with bootstrap [53, 67] or Bayesian bootstrap [40]
strategies). These strategies lead to computational and storage costs that increase at least line-
arly in the number of graphs, which can become prohibitive for large systems or when the
number of graphs is substantial. Here, we observe that a much faster strategy based on the
mean values of the sufficient statistics becomes available in the IID case, and that this same
strategy can also be leveraged for conjugate Bayesian inference. To our knowledge, this very
simple but powerful trick has not previously been exploited in the ERGM context.

2.1 Maximum likelihood inference for pooled ERGMs

We begin with the simple case of maximum likelihood inference. Given IID ERGM observa-
tions y°** = (y', % - - -, ™), the joint log-likelihood follows immediately from Eq 2,

€(0;y) = n(0 Zg(y +210gh(y my (n(0)), (3)

the maximizer of which () = argmax,/(0; y°*)) is the maximum likelihood estimator (MLE).
As observed, the primary challenge in finding the MLE is in dealing with the log normalizing
factor, y. Running a Markov chain over the states of each of the m graphs in the set can be
used to accomplish this, or equivalently (as is done in e.g., [58]) running a single Markov chain
on a combined graph of order nm containing the union of all individual graphs, but the form
of Eq 3 shows that this is superfluous in the IID case. Specifically, observe that any maximizer
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of ¢ is also a maximizer of any positive constant multiple of ¢, and thus

0 = argmgaxf(@;y”bs)
= argmﬂaxﬁ(O;y”bs)/m

= argmaxn(0)'g (y"™) + logh(y”™) — ¥/ (n(0)),

where g(y*) =L3"" | g()) is the arithmatic mean of the observed statistics, and h(y™) =
exp[L 3" logh(y')] is the geometric mean of the reference measure over the observed graphs.
Since the latter does not depend on 0, we may further simplify the above to

0 = argmaxy(0) g (™) — ¥ (n(9)), (4)

which is immediately recognizable as the MLE for a hypothetical single “pseudo-graph” of
order n with whose statistics are the means of the observed statistics. It is thus possible to find
the MLE for a pooled model on m graphs by fitting a single-graph model (a considerable
simplification).

To see the corresponding implications for the sampling distribution of the MLE, we note
that inference for 8 benefits from standard asymptotics in m (see e.g., [35]), including the con-
sistency and asymptotic normality of the MLE under suitable regularity conditions. In particu-

lar, if ém is the MLE for Y with m observations drawn from a pooled ERGM with parameter
0o, then it follows from standard exponential family theory [68] that

Vm(0, — 0,)>N(0,17(0)) (5)

where I(6) can be obtained from I() via the chain rule, i.e., Vy(0) " 1(5)Vn(0). It thus follows
that the asymptotic variance-covariance matrix of the MLE in the m-graph case is equal to that
of the single-graph case, divided by m; i.e.,

Varf), — %Vﬂ(@)T[Varg(Y)]Vn(O). (6)

It follows, then, that we may perform maximum-likelihood inference for y*** with arbi-
trarily large m at no greater cost than fitting to a single network (and without the use of custom-
ized software tools): we simply find the MLE for the a single (imaginary) graph with statistics
equal to the mean of the observed statistics using any standard method (e.g., MCMCMLE [30]
or stochastic approximation [65]), and then rescale the associated variance-covariance matrix
by a factor of m to correct for sample size. This procedure is summarized in Algorithm 1.
When m is large, this can result in considerable computational savings; although the trick is
quite trivial to implement, it has not to our knowledge been employed for ERGM inference in
prior work.

Algorithm 1 Maximum Likelihood Inference for a Pooled ERGM Using Mean Values
Input: Observed data y°°°

1: Compute g(y™) =727 8(r)

2: Find 0 = argmax,(0) g(*) — (n(0))
3: Find Varf, = i[Vn(@)TI(Q)Vn(H)T1
Output: 91,,,VAar9;1
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2.2 Conjugate maximum-a posteriori inference for ERGMs
We now consider the problem of IID pooled ERGM inference in the Bayesian setting. Given

prior 7(6), we are interested in the posterior distribution of 6, 7(6)| y“bs),
Pyl:iy‘Z:Z_“Ym:m 0
a(0y) ==Yy, Y=y )n(0)
JP(Y! =y, Y2 =2, Y™ = ym)n(0)dO

Our focus here is on conjugate priors, in the canonical exponential family context for
which () = 0. In addition to their mathematical convenience, conjugate priors are attractive
in the context of exponential families due to their interpretability (being able to be expressed
in terms of prior “pseudo-data,” consisting of a prior “mean” and effective “sample size”
expressed in the same units as the observed data), the fact that they admit natural non-infor-
mative limits, and their status as maximum entropy distributions [69]. To our knowledge, con-
jugate priors for ERGMs were first examined in the unpublished work of [70], who considered
them along with a number of other ERGM prior specifications, but to date they have not been
extensively studied. As we show, ERGM conjugate priors allow for extremely computationally
efficient inference via their mean value representation. Moreover, there are particularly natural
choices of weakly informative conjugate priors that are well-suited to regularization; we con-
sider these in section 2.2.1.

For a canonical ERGM family with 1(6) = 6, conjugate priors take the following form [54]:

n(0]7, ny) = H(T, ny)exp{n,t" - 0 — ny(0)}. (8)

Here, 7 are prior expected values of the vector of sufficient statistics, and ny is a positive
number that measures the confidence in those prior expectations, which can be viewed as the
number of pseudo-observations worth of information (in units of observed graphs) contained
in the prior; H(7, n,,) denotes the normalizing factor that makes n(0|7, n,) a legitimate proba-
bility density function of 0. The existence of such distribution is ensured by [71], who showed
(8) is normalizable provided that ny > 0 and 7 lies in the interior of convex hull of the support
of the measure 6. Substitute (8) for 7(0) in (7), we have

ROy e o exp{ 7+ )0 - + mw(e)}
nT " oM ot 9)
—exp{ (P 20800 o)}
— exp{lo7 + (1 - 2)g )]0 — w(0))""

where 6 = nn"im, taking values in [0, 1]. With (9), we note that an analytical form for the prior

n(0|7, n,) is not necessary for Bayesian inference, because the prior can be fully characterized
by & (or ng) and 7. Standard Bayesian theory tells us that the posterior expectation of Vy(0) is
the Bayes estimate of 6 with respect to quadratic loss [72], and is a weighted average of g (y**)
and 7, with § controlling the relative weight of contribution of the prior information. For any
given prior hyperparameters (7, n,), as the sample size m becomes large, &, the relative prior
weight, approaches zero, and hence the sample-based information dominates the posterior.
Given a prior specified by d and 7, the maximum a posteriori probability (MAP) estimate

()MAP
Gm,é >

is also Bayes estimate under a different choice of loss function (the 0-1 loss; see for
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example [72]). Note that since MAP is indeed the maximizer of the kernel of posterior density
(9), we can employ the same arguments as in the derivation of (4), to obtain

oar = arg maxexp{[o7 + (1 - 0)2(*)]'0 — w(0)}""™"
= arg maxexp{[07 + (1 = 0)2(")]'0 — ¥(0)) (10)

= arg max [57 + (1~ 8)g(y"™)]'0 — Y (0).

0
It follows, then, that the pooled ERGM MAP estimator éfjﬁp is equal to the MLE 0 that
would be obtained for a single pseudo-observation with sufficient statistics
5% + (1 - 0)30r™).
Under standard regularity conditions, the posterior distribution 7(0]y***, 7, n,) becomes
asymptotically Gaussian as m — 0o, according to the classical Berstein-von Mises theorem
[73]. Following the same basic “mean value” procedure used in Algorithm 1 for obtaining the

pooled ERGM MLE 0, , we are able to compute the MAP estimate éfjﬁp by fitting an ERGM to

a single ‘pseudo’-graph whose node set is the same as the observed networks but whose net-
work statistics are taken to be equal to 67 + (1 — §)g(y**). In addition to the MAP estimate,
we can also obtain an estimate of the observed Fisher information I (é%p ), which is approxi-
mately the negative Hessian of log-posterior generated by product of the prior and the likeli-
hood of a single ‘pseudo’-graph. However, the Laplace approximation of posterior distribution
requires the Hessian of true log-posterior, which should be generated as by the product of
prior and the likelihood of all actual observations. Note that the negative Hessian matrix Q,,,,

5(0) of true log-posterior (9) can be approximated by Qmﬁé(éfn”ff ) & (m + n))1(047) =

m,0

%f (04). Laplace’s approximation of the posterior yields [74] the following result,

9|yobs.NN( éMAP’ Q;l (QMAP)). (11)

m,o m,0

We complete the approximation by noting that I (é%” )= Vargue ¢(Y), which can be

obtained by Markov Chain Monte Carlo simulation [30].

Putting the pieces together, Algorithm 2 provides a simple procedure for performing MAP
inference for pooled ERGMs under conjugate priors. We begin by specifying the prior param-
eters T and ny, and computing the mean data vector g(y°*) and relative prior weight &. The
key steps are lines 3-4, which obtain the MAP estimate and associated approximate posterior
variance-covariance matrix by performing the same calculations as are required for obtaining
a single-graph MLE and its sample variance-covariance matrix: we simply fit to the posterior
expectation 07 + (1 — §)g(y**) instead of to an observed data value, and then adjust the infor-
mation matrix to reflect the total posterior weight (prior pseudo-observations plus m). Not
only does this allow us to perform inference for large-m data sets at no additional cost (as we
did for the MLE), but it also allows us to perform Bayesian inference using algorithms and/or
software implementations that were designed for maximum likelihood inference (or for first-
order method-of-moments, which corresponds to maximum likelihood in this case) without
additional modification.

Algorithm 2 MAP Inference for a Pooled ERGM Using Mean Values

Input: Observed data YObs, prior data expectation T and sample size ng
1: Compute g(y*) = iz,ilg()’i)

2: Let & = ng/ (ng + m)

3: Find 0Y4P = argmax,[6T + (1 — 8)g(»*)] 0 — y(n(0))
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4: Find Var0r = L [1(§¥ar)]™"
Output: 04" Var(4?

In addition to its computational convenience, we note that the posterior expected statistic
0T + (1 — 0)g(»°*) has an intuitive geometric interpretation as a convex combination of the
prior information and the observed information, with the respective weight being determined
by the relative size of the prior weight #, versus m. In particular, note that as § — 0, we
approach the MLE, while the prior becomes unchanged by the observed data in the limit as &
— 1. We examine this behavior in greater detail below. We also observe that so long as 7 lies in
the relative interior of the convex hull of {g(y) : y € ), }, then éfn”ff exists (and is unique).
This suggests the use of conjugate MAP to address a common practical problem in ERGM
inference, namely the non-existence of the MLE when the observed statistics g(y°**) lie on the
face of the convex hull of possible statistics. In such cases, there is a direction of recession
within the parameter space, with respect to which the MLE diverges; often, however, such
divergent parameter values arise from very minimal information, as when a small subset of
vertices in a sparse graph have no ties to each other (leading to a divergence in the correspond-
ing homophily term). Use of MAP inference with a small 6 can improve performance in these
cases by acting as a regularizer, shrinking in extreme parameter estimates that have little sup-
port from the likelihood without otherwise greatly altering the solution. We examine this fur-
ther in Section 2.2.1.

2.2.1 Conjugate prior specification. Conventional research on Bayesian analysis of
ERGMs focuses on priors assigned on the natural parameter space (see e.g., [28, 29, 33]),
whereas the ERGM conjugate prior here is actually specified in the mean-value parameter
space. This has the potential advantage that prior parameters are specified in terms of hypo-
thetical observables (i.e., graph statistics), which are both concrete and generalizable from pre-
viously observed data; for instance, it may be easier for the analyst to specify an expected mean
degree for a hypothetical network belonging to a well-studied class (e.g., friendship nomina-
tions within high schools) than to specify prior mean parameter values per se. By turns, given
an intuition regarding plausible parameter values, it is straightforward to obtain corresponding
values of T by simulation. Here, we discuss some basic strategies for selecting reasonable prior
parameters in practice, with the impact of prior choices being examined further in Section 3.2.

As discussed in Section 2.2, the specification of an ERGM conjugate prior consists of two
components: the a priori expected sufficient statistics, 7, and the corresponding prior weight,
1. As with other exponential families, we may imagine this prior as arising from a situation in
which we initially have no information regarding 0 (in the sense of a limiting “flat” prior with
np — 0), and then observe ngy IID graph draws with mean statistics 7; our resulting state of
knowledge is then summarized by the corresponding conjugate prior. This “prior pseudo-
data” interpretation makes the conjugate prior particularly easy to understand and communi-
cate, and it can greatly facilitate sanity checking: for instance, if we observe that a proposed T
value implies a mean degree far in excess of any value that could plausibly be observed in prac-
tice, then we are immediately aware of the need for refinement.

While prior specification is by nature problem specific, we here suggest several reasonable
strategies for selection of 7. Where the analyst has access to a sample of networks, ™", that
are similar to the network of interest (i.e., that are believed to have been produced by a similar
generative process) setting T = g(y*") is a natural informative choice; in this case, the poste-
rior expectation of g(Y) is shrunk towards the prior population mean. In other cases, however,
the analyst may lack such a sample, or may wish to posit a minimally informative prior that
regularizes inference without strongly influencing the final estimate (a long-established tradi-
tion in Bayesian analysis, per e.g., [75-78], etc.). In this context, it is useful to consider the
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homogeneous Bernoulli graphs (in which each edge is an IID Bernoulli trial), as a basis for the
prior distribution; proposed as early as [79], then later described independently by [80, 81] as
the Gilbert-Erdés-Rényi model in graph theoretic research, the Bernoulli graphs also arise for
typical (counting measure) ERGMs as the base case where all parameters other than that asso-
ciated with the edge count are equal to 0. Given a prior expected degree d (chosen, for
instance, on the basis of observations of similar networks, or from prior domain knowledge),
we may then set 7 by (1) drawing a sample of IID Bernoulli graphs Yge"’ with parameter
p =d/(n— 1), and then (2) setting the prior expectation T = g’(Yﬁ””). (In some cases, it may
also be feasible to derive the expected statistics analytically from p, in which case these values
may be used directly; however, exact sampling of Bernoulli graphs is extremely efficient, and a
Monte Carlo approach may be easier to implement in practice.) As the Bernoulli graphs coin-
cide with the de facto null model against which estimated parameters are typically assessed, set-
ting 7 to the Bernoulli graph expectation effectively shrinks estimates towards the null model
(analogously to the use of a zero-centered Gaussian or other prior in the natural parameter
space), making it a reasonable default choice when more refined information is not available.
We now turn to the prior weight (“pseudo-sample size”), #,. It is convenient to consider 7,
via the relative prior weight, 6 = ny/(n1y + m), which quantifies the contribution of the prior to
the posterior mean statistics—the prior will dominate the data in determining the posterior
when 6 — 1 (i.e., ng — 00), whereas a more “objective” analysis which lets the data “speak for
themselves” can be obtained by letting § — 0 (i.e. ny — 0, which as noted converges to the
MLE). As noted above, a small-8 prior can also be viewed as a tool to regularize the model to
avoid the extreme inferences resulting from data that is at or near the face of the convex hull of
the sufficient statistics. While the impact of § on the posterior mean of the sufficient statistics
is self-evident from Eq 10, its effect in the natural parameter space is less obvious. We examine
this numerically via simulation in Section 3.2.

3 Simulation studies

In this section, we conduct simulation studies to assess the behavior of the pooled MLE as m
becomes large, and to examine how prior specifications affect conjugate MAP inference. To
provide a realistic basis for evaluation, we base our simulated networks on Goodreau’s Faux
Mesa High School (FMHS) data [64], a synthetic network based on proprietary data on attri-
butions of friendship among students in a high shool in the southwestern United States [82].
The FMHS network represents simulated in-school friendships among the 205 students in the
school, along with their individual attributes, and was constructed to preserve the structural
properties of the underlying data set. For our study, we first fit an ERGM model to the FMSH
network with the following three statistics as implemented in [67]: number of edges; uniform
homophily by gender; and geometrically weighted edgewise shared partners (GWESP) (a com-
mon term for inducing triad closure), with the decay parameter A fixed at 0.25. A detailed defi-
nition of above-mentioned network statistics is in S1 Appendix. Given the specified model, we
first compute the MCMC MLE and treat the estimated coefficients as the networks’ “true”
parameter values 0y = (—5.885, 0.532, 1.867); we henceforth refer to this model (i.e., ERGM dis-
tribution) as M, from which we draw random samples for our simulation studies (i.e.,

Y ~ M). All computations in this paper were carried out with the statistical environment R
[83], using the statnet libraries for R [64, 84-86]. The ergm R library version 4.1.2 was used
for all ERGM-specific computation, using default simulation and estimation settings except as
otherwise noted.
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Table 1. Pooled MLE bias, standard error, and coverage rates of 95% Wald confidence intervals as a function of sample size.

edges nodematch(Gender) GWESP(0.25)
m Bias (SE) CP* Bias (SE) CP* Bias (SE) Ccp*
1 -0.0014 (0.138) 0.955 0.0035 (0.131) 0.950 -0.0097 (0.11) 0.949
2 -0.0049 (0.095) 0.946 -0.0022 (0.087) 0.950 0.0010 (0.078) 0.953
5 -0.0001 (0.06) 0.955 0.0019 (0.058) 0.937 -0.0022 (0.048) 0.947
10 0.0020 (0.043) 0.955 -0.0012 (0.04) 0.951 -0.0021 (0.035) 0.949
20 0.0006 (0.031) 0.946 -0.0004 (0.028) 0.951 -0.0007 (0.025) 0.935
30 0.0012 (0.027) 0.930 -0.0002 (0.023) 0.953 -0.0012 (0.022) 0.930
40 0.0005 (0.022) 0.942 -0.0010 (0.021) 0.939 0.0000 (0.018) 0.946
50 -0.0008 (0.02) 0.936 0.0000 (0.019) 0.932 0.0008 (0.016) 0.948
75 -0.0002 (0.017) 0.937 -0.0004 (0.015) 0.943 0.0005 (0.014) 0.943
100 0.0005 (0.015) 0.920 0.0004 (0.014) 0.933 -0.0006 (0.012) 0.940

* CP: Coverage Probability approximated by coverage rates of the simulated data

https://doi.org/10.1371/journal.pone.0273039.t001

3.1 Behavior of the MLE in pooled-likelihood inference

For our first study, we vary the sample size m and examine the observed coverage rates of
nominal 95% confidence intervals for model parameters as a function of sample size. Specifi-
cally, for each value of m, we generate K = 1000 datasets of size m from M, performing pooled
likelihood-based inference for each sample as discussed in Section 2.1. Respective burn-in and
thinning intervals of 1 x 10° and 2 x 10> were employed for each simulated sample (for both
data simulation and MCMC-MLE inference), with MCMC-MLE termination based on the
ergm Hotelling criterion (an autocorrelation-adjusted T° test of expected versus target statis-
tics obtaining p > 0.5). Table 1 presents the observed coverage rates of nominal 95% confi-
dence intervals based on the asymptotic distribution of the MLE, as estimated from the size-
corrected Fisher information obtained from a pooled (single-graph) estimate.

Table 1 shows the observed bias of the pooled MLE, as well as its standard error and the
observed coverage rates of its nominal 95% Cls for all three model parameters under different
sample sizes ranging from 1 to 100 graphs. Bias is negligible even for a single graph, declining
to the levels of numerical noise once m is greater than 5-10. Likewise, efficiency (as measured
by the standard error of the estimator) is high, and scales with \/m in the manner expected
from asymptotic theory. It is also evident that CIs based on the asymptotic distribution of Eq 5
perform well, maintaining approximately nominal coverage rates over a wide range of sample
sizes. As a practical observation, we note that the construction of such Cls is based on statisti-
cal uncertainty, and does not take into account numerical sources of error (arising, e.g., from
imperfect optimization, Monte Carlo error, etc.). (This is a slight oversimplification, as the sin-
gle-graph information matrix estimates here (produced by the e rgm library) do incorporate
some MCMC error correction. However, it is difficult to account for all sources of numerical
error, and in any event the theory of Eq 5 does not address it.) As m — o0, the statistical error
becomes arbitrarily small, thus increasing the proportion of de facto error arising from numer-
ical approximation; put another way, it is possible to enter a regime in which our inferential
precision is limited by our ability to compute the MLE (and I) rather than by the limits of our
data. To ensure accurate coverage in such extreme-m scenarios, it may be necessary to adopt
more stringent MCMC burn-in and thinning settings than are typically necessary for single-
graph inference (where statistical uncertainty dominates), or to devise improved error esti-
mates that better account for approximation error. That said, we do find excellent performance
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for sample sizes considered here, suggesting that the problem may be limited in practice. Fur-
ther, we observe that the excellent coverage obtained for small #m (even m = 1) provides practi-
cal validation of the traditional practice of using asymptotic confidence intervals in the m =1
case; for a review of different types of ERGM asymptotics (and their relationship to classical
results) see e.g., [35].

3.2 Prior weights and MAP inference

As discussed in Section 2.2.1, choosing the relative prior weight (6) is an important aspect of
the prior specification; while the choice of T can often be made based on either prior data or
domain knowledge, the impact of n, (hence 9) is less obvious. Here, we examine the impact of
6 on the MAP estimate with a particular interest in identifying prior parameter values that are
likely to serve as reasonable starting points for use in regularization. Our analysis looks first at
the impact of 6 on the MAP estimate itself (i.e., the extent of interpolation between the implicit
prior natural parameter and the MLE), and then considers the effect of § on the frequentist
properties of the MAP estimate (bias, and the frequentist coverage of the posterior credible
intervals).

To specity a prior, we first simulate homogeneous Bernoulli random graphs on the node set
of the FMHS network, given expected mean degree fixed at the average degree of all the nodes
in three comparable networks (i.e., Goodreau’s Faux Magnolia High School data, Faux Dixon
High School data, and Faux Desert High School data [64]). The observed average degree across
these data sets is 1.974, leading to an edge coefficient of

log(:£) = log(—4—) = log (522 —) ~ —4.63; for the Bernoulli family, the parameters for

the other two terms are set to 0. (We note in passing that calibration of this kind should gener-
ally be done using mean degree rather than density, as mean degree is often close to size-
invariant for comparable relations while density is not; see e.g., [26, 87].) We then calculate the
average network statistics of 500 draws from this distribution, giving us the prior expected sta-
tistics T = (201.64, 99.89, 3.62). Since our focus is on &, we fix our sample size at m = 1 and
vary n, to obtain the posterior inference under different values of relative prior weights. We
perform MAP estimation on 1000 independent realizations of Y ~ M for each choice of 6,
comparing the resulting parameter estimates to their true values () to assess the bias of MAP
estimate and the frequentist coverage probability of the 95% posterior credible intervals arising
from the Laplace approximation to the posterior distribution.

We begin by examining the impact of § on the MAP estimate. As noted above, the MAP
estimate must interpolate between the natural parameter equivalent of 7 at § = 1 and the MLE
at 8 = 0; equivalently, we may think of the conjugate prior as shrinking the estimate towards
the (natural parameter equivalent of the) prior expectation. The detailed pattern of shrinkage
is depicted in Fig 1, which shows that parameters change roughly linearly over most of the unit
interval, with the most extreme changes occurring near § = 1 (top panel). Importantly, shrink-
age is approximately linear near the non-informative limit (§ — 0, bottom panel), suggesting
that small differences in choice of § do not have a large impact on the posterior mode (a conve-
nient property when selecting minimally informative priors for regularization purposes). A
more quantitative picture emerges from Table 2, which shows the mean MAP estimates for
each parameter as a function of 8. We observe that choosing 6 < 0.02 yields estimates that are
extremely close to the MLE (agreeing to 2-3 decimal places), while still placing sufficient
weight on the prior to be useful for regularization (i.e., to ensure that the mean value parameter
lies in the relative interior of the convex hull of possible statistics).

We now turn to the frequentist properties of the MAP estimate, as a function of 6. Here we
compare the MAP estimate (and the 95% posterior intervals arising from the Laplace
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Fig 1. Average MAP estimates for Y ~ M, by é. Solutions interpolate between the natural parameters corresponding to the prior (6 = 1) and the MLE
(6 = 0); shrinkage is nearly linear in J near the non-informative limit (bottom panel). Dotted horizontal lines show data generating parameters.

https://doi.org/10.1371/journal.pone.0273039.g001

approximation) to the coefficients of true model M, which is 8, = (-5.885, 0.532, 1.867); at the
other extreme, we have the natural parameter equivalent of the location of the conjugate prior
(—4.63, 0, 0). Table 3 shows the estimated bias and frequentist coverage probability for our sim-
ulation sample, as a function of 8. As can be seen, bias is minimal until § ~ 0.02, becoming
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Table 2. Mean MAP estimates of model parameters under different relative prior weights when m = 1. (Data gener-
ating parameters 6, = (—5.885, 0.532, 1.867); all standard errors for table entries less than 0.0044.).

o edges nodematch(Gender) GWESP(0.25)
0.0000 -5.8866 0.5352 1.8575
0.0010 -5.8854 0.5352 1.8560
0.0020 -5.8836 0.5349 1.8546
0.0050 -5.8784 0.5339 1.8501
0.0075 -5.8736 0.5325 1.8460
0.0100 -5.8692 0.5316 1.8423
0.0200 -5.8519 0.5273 1.8275
0.0500 -5.8003 0.5151 1.7830
0.1000 -5.7181 0.4936 1.7116
0.2000 -5.5636 0.4478 1.5763
0.3000 -5.4213 0.3994 1.4475
0.4000 -5.2891 0.3485 1.3225
0.5000 -5.1640 0.2941 1.1969
0.7500 -4.8787 0.1471 0.8424
0.9000 -4.7232 0.0531 0.5206
0.9500 -4.6739 0.0211 0.3394
0.9900 -4.6352 -0.0044 0.0895
1.0000 -4.6258 -0.0108 -0.0139

https://doi.org/10.1371/journal.pone.0273039.1002

Table 3. Frequentist properties of MAP estimates and the Laplace approximation for model parameters under different relative prior weights, with sample size

fixed at m = 1.
edges nodematch(Gender) GWESP(0.25)

é n Bias (CP¥) Bias (CP¥) Bias (CP¥)
0.0000 0.000 -0.0014 0.955 0.0035 0.950 -0.0097 0.949
0.0010 0.001 -0.0003 0.953 0.0035 0.949 -0.0111 0.948
0.0020 0.002 0.0015 0.953 0.0032 0.952 -0.0126 0.949
0.0050 0.005 0.0067 0.953 0.0022 0.952 -0.0171 0.947
0.0075 0.008 0.0115 0.956 0.0008 0.952 -0.0212 0.942
0.0100 0.010 0.0159 0.956 -0.0001 0.949 -0.0249 0.945
0.0200 0.020 0.0333 0.946 -0.0044 0.948 -0.0397 0.930
0.0500 0.053 0.0848 0.900 -0.0166 0.952 -0.0842 0.894
0.1000 0.111 0.1670 0.733 -0.0381 0.942 -0.1555 0.654
0.2000 0.250 0.3215 0.157 -0.0839 0.911 -0.2909 0.098
0.3000 0.429 0.4638 0.001 -0.1323 0.818 -0.4196 0.000
0.4000 0.667 0.5961 0.000 -0.1832 0.604 -0.5447 0.000
0.5000 1.000 0.7211 0.000 -0.2376 0.269 -0.6703 0.000
0.7500 3.000 1.0064 0.000 -0.3846 0.000 -1.0248 0.000
0.9000 9.000 1.1619 0.000 -0.4786 0.000 -1.3466 0.000
0.9500 19.000 1.2112 0.000 -0.5106 0.000 -1.5278 0.000
0.9900 99.000 1.2500 0.000 -0.5361 0.000 -1.7776 0.000
1.0000 o0 1.2593 0.000 -0.5425 0.000 -1.8811 0.000

T CP: Coverage Probability approximated by coverage rates of the simulated data; Laplace approximation is not applicable to & = 1 because in that case the prior dictates

the posterior inference, the posterior interval degenerates to a point mass

k3

1o is the equivalent sample size contained in the prior given its relative weight &

https://doi.org/10.1371/journal.pone.0273039.t003
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substantial for 6 > 0.1. Likewise, the 95% posterior intervals maintain good frequentist calibra-
tion until roughly § ~ 0.02, though coverage degrades rapidly thereafter. For regularizing/min-
imally informative applications, a choice of 1, ~ 0.01 (giving the prior approximately 1% of
the weight of a single graph observation) would seem to be a reasonable starting point.

4 Applications

To demonstrate the pooled ERGM/conjugate prior analysis in practice, we provide two illus-
trative applications. The first is to the analysis of brain functional connectivity networks,
where we seek a common model for brain structure across individuals. The second considers
the use of ERGMs to model variation in protein structures obtained by X-ray crystallography,
in this case using hen egg-white lysozyme (a widely studied reference protein). In each case,
we show how the approach used here facilities the simultaneous analysis of multiple networks,
and provides a fast and simple means of performing Bayesian inference.

4.1 Pooled ERGM analysis for brain functional connectivity networks

The study of group-based brain functional connectivity networks has become a topic of
increasing interest in neuroscience, due the need to characterize both central tendencies and
patterns of variation in interactions among brain regions. Importantly, it is of interest not only
to measure specific or mean interactions, but to be able to characterize the distributions of
interaction patterns arising under particular conditions, and/or within particular subpopula-
tions. ERGMs have been identified as a promising tool for this purpose, due to their ability to
assess how local brain network features give rise to the global structure, and due to their capac-
ity to account for both heterogeneity and dependence among interactions [41, 88].

Brain functional connectivity networks often exhibit both functional segregation and inte-
gration [89], where functional segregation in the brain is the ability for specialized processing
to occur within densely interconnected groups of brain regions, while functional integration
corresponds to the ability to rapidly amalgamate specialized information from scattered brain
regions. As an attempt to produce a model with appropriate network sufficient statistics that
are able to capture those two concurrent opposing driving forces [42], proposed to first select
the “best” metrics from a broader set of potential candidates identified in the literature using
model selection techniques for ERGMs, then refit the networks of all subjects with those “best”
metrics. They then employed the mean (respectively median) of the resulting individual esti-
mates as estimates of a global, group-level “representative” whole-brain connectivity network
model (which they refer to as a “mean” (respectively) “median” ERGM). This method of amal-
gamating models in the natural parameter space is straightforward and intuitive, but has sev-
eral disadvantages: as shown in Eq 4, the appropriate pooling for a joint ERGM occurs in the
mean value parameter space rather than the natural parameter space; separate estimation of an
ERGM for each individual is computationally expensive (and, for the MLE, may encounter
problems if some individuals’ networks have statistics that lie on the face of the convex hull of
potential statistics); the sampling distributions of the amalgamated model estimates are unclear
(especially in the median case); the amalgamated estimator is not in general consistent; and
model selection by this approach does not exploit the joint likelihood (which may lead to an
inferior pooled model).

By contrast, a pooled-ERGM approach provides a more principled and computationally
efficient alternative to the mean/median ERGM approach. For large n, the properties of the
pooled estimates and their confidence intervals are ensured by the large sample theory of expo-
nential families, and as shown in Section 3.1 good results can be obtained with even modest
numbers of graphs. Moreover, instead of having to fit each observed network separately, as
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Fig 2. Brain connectivity networks of Subjects 002 and 003. Colors (red, blue) indicate the different hemispheres (left, right); node coordinates are
based on an non-metric MDS [93] solution for distances between regions of interest.

https://doi.org/10.1371/journal.pone.0273039.g002

proposed in [42] (with the risk that the MLE will not exist in one or more cases), exactly one
ERGM fit is required (and the target statistics for that fit lie on the face of the convex hull only
if all input networks do as well). Moreover, the ability to use conjugate-MAP inference for
pooled ERGMs provides an inexpensive way of obtaining approximate Bayesian answers
where desired, or (when viewing the prior as a regularizer) obtain regularized likelihood esti-
mates. Here, we demonstrate all three approaches in the context of brain functional connectiv-
ity networks, building on prior work by [41, 42]. Due to the large number of model fits
required for cross-validation, we use ergm’s stochastic approximation method for estimation
in this section, with all Markov chains having a thinning interval of 5 x 10* following 2 x 10°
burn-in iterations.

4.1.1 Data. We consider the data reported in [41, 42], which includes brain functional
connectivity networks among 10 normal subjects (5 female, average age: 27.7 years old, stan-
dard deviation: 4.7 years) who were part (Subject No. 002, 003, 005, 008, 009, 010, 012, 013,
016, 021) of a larger functional MRI study of age-related changes in cross-modal deactivations
[90]. Fig 2 depicts the brain connectivity networks of subjects 002 and 003, illustrating both
common properties (e.g., clustering, increased probability of ties within brain regions) and
heterogeneity across networks; here, we are interested in capturing this distribution via an
ERGM form. Note that brain connectivity networks are defined on equivalent sets of nodes,
which here correspond to 90 prespecified brain regions (ROIs—Regions of Interest), accord-
ing to the Automated Anatomical Labeling Atlas (AAL) [91]. Each of these 10 brain connectiv-
ity networks is represented by binary adjacency matrix, in which element (i, j) denotes the
presence or absence of a functional connection between node i and node j. The establishment
of binary functional connections was done by thresholding the temporal correlation coefficient

PLOS ONE | https://doi.org/10.1371/journal.pone.0273039  August 26, 2022 16/38


https://doi.org/10.1371/journal.pone.0273039.g002
https://doi.org/10.1371/journal.pone.0273039

PLOS ONE

Scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices

Table 4. Number of ROIs in each area of the brain; names follow Simpson et al. (2011).

Area
Amygdala
Angular
Calcarine
Caudate
Cuneus
Fusiform
Heschl
Hippocampus
Insula
Lingual
Olfactory
Pallidum
Paracentral
ParaHippocampal
Postcentral
Precentral
Precuneus
Putamen
Rectus
Rolandic
Supp
SupraMarginal
Thalamus
Parietal
Cingulum
Occipital
Temporal

Frontal

https://doi.org/10.1371/journal.pone.0273039.t004

Left Hemisphere Right Hemisphere
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adjusted for motion and physiological noise (see [41, 92] for further details), and hence those
brain networks are undirected by construction. The thresholds were selected by the original

authors at the subject level to give each network a mean degree of % ~ 2.8, or equivalently

d ~ n'/28 where n is the total number of nodes (here, 1 = 90).

Covariate information associated with these networks includes not only the nodal covari-
ates Hemisphere and Area, but also an edge-level covariate for the spatial distance matrix
among the ROIs (Mean: 76.28 mm, SD: 28.93 mm). The 90 regions are divided symmetrically
across left and right hemispheres, with each hemisphere consisting of 28 areas as presented in
Table 4.

4.1.2 Model specification. Connectedness, local clustering and global efficiency were
introduced as the key components in previous work on brain connectivity network modeling
[41, 42], with the latter two being proposed as proxies for functional segregation and func-
tional integration respectively. As such, their joint effects are modeled explicitly as a combina-
tion of network statistics: edge count (Edgess), GWESP, and geometrically weighted null
shared partners (GWNSP). Such a model specification yields a homogeneous ERGM that is
permutation invariant [16, 35], which leaves covariate information underutilized, and in turn
makes the estimation difficult and unstable due to multimodality of the distribution [65].
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Similar to the multicollinearity issue in regression, it can be problematic to include two closely
correlated network statistics in an ERGM model, and the presence of GWESP and GWNSP in
previous models is found to be associated with convergence issue in the present case. Here, we
thus modify and extend the homogeneous model used in prior work by incorporating node-
level heterogeneity and distance effects associated with the spatial structure of the brain, along
with a less collinear combination of GWESP and graphletCount(1) terms to capture depen-
dence. Specifically, we include as covariates: a homophily effect for hemisphere (hemi-
sphere-nodematch), as introduced in [43]; a mixing effect for brain regions (Area-
nodemix) as a measure of the strength of interaction between the brain regions belonging to
different areas of the brain; and a dyadic covariate that controls for spatial proximity (Log.
spatial.dist-edgecov), implemented by an effect for the log of the distance between
regions (a common choice for modeling geographical effects, e.g., [94]). In addition to provid-
ing substantive insight into the drivers of connectivity, we also observe that such covariate
effects also improve model performance by separating clustering and bridging due to physical
brain structure from emergent network properties arising from dependence effects. The latter
are captured by two effects. First, a GWESP term with decay fixed at 0.5 (GWESP, ¢ = 0.5 cho-
sen based on pilot models) is included to capture residual tendencies towards endogenous
local clustering net of controls, and second, a graphletCount (1) term [95] helps capture
open two-path structure (aka local bridging) like that previously examined using GWNSP in
the models of [41, 42].

4.1.3 Results. Table 5 presents maximum likelihood estimates of model coefficients and
associated standard errors for the group-based brain connectivity network model under pool-
ing, enabling us to infer the extent to which each of the proposed effects shapes the overall dis-
tribution of networks across test subjects. (Predictive fit plots in S1 Fig) We see a positive and
statistically significant parameter estimate for the GWESP statistic, indicating high levels of tri-
adic closure net of spatial and anatomical features; this is compatible with the theory of func-
tional segregation proposed in prior work. Likewise, we see that bridging is significantly
disfavored (i.e., a negative effect for graphlet 1), suggesting that open triads tend not to persist
(net of other factors). In estimating mixing effects, we aggregate all areas other than Frontal

Table 5. Model parameter estimates and standard errors for pooled-ERGM analysis of brain functional connectiv-
ity networks. (For nodemix effects, Frontal-Frontal is the reference category).

Term Estimate (s.e.)

Edges 1.193 (0.180)
GWESP, ¢ = 0.5 1.622 (0.044) ok
graphletCount (1) 20182 (0.008)
log.spatial.dist-edgecov -1.081 (0.032) o
hemisphere-nodematch -0.337 (0.043) ek
Frontal.Others-nodemix -0.270 (0.055) o
Others.Others-nodemix -0.061 (0.057)
Frontal.Temporal-nodemix -0.277 (0.106) o
Others.Temporal-nodemix -0.351 (0.074) ok
Temporal . Temporal-nodemix 0.457 (0.101) o

* p < 0.0001,
*** p <0.001,
**p <0.01,

*p <0.05

https://doi.org/10.1371/journal.pone.0273039.t1005
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and Temporal to a single level as “Others” due to the small sizes of these regions, providing a
tripartite mixing structure; Frontal-Frontal ties act as the reference category. We see inhibition
of ties between different regions, and null or positive tendencies towards formation of within-
area ties, which provides additional evidence for functional segregation. We note that these
effects persist net of the overall inhibition of ties between more distant regions, with tie proba-
bility declining (ceteris paribus) as approximately one over the inverse of the distance between
nodes. An important exception is the case of cross-hemispheric interactions, which are actually
favored (the negative nodematch indicating that within-hemispheric interactions are disfa-
vored relative to those that cross hemispheres). This can be viewed as an indicator of func-
tional integration, with the need for coordination across hemispheres working against the
general tendency against long-range ties. Care is required in the quantitative interpretation of
the positive Edges coefficient, given the existence of 1og. spatial.dist-edgecov.
Specifically, note that mean of pairwise distances of the ROIs is 76.28 mm and hence at the
mean log(76.28)~4.334, we have Pr(Y,; = 1|Y;, = y:,) = (SRt ~ 0.029, condi-

J ij T T+exp(1.193—1.081x4.334)
tional on the rest of the graph and all other effects held at zero, meaning that the baseline con-
ditional probability of observing an edge (not involved in the creation of other network
statistics included in the model) between pairs of regions at the average distance is still very
low, as expected for sparse graphs.

4.2 Approximate conjugate Bayesian analysis of brain functional
connectivity networks

In this subsection, we demonstrate how one can conduct approximate conjugate Bayesian
analysis as introduced in Section 2.2 for the dual purposes of approximating full Bayesian anal-
ysis and regularization. The construction of the prior is crucial regardless of the ultimate pur-
pose. We adopt the simulation-based approach of Section 2.2.1 to specify the prior by noting
that d ~ n!/2® by construction (i.e., choice of correlation threshold) for all brain functional
connectivity networks in this dataset, and thus we set 7 is set to be equal to the mean of net-

1/2.8

work sufficient statistics under a Bernoulli graph with p = % ~ o— = 0.056 (n = 90). The
selection of relative weight & is subject to vary depending upon the purpose, which is explored
and discussed in detail with examples.

4.2.1 MAP estimation for the pooled model. In the absence of strong a priori informa-
tion regarding almost all aspects of the brain functional connectivity networks except for the
mean degree, it is advisable to incorporate weak prior information; we do this by assigning a
small value to the hyper-parameter 8, in this case setting 6 = 0.02. Given a specified prior, we
conduct Bayesian inference based on Algorithm 2, the resulting parameters being shown in
Table 6. (Predictive fit plots in S2 Fig).

The parameter estimates from the Bayesian analysis are very similar to those of the pooled
MLE, supporting the same qualitative conclusions. However, imposing a prior on the parame-
ter vector permits interpretation of the results in terms of Bayesian answers, which may be use-
ful in some settings; we may also use the Laplace approximation to sample from the
approximate posterior, enabling us to obtain, for instance, posterior predictive distributions
for network properties that take into account uncertainty in the model parameters.

4.2.2 Regularizing ERGMs with MAP. As noted above, the MLE for the natural parame-
ter of an exponential family distribution does not exist when the observed sufficient statistics
lie on the relative boundary of C, the convex hull of the set of possible values of sufficient statis-
tics. A common case of this type in ERGM modeling arises when mixing or differential node-
match parameters are specified for networks containing many small subgroups; if any of the
associated statistics are equal to 0 (e.g., there are no observed ties between two groups), then
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Table 6. MAP estimates and posterior standard deviations, conjugate Bayesian analysis of brain functional connectivity networks. (For nodemix effects, Fron-

tal-Frontal is the reference category).

Term

Edges

GWESP, ¢ = 0.5
graphletCount (1)
log.spatial.dist-edgecov
hemisphere-nodematch
Frontal.Others—-nodemix
Others.Others-nodemix
Frontal.Temporal-nodemix
Others.Temporal-nodemix

Temporal.Temporal-nodemix

https://doi.org/10.1371/journal.pone.0273039.t006

Estimate (s.d.) 95% credible interval
1.277 (0.196) (0.893,1.662)
1.584 (0.042) (1.502,1.665)

-0.186 (0.008) (-0.202,-0.170)
-1.070 (0.036) (-1.141,-0.999)
-0.334 (0.048) (-0.427,-0.241)
-0.326 (0.078) (-0.478,-0.174)
-0.112 (0.073) (-0.255,0.032)
-0.287 (0.126) (-0.533,-0.040)
-0.390 (0.087) (-0.560,-0.220)
0.466 (0.120) (0.231,0.700)

the likelihood has no finite maximizer with respect to the respective directions in the natural
parameter space. In the context of the brain connectivity networks, we observe that there are
many small areas containing few nodes, potentially leading to such a circumstance. For
instance, consider an extension of our previous model intended to quantify the mixing pattern
between nodes in the Occipital and Cingulum areas; we may do so by augmenting M, with
nodemix terms involving Occipital and Cingulum, with all other terms in the model
unchanged. We denote this model as M, It happens, however, that there there are no edges
observed between Occipital and Cingulum for any of the networks in the dataset, and hence
the vector of mean observed network sufficient statistics is no longer located in rint(C) (as the
Occipital.Cingulum-nodemix value of 0 is smallest possible value that can be
obtained). From an optimization perspective, we are unable to obtain a finite estimate for
model coefficients of this augmented model, because the likelihood can always be further opti-
mized by letting the vector of candidate estimates of model coefficients move towards the
direction of recession. Statistically, this reflects the non-existence of the MLE. We now show
such issues can be resolved by incorporating an appropriate conjugate prior into the inference
to regularize the model and thus avoid extreme inferences on model parameters.

We construct a conjugate prior in the form of (8), where hyper-parameter 7 is determined
by calculating the mean of network sufficient statistics observed on 1000 independent random
realizations of Bernoulli random graphs with p = 0.056. As our goal here is regularization, we
view the prior as a convenient penalty function (rather than as a formal statement of prior
knowledge), and treat J as a hyperparameter subject to optimization. Given our pooled setting,
it is natural to evaluate model performance by cross-validation (CV); specifically, we vary &
(or, equivalently, the prior sample size 1), computing the expected squared Hamming error
for each graph under leave-one-out CV based on 1000 draws from each simulated model, and
select the value that minimizes the expected loss on the held-out networks. The Hamming
error (i.e., the expected number of edge differences between a predicted draw from the model
and the observed network) is a straightforward and interpretable metric for models on labeled
graphs, where specific connections (as opposed to, e.g., general network properties) are mean-
ingful and where there is sufficient covariate information to make prediction possible; in the
case of the brain functional networks, where the vertices have distinct anatomical and func-
tional significance that is conserved across subjects, optimizing the ability of the model to
make edgewise predictions is a reasonable goal. We note, however, that other choices are also
possible, depending on one’s objectives: for instance, an obvious alternative is the squared
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Table 7. Leave-one-out cross validation error for regularized inference on M, as a function of n,,.

ny o CV Error
0.000 0.0000 612255.803
0.001 0.0001 616388.530
0.002 0.0002 611733.729
0.004 0.0004 610657.580
0.008 0.0009 617267.178
0.016 0.0017 616974.051
0.031 0.0035 620343.917
0.062 0.0069 610740.156
0.125 0.0137 612219.087
0.250 0.0270 614275.772
0.500 0.0526 618156.374
1.000 0.1000 625175.603
2.000 0.1818 636375.903
4.000 0.3077 650507.803
8.000 0.4706 670991.412

https://doi.org/10.1371/journal.pone.0273039.t007

error in the predicted sufficient statistics, a quantity more closely related to the MLE. An
attractive feature of CV is thus the freedom of the analyst to tune the model based on the needs
of the problem at hand.

The results of the hyperparameter tuning process are shown in Table 7. As expected, the
unregularized MLE (1, = § = 0) yields suboptimal performance, with improvements obtained
until ny = 0.004 (5 = 0.0004). Further increases in prior weight (here interpreted as the strength
of the penalty function) result in diminished performance, as the fitted model is drawn
towards the prior mean. We thus select § = 0.0004 for subsequent analysis.

We may now perform penalized maximum likelihood inference, using the tuned conjugate
prior as a regularizer. Table 8 shows the corresponding parameter estimates, standard errors,
and significance levels for model M, (Predictive fit plots in S3 Fig) As expected, the results
for the shared effects (triangulation, spatial interaction, bridging, and hemispheric interaction)
after breaking out the additional brain areas remain very similar to what was seen in the unre-
gularized MLE for the collapsed model, though we now have a more complete description of
the mixing pattern among localized areas. Importantly, we also observe that the Occipital/Cin-
gulum parameter (for which the MLE does not exist) is now well-characterized. As we would
expect from the fact that none of the observed networks had Occipital/Cingulum ties, the esti-
mated coefficient is significantly negative; however, the magnitude is now plausible (and in
line with the other observed effects).

Finally, we note in passing that, while this final model captures a number of aspects of brain
network structure, more improvement seems possible. As seen in S3 Fig, the model is fairly
accurate in recovering observed triad census and degree structure (nearly all observed values
falling within the 95% simulation intervals), but somewhat underestimates both mean geodesic
lengths and the breadth of the ESP distribution. Thus, the model might be satisfactory for
investigation of local structure, but less so for larger-scale structure (including heterogeneity in
triadic clustering throughout the brain). For applications of this latter sort, further elaboration
or alternative parameterizations may be desired. We revisit the question of tradeoffs between
model complexity and predictive performance in Section 5.3.
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Table 8. Model parameter estimates and standard errors for regularized inference on M,.

Term Estimate (s.e.)

Edges 1.986 (0.224) e
GWESP, ¢ = 0.5 1.623 (0.045) o
graphletCount (1) -0.166 (0.007) e
log.spatial.dist-edgecov -1.051 (0.036) o
hemisphere-nodematch -0.328 (0.044) ek
Cingulum.Frontal-nodemix -1.109 (0.142) ok
Frontal.Frontal-nodemix -1.006 (0.128) ok
Cingulum.Occipital-nodemix -2.311 (0.351) o
Frontal.Occipital-nodemix -0.638 (0.189) ok
Occipital.Occipital-nodemix -0.135 (0.153)

Cingulum.Others-nodemix -1.310 (0.130) o
Frontal.Others-nodemix -1.370 (0.129) e
Occipital.Others-nodemix -1.290 (0.136) ok
Others.Others-nodemix -1.069 (0.124) o
Cingulum.Temporal-nodemix -1.325 (0.266) o
Frontal.Temporal-nodemix -1.278 (0.153) ek
Occipital.Temporal-nodemix -1.767 (0.374) e
Others.Temporal-nodemix -1.340 (0.131) ek
Temporal . Temporal-nodemix -0.514 (0.148) o

5 p < 0.0001,
***p < 0.001,
**p <001,

*p < 0.05

https://doi.org/10.1371/journal.pone.0273039.t008

4.3 Analysis of lysozyme structure networks via pooled ERGMs

The functions of proteins and other macromolecules are heavily influenced by their three-
dimensional structure. With the increasing sophistication of both experimental technique and
molecular modeling, new methods for analyzing the growing body of protein structure data
are of increasing interest. Network analytic methods have emerged as particularly useful tools
for this purpose, providing a rich representation for topological complexity while still offering
substantial coarsening relative to atomistic structure. Among other applications, network rep-
resentations of protein structure have been used to identify functionally important residues
[96], summarize protein dynamics [97], identify functionally significant sub-units [98], distin-
guish active site conformations [7], and characterize structural differences between protein
families [99].

One potential application of ERGMs in the context of protein structure is the characteriza-
tion of variation within structures of the same protein (either in equilibrium, or in different
functional or measurement contexts). ERGMs were first applied to protein structure networks
by [95], who used them to control for intrinsic molecular features (e.g., chain membership)
while testing hypotheses regarding fold-specific structure. In more recent work, ERGMs have
been employed to characterize transient structure in intrinsically disordered proteins [40], and
to model protein aggregation [8, 100]. Here, we consider the problem of characterizing varia-
tion in measured protein structures obtained via X-ray crystallography (the primary work-
horse technique of modern structural biology). While it is common to treat globular proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0273039  August 26, 2022 22/38


https://doi.org/10.1371/journal.pone.0273039.t008
https://doi.org/10.1371/journal.pone.0273039

PLOS ONE

Scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices

F
N

WA S
NIRRT A

N\ ‘Qv,’ 4

as having a native fold associated with a single three-dimensional structure obtained via crys-
tallographic methods (or, more rarely, Nuclear Magnetic Resonance, neutron scattering, or
cryo-EM), proteins in solution are extremely dynamic; even in a crystallographic context,
repeated crystallization of the same protein will often yield slightly different structures. (In
fact, the same crystal frequently contains several distinct conformations within a single asym-
metric unit.) Currently, this variation is not well-characterized, and is often ignored (with a
single conformation selected as “the” structure of the protein). Statistically, it is natural to
think of these observed structures as being drawn from a broader distribution of low-energy
conformations [101, 102], and to attempt to model this distribution using the measured
conformations.

Here, we apply this notion to observed variation in crystal structures of hen egg-white lyso-
zyme (a widely used reference protein in biophysical research). Lysozyme (N-acetylmuramide
glycanhydrolase), is an enzymatic antimicrobial agent produced as part of the innate immune
system. A glycoside hydrolase, lysozyme attacks polysaccharides within bacterial cell walls,
compromising their integrity and ultimately causing cell lysis; as such, it is produced in large
quantities in settings where bacterial growth must be discouraged (e.g., eggs, tears, milk). Our
data consist of network representations of 66 independently solved lysozyme structures, each
of which is formed from 129 residues (i.e., amino acids) constituting the main chain of wild
type hen egg-white lysozyme (residues 19-147 of Uniprot B8YK79). Atomistic protein struc-
tures were obtained from the Protein Data Bank (PDB; https://www.rcsb.org/pdb/home/
home.do), with the search query limited to X-ray crystallography structures containing only
the 129-residue main chain with no modified or substituted residues, missing residues, ligands,
or other complexes. Where more than one distinct conformation appeared in the asymmetric
unit, each was isolated and treated as a separate conformation for purposes of analysis. Each
isolated protein structure was protonated using REDUCE [103], with the resulting coordinates
employed to generate a residue-level protein structure network (i.e., an undirected adjacency
matrix of size 129 x 129) according to the pairwise distances among residues—any pair of resi-
dues is considered to be adjacent if they contain respective atoms that are closer together than
1.2 times the sum of their respective van der Waals radii. Two representative lysozyme struc-
ture networks are displayed in Fig 3; while the conformations are very similar, they do show
subtle differences (compare e.g., the residues in the top right). A 3D molecular structure of
lysozyme is shown in Fig 4, together with the equivalent protein structure network (PSN).
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Fig 3. 2D representation of Lysozyme structure networks (PDB 1AKI [104]; Left), (PDB 1BHZ [105]; Right). Colors
distinguish nonpolar (green) versus polar (blue) residues; node coordinates determined via topology and are not based on physical

https://doi.org/10.1371/journal.pone.0273039.9003
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Fig 4. 3D representations of lysozyme (PDB 1AKI [104]). (Left) Molecular representation, showing backbone
(ribbon), side chains, and surface; residues colored by index. (Right) PSN representation in similar orientation, with
vertices positioned by Ca coordinates and colored by index.

https://doi.org/10.1371/journal.pone.0273039.9004

4.3.1 Model specification. Model terms: Our model specification includes three catego-
ries of effects: covariates relating to residue properties that enhance or inhibit interaction;
“contextual” covariates relating to the overall fold of the protein; and dependencies among
contacts arising from steric and other effects. Beginning with the first group, we add a Cou-
lomb-like term for interactions based on nominal residue charge, ChargeMatch-edge-
cov, coded as 1 for pairs with complementary charges, -1 for pairs with non-complementary
charges (i.e., positive/positive or negative/negative), and 0 otherwise. We include two terms
for Polar/Polar (Pol1Pol-edgecov) and Nonpolar/Nonpolar (NPo1NPol-edgecov) res-
idue pairs, respectively, accounting for the fact that the two affinities are non-identical. To
account for the distinctive interaction patterns of aromatic residues, we include an overall
effect for interaction by aromatics (Aromatic-nodecov) as well as an effect for pairwise
interactions among aromatic residues per se (referred to mnemonically as PiStack-edge-
cov). Finally, we account for the greater contact potential of larger residues by incorporating
a term for residue surface area (SurfaceArea-nodecov).

With respect to the second class of effects, we first observe that distance along the protein
backbone is an important predictor of interaction, and we hence include the logged backbone
distance as an edgewise covariate (LogBBDist-edgecov); separately, we also incorporate
adjacency along the backbone as a support constraint (reflecting the fact that each residue is
covalently bound to its backbone neighbors). Because our objective is to model variation in
folded lysozyme structures (and not predicting the fold de novo), we incorporate an effect for
the average distances among residues over all structures. Specifically, we encode the log of the
mean distance between alpha carbons (Ca) for every residue pair (taken over all structures) as
an edge covariate (LogMeanDist-edgecov), expressing the intuition that residues that are
on average spatially proximate in folded lysozyme are more likely to be adjacent in any particu-
lar structure. To account for the fact that surface residues have solvent and/or crystal contacts
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that are not captured by the structure (resulting in a lower mean degree within the PSN), we
also include the mean Ca distance from the coordinate center as a nodal covariate (neanCA-
Dist-nodecov). To adjust for differences in the ability of larger or bulkier residues to form
contacts at longer Cor distances, we also add respective product terms (i.e., interaction effects
in a statistical rather than relational sense) between the aromatic and surface area statistics and
the log Ca distances (LogMeanDistAro-edgecov and logMeanDistSurf-
edgecov).

Finally, we consider terms relating to the interdependence among contacts. To model the
fact that each of a residue’s existing contacts increases the difficulty of forming new contacts,
we include a 2-star term (2-stars); likewise, we include a triangle term (Triangles) to
account for the increasing difficulty of forming large cliques. (While both such terms are rarely
used in social network settings due to their propensity to produce degenerate models when
their associated coefficients are positive, these terms can be important for capturing geometric
constraints in physical systems; since the associated coefficients are generally negative in these
cases, they do not lead to runaway clique formation.) Although large cliques are strongly sup-
pressed by packing constraints, PSNs are however highly triangulated. We thus combine the
(hypothesized negative) triangle term with a GWESP term (here using a decay parameter of
0.8 identified by a pilot fit to a single graph). Finally, we note in passing that, while we do not
do so here, it is possible to add maximum degree constraints that place limits on the maximum
number of contacts per residue (to reflect steric constraints). Pilot analyses showed that, in this
model, residues did not show unrealistically high contact rates, and imposing constraints did
not affect the results. For computational simplicity, we thus do not employ them. However,
this may be important in other systems, and should be considered for models that show unre-
alistically high contact rates.

Prior specification: To specify the prior for conjugate MAP, we begin with the approxima-
tion that the mean degree for a fully buried core residue will be approximately 12 (based on a
standard sphere packing approximation; see e.g. [106]). In practice, however, many potential
contacts are “lost” due to residues’ not being completely surrounded by other residues (i.e., on
the surface). To approximate the fraction of possible contacts that are “lost” in this way, we
begin by approximating the expected surface area of the protein that would be used for resi-
due-residue contacts if all residues were buried; paradoxically, this is the surface area of the
fully unfolded protein. [107] show that the empirical model

A, ~ 1.48M +21

provides an excellent approximation to the unfolded surface area of monomeric proteins
(where A, is the surface area in squared Angstroms, and M is the molecular mass in Daltons).
For the surface area of a folded protein, they likewise report the model

_ 0.73
Af ~ 6.3M

(with the same units as above). We may approximate the fraction of possible contacts “lost” to
solvent in the folded protein as A/A,, and thus approximate the expected degree by
- A

~12(1 -
d~12(1 A}

For lysozyme, we have M = 14.3kDa, giving us A;~ 6803.554 A%, A, ~ 21185 A% and d=~
8.15 (i.e., about 32% of potential residue contacts are predicted to be lost). Although obtained

entirely via a priori considerations, we note that this expected degree is quite close to the
observed degree for the lysozyme structures in our sample (8.32), suggesting that it is indeed a
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Table 9. Conjugate Bayesian analysis of Lysozyme structure networks.

Term

Edges
ChargeMatch-edgecov
NPolNPol-edgecov
PolPol-edgecov
Aromatic-nodecov
PiStack-edgecov
SurfaceArea—-nodecov
logBBDist-edgecov
meanCADist-nodecov
logMeanDist-edgecov
logMeanDistSurf-edgecov
logMeanDistAro-edgecov
GWESP, ¢ = 0.8

2-stars

Triangles

https://doi.org/10.1371/journal.pone.0273039.t009

Estimate (s.d.) 95% credible interval
34.213 (0.0309) (34.152, 34.274)
0.229 (0.0654) (0.101, 0.357)
0.760 (0.0296) (0.702, 0.818)
0.186 (0.0319) (0.124, 0.249)
-1.091 (0.0122) (-1.115, -1.067)
-0.752 (0.0849) (-0.918, -0.585)
-0.040 (0.0006) (-0.041, -0.038)
0.293 (0.0110) (0.272,0.315)
-0.040 (0.0028) (-0.045, -0.035)
-19.173 (0.0643) (-19.299, -19.047)
0.024 (0.0003) (0.023, 0.024)
0.646 (0.0128) (0.621, 0.671)
1.444 (0.0385) (1.368, 1.519)
-0.046 (0.0058) (-0.057, -0.035)
-0.829 (0.0253) (-0.879, -0.780)

reasonable choice. To obtain 7, we simulate 1000 conditional Bernoulli graph draws with
mean degree d, subject to the constraint that all backbone-adjacent residues are tied, and take
T equal to the means of the sufficient statistics for the sample.

To set the prior weight (1, and hence 8), we observe that our prior information is fairly
vague, and we would want the data to outweigh the prior even for a single graph observation.
We thus set 1y = 0.1, making the prior weight equivalent to one tenth of a single graph observa-
tion. For our data set, with m = 66, this implies a net prior weight of § ~ 0.0015.

4.3.2 Results. We perform conjugate MAP inference for the pooled ERGM model on the
66 lysozyme PSNs, using the above-specified model; estimation was performed using ergm
under default settings incorporating the backbone-adjacency support constraint. The resulting
parameter estimates are provided in Table 9. The model parameters can be interpreted based
on the conditional log-odds of an edge between two nodes i and j, bearing in mind that many
effects are necessarily simultaneous. For example, while the coefficient for the edges term is
positive, it should be interpreted in the context of both mean spatial distances and sequence
distances between residues. For example, the log mean distance between the Cas of residue 4
and residue 9 is 2.143, and their log backbone distance is log(5) = 1.6. Ignoring all other effects,
then the conditional probability of Y, ¢ = 1 based solely on these three terms would be [1 + exp
[-(34.213 — 19.173(2.143) + 0.293(1.6))]] " ~ 0.002, indicating a low conditional probability
of observing an edge; in practice, of course, all terms contribute simultaneously.

As Table 9 shows, all three types of mechanisms play a role in predicting lysozyme network
structure. Electrostatic and polar effects act as expected, with complementary charges increas-
ing conditional tie probability and homophily for non-polar residues; although the posterior
strongly favors homophily among polar residues, this effect is notably weaker than for the
non-polar case.

Aromatic residues at first blush seem to have a lower baseline contact probability (with an
additional negative effect for 7-stacking), but these “intercept effects” must be weighed against
the reduction in the Ca distance penalty for these residues. Let i and j be residues d A apart,
such that i is aromatic and j is not. Then the total effect of the Aromatic, n-stacking, and Aro-
matic distance effect terms on the conditional log odds of an i, j edge is approximately —1.091
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+0.646 log d; this enhances tie probability for d > 5.4A, only suppressing it at close range.
Likewise, for aromatic-aromatic pairs, the corresponding total effect is approximately —1.091
- 0.752 + 2(0.646) log d = —1.843 + 1.292 log d, which becomes favorable for d > 4.2A. We
would expect mixing among aromatic residues to be favored on physical grounds, and indeed
this is true for residue pairs beyond 3.2A. Overall, we thus see that interactions with aromatic
residues are generally favorable (with aromatic-aromatic mixing especially favorable) except at
very close range, with these residues particularly likely to interact with other residues over lon-
ger distances. Very short-range interactions are somewhat hindered for these residues, how-
ever, plausibly due to steric effects.

A similar effect is seen for residue size, with surface area having a negative main effect com-
bined with a greater propensity for longer-range interaction; for residues i and j with respec-
tive surface areas s; A and 5; A? at distance d A, the total effect of the surface area terms on
conditional log odds is —0.04(s; + ;) + 0.024(s; + s;) log d, which becomes positive for d > 5.3
A. For reference, the mean non-covalent nearest neighbor distance is approximately 3.8 A,
and the second-nearest is approximately 5.1 A, so bulk is a positive interaction predictor for
the vast majority of potential interactions. The minor inhibitory effect at very small distances,
like that of aromaticity, may reflect steric hindrance.

Similar subtlety is seen in the case of the mildly positive effect of backbone distance—net of
spatial distance—likely reflecting the tendency of the backbone to fold back on itself (creating
strong bridges between parts of the protein that are distinct in sequence space). Note that, mar-
ginally, we find that contact probabilities fall off as roughly BBDist >, so this softening effect
should not be confused with a net tendency for tie probability to increase with backbone dis-
tance. Rather, we find that when sequence-distant residues happen to be spatially proximate,
they are particularly likely to be in contact. Less nuance is needed to interpret the effect of dis-
tance from the origin, or of the mean Ce distance between residues: both inhibit contact. The
latter effect is, as has been observed, very large, in keeping with the constraints of a folded pro-
tein. Finally, we observe that net of everything else, existing contacts have an inhibitory effect
of new ones (the negative 2-star parameter), cliques are strongly suppressed (negative triangle
parameter), and there is an overall tendency towards triangulation net of clique suppression
(positive GWESP parameter). To understand how these latter two effects combine, it is useful
to consider the net change in the conditional log odds of adding a first, second, third, etc.
shared partner to an adjacent residue pair (holding all other effects constant). The (base or
direct) GWESP effect for the kth ESP is here 1.44exp(0.8)(1 — (1 — exp(—O.S))k) =3.20(1
— 0.55%) for k > 0 (or 0 otherwise); such a configuration also involves k triangles (with a total
weight of —0.83k). The net contribution of these terms to the log odds of going from k to k + 1
shared partners is then the difference in the effect sums; for adding the first shared partner,
this yields a net contribution of 0.62 (strongly favorable), falling to -0.03 for the second
(approximately neutral), -0.39 for the third (unfavorable) and -0.59 for the fourth (strongly
unfavorable). These penalties continue to increase, approaching the limiting value of -0.83 (the
triangle coefficient). (Note that adding a shared partner also adds at least one 2-star (possibly
as many as three, depending on the assumed baseline conformation), reducing the log odds
contribution by an additional -0.05 to -0.15. This is, however, a much smaller effect). Although
not often used together, a triangle term can usefully combine with GWESP in cases like this
where triangle formation must shift from favorable to unfavorable as more shared partners
accumulate, a phenomenon that may also manifest in other systems.

As a model adequacy check, we take 1000 draws from the posterior predictive distribution
(based on the Laplace approximation), comparing the distribution of several standard struc-
tural properties (degree distribution, ESP distribution, geodesic distance distribution, and
triad census) with the observed data means. The result is shown in Fig 5. As can be seen, the
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Fig 5. Model adequacy checks for the pooled lysozyme model; shaded areas/boxes show posterior predictive intervals, while red points indicate
observed mean values. (Note that some intervals in the lower left panel are narrower than box line widths; all intervals are in fact vertical). The
lysozyme model successfully recapitulates a range of structural features.

https://doi.org/10.1371/journal.pone.0273039.9005

model is able to recapitulate all of the above features, indicating that it does a reasonable job of
capturing the basic structural properties of the lysozyme networks.

4.3.3 Reproducing structural variability. As noted above, one potential use for ERGM
analysis of protein structures is to characterize variability, and to identify dimensions of struc-
tural variation that may be imperfectly constrained by available data. Here, we simulate draws
from the fitted lysozyme model and examine their range of variation with respect to four basic
graph-level indices (GLIs) found by [99] to distinguish protein structures. These are:
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Transitivity [108]—a standard measure of triadic closure in network analysis, transitivity
reflects the compactness of a PSN in the sense that higher levels of transitivity are associated
with the structures that are closely and uniformly packed.

Standard deviation of degree distribution—a measure of the level of heterogeneity in local
packing around chemical groups.

Standard deviation of the core number [109]—an indicator of the degree of heterogeneity in
structural cohesion, which distinguishes between highly organized structures and structures
that combine rigidly and loosely bound regions.

Standard deviation of M-eccentricity—the idea of M-eccentricity stems from eccentricity
[110], and was introduced in the context of PSN analysis by [99]. The M-eccentricity of a
vertex is the mean distance from that vertex to all other vertices; vertices with low M-eccen-
tricity are more centrally located, while those with high M-eccentricity are peripheral to the
graph structure. Thus the standard deviation of M-eccentricity distinguishes between uni-
formly globular structures and structures with deformations or other elongations.

Fig 6 shows the distribution of the above GLI values for the observed lysozyme networks
and for posterior predictive draws from the pooled ERGM; GLIs were calculated using the
sna library for R [86]. For each of the GLI distributions, we can see that the posterior predic-
tives cover the observed distributions, while being somewhat wider (reflecting posterior uncer-
tainty). Such distributions have potential uses such as statistical comparison of protein families
or variants from pooled crystallographic data, where accounting for uncertainty in the distri-
bution of structural properties is an important consideration.

5 Discussion

Here, we briefly discuss several different issues related to the methods described here, particu-
larly including missing data and model parameterization.

5.1 Missing data handling

Our technique depends upon the ability to compute g(y°**); when some graphs contain miss-
ing (i.e., unobserved) edge variables, their statistics cannot in general be calculated, and neither
therefore can g(y°*). Although we do not treat extension to the incompletely observed case in
detail, we here briefly sketch an approach to this problem. Our proposed scheme uses the EM
algorithm [111], with a data augmentation scheme related to those of [33, 112]. Given our
sample y°™ = (y', . ., ™), let us divide the edge variables into observed (y°** = (y!,...,y™))

1

my

and missing (y°™ = .,¥™)) components. We begin with some initial guess at the param-
0hs| obs 9
i—1

eter vector, 8%, and then proceed iteratively as follows. At the ith step: (1) draw y2>*|y2™,

using ¥ Uy ~ ERGM(0,_,); (2) compute g(y>* U y®™) (averaging over multiple imputation
draws); and then (3) find 0,|g (y° U y°*) via MLE or MAP as described elsewhere in the
paper. This is repeated until convergence. This is a standard EM algorithm, with assumptions
and solution properties equivalent to those of [112] (who use a nested MCMC strategy to per-
form Geyer-Thompson based maximum likelihood estimation in the single graph case).

We observe that the computational efficiency of this approach hinges on step (3), but can
be undermined by step (1) in the case where missingness is extensive. In the extreme case in
which all graphs contain significant amounts of missing data, this algorithm requires running
MCMC over all graphs in the sample, and may not be dramatically more efficient than a con-
ventionally pooled Handcock-Gile scheme. On the other hand, when missingness is confined
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Fig 6. Variation in graph-level indices for lysozyme PSNs, observed versus posterior predictive distributions; simulated networks cover the
observed GLI range, but also account for predictive uncertainty.
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to a small number of graphs, and/or when the number of edge variables to be simulated is
small, then the savings from mean value inference in step (3) may still be considerable.

5.2 Pooling versus other approaches

As noted in the introduction, pooling is only one of several approaches for modeling graph
sets (lying at one end of continuum that passes from pooling to hierarchical and mixed models,
and thence to independent estimation). Pooling is a useful strategy when we either have reason
to believe that our sample was drawn independently from a common generating process, or
when we wish to use an approximation of this type. For the pooling procedure described here,
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we note that we are by assumption working with networks of the same size, sharing the same
covariates; many common cases where heterogeneity is a serious concern (e.g., classrooms of
differing size and composition) are thus beyond the scope of our technique. For graph sets on
equivalent vertices, it may be helpful to assess pooling success using analyses like those in Sec-
tion 4.3.3. If variation in observed network properties greatly exceeds those of the simulated
models, then this may suggest that the sample arose from a mixture of generative processes; in
this case, latent ERGM mixture models like those of [113] may be helpful in detecting and fit-
ting parameters for the underlying mixture components. Alternately, such models may simply
require elaboration. For instance, [114] shows that cross-graph variation in density and/or rec-
iprocity can be captured in pooled models using an appropriate choice of ERGM terms. Excess
cross-graph variation does not therefore imply that a pooled model cannot be successful,
though it suggests that closer inspection may be in order. As in other matters, adequacy of the
pooled approximation depends on the purposes of the associated analysis.

5.3 Pooling and model complexity

Models for complex networks can themselves become quite complex, raising practical, statisti-
cal, computational, and interpretational issues. How many terms are “too many,” and should
one err on the side of simple models (which are easier to understand and work with, but that
may omit important confounders or mechanisms) or higher-dimensional models (which may
account for more drivers of network structure, at the expense of computational cost, interpret-
ability, and overfitting risk)? This debate (analogous to the “emulative” versus “intellective”
modeling discussion in the agent-based literature [115]) involves inherent tradeoffs between
respective modeling strategies, and is in our view ill-posed: models at many different levels of
complexity can be useful, and the objective should be to match the capacities and requirements
of a model to the uses to which it will be put.

Pooling enters into this discussion in two respects. First, as noted above, models for popula-
tions of graphs may require greater complexity to account for cross-graph variation than mod-
els for a single graph. For instance, excess variation in density may be accounted for by a
change of reference, together with the inclusion of terms for both log edge count and log null
count (instead of the usual edge count statistic) [114]; this may account for greater structural
variability, but at some cost to parsimony and ease of interpretation. Second, pooled models
allow for considerably greater statistical power than single-graph models, particularly where
sample sizes are large. This increase in power both makes it possible to reliably fit higher-
dimensional models, and to detect very small deviations from the no-effect null hypothesis
(i.e., one can very easily reject the hypothesis that a hypothesized term has no effect, even if the
parameter has little impact on model behavior). In our view, both considerations strengthen
the importance of substantively guided model selection based on a clear sense of modeling
objectives. On the one hand, positing a model that will capture all aspects of a large graph set is
rarely realistic, and one must thus choose what one will—and will not—seek to capture. And
on the other hand, in the large-data regime one cannot count on statistical power or null
hypothesis tests to tell one what one should or should not include in a practical model. Particu-
larly as the methods presented here make it computationally feasible to fit models to very large
graph sets, the analyst (at least in the equivalent vertex setting) is more often able to shift from
asking what models they can fit to what models they should fit. We suggest that this shift moti-
vates further work on substantive adequacy checking for network models in particular settings,
particularly including efforts to link predicted network structure with other, non-network data
or outcomes. For instance, Friedkin’s ([116]) experimental studies of influence in task groups
reliably link equilibrium attitudes to influence networks in ways that suggest that attitudinal
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configurations could be predicted in part from network models even where the networks
themselves cannot be observed; adequacy for this task may be rather different than what is pri-
oritized by conventional metrics. As our ability to efficiently fit network models improves,
pursuing such questions becomes an important priority.

6 Conclusion

We have presented a highly scalable approach for modeling multiple network observations
with ERGMs, under both frequentist and Bayesian paradigms, utilizing basic exponential fam-
ily properties to perform pooling and/or Bayesian updating entirely within the mean value
space. This allows us to perform inference on arbitrary numbers of graphs at no additional
cost, and to perform Bayesian inference at the same cost as maximum likelihood estimation.
Moreover, by mapping the inferential problem to a problem involving a single network, it is
possible to perform both pooled and Bayesian inference with standard software packages
designed for single-network applications, without resorting to techniques like graph aggrega-
tion with structural zeros that add complexity and computational cost. Simulation experiments
suggest that the frequentist properties of the pooling procedure are quite good (with minimal
bias and good calibration with even small sample sizes), and conjugate-prior MAP inference
yields well-behaved interpolation between prior parameters and the MLE. Conjugate-prior
MAP estimates with a simple default prior were also found to have good frequentist properties
for a range of diffuse prior weights, suggesting its value as a simple tool for regularized infer-
ence (with the most important use case being settings where the MLE does not exist due to the
convex hull problem). Although this work focused on a specific choice of default prior that is
analogous to a zero vector in the natural parameter space (with the exception of the edge
parameter which is corrected for prior density)—a natural analog to the zero-centered priors
used in existing strategies for Bayesian ERGM inference—the fact that the conjugate prior is
specified in the mean value space (i.e., the space of graph statistics) makes it particularly easy
to specify informative alternatives based on e.g., prior data sets.

We demonstrated the applicability of our inferential scheme with two applications, specifi-
cally to brain functional connectivity networks and to protein structure networks. In both
cases, the ability to quickly and easily pool network data without additional computational
cost, and to easily use either Bayesian or frequentist inference, facilitates analysis. We also
show how the regularization offered by the use of prior structure makes it possible to include
theoretically interesting mixing terms that (because their statistics lie on the convex hull) are
problematic under MLE, and how prior substantive information (here, simple empirical mod-
els of the properties of monomeric proteins) can be used to create reasonable prior specifica-
tions even without existing network data.

The results shown here were produced using the MCMC MLE estimation strategy used by
the ergm package, but the idea can be easily adapted to any other ERGM estimation scheme
based on fitting to the sufficient statistics (e.g., contrastive divergence, stochastic approxima-
tion, the log partition function scheme of [117], or other forms of gradient descent). It is not
compatible with approximate likelihood methods such as maximum pseudo-likelihood esti-
mation (MPLE) that operate directly on edge variables, although we observe that it is still pos-
sible to initialize estimation by MPLE on a single graph from the set and then proceed with
methods based on statistics (as was in fact done here), or otherwise use methods such as con-
trastive divergence that are similar in speed and accuracy. We do note that one side effect of
the high level of statistical precision obtainable from pooled network models is that de facto
accuracy eventually begins to depend more on numerical error than statistical uncertainty.
While we find that calibration remains good for the range of data sizes considered in our
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simulation study, precise inference for very large collections of networks may require greater
attention to numerical stability than is necessary for conventional ERGM inference. Efficient
high-precision algorithms for pooled models in the large-m regime would seem to be an
important problem for future work.
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S1 Fig. Model adequacy checks for the pooled brain connectivity network ML-estimated
model. Shaded areas/boxes show simulation intervals, while red points indicate observed
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S3 Fig. Model adequacy checks for the pooled brain connectivity network regularized ML-
estimated model. Shaded areas/boxes show simulation intervals, while red points indicate
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box line widths; all intervals are in fact vertical).
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