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Failure is an option: Task and Motion Planning with Failing Executions

Tianyang Pan, Andrew M. Wells, Rahul Shome and Lydia E. Kavraki

Abstract— Future robotic deployments will require robots to
be able to repeatedly solve a variety of tasks in application
domains. Task and motion planning addresses complex robotic
problems that combine discrete reasoning over states and
actions and geometric interactions during action executions.
Moving beyond deterministic settings, stochastic actions can
be handled by modeling the problem as a Markov Decision
Process. The underlying probabilities however are typically
hard to model since failures might be caused by hardware
imperfections, sensing noise, or physical interactions. We pro-
pose a framework to address a task and motion planning
setting where actions can fail during execution. To achieve a
task goal actions need to be computed and executed despite
failures. The robot has to infer which actions are robust and
for each new problem effectively choose a solution that reduces
expected execution failures. The key idea is to continually
recover and refine the underlying beliefs associated with actions
across multiple different problems in the domain. Our proposed
method can find solutions that reduce the expected number of
discrete, executed actions. Results in physics-based simulation
indicate that our method outperforms baseline replanning
strategies to deal with failing executions.

I. INTRODUCTION

In order to accomplish complex tasks in real-world sce-
narios, robots must be capable of choosing among available
actions and computing motions for accomplishing a task
objective. This is typically solved using Task and Motion
Planning (TAMP) [1], [2], [3] which combines discrete, Al
planning and geometric reasoning. A robot might be capable
of servicing a variety of tasks in a setting. Each time a new
task is provided to the robot, a structured specification is
given to a TAMP solver module, and the resultant task and
motion plan is obtained. This plan consists of a sequence
of discrete actions and accompanying motions that can be
executed by the robot. As shown in Fig. 1, during execution,
an action may fail even if the computed trajectory itself is
feasible and collision-free. Such a failure can result from un-
known system errors, malfunctioning hardware, unmodeled
physical interactions, or sensing uncertainty. Consider the
example of a slippery object which might be easier to push
than to pick up. While the robot is operating in the scene, it
might come across many problems that require interactions
with the same object. If certain actions are less robust than
other actions, the robot can prioritize task and motion plans
that are more likely to be executed successfully. The current
work asks the question: can we use the information from
failing executions towards efficiently solving a variety of
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Fig. 1: Instances of actions that can fail during execution.
(top-left): a pick failure, (top-right): a push failure, and
(bottom): a pick failure in real world.

TAMP problem instances in the domain with a minimum
expected number of executed actions?

Since actions can fail during execution, the world cannot
be modeled as deterministic. A stochastic version of the task
and motion planning domain can be obtained by associating
each action with the probability of execution failure. Markov
Decision Process (MDP) is a commonly used tool to use
as a way to find robust solutions. Some previous work [4]
proposes a TAMP framework that is integrated with an MDP
solver for stochastic environments where failure probabilities
are known. This assumption about knowing the ground truth
probabilities is often unrealistic. Consider again the example
of a slippery object. Without a perfect model for the physical
interactions, the likelihood of success for a pick versus a
push cannot be exactly determined. Without any information
about the underlying probabilities, the TAMP approach is,
for example, incapable of discriminating between a robust
push and an unreliable pick for a slippery object. If the
specific task can admit either solution, such an uninformed
TAMP solver exhibits the highly brittle behavior of com-
puting the same solution again and again. Here the robot
will stubbornly retry the failing actions. Since the intrinsic
probabilities of the system are unknown, the problem can
be formulated as a partially observable Markov Decision
Process (POMDP) [5]. POMDPs are generally intractable for
large problems, motivating the contribution of the current
work - a computationally efficient framework for TAMP
with failing executions.

Keeping track of the execution failures and updating
the beliefs associated with the actions hold the promise
of quickly identifying robust actions and achieving task
objectives in fewer overall executed steps. Bayesian inference
is a common way to keep incorporating new information to
update action beliefs. To achieve good performance, we must
balance between exploration and exploitation [6], for which
we choose posterior sampling [7], [8]. Our proposed method
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combines an MDP with a Beta-Binomial distribution model
[9] and leverages Bayesian inference for updating the belief
of the unknown probabilities. When we start with no prior
knowledge of a TAMP domain, we initialize an MDP with
uniform prior and let the robot execute the optimal policy.
The posterior belief is updated given the observations after a
failed execution. Then we sample the transition probabilities
from the posterior, which can be used to construct an updated
MDP. A key contribution of our work is that this information
is maintained across all the instances encountered in the
domain to aggregate prior knowledge across the domain that
can be reused for task and motion planning. Another feature
of the method is its general applicability to TAMP domains
including high-dimensional robotic arms. Maintaining beliefs
and updating the MDP proves efficient when the initial
estimate of the model parameters is inaccurate.

The performance of the proposed approach was empiri-
cally validated. Experiments were first performed for sets of
TAMP problems with manipulation actions with execution
failures sampled from simulated ground truths. The proposed
approach is empirically reported to be comparable in perfor-
mance to an optimal baseline (which is aware of ground
truth probabilities), and our method is better than replanning
or retry-action baselines. A further set of benchmarks are
presented in Gazebo [10] using physics-based simulation of
the object interactions, where the ground truth is unknown.
Our method shows better performance in terms of average
number of actions to solve problem instances by correctly
differentiating easy to pick objects, and objects where pick
or push actions are more reliable. In settings where real-
world executions can fail and the underlying probabilities
are unknown, our proposed work in modeling beliefs over
parameters to a stochastic TAMP solver shows promise and
can help to address richer real-world interactions and failures.

II. RELATED WORK

Task and Motion Planning: Previous work [1] in TAMP
combines a general satisfiability modulo theories (SMT)
solver for task planning and standard motion planners. Some
other approaches use heuristic search for high-level planning
[2], [3]. TAMP has also been formulated as an optimiza-
tion problem [11], addressed through guided multi-modal
search [12], and extended to multi-robot instances [13].
However, these works usually focus on deterministic and
fully-observable environments.

Some works focus on partially observable problems where
the robot is uncertain about the current state of the world
[14]. The problem is formulated as a POMDP and a regres-
sion based algorithm is proposed. A POMDP-based method
with online replanning [15] was proposed to gain efficiency.
The stochastic TAMP problem can be formulated as an MDP
[4], where the authors propose a framework that combines
MDP solvers and motion planners. These works need known
transition probabilities. There has been some recent interest
on closed-loop tasks with real sensing data. These can relax
the necessity of exact models but address specific problem
instances [16], simplify motion feasibility [17], or rely on

learned controllers [18]. In contrast our method provides a
general closed-loop TAMP framework to address unknown
probabilities of execution failures.

Failure Recovery in Robotics: Extensive research has been
carried out on the bin-picking problem [19], [20] where
grasping failure is considered. These works usually provide
Markov policies for picking-up objects from cluttered en-
vironment using deep neural networks. A Markov policy
decides which action to take at each state, regardless of the
history of how the state is reached. A recent work [21] pro-
poses non-Markov policies for such problems as it leverages
the history of execution and observation. These works [19],
[20], [21] focus on a specific set of problems, while our
framework has the ability to deal with different high-level
tasks with abstract specifications. One previous work [22]
learns grasping points using beta-binomial distribution based
Bayesian techniques. But it does not compute a policy to
handle grasping failures. Some works leverage learning from
demonstration techniques to enable the robot to recover from
errors [23], [24]. Our framework can deal with problems
where human prior knowledge is insufficient. A framework
is proposed [25] to combine Bayesian inference and deal
with failure recovery. However, they consider mobile robots
rather than manipulators. Moreover, the above works are
mostly restricted to a single policy, while we keep providing
new policies as we incorporate new observations and update
the MDP model, recovering efficiency even when the initial
estimate of the MDP parameters is inaccurate. Recent work
[26] learns a feasibility model of task plans to deal with
uncertainties in real-world executions. The model parameters
are learned via a Bayesian approach. An exploration phase
is necessary to collect data and learn the feasibility model,
before using it. We do not need a dedicated data collection
phase, which is expensive for real robots.

Relation to Reinforcement Learning: Standard reinforce-
ment learning assumes the environment can be modeled as
an MDP or POMDP. To avoid the computation complexity of
operating in belief space, some approaches leverage posterior
sampling to automatically adapt to the change in model
estimates [27], [28]. The Bayes-adaptive MDP (BAMDP)
is proposed to address uncertainty in the MDP model [29].
BAMDP is mathematically equivalent to POMDP under
structural assumptions of the uncertainty in the model [29],
[30]. Some recent reinforcement learning work applies policy
optimization on BAMDPs to address model uncertainty [31].
However, these works do not tackle problems from TAMP
domain. They do not consider motion planning with high
DoF robotic manipulators. In addition, they focus on learning
to solve a single problem, while we consider a TAMP domain
that can have a variety of problem instances. Lastly, the focus
of our work is to find a way for the robot to finish tasks as
early as possible, rather than learning the whole domain.
Reinforcement learning also usually require a large number
of interactions between the agent and the environment. The
learning procedure is feasible in simulation, but can be
inefficient and costly for real robots [32] due to the the well-
known “gap” between simulation and reality [33].



Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

III. PROBLEM STATEMENT
A. Preliminaries

Motion Planning: Consider a high degree of freedom (DoF)
manipulator with multiple objects in the workspace. For a
d DoF robot, C € R? is its d—dimensional configuration
space. We denote the free configuration space as Cgee C
C. A trajectory is a time parameterized curve 7 : [0,¢] —
Cree, Which is called a solution to a motion planning problem
between a start gop € C and a goal ¢; € Cif 7(0) = qo,7(t) =
q1- The motion planning domain is Dyp.

Task and Motion Planning (TAMP): Task planning is
defined over a task planning domain Drtp consisting of a
finite set of states S, a finite set of actions A that transitions
the states. An instance of a TAMP problem includes an
initial state s and a set of goal states Sgoq;. Each state-
action pair (s, a) is associated with a single result state s*.
TAMP is the problem of finding a feasible n-step task and
motion plan T = ((a®,7°),..., (a", 7)), where a°,...,a"
is the task plan that satisfies the task planning domain and
successfully transitions to a goal state s” € Sgoqi. Each
discrete action a’ transitions from state s’ to the result state
s'*1 and corresponds to a feasible motion plan 7.

When actions executions can fail, i.e., there is a non-zero
probability that an action does not reach the desired state,
such stochastic TAMP domains can be modeled by an MDP.
Markov Decision Process (MDP): An MDP is a tuple
M= (S,A P R),

e S is a finite set of states,

e A is a finite set of actions A, is the set of actions

available from state s,

e P:SxAxS — [0,1] is the transition probability

function where Vs € S,Va € Ag, XgecsP(s,a,8") =1,

e R:Sx AxS — Ris the reward function.

The precise formulation of the MDP in TAMP follows
previous work [34], [35]. The state space S and action
space A of the MDP belong to the TAMP task planning
domain Drp. The transition probability P(s,a,s’) denotes
the probability of executing action a at state s leading to
the state s’. The reward function can be defined based on a
notion of cost of such state-action-state tuples.

Path through MDP: A path ¢ through an MDP is a state
followed by a sequence of action-state pairs:

€ =5%a"")...(a" 5.

£ is determined by the path in the MDP which has the
most cumulative reward from s° to a goal state s™ € Sgoal.
This task plan arises from the optimal policy. For solving the
TAMP problem, motion planning computes the 7 for each
a’, using this information to update the task domain [1].

In real world problems where executions may fail, the
ground truth of the transition probabilities in the MDP are
usually unknown. These probabilities can be thought of as
parameters that determine the performance of the MDP. We
denote © as the unknown transition probabilities and Py
as the transition function parameterized by ©. When these

parameter values are unknown, we have to use probabil-
ity distributions as beliefs over these parameters ®. Beta-
Binomial distribution model is frequently used in statistics
[9], [36], especially in cases where the variable of interest
lies in [0, 1].

Beta-Binomial Distribution Model: Assume that the exe-
cution of an action either succeeds or fails, with the success
probability being 6. Then, if this action is executed L times,
the probability of k£ executions succeeded in the L trials
is (£)60*(1 — 6)L=*, which follows a Binomial distribution.
When the probability 6 is unknown, the Bayesian approach
to maintain and update the belief of 6 is to use the Beta distri-
bution (i.e., ¢ ~ Beta(a, 3)). Since the Beta distribution and
the Binomial distribution form a conjugate pair, the posterior
after L executions and k successes can be updated [36] by:

(o, B) « (a+ k,B+L—k)

In other words, the number of success and failure can be
accumulated to conveniently update the parameters of the
Beta distribution in accounting for failing executions.

B. Problem Formulation

Let S be the set of all abstract states, A be the set of
high-level actions, Py be the transition probability function
parameterized by the set of parameters ©, and R be the
reward function. My = {S, A, Py, R} is the MDP param-
eterized by ©. We now introduce what parameterization of
the MDP we use to model a stochastic TAMP problem.

As we only focus on whether an execution succeeds,
for each state-action pair (s,a), we assume there exists
only one result state s* that is defined as the success
state as represented in Drp. If the execution of a at s
led to any other state that is not s*, we say that the
execution failed. Therefore, the observation model (or likeli-
hood) for a single execution becomes Bernoulli distribution,
i.e., the result of the execution of an action a is either
success with probability Py(s,a,s*) or failure with prob-
ability 23/6573/#3*139(8, a, S/) =1- PQ(S, a, S*) Denote the
success probability to be Py(s, a,s*) = f545+. An element 6
in the parameter space © parameterizes Py.

Let ¢! be the prior distribution of 0.+ at time step

sas*

t, which is a Beta distribution Beta(a, ,85 ). If we
execute a from s at time step ¢ for L times repeatedly, the
probability of the occurrence of the event where k out of
L executions succeeded is ()05, (1 — f545-)L 7, being a
Binomial distribution. After ¢ = ¢ 4+ L executions and k
successes, the posterior distribution ¢f . can be updated by
the following rule:
(0, e Bo,n) 4 (0 + By, + L= k)

sas

TAMP with Failing Executions: Given an MDP M, =
(S, A, Py, R) constructed from Drp with unknown transition
probabilities ©, a set of goal states Sgoqr C S, and the
prior distributions ® of each parameter § € ©, minimize
the expected number of actions executed to solve problem
instances in the stochastic task and motion planning domain.
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IV. METHOD

We propose the following algorithm that combines MDP
and posterior sampling to maintain and update the belief over
the unknown transition probabilities.

Algorithm 1: HIGHLEVELLOOP
Input:l)Tp,l)Mp,¢,¢’
// P is a sequence of TAMP instances
1 while True do
2 S,A,P, Rv¢a5initasgoal <
GETNEXTPROBLEM(P);
incoming problem instance
M+ (S, A, P,R);
¢
SOLVEINSTANCE(M, @, Sinit; Sgoal, DTpP, Dnvp)
// Solve & execute the problem instance

5 ® < BOOKKEEP(®, ¢);

// Get the next

Algorithm 2: SOLVEINSTANCE
Input: M, ¢, sinit, Sgoat, Drp, DMpP
1 8 < Singts
2 ¢7é—-@ 3 // Execution outcome observations
3 while s ¢ Sy, do
4 ¢ < UPDATEDISTRIBUTIONS (¢, ¢); // Use
action outcomes to update distributions
5 © < GETPARAMETERS(M);
6 for 6 € © do
7 L 0 < BETA(¢);

probabilities from Beta distributions

// Sample the transition

8 My Q5711,f%,]%%
by sampled probabilities

9 T < SOLVETAMP(My, s, Sgoar, Drp, Dnip);
10 s, < EXECUTEACTIONS(T);

actions till failure and record outcomes

// MDP parameterized

// Execute

11 return ¢; // Return the updated distributions

Given the full TAMP domain, Alg. 1 shows how we
maintain the belief of all the transition probabilities of the
full domain when we keep solving a sequence of problem
instances and update the beliefs. Alg. 2 solves an instance
that can be modeled from the domain using an MDP M.

Alg. 1 is responsible for book-keeping of the full TAMP
domain. The input to the algorithm is the task planning
domain Drp, the motion planning domain Dyp, a set of
parameters ® (initialized with prior information) that we use
to maintain the distribution of the unknown probabilities,
and a set P of problem instances. Alg. 1 can be seen as
a lifelong high-level loop that keeps solving the problem
instances within the domain, and updating the belief over
the parameters along the way. P is a sequence of TAMP
instances in this domain, specified as a user input when used
in real world. The focus is on effectively using information
from solving and executing problems in P. Note that if
the instances lead to every transition in the MDP being

(a) Pick and Place Bench- (b) Pick versus Push Bench-
mark: Move n out of 5 objects mark: Move n out of 3 objects

Fig. 2: The screenshots of the benchmark problem setup in
Gazebo showing the initial states. The goal region is marked
in blue color. The white objects have much less friction than
the green ones, making them difficult to be picked up, but
easy to be pushed. The triangular objects in the Pick vs.
Push benchmark cannot be pushed to the goal region with
a single action as it topples over because of its shape and
friction coefficients. The sides of the triangular object are
also designed such that picks can fail sometimes.

attempted infinitely often, the beliefs will converge. We are
instead interested in reducing the expected number of steps
executed for each instance, for which exact estimation of the
ground truths is not necessary. This is supported empirically.
Whenever a new TAMP instance arrives (Alg. 1 line 2,
GETNEXTPROBLEM), we use Alg. 2 to solve it (Alg. 1 line
4, SOLVEINSTANCE). After each instance is fully solved and
executed, we keep track of the updated distributions (Alg. 1
line 5, BOOKKEEP).

The input to Alg. 2 is an MDP Mj, with unknown
transition probabilities Py, the initial state, a set of the goal
states, and the current belief distribution ¢ of the unknown
parameters ©. The algorithm starts with randomly sampling
the transition probabilities from the distribution (Alg. 2 line
7) and builds an MDP (Alg. 2 line 8). We solve the TAMP
problem using a stochastic TAMP solver (Alg. 2 line 9,
SOLVETAMP), where we use PRISM model checker [37]
to solve the MDP, and use RRT-Connect [38] to solve the
motion planning problems. Then, the TAMP plan is executed
from the current state s, and observations v in the form
of execution successes or failures are made and collected
(Alg. 2 line 10, EXECUTEACTIONS). The distributions are
updated using the collected information (Alg. 2 line 4). We
then get the set of transition probabilities from the MDP by
GETPARAMETERS (Alg. 2 line 5), and sample new transition
probabilities from updated distributions (Alg. 2 line 7) to
build a new MDP.

Note that we choose to let the robot execute the TAMP
plan until a failed execution is observed (Alg. 2 line 10),
which means the observation information is collected along
the way and updated to the belief together upon failures.
Other update strategies could also apply, such as updating
after each action, or after the whole task is executed, where
motion plans from the failed state can be computed according
to the existing policy.
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Fig. 3: The Pick and Place benchmark is designed for NV = 5,7, and 9 objects. One instance of the problem can require any
1 < n < N objects to be moved. A sequence of 50 problem instances defines a single run over which the performance of
approaches can be measured. 20 such runs are sampled and recorded. The data at the instance ¢ € [1---50] is reported as
an average over instances 1 up to ¢, across 20 runs. (Top:) Number of steps executed to finish each instance normalized over
the optimal behavior. (Bottom:) Computation time of each instance. The ground truth probabilities for a successful pick of
N objects is shown above each plot. The rightmost column uses randomly sampled ground truths for each of 20 runs.

V. EXPERIMENTS
A. Benchmark Problems

We evaluate the performance of each method in a tabletop
domain. It is assumed that the real execution of each picking
or pushing action has a success probability. There is a single
robot that must finish the given problem instances.

Pick and Place Benchmark: As shown in Fig. 2a, there are
N objects on the table, which contains an initial region and
a goal region. We assume a region can support all N objects.
Initially, all the objects are in the initial region. The available
actions are pick and place. A problem instance needs to move
n objects to the goal region, where 1 < n < N. To be
efficient, less pickable objects should to be avoided.

Pick vs. Push Benchmark: Similarly, we have N objects
in the initial region of the table (see Fig. 2b). The goal is to
move any n of the objects to the goal region. The available
actions are pick, place, and push. An instance of this TAMP
domain is the task of moving n objects to the goal region,
where 1 < n < N. The expected behavior of the proposed
method is to distinguish if pushing or picking works better
for each object, and to distinguish between objects.

B. Experiment Setting

Non-physics simulation: In this setting, the ground truth of
all the probabilities are given to the simulator. The simulator
then randomly generates the outcome for each action execu-
tion. We keep running the methods for 50 randomly sampled
instances from the TAMP domain.

Physics simulator: We use Gazebo with the Open Dynamics
Engine (ODE) [39] as a physics simulator and the Robowflex
[40] motion planning framework. To simulate the real world
in Gazebo we tune the mass and the friction terms of
each object to make them have different probabilities of
being picked successfully. Note here the ground truth of

such probabilities are unknown. To introduce uncertainty in
pushing, a triangular object (Fig. 2b) topples when pushed.

C. Methods To Compare

Optimal (Ground truth MDP): This baseline knows the
ground truth probabilities. Its performance is therefore the
optimal. Note that we can design ground truths for non-
physics simulation. The ground truths become unknown
when using physics simulator or in the real world.

Retry: This method assumes no prior knowledge of the
ground truth of the parameters. Therefore, it assumes the
probability of successfully executing any action to be 1. It
builds an MDP with such an assumption and keeps executing
the policy even if any real execution fails.

Replan: When an execution fails, this method will create a
new MDP with the failed transition blocked to make sure a
new policy is computed. If no policy can be computed, it will
relax all the blocked transitions and start over again. Note
that this baseline maintains the information across different
problem instances. If it observes that an action fails for one
instance, it keeps blocking this action from the state when
solving the successive instances.

Belief (Proposed): This is the proposed method shown in
Alg. 1 and 2 which updates the belief when an execution
fails (“belief-failure”). We also compare against alternate
frequencies of updating the belief. The “belief-execution”
update rule will update the belief after each execution during
each task. The “belief-instance” update rule only updates the
belief once after a problem instance is fully completed.

D. Results

Simulation results: Fig. 3 shows the results of the Pick and
Place benchmark, with increasing total number of objects
N in the TAMP domain. The top row shows the normalized
number of steps over the result of the ground truth baseline.
Note the plot is smoothed so that each data point is averaged
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from the beginning. From the top row in Fig. 3, we can see
that the retry baseline reaches the goal state taking twice as
many steps as the optimal behavior on average because it
is not leveraging the observation. The replan baseline has
a better performance than the refry one, but still far from
optimal. Since all the executions have some probability of
failure, the replan method will block all the actions and has
to start over again from time to time. All three variants
of the proposed method converge to the optimal behavior
eventually, often within only the first few instances.

Some problem instances can require longer solutions than
others regardless of the uncertainty. By averaging over runs
and instances this noise is smoothed out in the data and a
clear trend emerges where the proposed method performs
close to the optimal, while retry and replan are worse.

The bottom row in Fig. 3 shows the corresponding com-
putation time per-instance. The retry baseline only computes
policy once for each task and blindly follow the policy.
The belief-instance variant of the proposed method also
computes policy once per-instance but it updates the belief
after an instance is finished. The replan baseline needs to
compute a new policy whenever it updates the MDP model
by blocking an action. From Fig. 3, the proposed belief-
failure performs much better than the other methods and
needs less computation than the replan or belief-execution.

Note: There is a trade-off between computation time and
performance for the three variants of the proposed method.
The performance of belief-failure and belief-execution are
similar, but belief-failure needs much less computation. The
belief-instance computes the policy even less, but performs
much worse for the first several instances. Based on the
trade-off, one strategy when applying the proposed method
into real-world problems is that when the robot solves and
executes a new problem, we use the belief-failure variant to
begin with. If the robot becomes more confident about the
probabilities we switch to the instance variant to save policy
computation time for the later problem instances.

The rightmost column of Fig. 3 shows the result of the
methods averaged over 20 runs. In each run, the ground truth
is randomly sampled in [0,1]. There is a similar trend where
the proposed method shows a near-optimal performance with
less computation time than competing methods.

Remark: We also checked the Pick and Place benchmark
with the probabilities all set to 0.9 and all set to 0.1. We
observed no performance difference among the methods.
This highlights that the proposed approach is useful when
actions need to be distinguished (are not all good or bad).
Physics simulator results: Fig. 4 shows the results of the
two benchmark problems (see Sec. V-A) in Gazebo. The
trends are similar to what is shown in Fig. 3. For the result
of the Pick and Place benchmark, we can see that the retry
and replan baselines are still worse than our method. The
results of the Pick vs. Push in Fig. 4 show that the average
number of steps executed of our method is much less than
the baselines. Replan is usually worse than retry because the
replan method keeps blocking failed pushing and picking
actions and can run out of options and reset from scratch.

‘ —retry —replan — belief-failure

Ground truth unknown Ground truth unknown

o e

Number of Steps
o
o

~
)
Number of Steps
BuoNwOO LR W

Computation time (s)
o - N w S w o
Computation time (s)

0 10 20 30 40 50 0 10 20 30 40 50
Number of instances Number of instances
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Fig. 4: Gazebo simulator results. Top: Number of steps
executed to finish each task. Bottom: Computation time
of each task. All data are smoothed to be the average
from beginning. All the results are collected from Gazebo
simulation, averaged over 5 runs. Left: The Pick and Place
benchmark with 5 objects in total. Right: The Pick-Place vs.
Push benchmark with 3 objects in total.

The results indicate performance benefits within a few
problem instances. This happens even without precise es-
timates of the transition probabilities since good enough
estimates can discriminate robust actions from ones that fail.

Real-world demonstration: In the demonstration!, the
robot is tasked with three problem instances with the objects
shown in the bottom figure of Fig. 1. The proposed method
starts to prefer more robust actions quickly.

VI. CONCLUSION

In this work we proposed an efficient framework to
solve TAMP problems where action executions can fail. To
address realistic problems where ground truth probabilities
of successfully executing actions are not known, our method
combines MDP with Bayesian inference and posterior sam-
pling techniques. Our method reduces the expected number
of steps executed to finish the problem instances in a TAMP
domain. The results show that given a stochastic TAMP do-
main with unknown ground truth probabilities, the proposed
method achieves much better performance than competing
baselines. In simulated failure benchmarks our performance
converges to an optimal method (aware of the underlying
ground truths). In physics simulator benchmarks where the
ground truth is unknown, the proposed method outperforms
replanning and retry baselines. Future efforts will be devoted
to finding more efficient ways to solve the task planning
problems, reasoning over different outcomes of an execution
including the consideration of irreversible actions, efficient
inference of diverse and granular causes of failures, and other
sources of uncertainty. This work proposes a promising step
towards enabling TAMP methods to address the challenges
posed when robots solve tasks in the real world.

'Real demonstration video: https://youtu.be/gg_1Xa3v6dQ
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