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Abstract—Embeddings for instructions have been shown to be
essential for software reverse engineering and automated pro-
gram analysis. However, due to the complexity of dependencies
and inherent variability of instructions, instruction embeddings
using models that are successful for natural language processing
may not be effective. In this paper, we perform geometric analysis
of instruction embeddings at the token level and instruction
family level, showing much greater variability and leading to
degraded performance on intrinsic analyses. Then we propose
to use metric learning to improve the relationships among
instructions using triplet loss. Our results on a large dataset
of instruction groups shows significant improvements. We also
provide a theoretical analysis of the instruction embeddings by
looking at the BERT components and characteristics of inner-
product matrices for attention in the transformer blocks. The
code will be available publicly after the paper is accepted for
publication.

I. INTRODUCTION

With recent cyber attacks upon key infrastructures becoming
more quotidian, the need for strong cybersecurity to protect
these industries has become more important than ever. One
major challenge facing security experts is program analysis,
the process of understanding a program, given only the binary
application. Software reverse engineering can provide invalu-
able insights about a program’s design [1], assisting static anal-
ysis of suspicious code and dynamic analysis of such program
in a sandbox environment [2]. If done manually, such analysis
can consume valuable time and may require significant amount
of domain knowledge from the analyst. Recently, deep learning
has been proven to be useful in various forms of binary
analysis tasks. Research efforts in this direction includes works
on function boundary identification [3], malware detection [4],
and binary code similarity search [5], [6]. Deep learning based
approaches are showing promising results, often better per-
formances than traditional and other machine learning based
techniques. Due to the similarities found in the structure of
natural language documents and computer programs [7], the
similar deep learning techniques that are applicable for natural
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languages can be used for programs analysis to resolve the
existing challenges and achieve more accurate results.

Representation learning [8] has become very popular since
it is able to transfer knowledge across multiple language
entries, and thus significantly improve the effectiveness and
robustness of NLP performance. Automatically learning word
and sentence-level representation is desirable because it can
capture higher-level semantic features without requiring expert
domain knowledge. Recently, pre-trained models for natural
language processing [9] are becoming trendy, since training a
model from the scratch is becoming expensive as the numbers
of model parameters are increasing rapidly. Some state-of-the-
art examples of deep pre-trained language models based on
representation learning in NLP include BERT [10], GPT [11],
and ALBERT [12]. Such a pre-trained model can later be fine-
tuned for specific downstream tasks.

Security researchers have been deploying NLP-based tech-
niques for solving the problem of instruction representation
learning and capturing the higher-level characteristics of in-
structions for quite some time now. Existing works based on
NLP, such as Asm2Vec [13], and InnerEye [14] use control
flow graph (CFG) to capture contextual information between
instructions, which can vary based on different compilers
and their optimizations. Recently, Li et al. [15] introduced
a new pre-trained assembly language model, which is able
to generate general-purpose instruction embeddings, based on
transformers [16], specifically the BERT model [10], called
PalmTree. Unlike the previous models, the goal of PalmTree
is to develop a method of representing instructions in a general,
compiler-independent fashion. In this paper, we focus on
analyzing the PalmTree model. By the geometric analysis
of the model’s embeddings, it is possible to evaluate the
effectiveness of their representations [17]. We also conduct an
intrinsic evaluation using the pre-trained model made public
by the authors, which is designed to detect an outlier within a
group of instructions based on their opcodes. Using metric
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learning [18], we show that it is possible to improve the
performance of the embeddings substantially.

The rest of the paper is structured as follows. First, we
discuss some works related to the topic in Section II. In
Section III, the subject of geometric analysis of instruction
embeddings is discussed, followed by an introduction to
Metric Learning and the application of Metric Learning with
respect to instruction embedding in Section IV. Finally, the ex-
perimental results are shown in Section V. Section VI provides
a theoretical analysis of the model to provide explanations
of the observed performance and Section VII concludes the
paper with a brief summary and future work for improving
the PalmTree model and applying NLP-based techniques to
software reverse engineering and program analysis.

II. RELATED WORK

In this section, we first discuss several works that focus on
implementing representation learning in the field of natural
language processing. Then, we review some of the attempts at
leveraging NLP-based techniques for representing instructions,
aiming for automated program analysis, the rationale behind
doing so, and some common challenges that occur due to the
inherent characteristics of binary programs.

Bengio et. al. [19] published the first work to use neu-
ral networks for natural language modeling by learning a
distributed representation for words. Later, word2Vec [20],
[21] was introduced in 2013, and proposed Skip-gram and
Continuous Bag-Of-Words(CBOW) models. However, due to
their limitations, these models fail to capture context-level
information.

For a long time, recurrent neural networks were used for
processing natural languages due to their sequential nature.
In 2017, Transformer [16] was introduced by Vaswani et al.
which was proposed as a replacement for RNN models. It im-
plements a self-attention mechanism which relies on capturing
the relationships between words in the same sentence. Based
on the transformer model, Devlin et al. introduced BERT [10],
which stands for Bidirectional Encoder Representations from
Transformers. The neural network in BERT leverages a fully
connected architecture, which enables the representation to
combine the left and the right context together at the same
time.

Just like natural languages, programming languages includ-
ing low-level assembly languages have well-defined syntac-
tic and grammatical rules. So, it is fitting to utilize NLP
techniques to facilitate binary program analysis. Instruc-
tion2Vec [22] is an approach to produce instruction repre-
sentation, where the features are manually engineered. There
are multiple attempts at instruction representation based on
Word2Vec. For example, InnerEye [14], and DeepBindiff [23]
leverage word2Vec [20] to generate instruction embeddings to
achieve good results in basic block similarity search across dif-
ferent binaries. These models treat each instruction as a single
word. Besides these works, Asm2Vec [13] utilizes the PV-DM
model [24], which is basically an extension of Word2Vec, to
generate instruction embeddings to match semantically similar

functions in binary programs. In that work, each instruction is
split into one opcode and up to two operands.

Since BERT [10] is one of the state-of-the-art models in the
NLP domain, it has been leveraged for program analysis. There
have been several works in this regard. For example, Yu et
al. [25] takes the control flow graph of a program as input and
then uses BERT to pre-train the embeddings of its tokens and
basic blocks, which can be leveraged for binary code similarity
detection. Trex [26] takes one of BERT’s pre-training tasks,
namely Masked Language Model (MLM) to learn semantics
by leveraging under-constrained dynamic execution to achieve
the goal of detecting binary code similarity.

PalmTree [15], which stands for Pre-trained Assembly Lan-
guage Model for InsTRuction EmbEdding, is one of the most
recent attempts at leveraging BERT for learning instruction
embeddings with the goal of facilitating binary analysis.
PalmTree provides a pre-trained assembly language model and
tries to solve the unique challenges that come with adopting
learning-based encoding approaches to model instructions. To
tackle the complexity and heterogeneity in instruction formats,
PalmTree focuses on getting the internal details about each
instruction. Also, getting contextual information from control
flow alone can get noisy due to compiler optimizations. So,
PalmTree throws data flow dependency into the mix. The
authors of PalmTree made a pre-trained model available to the
public. We use this pre-trained model to design and conduct
all our experiments.

ITI. GEOMETRIC ANALYSIS OF INSTRUCTION
EMBEDDINGS

A. Instruction Embeddings

In BERT, to generate a representation of a sentence, word
embeddings are fused with their positional information, and
then fed as input to the model for training. BERT employs two
types of pre-training tasks, namely Masked Language Model
(MLM), and Next Sentence Prediction (NSP). The MLM
objective enables the representations to learn the words’ con-
text bidirectionally to contextualize the relationships between
them. NSP is used to pre-train sentence-pair representations to
capture the semantic relation between sentences in a document.

For instruction embeddings, the basic idea is very similar.
Unlike previous works [13], [14], [23], PalmTree deconstructs
each instruction into a variable number of tokens. Here, each
instruction is considered to be a sentence and the tokens are
comparable to words. For example, given an instruction “mov
rbx, dword [rsp+0xb8]’, PalmTree decomposes it into the
following tokens: “mov”, “rbx”, “dword”, “[”, “rsp”, “+”,
“0xb8”, and “]”.

Like BERT, PalmTree [15] combines each token’s embed-
ding with their positional information. For pre-training, it
utilizes MLM the same way. To capture control flow informa-
tion, PalmTree trains instructions in pairs. However, it deploys
context window prediction (CWP) in place of NSP, since the
same strictness may not be suitable for capturing contextual
information in the control flow of assembly languages. The
authors themselves introduce a third pre-training task called
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Def-Use Prediction (DUP), which predicts if two instructions
have a def-use relation, and thus includes data dependency
information in their assembly language model.

B. Geometric Properties of Token-level Embeddings

BERT has set new standards for state-of-the-art in various
NLP benchmarks, but it is still not completely understood why
BERT works so well. There have been several attempts by
researchers to understand BERT by analyzing the geometry of
its word embeddings [17], [27], [28]. The focus of these works
is on the characteristics of the learned representations rather
than the patterns learned by the attention mechanism. Results
show that, while BERT is better than most at capturing the
notion of similarity in terms of analogy query, the embeddings
do not show very well clustering in the vector space based on
semantics.

Since each token is considered a word after decomposition,
their embeddings are expected to show behaviors demonstrated
by word embeddings from state-of-the-art language models
such as BERT. For example, we can expect them to display
fairly strong pairwise correlations as Podkorytov et al. [17]
demonstrated.

To this end, we start our analysis by first looking at the
geometric properties of token-level embeddings produced by
the pre-trained model of PalmTree. We computed the pairwise
correlations of weights of each of the tokens this pre-trained
model generates. Here, the size of the vocabulary is 6631. The
pre-trained PalmTree model generates 128-dimensional vec-
tors for each of the tokens in it’s vocabulary. Hence, computing
the correlations produces 6631 x 6631 values in the [—1,1]
range. The histogram showing this correlations is shown in
Figure 1. Since the plot is centered around 0, it can be said to
be similar to a normal distribution, which implies the token-
level embeddings do not show strong pairwise correlations
between them.
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Fig. 1: Pairwise correlations between the weights of the token
embeddings in PalmTree.

C. Intra- and Inter-group Analysis of Instruction Embeddings

To analyze the geometric properties of the instruction em-
beddings, we utilize the dataset used by PalmTree for its

intrinsic evaluation. The dataset consists of 7703 instructions
where all the instructions are categorized into 10 groups based
on their opcode. The different categories along with the total
number of instructions in each category and some examples
are shown in Table I. Each instruction from every group was
encoded by PalmTree to get it’s embedding representation.
We then calculated the intra-group cosine distances, as well
as the inter-group cosine distances for all of the instructions’
embeddings.

TABLE I: Brief description of the ten different categories of
instructions in the PalmTree model, based on their opcodes.

[ Op-code | Num. of instructions | Example ]
MOV 4206 mov,rl1,rdx
BINOP 1743 sub,r8,rbp
CALL 25 call,eax
CMP 1272 cmp,rl14,address
IMP 40 jmp,ecx
SHIFT 153 shl,eax,0x10
CSET 44 setne,al
CMOV 192 cmovae,r10,rdx
UNARY 25 inc,eax
FP 3 faddp,st1
Total 7703

We present the results of our analysis in Figure 2. Overall,
it appears that there is no significant difference between the
groups, as the curves for the aggregate values are similar,
almost overlapping with each other. Even in the plots that show
the distributions of the intra-family and inter-family cosine
distances for a particular family of instructions, the distances
are still large, and few instructions seem to be close/similar.

These observations led us to conclude that the embeddings
of the instructions do not display similarity that is representa-
tive of their semantic relations, such as whether they belong to
the same group or come from different groups of instructions.

IV. METRIC LEARNING FOR INSTRUCTION EMBEDDINGS

The goal of metric learning is to train a neural network
f:R" — R™ to map inputs x € R” to a m dimensional
metric space. The distances between these embeddings should
then be small when the inputs share the same label, and larger
when they do not. The distance function defined on the metric
space, such as Euclidean distance, is then used to evaluate
the loss and train the parameters for this purpose. In this
case, instruction embeddings are passed through the neural
network and further separated using triplet loss, where outliers
correspond to negative samples.

Let X be a dataset consisting of groups of instruction
embeddings g. For each ¢ € X, we define the triplets
as Ty = {(Sa»Sp,Sn)1s - (SasSp, Sn)N}, Where N is the
possible number of triplets formed by the elements of the
group and s, 5p, S, € ¢. In this case, s, and s, are correspond
to similar instructions, and s,, is the outlier in the group. The
goal is to minimize triplet loss, defined as

Ltripler = %Z[”f(sa)_f(sp)”?_||f(8a)_f(3n)“2+0‘]+7
Ts
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Fig. 2: Cosine distances of the instructions embeddings within
each of the instruction families (intra-family) and also between
the ones in the family and all the ones in the other families
(inter-family). While (a), (b) and (c) show the probability
distributions for the three representative families, (d) is the
average of all the probability distributions in the entire dataset.

which minimizes the distances between the positive samples
and anchors and maximizes the distances between the anchors
and outliers using the mean reducer [29]. The criterion is
satisfied once || f(sa)—f(sp)|l2+ < || f(8a)—f(5n)]||2, mean-
ing the Euclidean distances are fully separated by the margin
parameter o. We create and train a deep metric learning model
to improve the instruction embeddings of the PalmTree model
and test it by conducting an intrinsic evaluation based on the
concept of outlier detection. The details of the experiments are
described in Section V.

V. EXPERIMENTAL RESULTS

A. The Dataset

For fairness, we use the same dataset used by the PalmTree
authors for their intrinsic evaluation. The dataset we use for
the experiments comes in two parts. The first part consists
of all the tokens’ embeddings in the vocabulary and another
one encompasses all of the instructions, grouped into several
categories based on their opcodes.

The size of the vocabulary for which we conduct experi-
ments on token-level embeddings is 6631. Each instruction,
symbol, register, even some constants are assigned specific
tokens. Some special tokens are used as placeholders to
alleviate the out-of-vocabulary problem.

For conducting the evaluation on the instructions’ embed-
dings, we use the dataset summarized in Table I.

B. Analysis

As discussed earlier, the embeddings for the instructions are
essential in order for the models built on them to generalize
well. Here we first show the results of our analysis on the
embeddings of the tokens and then on that of the instructions.
Then we show the performance on an intrinsic evaluation with
and without metric learning.

1) Token-level Embeddings: 1t is already shown in Figure 1
that the distribution of pairwise correlations between the
tokens’ embeddings resembles that of a normal distribution.
In this section, we take a particular example token, compute
the cosine similarity of all the tokens in our vocabulary and
then sort the tokens in the descending order of their similarity
to our target token. This way, we can take a look at the tokens
which are the closest to our target in terms of their similarity
measure.

For example, in Figure 3, we plot the pairwise cosine
similarities of the top 20 tokens’ embeddings in relation to
the token ‘add’. As expected, the token ‘add’ has the highest
similarity with itself. But, if we look at the other tokens, we do
not see any tokens that are semantically related to our target
token ‘add’.

Fig. 3: Pairwise cosine similarities of tokens’ embeddings that
are most similar to the token ‘add’.

We pick another token ‘Ox1’, which is an operand, do the
same analysis, and plot the result in Figure 4. Unsurprisingly,
the results are very similar to that of Figure 3. The token’s
embedding only seems to be related to itself and most of the
tokens in the top 20 are not relevant. While tokens such as
‘Oxa3’ and ‘Oxla’ are semantically related to our target token,
we also see ‘cmovl’, which is actually an opcode and is not
closely related to ‘Ox1’

We also evaluate the lengths of embeddings for the tokens
and plot their distribution in the form of a histogram in
Figure 5. The distribution centers around the mean, which is
10.29. Compared to the embeddings of the pretrained BERT
models,! the embeddings for PalmTree are much longer. In
addition, these embeddings are much longer than the inner

ISee https://huggingface.co/docs/transformers/model_doc/bert for pre-
trained BERT models.
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a negative effect of the instruction embeddings due to limited
mixing of tokens; see Section VI for in-depth analysis.
Fig. 6: Pairwise cosine similarities of instructions’ embeddings
that are most similar to the instruction ‘or, ecx, r10d’.

C. Intrinsic Evaluation and Metric Learning
In the field of NLP, intrinsic evaluation refers to determining
the quality of the generated embeddings by examining how
they perform on designed datasets. We conduct the instruction
outlier detection originally designed by the authors of the
PalmTree model. For this, we use the dataset already sum-
marized in Table I. First, we create a set of randomly chosen
instructions, one of which is an outlier. The basis on which
, , . o ; an instruction is considered an outlier is its opcode. To find
2 4 6 VectorsLength 10 12 14 out which one is the outlier, we calculate the pairwise cosine
distances among all the instructions’ embeddings within the
Fig. 5: Distribution of the length of token-level embedding et of instructions, and chose the one which is the furthest
vectors for all of PalmTree’s vocabulary. from the rest. A total of 50,000 instruction sets are created
for the evaluation. Each set consists of 4 instructions from the
2) Instruction Embeddings: We also conduct similar ex- same opcode category and 1 from a different category.
periments for the instruction embeddings generated by the First, we conduct the intrinsic evaluations using the pre-
pre-trained PalmTree model. We pick a particular instruction, trained PalmTree model to see how the model actually per-
then compute its cosine similarity with all the instructions’ forms. For efficiency, we compute the embeddings of every
embeddings in our dataset and sort the instructions in de- instruction in the dataset beforehand, and store them to use
creasing order of their pairwise cosine similarities with our later for computing cosine distances. Then, we conduct the
target instruction. After that, we plot the topmost 20 cosine intrinsic evaluations on 10 different instances of 50,000 set
similarity values along with the instructions they represent. of instructions and compute the accuracy for each instance.
As an example, we pick the instruction ‘or, ecx, r10d’, which  Here, the term accuracy is defined as the percentage of correct
belongs to the BINOP group according to Table I, then we detection of the outlier in a set of 5 instructions, based on
plot the pairwise cosine similarities of the top 20 instructions’ the pairwise cosine distances of their embeddings. For the
embeddings in relation to this target instruction. The result PalmTree pre-trained model, the mean accuracy for all 10
is shown in Figure 6. Here, unsurprisingly the instruction instances are nearly 68%. This value is much lower than
shows the highest similarity with itself. If we look at the the accuracy originally reported in the PalmTree paper [15].
other instructions along the X-axis, we can see that although A main reason is how the instructions were chosen in their
they mostly include a binary operator in them (e.g., xor, evaluation. While they require the opcode and the number of
sub, add etc.), there is a ‘mov’ instruction within the group. operands to match for the instructions, we choose instructions
This suggests that while instruction embeddings generated by in a set solely based on their opcode, without considering

Relative Frequency
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the number of operands they consists of. Therefore our sets
have higher variability and are more difficult to detect outliers
reliably.

We construct a deep metric learning model based on the
concepts we discussed in section IV to conduct the same
experiment and show off the improvements in the instructions’
representations (i.e., embeddings) made by the application of
metric learning. Our embedding network is comprised of two
linear layers containing 256 neurons with ReLU activation.
The network embeds the instructions to a 128-dimensional
vector where triplet loss pushes the outliers further from the
similar instructions. We train our network using the SGD
optimizer with a learning rate of 0.001 and momentum of 0.9
for 10 epochs. Usually, a mining technique such as hard online
negative mining or batch hard mining [30] would be needed
to sample relevant triplets so the model can converge faster.
In our case, our model quickly learns the important features
needed to distinguish between similar instruction embeddings
and outliers, thus mining tactics are not needed.

Training Loss Testing Loss
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Fig. 7: Loss and accuracy curves during training. The accuracy
was taken as the average of correct outliers detected using
10 instances of 50,000 randomly generated groups. We also
display the maximum and minimum accuracy and loss over
the 10 instances, and find they do not vary much.

When training on only 500 groups for 25 epochs, we were
able to achieve an accuracy of 99% on 49, 500 testing groups.
When evaluated using the same 49,500 testing samples, the
original embeddings (generated by PalmTree) only achieve an
accuracy of 68%. We conduct various experiments testing the
speed of convergence of the model as well as its accuracy
when trained using more than 500 groups, and find that the
model is able to achieve 100% accuracy as the size of the
training set grows. In general, we see that using metric learn-
ing drastically improves the relationship between instruction
embeddings from the same group, while further separating the
outliers. The loss and accuracy for both training and testing
are shown in Figure 7.

D. Comparisons and Discussions

To visualize the effects of applying metric learning, we plot
the t-SNE [31] of the datset before and after the application
of metric learning, which is shown in Figure 8. One thing
is instantly evident that, although we have 10 categories
based on opcode, the distribution is not very well-balanced.
For example, while the group for opcode ‘MOV’ consists of
4,206 instructions, another opcode ‘CALL’ contributes to a
small group of only 25 instructions. Now, before applying
metric learning, the clusters of instruction embeddings are not
distributed properly, and we cannot picture a proper boundary
between any two groups. From the second part of Figure 8§,
we can see that the instructions show well-formed clusters
according to their category. We can easily separate one group
from another after applying metric learning on the instructions’
embeddings.
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Fig. 8: The t-SNE representation of data before (top) and
after (bottom) metric learning. Instruction pairs that are in the
same class are closer to each other. Triplet loss has been used
to determine similarity between instructions throughout the
clusters.
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VI. THEORETICAL EXPLANATIONS

In this section, we aim to explain the empirical results
shown in this paper that have been reported by analyzing the
BERT architecture. The BERT used in the PalmTree model is
a standard stack of transformer blocks, which can be described
compactly by a set of equations.

A transformer block is a parametrized function class fp :
Rxd — RXdIf x € R™9 then fy(x) = z; letting
QM (x;) = W}qui, K™ (x;) = W,zjk,xi, V) (%) =
W,zjvxi, where W, ¢, Wy, 1., Wh, ., are all in R4%k the function
is implemented using a sequence of transformations. For the
BERT in the PalmTree model, d = 128 and H = 8. Equation
1 computes the weights used for self attention,

QM (x;), KM (x;
ch;-) = softmax; << (x )\/% (X])> . (D)

Note that the softmax is applied row wise; since softmax
is scale sensitive, when the difference between the largest
and second largest dot products in each row is large, the
output probability distribution will become very close to a
delta function.

H n
w =Y WHD i,V (x), W, e R (2)
h=1 j=1

Equation (2) implements the self attention via weighted aver-
ages, where the ones with larger weights affect the output more
and therefore the model ”pays” more attention. The output is
generated by applying token-wise layer normalization, forward
transformation, and another layer normalization, given by
equations (3), (4), and (6),

1,0 €ER - (3)
Wl c Rdxm,Wg c Rde, (4)

2,82 €R,  (5)
LayerNorm(z;v,8) =7 ® z ; o + 8, (6)

z

u; = LayerNorm (x; + u};v,51),
z; = Wi ReLU (W w;),

z; = LayerNorm (u; + z}; 72, 32) ,

where z,7, 8 € RY, 11, is the mean of the mini-batch and o,
is the estimated variance during the training time.

Here equations (1) and (2) implement the self-attention,
where the embeddings of the entire sequences are mixed, the
importance of different tokens is based on the inner products
of the query embedding and that of the current token. Note
the attention mechanism is scale-sensitive. In other words,
if we scale all the token embeddings by a constant larger
than one, the mixing effect will be reduced as the probability
distributions given by the softmax will be more peaked. For
the PalmTree model [15], we have checked the diagonal
elements and off-diagonal elements before softmax is applied
in equation (1). We have realized that the diagonal elements
are much larger; for the average diagonal and off-diagonal
elements in the input layer are 98.53 and 1.45 respectively
and they are 3733.10 and —112.15 respectively for the output
layer. The inner products for the input layer are also consistent

with the token lengths shown in Fig. 5.2 In all the instructions
we have examined, the diagonal elements are much larger
than the rest in each row. This shows that the BERT model
used does not provide a strong context-sensitive representation
for an instruction. In addition, the embedding chosen for an
instruction is the average from the second last layer.

While the two layer-norm layers and the feed forward layer
are important, they are uniformly applied to all the embedding
vectors. While the directions could change, embeddings do not
affect each other in these layers.

In addition, the additional loss terms (CWP and DUP loss
terms) use the output vector associated with the special [CLS]
token, but the instruction embedding is the average for the
second last layer. The gradients from those loss terms may
not affect the instruction embeddings as expected. Further-
more, the interactions among the three loss terms need to be
examined more carefully.

We believe the limited mixing of the token representa-
tions along with the relative low correlations between the
embeddings any pair of input tokens affects the effectiveness
of the resulting instruction embeddings. As shown in Fig.
2, cosine distances between instruction embeddings within a
family overlap heavily with instruction embeddings from two
families; in some cases they are almost identical. The overlaps
limit the inherent ability of the instruction embeddings to
detect outliers reliably. While metric learning improves the
performance significantly, more effective instruction embed-
dings should further improve the robustness and generalization
performance. However, how to further improve the robustness
and effectiveness of the token and instruction embeddings is
being investigated further.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have systematically analyzed the embed-
dings for instructions by looking at the geometric relationships
among the vectors in the embedding space. Our results show
that the embeddings of the tokens and instructions do not
reflect the similarities of tokens and instructions robustly,
resulting in low performance on an outlier detection problem.
Metric learning using triplet loss is effective in mitigating the
issues, resulting in better clusters and significant improvements
for the outlier detection problem. As the embeddings are
essential for downstream applications, how to improve them
remains to be an important problem.

More broadly, due to the many parallels between computer
programs and natural languages, and the importance of linking
high level concepts and explanations in natural languages to
low level constructs (basic blocks, loops, functions, and so on),
how to take advantage of the recent development in natural
language processing to improve efficiency and accuracy of
software reverse engineering, malware analysis, and program
analysis should be explored systematically. In particular, by
utilizing the data for programs, transfer learning techniques
can be an effective direction, which is being investigated.

2Note that the length of an embedding vector is the square root of the inner
products of the vector and itself.
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