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Abstract: Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins
and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets
thereof are represented via graph structures, is a particularly useful way of obtaining highly com-
pressed representations of molecular structures, and simulations operating via such representations
can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss
of atomistic detail—an effect that is especially acute for topological representations such as protein
structure networks (PSNs). Here, we introduce an approach based on a combination of machine
learning and physically-guided refinement for inferring atomic coordinates from PSNs. This “neural
upscaling” procedure exploits the constraints implied by PSNs on possible configurations, as well
as differences in the likelihood of observing different configurations with the same PSN. Using a
1 µs atomistic molecular dynamics trajectory of Aβ1–40, we show that neural upscaling is able to
effectively recapitulate detailed structural information for intrinsically disordered proteins, being
particularly successful in recovering features such as transient secondary structure. These results
suggest that scalable network-based models for protein structure and dynamics may be used in
settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates
from PSNs.

Keywords: coarse-grained models; molecular dynamics; protein structure networks; intrinsically
disordered proteins; machine learning

1. Background

Proteins and other biological macromolecules exhibit a wide variety of complex
dynamics and interactions at varying size and time scales. While atomistic molecular
dynamics (MD) models currently serve as the gold standard tools for simulating dynamics
at high resolution (with some inroads by quantum mechanical methods in small-scale or
specialized applications), the cost of large-scale MD simulations limits their use to relatively
small systems on time scales of microseconds or less. Coarse-grained (CG) models offer a
means of accessing larger system sizes and longer time scales, sacrificing atomistic detail in
exchange for reduced computational cost. Many “flavors” of coarse-grained simulation
exist, with the most common being aggregate particle models that represent collections of
atoms by single particles whose positions evolve under a suitably modified forcefield. The
highly successful MARTINI model [1], for instance, represents biomolecules by “beads”
corresponding roughly to one bead per four heavy atoms, with hydrogens left implicit;
MARTINI and other CG MD models have proven useful in studying the structure and
dynamics of large complexes, lipid phases, and other systems that are too large to be
treated with atomistic MD methods [2]. An even more radical approach to coarse-graining
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employs topological representations, representing molecules or molecular aggregates by
network structures that encode the interactions between atoms or groups thereof, but not
their positions in three-dimensional space [3,4]. Often employed for descriptive analysis of
trajectories produced by MD or other methods (see, e.g., [5–7]), network representations
have the advantage of retaining complex topological information involving protein struc-
ture while being highly compressive (greatly reducing the computational cost needed for,
e.g., comparative analysis of long trajectories), and facilitating application of a large body
of graph-theoretic measures for capturing structural properties ranging from cohesion and
constraint to differences in centrality and contact rates. Recent work has also considered the
generation of trajectories directly within the topological representation (“coordinate-free”
simulation), allowing considerable computational savings [8,9].

While many questions can be posed directly within a CG representation, an obvious
limitation of coarse-graining is that some observables of interest cannot be obtained with-
out an additional step of ”backmapping” or ”upscaling” the CG trajectory to atomistic
resolution. At first blush, this may seem impossible: by definition, a CG model does
not resolve individual atoms. In practice, however, CG structures are often sufficiently
constraining that a well-designed algorithm can infer atomic positions from them with
considerable accuracy [10]. For instance, a number of upscaling methods for particle-based
CG models work via a two-stage process in which initial guesses for atomic placement
are made based on, e.g., random positioning [11], fragment-based [12,13], or geometry-
based [14–17] initialization, followed by an energy minimization step to ensure physically
realistic coordinates. This is not unrelated to protein structure prediction methods like
those of [18,19], which begin with approximate structures based on local homology and
subsequently refine them via minimization in a simplified force field. Such techniques
have proven extremely successful in predicting the structure of globular proteins [20,21],
and are widely used in enzyme discovery and engineering applications [22,23].

In the context of topological coarse-graining, the historical focus has been on mapping
from atomistic to coarse-grained networks for purposes of analysis (e.g., [3,24–27]), with
correspondingly less emphasis on the upscaling problem. Recent work, however, has sug-
gested the potential of graph-theoretic models for molecular structure and dynamics. For
instance, Grazioli et al. [9], Yu et al. [28] use Hamiltonians defined on graphs representing
the structures of protein aggregates to model the equilibrium structures and kinetics of
amyloid fibrils and associated aggregation states (with vertices representing individual
proteins, and edges indicating bound interactions). On a smaller scale, Grazioli et al. [8]
used a closely related approach to model transient structure in intrinsically disordered
proteins (IDPs), using residue-level protein structure networks (PSNs) in which each vertex
represents a residue and edges represent inter-residue contacts. Although we are unaware
of any existing methods for upscaling such graph structures to atomic resolution, effec-
tive methods for this purpose would greatly extend the practical reach of network-based
simulation models.

Our focus in this paper is this last problem: the upscaling of topological representa-
tions of macromolecular structure (and by extension, dynamics) to atomic resolution. We
specifically consider the upscaling of residue-level PSNs, as this is a widely used level
of network coarse-graining for proteins and poses a non-trivial challenge for atomistic
refinement. To perform the mapping from network structure to atomistic structure, we
exploit advances in machine learning (ML) methods, predicting atomic coordinates from
topological inputs using deep neural networks. Machine learning strategies (particularly
including neural networks) have become widely used in CG modeling, with past efforts fo-
cused on ML-based methods for learning or refining CG forcefields (see e.g., [24,25,29–33]).
Here, we use multilayer perceptron-based (MLP) neural networks to learn pairwise in-
teratomic distances from residue-level PSNs, allowing us to recover atomistic detail from
input network structures.

In this work, we demonstrate the utility of MLP neural network models to translate
coarse-grained protein structure network representations to their more finely detailed 3D
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the test data is used to provide a held-out evaluation of the final model. Five-fold cross
validation was also performed to ensure that bias was not introduced during the initial
train-test division. k-fold cross validation (a standard technique in which the data is split
at random into k segments, each of which is then used to produce one test-train split)
guards against the risk of obtaining anomalous performance estimates due to selection of
an unusual data division, and can provide additional insights into performance sensitivity
by comparing results across divisions of the data. For each frame in the Aβ1–40 simulation,
a protein structure network (PSN) was calculated using a combination of VMD [40] and
the statnet [41,42] and bio3d [43] libraries for R [44]).

MD Simulation

Contact 

adjacency 

matrix (flattened 

upper triangular)

Pairwise 

Interatomic 

Distances (non-

hydrogen)

Figure 2. Data generation of input (upper triangle of PSN adjacency matrices) and output (upper
triangular of PIDs) data.

Monomer states were sampled from the trajectory every 100 ps, from which residue-
level protein structure networks were constructed. Vertices correspond to individual
residues, with two vertices being considered adjacent if they contain respective atoms
whose distance is less than or equal to 1.1 times the sum of their van der Waals radii (based
on radius data from [45]). The input data used to train the neural network model consists
of the flattened upper triangular matrix data extracted from the residue-level contact
adjacency matrix for each conformation in the Aβ1–40 trajectory. A contact adjacency
matrix, x, is a binary square representation of the edges existing between two residues,
with xij = 0 where there is no edge between the vertices associated with respective residues
i and j, and xij = 1 where an edge is present. As contact is an undirected relation, x is
symmetric, and only one triangle of the matrix is required for learning. Here, the upper
triangle is flattened into a one-dimensional array for processing. The output data used
to train the model is the corresponding set of flattened upper triangles of the pairwise
interatomic distance matrices (PIDs) calculated on all non-hydrogen atoms (across all
frames in the MD simulation) (Figure 2). For purposes of evaluation (as discussed below)
it should be noted that when comparing predicted to observed PIDs, we define errors in
terms of the pairwise distances themselves, not, e.g., the distances between equivalent
atoms in the observed versus predicted structures post-alignment. For instance, let yij

be the observed PID for heavy atoms i and j (i, j ∈ 1, . . . , N), with predicted value ŷij.
Then, the squared error in PIDs is given by ∑

N
i=1 ∑

N
j=i+1(yij − ŷij)

2, with RMSDs and other
quantities defined accordingly.

Neural network architecture and hyperparameters After generation of input and
output data, a multi-layer perceptron (MLP) neural network was utilized for training as
indicated in the pipeline (Figure 3). This neural network contains four hidden layers (struc-
tured as follows), and was implemented using the machine-learning libraries Keras [46]
and tensorflow [47]. The first three hidden layers consist of 2000 neurons, the fourth
layer contains 8000 neurons, and the last output layer predicts the flattened upper triangle
of the pairwise interatomic distance matrix for a given frame from the MD simulation
(46,665 neurons) (Figure 6). Hyperparameters were optimized using the Talos Keras tuning
module [48]. A Nvidia P6000 Quadro GPU card was used to train the model with the fol-
lowing hyperparameters: nonlinearity = relu, dropout rate = 0.2, optimization = AMSGrad,
loss = mean squared error, batch size = 50, epochs = 100. Predicted output data were
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Figure 8. Comparison between original and predicted pairwise interatomic distances for frame 1133
(from the test set). (a) Actual distances are shown for all heavy atoms. (b) Heavy-atom predictions
of all pairwise interatomic distance. (c) Histogram of differences between original and predicted
Euclidean distances. (d) Binary plot displaying the absolute difference values between each actual
and predicted distance for frame 1133.

Using RMSEs of PIDs as a basis for selection, we show processed 3D predictions of
the lowest RMSE score representation (frame 1133, Figure 9a), the median representation
(frame 7431, Figure 9b), and the highest RMSE score structure (frame 7560, Figure 9b). The
prediction with the lowest RMSE (0.67 Å) exhibits more helical secondary structure com-
pared to the median and worst predictions, which exhibit more random coil-like dynamics.
RMSE of all heavy atoms for the median representation exhibits a fairly reasonable value
of 1.46 Å whereas the worst PID prediction has a RMSE of 10.4 Å. Notably, the prediction
for Figure 9c aligns reasonably well for the first 20 residues and the remaining residues are
more poorly predicted by the neural network model. Since folded regions are inherently
more data-rich for binary contact adjacency matrix representations (e.g., a 5 Å PID and
a 500 Å PID both produce the same zero matrix element), it is not surprising the neural
network model struggles to predict this specific overly extended conformation; however,
we note that the prediction still preserves the qualitative aspects of the extended structure,
and is quite accurate for the N-terminal region. The RMSEs according to 3D structure
alignment between original and processed 3D structure (and not on the basis of PIDs) also
show similar values: best (0.77 Å), median (2.13 Å), and worst (12.01 Å). These values are
slightly higher compared to PID-based RMSEs, most likely due to introduced 3D alignment,
whereas PIDs report RMSEs between all heavy atoms.
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model can be retrained to other biomolecular systems using inputs derived from a variety
of different sources (e.g., MD simulations, NMR ensembles, etc.). Given training data in the
form of PIDs, the approach used here can be used to obtain comparable predictive models
for PSNs associated with any protein system (and, assuming appropriate modification of
the coarsening level, alternative PSN definitions such as that of [3]). Although further work
is needed to investigate the range of conditions under which these models will work well,
the success of the Aβ1–40 model (a relatively non-trivial case, due to the presence of highly
variable and often unfolded conformations) bodes well for performance in other systems.
More broadly, an obvious extension of this approach is the creation of more general models
for broader classes of protein systems, and for multiple levels of PSN coarse-graining. The
success of deep learning in producing predictors with good generalization performance
over large ranges of inputs (e.g., images with widely varying content) suggests that such
general-purpose PSN upscaling tools are an achievable goal.

Although previous reverse mapping methods (e.g., random placement, geometric-
based, etc.) are able to reconstruct atomistic models, they do so typically from coarse-
grained force field models based on particle representations (e.g., MARTINI [1]), or from
partially observed atomic coordinates (e.g., [55]). The advantage of a MLP neural network
is the ability to learn and fine-tune parameters specific to the system under investigation
from minimal information (here, PSN adjacency matrices) and without the requirement
that the available information be geometric in character. This opens the door to the use of
“coordinate-free”, network based simulation methods [9] to explore the behavior of complex
biomolecules while still retaining the ability to map results back to a conventional, spatial
representation. Such network simulations can be produced using a network Hamiltonian
based on connectivity patterns rather than atomistically detailed spatial interactions, allow-
ing the prediction and simulation of large ensembles and/or long timescale trajectories
that might otherwise be computationally expensive to model.

In the literature, another class of neural networks, specifically variational autoencoders
(VAE), has been used primarily on single small molecules and bulk-phase simulations as
test cases for reverse mapping [56]. This VAE methodology, although not tested on proteins,
could possibly be adapted for such systems; however, we are able to demonstrate successful
backmapping with a non-variational MLP neural network architecture, indicating that
variational structure is not essential. To better generalize our neural upscaling technique to
protein systems of different sizes, convolutional neural network architectures similar to
AlphaFold [57] could be also be incorporated and trained to predict regions (e.g., N × N
residue regions). With an ever-growing body of architectures whence to choose, there
would seem to be considerable room for experimentation with alternative approaches.

As noted at the outset, there is considerable work on the problem of imputing atomistic
structures from either coarse-grained or incomplete spatial information. Although our focus
here is on the extreme setting where such information is unavailable, further enhancements
may be possible in settings where both types of information can be employed. While
this is not possible for, e.g., predicted PSNs arising from network models, it may be of
use in cases where a combination of partial spatial information and incomplete contact
maps are available, as from, e.g., incomplete NMR data or crosslinking mass spectrometry
experiments. Models for such cases are an interesting direction for further work.

Finally, we note that non-neural network methods can also be applied to the upscaling
problem. In preliminary experiments (not shown), we found that a kernelized ordinary
least squares predictor [58] was able to obtain relatively good results (mean RMSD of
approximately 2.4 Å, mean median ARE approximately 8% on interatomic distances (PIDs)
under 10-fold cross-validation). Though the model was outperformed by the neural
network architecture described here, and we did not therefore pursue it further, there may
be situations in which non-neural network classes of predictors will prove useful. This
would also seem to be a promising area for further investigation.
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5. Conclusions

Direct predictions of PID metrics demonstrate the predictive capabilities of the MLP
neural network to reconstruct all-atom representations of proteins from binary contact
adjacency matrices. Example conformations of the best, median and worst PID-based
predictions in the test set illustrate the MLP performance. In the worst prediction (frame
7560), the RMSD between the N-terminal halves of the original vs. predicted is still quite
favorable (0.98 Å). Chirality corrections and conjugate gradient minimization were vital
post-prediction processing steps in generating stereochemically reasonable 3D structures.
Three-dimensional accuracy metrics, in particular GDT_TS—the main assessment metric
in the CASP competition—suggest the neural network performed well given the average
values and 95% confidence intervals. In totality, we are able to illustrate the viability
of the MLP neural network architecture in this transformation experiment. This work
exemplifies neural network-based techniques capable of extracting useful, meaningful data
from coarse-grained models.
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