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MISO Identification in Networks with Observational
Data

Sina Jahandari, Donatello Materassi

Abstract—This article addresses the problem of consistently
identifying a single transfer function in a network of dynamic
systems using only observational data. It is assumed that the
topology is partially known, the forcing inputs are not measured,
and that only a subset of the nodes outputs is accessible. The
developed technique is applicable to scenarios encompassing con-
founding variables and feedback loops, which are complicating
factors potentially introducing bias in the estimate of the transfer
function. The results are based on the prediction of the output
node using the input node along with a set of additional auxiliary
variables which are selected only from the observed nodes. Sim-
ilar prediction error methods provide only sufficient conditions
for the appropriate choice of auxiliary variables and assume a
priori information about the location of strictly causal operators
in the network. In this article, such an a priori knowledge is
not required. A most remarkable feature of our approach is that
the conditions for the selection of the auxiliary variables are
purely graphical. Furthermore, within single-output prediction
methods such conditions are proven to be necessary and sufficient
to consistently identify all networks with a given topology. A
fundamental consequence of this characterization is to enable
the search of a set of auxiliary variables minimizing a suitable
cost function for single-output prediction error identification. In
the article, we suggest possible approaches to tackle such optimal
identification problems.

I. INTRODUCTION

Designing a suitable input to be injected into a system in
order to identify its dynamics is a common strategy in iden-
tification theory [1]. Apart from injecting known inputs [2],
networked systems offer other options of active intervention
to facilitate the identification process. For example, standard
approaches involve removing certain edges and/or knocking
out specific nodes [3], [4].

However, in several applications the network cannot be ac-
tively manipulated and data are merely observational. Namely,
the network measurements are usually acquired while the
system is responding to excitations that are not necessarily
known [5], [6].

A wealth of methodologies has also been developed to deal
with the problem of identifying a network of dynamic systems
from observational data. These methods rely on different a
priori assumptions and have different identification goals. On
one hand, some techniques have as primary goal the recovery
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of the unknown network graph [7]-[9], while the quantitative
identification of the network dynamics (i.e. transfer functions)
might only be a complementary outcome [10]. On the other
hand, some techniques assume that the underlying graph
is at least partially known and the very objective becomes
to identify the transfer functions describing the dynamics
coupling the nodes [11]-[16].

The results of this article fall into the category of tech-
niques aiming at identifying an individual transfer function
in a network where the graph topology is partially known.
A defining feature of our techniques is that they rely on
conditions that are purely graphical and are inspired by the
theory of probabilistic graphical models of random variables.
The main advantage of graphical model techniques is that
they tend to be particularly suited to deal with confounding
variables. However, graphical models are typically defined on
directed acyclic graphs. Thus, they might not be considered an
adequate model to describe scenarios involving feedback loops
which are instead central in the theory of automatic control.
Conversely, the problem of determining a transfer function
involved in a feedback loop within a network is an active
topic of research in identification theory. In [14] classical
closed-loop prediction error techniques such as direct, two-
stage, and joint-input-output methods are extended to be ap-
plicable in local network identification settings. Improvements
upon the same general ideas were presented in [17] using
tools from graph theory, in [18] incorporating Bayesian/kernel
methods and in [19] to deal with sensor noise. Furthermore,
the possibility of parametric identification strategies based on
instrumental variable methods was explored in [20]. As a
recent development some closed loop identification techniques
[21]-[24] have incorporated graphical conditions to effectively
deal with confounding variables and offering the opportunity
to create connections with the theory of graphical models.

A typical limitation of prediction error methods is that
some information about the locations of strictly causal transfer
functions needs to be available. This knowledge is typically
formalized by requiring that there is no algebraic loop for any
value of the parameters in the full network parameterization
[17].

In this respect, our first contribution can be interpreted as
an attempt to extend certain graphical model tools to deal with
the problem of closed loop identification combining the best
of the two worlds: an effective way to take into account the
unknown locations of strictly causal transfer functions while
obtaining an unbiased closed loop identification in presence
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of confounding variables. In particular, our identification pro-
cedure falls in the class of prediction error methods, while
the selection of auxiliary variables borrows elements from the
theory of graphical models.

The result is a technique which guarantees the consistent
identification of a transfer function in a partially observed
network by selecting auxiliary predictors using only graphical
conditions. Unlike other works our technique is capable of
detecting the location of strictly causal transfer functions
directly from data. Remarkably, the derived graphical condi-
tions are also proven to be necessary providing a complete
characterization of the sets of auxiliary variables that lead
to a consistent identification in single-output error prediction
methods. This characterization is the basis for the search for a
set of auxiliary variables minimizing a suitable cost function
for the identification.

The article is organized as follows. Section II reviews pre-
liminary definitions and concepts of dynamic networks, their
graphical representations and introduces the concept of point-
ing separation. In Section III, sufficient graphical conditions
for consistent identification in causal networks are presented.
In Section IV, two data-driven tests are proposed to detect
strictly causal transfer functions and presence of feedthroughs
in dynamic networks. Section V shows that the condition
proposed in this paper are necessary and casts a formal optimal
identification framework for dynamic networks. Section VI
provides a numerical example quantitatively verifying the
results of the paper. Concluding remarks are given in Section
VIIL

NOMENCLATURE

Estimate of x;(t)
A Independence

ang(j) The set of ancestors of node j in graph G

chg(j) The set of children of node j in graph G

dec(j) The set of descendents of node j in graph G

pag(j) The set of parents of node j in graph G

Dt Set of nodes used in prediction up to time ¢

D~ Set of nodes used in prediction up to time ¢ — 1

G The graphical representation of network ¢

G’ Graph of instantaneous propagationss

I4(r)  Natural filtration generated by x4 up to time 7

o Set of measurable nodes

W;i(z) The component of the Wiener filter corresponding to
xi(t) when estimating x;(r)

x;j(t)  The output of node j at time ¢

Z Set of auxiliary predictors

II. PRELIMINARIES

In this section, we introduce the class of models that is
going to be the object of our investigation along with some
preliminary concepts and notions from the area of graphical
models.

Similar network models have been considered and investi-
gated in [12], [24]-[26].

Definition 1. A network ¢ is a pair (H(z),n) where H(z)
is a proper rational discrete-time v X v transfer matrix and
n is a vector of v mutually independent stochastic processes
with rational power spectral density. The output signals of the
network are defined by the relation

xj(t) =nj(t) + Y} Hji(2)xi(t),

eV

for j=1,...,v (1)

Using a vector notation and defining V = {1,...,v} we can
represent the model in a more compact way as

xy (1) = ny (1) + H(2)xv (1) 2)

The dynamics of the matrix H(z) in model (2) indicates
how the process x; directly affects the process x;. If Hji(z) =0
there is no direct effect of x; on x; (even though x; could still
affect x; indirectly through other processes). For this reason
models described by (2) lend themselves to be represented via
graphs. We assume that the reader is already familiar with
basic notions of graph theory [27] and in this section we just
introduce our notation and nomenclature. For a directed graph
G, defined by the pair (V,E) where V = {1,2,---,v} is the
set of nodes and E CV xV is the set of edges, we denote
an edge (i,j) € E as i — j or j < i and say that the edge is
oriented from i to j. We also say that two distinct edges i — j
and k — / are adjacent if they share at least a node, namely
{i,j}N{k,£} #0. In a directed graph, a path between i and j
is a sequence of distinct edges such that the first edge contains
i, the last edge contains j and each two consecutive edges in
the sequence are adjacent. A path can be suggestively denoted
by using the arrow symbols (— and <) to separate the nodes
involved in the path while at the same time representing the
orientation of the edges. For example, in the graph of Figure 1,

960 (&)
6‘9 —@

Fig. 1. Representation of a directed graph.

there are four paths between nodes 3 and 5 which can be
denoted as {3 -4 —5},{3 24«25}, {3« 12—
4 — 5},{3+ 1 — 2« 5}. Furthermore, if the edges have all
the same orientation (as in {1 — 3 — 4 — 5}) the path is called
a dipath or a chain. For a graph G, we also recall the following
relations among its nodes

« node j is a child of node i if the edge i — j is present in
the graph. We also say that i is a parent of j. We denote
the set containing all children of node j by chg(j) =
{veV|j—veE} and the set containing all parents of
node i by pag(i) = {v € V|[v — i € E}. Moreover for a
set A CV we define chg(A) = Ujeachg(j) and pag(A) =
UigApaG(i).

e node j is a descendant of node i if j =i or if there
is a dipath from i to j. Equivalently, we say that i
is an ancestor of j. We denote the set containing all
descendants of node i as deg(i) and the set containing
all ancestors of node i as ang(i).
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For the description of model (1) we are going to use
a special instance of multi-typed graphs [28] which are an
extension of standard directed graphs.

Definition 2. A multi-arrowed graph is a triple G = (V,E},E»)
where E|, the set of single-headed edges, and E,, the set of
double-headed edges, are disjoint subsets of V x V.

We represent a multi-arrowed graph in the same way we
represent a standard graph but we draw a single-headed edge
to represent i — j € E1 and a double-headed edge to represent
i — j € E;. Note that multi-arrowed graphs generalize directed
graphs and all the graphical notions extend naturally to multi-
arrowed graphs, as well, by simply considering E; UE, as a
set of standard edges. For example, vertex i is a parent of j
whether there is a single-headed or double-headed edge from
ito j.If i— j € E; we say that i is a single-headed parent of
J, while if i — j € E; we say that i is a double-headed parent
of j.

Definition 3. We say that the multi-arrowed graph G =
(V,E\,E») is recursive if in every directed loop there is at
least one double-headed edge.

We can use multi-arrowed graphs to describe the sparsity
pattern of H(z) in model (1) along with some information
about the strict causality of the entries in H(z).

Definition 4. Let &4 = (H,n) be a network with output
processes xy, where V :={1,...,v}, and let E| and Ej be two
disjoint subsets of V XV such that

(@) i— j ¢ E\UE; implies Hji(z) =0

(b) i — j ¢ E\ implies Hj;(z) is strictly causal.

We say that the multi-arrowed graph G = (V,E\,E,) is a
graphical representation of the network. Furthermore, if the
implications (a) and (b) hold also in the opposite direction, we
say that G = (V,E|,E) is a perfect graphical representation
of the network.

In other words, the absence of the edge i — j in a graphical
representation implies that Hj;(z) = 0 while the presence of a
double-headed edge i — j implies that Hj;(z) is strictly causal
(potentially zero). Thus, a network can have different graphical
representations each providing different degrees of information
on its dynamics, as the following example illustrates.

Example 1. Consider a dynamic network 4 = (H(z),n) with
four nodes governed by the following equations.

x1(t) = ny (1) + Hia(2)x2(t) + Hia(2)x4(t)

The nonzero entries of H(z) in this network are

Z 1
Hp(z) = —, Hu(@)=—7,
43 z

1
Hz (z) = 2 Hy3(z) =

N — +
. N[—

Figure 2 (a) shows the perfect graphical representation GP of
the network 4. The information that transfer functions H3(z)
and Hy4(z) are strictly causal and Hy3(z) = 0 is available in
GP. Figure 2 (b) shows a recursive graphical representation
G of the network &. Unlike GP, the information that transfer
Sfunction Hy4(z) is strictly causal or that Hy3(z) = 0 is not
available from G.

(2

(a) (b) (c)

Fig. 2. (a) The perfect graphical representation G” of the dynamic network
¢ discussed in Example 1; (b) A recursive graphical representation G of ¥;
(c) The graph of instantaneous propagations G° associated with G.

Observe that a graphical representation provides partial
information about the network’s topology. Indeed, given a
graphical representation of a network it is always possible
to obtain another less informative graphical representation by
introducing additional single-headed or double-headed edges
and/or replacing a double-headed edge with a single-headed
one.

From its definition if a network has recursive graphical
representation then it has no algebraic loops. The following
definition of graph of instantaneous propagations is an impor-
tant tool to deal with the presence of direct feed-throughs.

Definition 5. Consider a multi-headed graph G = (V,E1,E»).
Its associated graph of instantaneous propagations, denoted
as G', is the standard directed graph (V,E}) obtained from G
by removing the double-headed edges.

For example, Figure 2 (c) shows the graph of instanta-
neous propagations G’ associated with graph G depicted in
Figure 2 (b). It is an immediate consequence of the definition
that if G is recursive, G¥ is a directed acyclic graph. We refer
to G’ as the graph of instantaneous propagations because, if G
is a graphical representation, new information entering a node
k at time ¢ can potentially propagate to all nodes in de; (k)
at the same time ¢ with no delay.

Throughout the paper, we will sometimes refer to nodes,
edges, paths and chains of a network even though, formally,
we should refer to them as nodes, edges, paths and chains of
its graphical representation or its perfect directed graph.

As shown in [24], there is a strong relationship between
signal estimators and graphical representations in a network.
Such a relationship will play a central role in the development
of our results. For this reason we recall some fundamental
notions from estimation theory and introduce our notation.

Definition 6. Given a probability space, for a set of stochastic
processes x5 where A C'V, we denote the natural filtration
generated by the processes xa up to time t as I4(t).
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In this article we typically consider the estimate £;(r) of
xj(t) using the information of processes xp+ up to time ¢ and
the information of processes xp- up to time ¢ — 1. Using the
notation introduced in Definition 6 the least square estimate
£j(¢) can be written as

£j(1) =E(xj(0) [ Ip+ (), Ip-(t = 1)). 3)

In the linear Gaussian case this estimation problem can be
solved via Wiener filters, reducing (3) to

X = Z ij(z)xk—i— Z ij(z)xk
keDt keD~

“4)

where Wi (z) for k € D" are causal transfer functions and for
k € D™ are strictly causal transfer functions. So long as the
power spectral density matrix of the signals x;, xp+ and xp-
is the same, the expressions of the Wiener filter components
are the same when considering a least square estimation even
in the linear non-Gaussian case. In the following, we assume
for simplicity that all the processes are jointly Gaussian even
though the same results can be easily shown to hold in the
linear non-Gaussian case, as well.

The sparsity properties of the Wiener filters W (z) are
connected to the notion of conditional independence.

Definition 7. We say that x;(t) and the information of x; up to
time t are conditionally independent given Ip+(t) and Ip-(t —

) if

E(xj () [ Igyup+ (1), Ip-(t = 1)) = E(x;(t) | Ip+(1),Ip- (1 — 1()5))
We denote this by x;(t) 1L I(t) | Ip+(t),Ip- (t — 1). Similarly, if
E(xj(1) | Ip+ (1), Iiyup- (1 = 1)) = E(x; () | Ip+ (), Ip- (1 = 1))
we say that x;(t) and the information of x; up to time t — 1 are
conditionally independent which we denote by x;(t) 1L I;(t —
1) | Ip+ (1), Ip-(t —1).

In the linear Gaussian case, using a Wiener filter formula-
tion, the estimate £;(¢) of x;(¢) from the processes xp+ up to
time ¢, the processes xp- up to time # — 1 and the process x;
can be expressed as

£=Wiaxi+ Y Wildx+ Y Wilo)x
keDt keD—

(6)

where Wi (z) are causal for k € D™, strictly causal for k € D~
and Wj;(z) is causal if the information of x; is used up to
time ¢ and strictly causal if the information of x; is used up to
time ¢t — 1. The relation of conditional independence between
x;j(t) with ;(¢) (or analogously /;(r — 1)) translates into having
W;i(z) = 0 in Equation (6).

In the theory of graphical models the internal nodes of a
path are classified as forks, colliders or chain links.

Definition 8. Given a path & in a graph G we say that a node
jis
o a fork, when there exist two consecutive edges in the path
of the form i< j and j— k
e a collider (or an inverted fork), when there exist two
consecutive edges in the path of the form i — j and j <k
e a chain link, when there exist two consecutive edges in
the path of the form i — j and j — k

4

Specifically, the notion of colliders allows one to define if
a path 7 is blocked by a set Z.

Definition 9. In a directed graph G, a path T between nodes
i and j is blocked by a set of nodes Z if

o there is at least a non-collider on © that belongs to Z;
or
o there is at least a collider ¢ on 7 such that deg(c)NZ = 0.

Otherwise, we say that the path & is activated by Z.

In the theory of graphical models, a fundamental concept
defined over the nodes of a directed graph is d-separation [29].

Definition 10. In a directed graph G = (V,E) let A, B, and
C be disjoint subsets of V. A and B are d-separated by C if
for all nodes a € A and b € B, all paths between a and b are
blocked by C. If A and B are not d-separated by C in G, we
say that they are d-connected by C in G.

Example 2. In the directed graph depicted in Fig. 1 A= {1}
and B = {8} are d-separated by C =0 because 6 is a collider
on a path from 1 to 8. For the same reason, A = {1} and
B = {8} become d-connected if we choose C = {6} and also if
we choose C = {7} or C={6,7}. Again, A= {2} and B= {6}
are d-connected by C =0 because of the path 2 <1 —3 — 6.
If we consider C = {1} to “block” such a path, A= {2} and
B = {6} are still d-connected because of the other path 2 +
5+ 4+« 3—6. If we now consider C = {1,4} to “block”
this other path, A = {2} and B = {6} are still d-connected
because now 4 is a collider in C on the path 2 — 4 <3 — 6.
By choosing C ={1,3,4}, we make A= {2} and B = {6} d-
separated. Alternatively, C = {3} would have been a smaller
set making A = {2} and B= {6} d-separated.

In [24], some criteria for consistent identification are derived
using the notion of d-separation. This article obtains more
powerful criteria by using a weaker notion of separation that
involves only a subset of the paths between the nodes i and j.

Definition 11. A path & between nodes i and j is called j-
pointing if the last edge in the path « is of the form k — j for
some node k. If all the j-pointing paths between nodes i and
J, with the exception of the path constituted by only the edge
i — j, are blocked by a set of nodes Z, we say that i and j
are j-pointing separated.

Note that a j-pointing path between i and j might or might
not be i-pointing.

ITI. CONSISTENT IDENTIFICATION IN NETWORKS

Consider a simple two-node system with x; as input, x;
as output, and n; as additive output error independent of x;,
namely

xj(t) =n;(t) +Hji(z)x:(t),

for some causal transfer function Hj;(z). The block diagram of
this system is depicted in Figure 3 (a), while a graphical rep-
resentation of the system is shown in Figure 3 (b). Following
[30], a possible technique to identify Hj;(z) is to compute a
linear least square prediction £;(¢) for x;(¢) by using the past
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(a) (b)

Fig. 3. (a) Block diagram of a two-node network; (b) Corresponding graphical
representation.

information of x; and the past and present information of x;.
Namely, we compute

j(1) = Elx;(e) | Li(e), 1t =

where Wj;j(z) is strictly causal and Wj;i(z) is causal. After
computing £;(r), we calculate the quantity

N Wii(z)

Hi(7) = J

i) 1—-Wj;(z)

which can be proven to be a consistent estimate for Hji(z).
In other words, in this simple two-node system, the transfer
function H ;(z) can be consistently identified via the following
procedure by setting D~ = {;j} and Dt = {i}.

D] =W;j;(2)x; (1) + Wii(2)x(t),

Procedure 1 Identification via prediction error

1: Given: Sets of nodes D~, D" and i,j € D~ UD"
. Output: Hj(z)

(3]

E@j(t) [ Ip (t—1), Ipe(0) = Y

keD~UDt

Wik (2)x(t)

We stress that Procedure 1 is not an algorithm but more
precisely a meta-algorithm since the computation of £;()
could be obtained using a variety of methods either parametric
or non-parametric [30]. In Procedure 1, the estimate of x;() is
obtained using the information from the past for the variables
in D™ and information from the past and present for the
variables in D In other words, the transfer functions Wj(z)
are strictly causal if k € D™ and causal if k€ D™.

However, when dealing with more complex networks, ap-
plying Procedure 1 with D~ = {j} and DT = {i}, leads, in
general, to an estimate H;(z) for H;;(z) which is not consistent
because of the presence of feedback loops or because other
variables in the network might act as confounders between i
and j.

In several recent results, it has been shown that, by ap-
propriately introducing additional measured variables to the
sets of predictors D~ and D™, Procedure 1 (or substantially
equivalent tools such as the methods in [20]) can still achieve
a consistent estimate of Hj;(z).

This idea has been explored in the extension of closed-loop
identification techniques to network identification [17], [23]
and by applying graphical model tools [24]. The drawback of
using graphical model techniques is that they tend to be limited
to acyclic networks. In particular, the related results in [24]
are not as powerful when the target node j is involved in a

directed feedback loop. The existing closed-loop identification
techniques, on the other hand, can successfully deal with
loops, but require information about the presence of direct
feed-throughs. However, all these methodologies basically try
to solve or are applicable to the following problem [2], [17],
[19], [23], [24].

Problem 1. Consider a network ¢ = (H(z),n) with a known
graphical representation G = (V,E1,E>). Suppose that the
forcing inputs n are unknown and that a subset O CV of the
node outputs is observable with i, j € O. Find sets of predictors
D~ and D" with {i, j} CD~UD" C O such that Procedure 1
guarantees a consistent identification of the transfer function
Hj,'(Z).

A unifying feature of most of these approaches is to exploit
additional measurements (apart from i and j) as auxiliary
predictors. More specifically, apart from the nodes i and j,
these methods require an extra set of nodes Z to be observable
and a way of partitioning ZU {i, j} into the sets D~ UD™ for
Procedure 1 to consistently estimate H;(z).

A first contribution of this article is a solution to Problem 1
that can be interpreted as an attempt to combine graphical
model and closed loop identification methods in order to ef-
fectively deal with confounding variables and feedback loops.
Namely, we provide conditions, of purely graphical nature, to
determine the set Z of auxiliary predictors along with a way
to partition ZU{i,j} into the sets D~ and D" in order to
guarantee that Procedure 1 obtains a consistent identification.

Furthermore, we prove that such graphical conditions on Z
are also necessary for consistency given the known graphical
representation G. Having sufficient and necessary conditions
for the set of auxiliary predictors enables the search for an
optimal Z that provides a consistent identification while at the
same time minimizing an assigned cost function to select the
auxiliary variables.

A standard assumption when dealing with the problem of
identifying a module in a dynamic network is the absence
of algebraic loops. Furthermore, most identification methods
also need to include among their assumptions some a priori
information about the location of the strictly causal transfer
functions in each loop [2], [14], [18]-[20]. In this article we
still keep the assumption that the network has no algebraic
loops, but, as an important distinction from other methods, we
also reduce the need of a priori information about the locations
of strictly causal transfer functions. Indeed, as we later show
in Section IV, we provide some methods to infer the locations
of strictly causal transfer functions directly from data. In the
derivation of the result for this section, we temporarily assume
that such information is obtained and available in the form of
a recursive graphical representation.

A. Sufficient conditions for consistent identification

As a first observation, if all the parents of the target node
J are available, then it is possible to consistently identify
the transfer function Hj;(z) when some knowledge about the
delays of the transfer functions Hjx(z), k € pag () is available
from a recursive graphical representation G of the network.
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Proposition III.1. Consider a network & with no algebraic
loops. Let G = (V,E|,E») be a recursive graphical represen-
tation of 4 and P and P~ be respectively the sets of single-
headed parents and double-headed parents of the node j in
G.

Then

E(xj (@) jyop-(t = 1), Ip+ (1)) =

Wii@xj()+ Y [ =Wi@Hp(2)x ().
kepP~UPt

)

Proof. See the appendix. [

A consequence of Proposition III.1 is the following corol-
lary.

Corollary II1.1.1. Under the assumptions of Proposition I1I.1,
let the power spectral density matrix of x;, xj and Xp+ p-
be non-singular. The application of Procedure 1 with D™ =
P~U{j} and D" = P" leads to a consistent estimate of H ().

O

Proof. See the appendix.

Corollary III.1.1 is quite intuitive and can be interpreted
in terms of the results in [17]. We use Corollary III.1.1 as
a starting point for the derivation of our results and also to
illustrate how simple manipulations on a graphical represen-
tation can lead to different selections of the sets Dt and D~
in Procedure 1, as done in the following example.

Example 3. Consider a network with a graphical repre-
sentation G depicted in Figure 4 (a). The objective is the

Fig. 4. The networks discussed in Example 3.

identification of the transfer function Hi(z). Since G is
recursive and all the parents of node 2 are measured, we can
apply Corollary IIlI.1.1. Node 1 is a single-headed parent of
node 2, and node 4 is a double-headed parent of node 2.
Therefore, the application of Corollary IIL.1.1 for j =2 and
i =1 in the graphical representation G, leads to the choice
of D~ ={4,2} and D™ = {1} in Procedure 1 which gives
a consistent estimate of Hi(z). However, if the graph G of
Figure 4 (a) is a graphical representation of the network under
study, so must be the graph G’ depicted in Figure 4(b). The
difference between the two graphical representations is that
the information that Hy4(z) is strictly causal is available in
G, but is not available in G'. Since G' is also recursive, we
can still apply Corollary HI.1.1 to it. When applied to G,
Corollary II1.1.1 leads to a different choice for the sets D™ and
D" (namely D~ = {2} and D" = {1,4}) which also provides
a consistent estimate of Hy\(z) via Procedure 1. Furthermore,

6

if the graph G of Figure 4 (a) is a graphical representation
of the network under study, so must be the graph G" depicted
in Figure 4(c). There are a few differences between G and
G". It can be seen from G that Hx(z) is strictly causal, and
Hy6(z) = He3(z) = 0. This information is not available in G".
Since G" is also recursive, we can still apply Corollary II1.1.1
to it. When applied to G", Corollary II.1.1 leads to vyet a
different choice for the sets D~ and D' (namely D~ = {2,4}
and D™ = {1,6}) which also provides a consistent estimate of
H>(z) via Procedure 1.

This example shows that if a recursive graphical repre-
sentation G is available, we can still apply Corollary IIL.1.1
to a less informative graphical representation which can be
obtained by introducing additional edges in G or by replacing
double-headed edges in G with single-headed edges. The only
requirement for the application of Corollary III.1.1 is that
such a less informative graphical representation has still to
be recursive.

Observe that in Proposition III.1 we have D~ UD" =
pag(j)U{j}. Hence, Proposition III.1 substantially states that
Procedure 1 can consistently identify the transfer function
H j-(z), but, in order to do so, it requires the observation of
all parents of j in a given graphical representation. In some
scenarios, assuming that all parents of j are being observed
might be overly restrictive, since missing information from
some parents of the target node j does not necessarily hinder
the consistent identification of Hj;(z). Indeed, information
from other observed nodes can be exploited to compensate
the missing information from the unmeasured parents, so that
a consistent identification of Hji(z) can still be achieved.
The first main contribution of this article is the following
result providing a criterion to appropriately select the sets D™
and D' in Procedure 1 to guarantee an unbiased estimate
of Hji(z) under significantly more general conditions than
Corollary IIL.1.1.

Theorem IIL2. Consider a network ¥ = (H(z),n) with recur-
sive graphical representation G= (V,E|,E,). Let ZN{i, j} =0
be a set such that
(i) Z is j-pointing separating the nodes i and j in G; and
(ii) ZU{i} blocks all j-pointing paths from j to itself G.
Let G? be the graph of instantaneous propagations associated
to G and let D™ and DT be the following two disjoint sets
partitioning ZU{i, j}
e DV :=ang(j)N(ZU{i})
. D= (ZU{i,j})\D*
The application of Procedure 1 with D~ and D" leads to a
consistent estimate of H;i(z) when the power spectral density
matrix of (xj,xj,xz) is non-singular.

Proof. See the appendix. O

Theorem III.2 presents a systematic procedure for selecting
two sets of predictors D~ and D™ to identify a specific transfer
function Hj;(z) via Procedure 1. Observe that the fact that the
graphical representation is recursive allows one to determine
D' and D™ in a unique way. The expressions for D™ and
D~ in Theorem III.2 state that we always have j € D~ and
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for any k € {i} UZ if there is no delay from k to j, given
the information by the recursive graphical representation, we
have k € D" and D~ contains the remaining variables. It is
possible to apply Theorem III.2 also in presence of feedback
loops and/or confounding variables affecting the nodes i and
Jj. The following example illustrates how Theorem III.2 can
successfully deal with unobserved confounding variables.

Example 4. Consider the network with a recursive graphical
representation shown in Figure 5. Suppose the objective is to

Fig. 5. The graphical representation of the network discussed in Example 4.
The nodes 3 and 4 act as confounders.

identify the transfer function Hy|(z). Assume that nodes 3 and
4 which are depicted with a dashed line are not measured
3,4¢ 0={1,2,5,6,7}. Note that Proposition III.1 could not
be applied because node 3 is a parent of the target node 2 but
is not observable. Instead, we could search for a set Z C O that
satisfies conditions (i) and (ii) of Theorem III.2. The 2-pointing
path {1 5+ 3 — 2} needs to be blocked and since 3 ¢ O
we need to have 5 € Z. However, when node 5 is observed,
it becomes an activated collider in the path {1 + 4 — 7 —
543 —=2}. To block {1+ 4—7—5+3—2} we need to
have 7 € Z. Since all the 2-pointing path from 2 to itself are
also blocked by {5,7}U{1}, we obtain that Z = {5,7} is a
subset of O ={1,2,5,6,7} that satisfies conditions (i) and (ii)
of Theorem II1.2. Thus, applying Procedure 1 with D~ = {2}
and D™ = {1,5,7} leads to a consistent estimate of Hy(z).

Observe that, by setting Z = pag(j), Theorem II1.2 becomes
equivalent to Corollary III.1.1. One main advantage of The-
orem III.2 is that it can successfully deal with confounding
variables in a way similar to the formulation of the Single Door
Criterion for dynamic systems [24], [31]. However, contrary to
the Single Door Criterion, Theorem III.2 can be easily applied
to networks where the node j is involved in feedback loops.
Furthermore, the graphical conditions on the nodes i and j
for the application of Single Door Criterion are stronger than
the graphical condition required for Theorem III.2. Indeed,
Single Door Criterion needs all the paths between i and j to
be blocked by a set Z that does not contain descendants of ;.
Conversely, Theorem II1.2 only needs Z to block the j-pointing
ones and Z also can contain descendants of j.

Note that the choice of predictors is not unique since
multiple sets Z might satisfy the conditions of Theorem IIL.2. It
might also happen that none of the predictors sets Z satisfying
the conditions of Theorem III.2 are contained in the set of
observable nodes O, namely, Z Z O. In addition to this, for
a fixed Z a further degree of flexibility can be obtained as

follows: so long as another recursive graphical representation
can be obtained from the graphical representation G of the
network, different choices of the sets D~ and DT are also
possible. The following example computes all the possible sets
Z satistying conditions (i) and (ii) of Theorem III.2.

Example 5. Consider a network with a graphical representa-
tion G depicted in Figure 6. The objective is the identification

Fig. 6. The graphical representation of the network discussed in Example 5.

of the transfer function Hy|(z). Node 4 is not observable. Node
3 should be measured since it is the only choice to block
the 2-loop {2 — 3 — 2} and the 2-pointing path 1 — 3 — 2.
Now, since 3 € Z node 3 will act as an activated collider
on the 2-pointing path m; = {1 — 3 + 5+ 4 — 2}. Since 4
is not measured, the only choice for blocking m is to have
5 € Z. Since 5 € Z node 5 will act as an activated collider
on the 2-pointing paths 1, ={1+7—6—5«4—2} and
m={1+8—>6—5«4—2} To block my and w3 we
need to measure either node 6 or nodes 7 and 8 together.
Table 5, lists all choices for Z that satisfy conditions (i) and
(ii) of Theorem II1.2 and their corresponding D~ and D™. In

TABLE I
ALL POSSIBLE PREDICTOR SETS TO CONSISTENTLY IDENTIFLY Hp|(z) IN
EXAMPLE 5 FOR THE GIVEN GRAPHICAL REPRESENTATION

L[l 2z [o | bp |
1 {3,5,6} {21 | {1,3,5.6}
2 || 3.57.8 | {2.8} | {1,3,5,7}
3 || {3,567} 2y | {1,3,5,6,7}
4|l 3568 | {28} | {1.3.56}
5 1] {3,5,6,7.8} | {2.8} | {1,3,5.6,7}

Section V we will also show that the choices listed in Table 1
are the only possible choices for Z guaranteeing a consistent
identification of H|(z) using Procedure 1 for all networks
with graphical representation G.

IV. DETECTING DELAYS IN A DYNAMIC NETWORK

While deriving the results of the previous section, it was
assumed that some partial knowledge about causality or strict
causality of the transfer functions of the network was available.
This knowledge was embedded in the fact that a recursive
graphical representation of the network had to be a priori
available.

If such a recursive graphical representation is not available,
the application of Procedure 1 to the sets D~ and D given by
Theorem II1.2 leads, in the general case, to an inconsistent es-
timate of H;(z). Other network identification methods require
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analogous information about the locations of strictly causal
transfer functions. This knowledge is typically formalized by
requiring that there is no algebraic loop for any value of the
parameters in the full network parameterization [17], which
substantially implies the knowledge of a recursive graphical
representation.

However, in some cases a recursive graphical representation
might not be a priori available. In this section, we provide
sufficient criteria to obtain a recursive graphical representation
in a network with no algebraic loops, from a known graphical
representation which is not necessarily recursive. These results
have the main advantage of widening not only the applicability
of Theorem III.2 but also the applicability of other network
identification methods such as the ones described in [17], [21].

This first result gives a sufficient criterion to determine if a
transfer function is strictly causal directly from observational
data.

Theorem IV.1. Consider a network with no algebraic loops
and with (non-necessarily recursive) graphical representation
G= (V,E\,E>) and i € pag(j). Let ZN{i, j} =0 be a set that
j-pointing separates nodes i and j in G. Let A,Z~,Z" be a
partition of Z such that

o 7 ={leZ:l&any(j)}

o Zt:={keZ: kddey(j)}\Z~

o« A:=Z\(Z7UzZ").
If

I

in

Exi(t) [ I puz-ua- (= 1), Izruarugiy (1) =

Wir(2)x,(2). (9)
reZ=UZTUA~UATU{i,j}

for all possible combinations of disjoint A~ and A™ with A~ U
A" = A, then the transfer function Hj;(z) is strictly causal.

Proof. See the appendix. [

The following example revisits Example 4 showing that the
consistent identification can be achieved even without knowing
which transfer functions are strictly causal.

Example 6. Consider a network with a perfect graphical
representation as given in Figure 5. Suppose though that the
information about the strict causality of the transfer functions
is not available. Hence, what is known about the network is
given by the graphical representation of Figure 7. Suppose the
objective is to identify the transfer function Hy|(z). Assume
that nodes 3 and 4 which are depicted with a dashed line
are not measured 3,4 ¢ O ={1,2,5,6,7}. Similar to Example
4 Z={5,7} is a subset of O = {1,2,5,6,7} that satisfies
conditions (i) and (ii) of Theorem III.2. However, since the
available graphical representation is not recursive, the sets
D% and D~ cannot be determined. We will show, however, a
recursive graphical representation can be obtained using the
results of this section. Applying Theorem IV.1 on the transfer
Sfunction Hq6(z) we get that the set {2} 7-pointing separates
nodes 6 and 7 and Z~ = Z* = 0. To consider all possible

Fig. 7. The non-recursive graphical representation of the network discussed
in Example 6. The nodes 3 and 4 are not measured and act as confounders.

combinations of A* and A~, we need to consider two cases.
In the first case, we have AT = {2} and A~ = {0}. It turns
out that in

Ex7(t) | [(t—1),he(t) = (10)

Z W, (2)x, (1)
re{2,6,7}
the transfer function Wrg(z) is strictly causal. In the second
case, we have AT = {0} and A~ = {2}. Similarly, it turns out
that in

E(xr(1) | ba(t—1)06(t) = Y, Wi (2)x.(2)

re{2,6,7}

(1)

the transfer function Wqe(z) is strictly causal. Thus, according
to Theorem IV.I we can conclude that the transfer function
Hi6(2) is strictly causal. This information enables us to obtain
a recursive graphical representation for the network, deter-
mine the sets D™ = {1,5,7} and D~ = {2} and consistently
estimate the transfer function Hy1(z) using Procedure 1.

This second result instead gives a sufficient criterion to
determine if a transfer function has a nonzero feedthrough.

Theorem IV.2. Consider a network with no algebraic loops
and with (non-necessarily recursive) graphical representation
G = (V,E\,Ez) and i € pag(j). Let ZN{i, j} =0 be a set that
(i) j-pointing separates i and j in G
(ii) i-pointing separates i and j in G
Let Z~,Z% A be a partition of Z such that
o Z:={leZ:L&anx(j)}
o Zt:={keZ kddey(j)}\Z~
« A=Z\(Z UuZ").

If
ZlL}n;lOWj[(Z) #0 (12)
in
Exi(t) | Iijpuz-ua- (= 1), Iz a0y (1) =
Wir(z)x:(t) (13)
reZ-UZTUA~UATU{i,j}
and
lim Wi;(z) # 0 (14)
in
Exi(t) | Iiyuz-ua-(t = 1), Izvuavugjy (1) =
Wir(2)xe(t)  (15)

LeZ~UZTUA-UATU{L,j}
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for all possible combinations of disjoint A~ and A™ with A~ U
AT =A, then either the transfer function Hj;(z) is not strictly
causal or the transfer function H;j(z) is not strictly causal.

Proof. See the appendix. O

Theorems IV.1 and IV.2 provide sufficient conditions to
determine if a transfer function in the network is strictly
causal or not, respectively. These conditions are only sufficient.
Hence, there could be situations where their application would
be inconclusive.

However, in several scenarios the information obtained
from these two theorems, might be enough to determine a
recursive graphical representation from a non-recursive one.
The following example illustrates a situation when this occurs.

Example 7. Consider a network with an unknown recursive
graphical representation G depicted in Figure 8 (a). Assume,
instead, that the less informative non-recursive graphical
representation G of Figure 8 (b) is available, even though
the network is known not to have any algebraic loops. As

R A AN AN N
@ 5) @ 5) @ 5 @ @ 5) @
NV VAR VN

Fig. 8. (a) The unknown recursive graphical representation of a network
discussed in Example 7; (b) The given non-recursive graphical representation
of the network discussed in Example 7; The application of Theorems IV.1
and IV.2 allows one to conclude that either (c) or (d) is a valid graphical
representation of the network. The application of Theorem III.2 with Z =
{4,6} leads to the same sets D~ = {2,6} and D™ = {1,4} for the identification
of Hy|(z) via Procedure 1.

can be seen in G, transfer functions Hy3(z), Hsy(z) and
Hq6(2) are strictly causal. This information, however, is not
available from G. The objective is identification of transfer
Sfunction Hyi(z) given the topology and outputs of nodes
0 =1{1,2,3,4,6,7} CV = {1,2,3,4,5,6,7}. Node 5 is not
measured. The set {4,6} satisfies graphical conditions (i) and
(ii) of Theorem IIL.2. However, since there is no informa-
tion available about the locations of strictly causal transfer
functions, standard techniques cannot be applied to identify
H\2(z). For instance, in order to apply Procedure 1 to identify
Hy»(z) we need to know a recursive graphical representation
to determine D~ and DT. Theorems IV.1 and 1V.2 instead could
be effectively applied in this case. If we consider the set {2}
we notice that such a set 4-pointing separates nodes 3 and 4.
Hence, we can apply Theorem V.1 on transfer function Hy3(z).
Since Z~ =ZT =0, to consider all possible combinations of
AT and A~, we need to consider two cases. In the first case,
we have AT = {2} and A~ = {0}. In the second case, we have
AT ={0} and A~ = {2}. Taking similar steps as in Example 6,
it turns out that the transfer function Hy3(2) is strictly causal.
On the other hand, if we consider the set {7} we notice that
such a set 2-pointing and 6-pointing separates nodes 2 and 6.
Hence, we can apply Theorem IV.2 on transfer function Hg(z).
Since Z~ =ZT =0, to consider all possible combinations of

AT and A™, again we need to consider two cases. In the first
case, we have AT ={7} and A~ ={0}. It turns out that in

E(xs(r) | I6(t—1),b7(1) = ), Wi(x()  (16)
re{2,6,7}
the transfer function Wey(z) is not strictly causal and in
E(x(t) | h(t—=1),1s7() = Y. Wi (2)x:(t) (17)

re{2,6,7}

the transfer function Wog(z) is not strictly causal. In the second
case, we have AT = {0} and A~ ={7}. It turns out that in

E(xs(t) | Is7(t—1),b(1)= Y. Wi (2)x:(1) (18)
re{2,6,7}
the transfer function Wey(z) is not strictly causal and in
E(oa() | hatt=1)I() = Y, Wi (dx() (19

re{2,6,7}

the transfer function Wae(z) is not strictly causal. Thus, it
Sollows Theorem IV.2 that the transfer function He(z) is not
strictly causal.

Since the network has no algebraic loops, we can conclude
that either the transfer function Hq6(z) or Ha7(2) or both are
strictly causal. As a consequence, the graph in Figure 8 (c)
or the graph in Figure 8 (d) is a graphical representation of
network and they are both recursive. Therefore, Theorem III.2
can be applied to either graph leading to the same choice of
Dt ={1,4} and D~ ={2,6} for the consistent identification
of H»1(z). Note that Theorem IV.2 can also be applied on the
transfer function Hy;(z) revealing that it is not strictly causal.
As a consequence, since the network has no algebraic loops,
it can be inferred that the transfer function Hq6(z) is strictly
causal.

V. NECESSITY OF THE GRAPHICAL CONDITIONS FOR THE
SELECTION OF AUXILIARY VARIABLES

Theorem III.2 provides sufficient conditions on how to
select the set of auxiliary variables Z in order to consistently
identify the transfer function Hj;(z), namely, Z has to j-
pointing separate i and j and block all the j-pointing paths
from j to itself. In this section we show that these conditions
are also necessary for the successful application of Procedure 1
when the only information about the network is given by a
graphical representation.

Theorem V.1. For any recursive graph G = (V,E|,E;), if the
graphical conditions (i) and (ii) of Theorem II.2 are not met
by a set Z, there exists a network ¢ = (H(z),n) with graphical
representation G such that the estimate H ii(z) of Procedure 1
will be inconsistent for all the possible choices of sets DV and
D~ such that DY UD™ =ZU{i,j} and j€D".

Proof. Suppose the first condition of Theorem III.2 is not met.
That is, there is at least a j-pointing path between nodes i and
Jj that is not blocked by Z and such a path is not the edge
from i to j. Let 7 be the activated path with the least number
of colliders. If 7 is collider-free, none of the nodes on 7 is
a member of the separating set Z. Choose Hj;(z) and all the
other transfer functions outside of 7 as zero. Let the transfer
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function from the parent of j on 7 to j be equal to z~" where
m is the length of 7. Let all the other transfer functions on 7 be
equal to z~!. This reduces the perfect graphical representation
of the network to only path 7 as shown in Figure 9. Let the

Fig. 9. Scenario one in the proof of Theorem V.1.

noise processes on all the chain links and j be zero, and let the
noise process on the fork, if there is one, and i be white with
nonzero power spectral density. Since the transfer functions
are all strictly causal the graph G is a graphical representation
of this network. Notice that all the nodes in Z are independent
of i and j. Also notice that the past of x; is correlated with
xj(t), and x;(¢) and x;(r) are independent of each other. Thus,
for every possible choice of D™ and D~ we have

E(xj(1) [ Ip+ (1), Ip-(t = 1)) = E(x;(t) | I j(r = 1)) # 0

that is a biased estimate of Hji(z).

In the second scenario there is at least one collider on 7.
Since the path is activated by Z, each collider on © must
be either in Z or have at least one of its descendants in Z
according to graph G. Furthermore, none of the non-colliders
on 7 is in Z. Let every transfer function on the dipath from
each collider to its descendants be equal to one. Let the noise
process on each collider have variance one and let the noise
on its other descendants be equal to zero. Since & has the
minimal number of colliders, distinct colliders need to have
disjoint descendants. Thus, measuring each descendant of each
collider is the same as measuring the collider itself. Hence, we
can assume without any loss of generality, that Z is a set of
cooliders on 7.

In the second scenario, suppose there exist r colliders ¢ €
V,h=1,2,3,---,r on 7. Choose the transfer function entering
j to be 772, all the transfer functions entering all the colliders
to be z~!, and all other transfer functions on 7 to be one. Let
all the noise processes on all the chain links and j be zero, and
the noise processes on the forks and colliders be white with
variance one. If 7 is not i-pointing (Figure 10 (a)), let the
noise on i be one. Otherwise, if 7 is i-pointing (Figure 10 (b)),
let the the noise on i be white with variance zero.

The power spectral density associated with random pro-
CeSSeS Xj, X ,Xcy, * 4 Xe,,Xj 1S given by the (r+2) x (r+2)

Fig. 10. Generic configurations of scenario two in the proof of Theorem V.1.

matrix
1 z 0 0 0 0]
7! 1 0 0 0
0 1 3 1 0 0
r= ST (20)
0O 0 -~ 1 3 1 0
o 0 -~ 0 1 3 z
L0 0 - 0 0 z!' 1]

From X and the inverse of tridiagonal matrices formula [32] it
is possible to compute the non-causal Wiener filter estimating
x; from x;, X¢,,X¢,,* "+ ,Xc,. In particular, the component of the

Wiener filter associated with x; and x, for h=1,2.---,r are
given by
-2 -1
Z Z 9/1
Wii(z) = o—  Wie,(2) = (21)
0r+1 041

where 6, = 36;,_; — 6, » with 6p =1 and 6; =1 for k =
2,...,r+ 1. Since the non-causal Wiener filter is a strictly
causal transfer function, it matches the Wiener-Hopf filter.
Also, the strict causality of the Wiener filter implies that the
expression of Wj;(z) does not change for all choices of D"
and D~ such that DY UD™ = ZU{i, j} proving the estimate
of Hji(z) via Procedure 1 is biased.

Now suppose the second condition of Theorem III.2 is not
met. That is, there exists a j-pointing path between j and
itself which is not blocked. There are two cases. Either the
unblocked path is directed or not. First, we consider the case
where there exists a directed feedback loop from the target
node j to itself. Assume a network where all the transfer
functions that are not involved in such a loop are zero. Instead,
let all the transfer functions on the loop be ¢ with 0 < |a| < 1.
Let W;;(z) be the product of all the transfer functions on this
directed feedback loop. Then the estimate of Hj(z) for all
choices of D~ and D" will be given by

—Wi;(2)
which is biased. Now we consider the case where there is a j-
pointing path ¢ between j and itself which is not directed. That
is, there is at least one collider on ¢. Since ¢ is activated by Z,
each collider on ¢ must be either in Z or have at least one of its
descendants in Z according to graph G. Furthermore, none of
the non-colliders on ¢ is in Z. Similar to above, we can assume

(22)
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without any loss of generality, that Z is a set of colliders on
£. Suppose there exist r colliders ¢, € V, h=1,2,3,--- ,r on
¢. Choose Hj;(z) to be z~! and all the other transfer functions
outside of ¢ as zero. Choose the transfer function entering j
from its parent j to be z~2, all the transfer functions entering
all the colliders on ¢ to be z~!, and all other transfer functions
on £ to be one. Let all the noise processes on all the chain links
and j be zero, and the noise processes on the forks, colliders,
and i be white with variance one. We have that D™ = 0 and
D ={i,j.z)
Ex;(t) | I jyuz(t —1)) =
E(Hji(2)xi() + Hyp (20 (0) + 1, (0) | I sy — 1)) =

E(z xi(t) +2 2xp(1) (1) | I jyoz(t = 1))

2 i) B a0 (0) +0(0) | I jyoz(t = 1) =

() + B2, () +ni(0) | Iz (t—1)) =

(

N+ Y, Wilx)xu() (23)
ke{jtuz

—1
Z X

Computing the Wiener filters Wi (z), k € {j} UZ, using the
power spectral density matrix like above, it turns out that
W;;(z) is nonzero. Since Wj;(z) = Hji(z) =z, the estimate of

Hji(z) via Procedure 1 is Hji(z) = 1%{5,(,12@ lfv’{,j(/zzz) which
is biased. ' '

O

Since the choice of the set Z is not unique, in some
applications we might be interested in finding an optimal
predictors set according to some cost function. The sufficiency
of the conditions of Theorem II1.2, along with their necessity
as proven in Theorem V.1, are the basis to enable the search
for an optimal predictors set which guarantees a consistent
identification.

VI. NUMERICAL VERIFICATION

The purpose of this section is to explore the identification
performance of our variable selection method in the case of
finite data and also provide a numerical illustration of the
consistency properties proven in the theoretical sections.

Consider a network ¢ with a recursive graphical represen-
tation G shown in Figure 11. Suppose the objective is the

N

\27

Fig. 11. The graphical representation of the benchmark network discussed in
Section VL

identification of the transfer function Hy;(z) using Procedure
1. To verify the consistency property of the identification when
choosing a set of predictors satisfying the graphical conditions
of Theorem II1.2, we numerically simulated the network ¢ and
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obtained time-series data. Using such generated time-series
data, we considered different sets of predictors and computed
the bias and the variance of the estimated transfer function.

We consider a parameterization H(z, 6) of the network and
we denote as 0, the subset of parameters associated with the
transfer function H(z) and as 921 the estimated parameters.
We chose two predictor sets Z; = {4,5,6,7} and Z, = {3,9}
satisfying conditions of Theorem III.2 and proceeded to the
identification using time series of different lengths. For each
set of predictors and for each time series length, we simulated
the network ¢ and used a linear regression technique to obtain
the estimate 6,;. We repeated this procedure 1000 times in
order to estimate E(éﬂ) and the covariance matrix of 6,;.

In Figure 12 we have reported the results of our Monte Carlo
simulations for the set Z;. On the horizontal axis we have the
different time series lengths. The red squares represent the
estimates of E|[6, — 6 |li. We observe that for longer time
series this quantity goes to zero numerically verifying that the
bias of the estimated 6, asymptotically vanishes. The blue
candle sticks define an interval the semi-amplitude of which is
the square root of the trace of our estimate of the covariance
matrix of @,;. Since the amplitudes of these intervals go to
zero for longer time series we have numerically verified the
consistency property of our estimate.

25
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Fig. 12. Identification performance of the predictor set Z; = {4,5,6,7} for
different number of measurements.

We ran a similar set of simulations for Z, and the results
are reported in Figure 13.

25
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Fig. 13. Identification performance of the predictor set Z, = {3,9} for
different number of measurements.

Notice that even though both sets Z; and Z, guarantee
consistent identification, in the case of finite data they pro-
vide different performance in terms of bias and variance of
estimated parameters.
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VII. CONCLUSION

The article introduced graphical conditions on the set of
auxiliary variables in order to consistently identify a certain
transfer function in a partially observed causal dynamic net-
work via a single-output prediction error algorithm using only
observational data. The results extend previous techniques
borrowing elements from the theory of Structural Equation
Models, Graphical Models and System Identification. One
main advantage is that a consistent identification can be
obtained for a network with no algebraic loops even when
the class of parameterized models is allowed to contain
algebraic loops. This is achieved by devising specific tests
to detect strictly causal transfer functions. Most importantly,
the graphical conditions on the set of auxiliary variables are
proven to be sufficient and necessary. This characterization
allows one to formulate identification problems while at the
same time optimizing a cost function to take into account the
potential cost of the observations.
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APPENDIX

A. Proof of Proposition IlIl.1 and corollary Ill.1.1

Proof of Proposition III.1: Consider an estimate of x;(r)
based on the information Iy jy p- (t — 1), Ip+(t).

E(xj(e) [ Ijpop-(t=1)dpe(0) = ), Hu(@)x(t)

ke{jtup-
+ Y Hi(2)x(6) +E(nj(t) | Ijop- (6= 1),1p+ (1) (24)
keP*t
Define
gi(t) =nj(t)—nj(r) (25)
where (1) = E(n;()[l,;y — 1)) = Wj(2)n;(r)
with  W;;(z) being strictly causal. Observe that

E(nj(t) | Iuy(t—1)) is (Igjup-(t — 1),Ip+ (t))-measurable
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since nj(1) = y;(t) — Yxep- Hi(2)xi(t) + Lrepr Hix(2)xi(1).
Since g;(t) LI jyup- (t —1),1p+ (t), we get

E(x;(0) | jyup- (= 1),1p+ (1)) =
Y Hup(u() + Y, Hig(o)w(t)+i,(t) =

keP~ lept
Y Hu(x()+ Y Hi(z)x(r)+
keP- keP+
Wii(@)xi(t) = Y, Hi(@x(t)+ Y, Hiu(2)x(1)] =
keP~ kePt
Wjj(@xj(e) + Y [1 =Wy ()| Hje(2)ue(r)
keP~
+ Y (1= Wi (@ Hu(2)xe(t). (26)
kePt

Proof of Corollary IIl.1.1: Since, the minor of the power
spectral density matrix corresponding to pag(j) is non-
singular, the Wiener filter components estimating x; from x;
and xp+_p- 1s unique. Hence, we have

Wii(z) = [1 = W;;(2)]H,i(2). (27)

B. Proof of Theorem III.2

To prove Theorem III.2, we first need to provide a few
lemmas.

Lemma VIL1. Consider a network 4 = (H(z),n) with graph-
ical representation G = (V,E1,E,) and output processes Xy
described by (2). Suppose j €V is a node in the network such
that chgs(j) = 0. Define a network & = (H,fiy) with output
processes Xy, where

Hjj(z) = Hj;(2)
Hah(z) = Hah(Z) fOl" a,b #J
H,j(z) = zH,(2) for a# j
Hia(2) = 7 'Hja(2) for a# j
fla(t) = ny(t) fora#j
fia(t) =ng(t —1) fora=j.
Then, in 4 we have that
Xa(t) = xa(t) Joraj
X(t) =x,(t—1) fora=j.

Furthermore, 4 has a graphical representation given by G =
(V,E,Ey), where

(28)
(29)

E1 = (ExUceeng(j) 17 = 1) \{UpepagyP = 7}
Ey = (EZ UpEpag(j) {p — ]}) \ {UCEChg(j)j — C})

and the relation degs (k) = de g (k) \{j} holds for every node
k# J.
Proof. Define the square matrix M/(z) = [mu(2)], a,b,j €V

such that all off-diagonal entries m,p(z) =0 for a # b, myp(z) =
1 for a=b # j, and m;;(z) = z~'. Therefore, we have that

A(z) = M/ (z)H(z)M? ' (z) and /i = M/ (z)n. Thus, the output

13

processes of & could be calculated in terms of output processes
of ¢4 as follows.

By = H(2)%y +7 = M/ (H ()M~ (2)%y +Min =
MY (2)H (2)xy + M’ (2)n = M’ (2)(H (z)xy +n) = M’ (2)xy,

which verifies that X, (¢) =x,(r) for a# j and x;(r) =x;(r —1).
Moreover, since all the transfer functions Hj;,(z) =z~ 'Hp(2),
for b # j, are strictly causal, all the edges p — j for p € pag(})
can be double-headed. Therefore, G is a graphical representa-
tion of ¢. Finally, since all the edges p — j for p € pas(j)
can be double-headed, and ch (j) =0 =deg(j) \ j, we have
that deg¢ (k) = degs (k) \ {/j} for any node k # j.

O

Lemma VIL2. Given a recursive graph G, for any node j
there exists at least a node d € deg(j) such that chg(d) = 0.

Proof. The result is an immediate consequence of the fact
that for any recursive graph G, the graph of instantaneous
propagations G/ is a directed acyclic graph. O

The following lemma provides a connection between the
standard notion of d-separation and the notion of pointing
separation adopted in this article.

Lemma VIL3. Let i,j €V, ZCV, and {i,j}NZ=0in a
network with graphical representation G = (V,E). If all the j-
pointing paths between nodes i and j are blocked by Z, then
i and pa(j)\{ZU{j}} are d-separated by ZU{j} in G.

Proof. By contradiction suppose w € pa(j) \ {ZU{,j}} such
that there is a connected path & between nodes i and w not
blocked by ZU{j}. We can have two cases. Either j is in 7 or
not. Suppose j is not in 7 and 7 is not blocked by ZU{j}. If
J is not a descendent of colliders in &, then &= (Z,w — j) is
a j-pointing path connecting nodes i and j not blocked by Z,
which is a contradiction. If j is a descendent of some colliders
in 7, let ¢ be the closest such collider to i. Then, 7= (i--- —
¢— -+ — j) is a j-pointing path connecting nodes i and j
not blocked by Z, which is a contradiction. Now, suppose j
is in @ and 7 is not blocked by ZU {j}. Then, % is either
of the form A =(A — j--w)or A= (R <+ j---w). If T=
(& — j---w), then ® = & — j is a j-pointing path connecting
nodes i and j not blocked by Z, which is a contradiction. If
= (R <+ j---w), then m is blocked by ZU{j}, which is a
contradiction. O

We are now ready to prove Theorem III.2.

Proof of Theorem I11.2: Let G' = (V,(E;UE>)\{i — j}) be
the standard directed graph associated to G after removing the
edge i — j. Define E = E| UE,. Also define a new process
x4(t) = xj(t) — Hji(z)xi(t). We are going to define a new
network ¢” = (H”,n") with all the variables of the original
network and the additional variable x,. Let

" o
Hj (Z) = 1,
H,,(z) = Hjr(2) for r € pag(j) \i,

H})(z) = Hy(z) in all other cases
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and ny =n;, nj =0 and n} = ny in all other cases. From G we
can obtain a graphical representation for 4" given by G’ =
(V" E{,EY) in the following way. Let K| := {k|k # i and k —
J € E1} be the set of single-headed parents of j in G that are
not node i and K := {k|k # i and k — j € E»} be the set of
double-headed parents of j in G that are not node i. Then

V":=vu{q}
E/:=E U{qg— j}U{k—qlke K;}\{k— jlke K}
E) :=EU{k— qlke K2} \ {k— jlk € K2}

Namely, in G” = (V" ,E{,E}), the additional node ¢ is placed
in between j and its original parents in G that are not the
node i, see Figure 14. Also, notice that since G is recursive,

) WA
N @%

(a) (b)

Fig. 14. The new variable ¢ in G” is introduced in between node j and all
its parents that are not the node i.

G" is trivially recursive, as well. Define P = pag(q) \ Z.
Decompose P into P~ and Pt where P~ contains all double
headed parents of ¢ that are not in Z and P™ = P\ P~ contains
all the single-headed parents of ¢ that are not in Z. Observe
that j € D™, hence D™ is never empty. Conversely, the node
i belongs to either D~ or D™. First, we consider the case
i € DT. Let Sy be the set containing all descendants of the
nodes in D~ in G"¥, Sy := de,+(D™). Since G" is recursive
and D™ is not empty, by Lemma VIL2 there exists a node
wo € So such that ch,s(wp) = 0. Apply Lemma VIL1 on
wo obtaining a new network with recursive graphical repre-
sentation Gi. Define S :=deg +(D™). From Lemma VIL1 it
follows that S; = Sp \ {wo}. Again, by Lemma VIL.2 there
exists a node wy € Sy such that ch « (w1) =0. Apply Lemma
VIIL.1 on wy, represent the resulting network with G, and let
S :=deg ¢(D7). Again, from Lemma VIL1 it follows that
S2 =81\ {w1}. Repeat the procedure N times, till Sy = 0, for
N € Z, the number of elements in Sy. Let (Hy,ny) be the
resulting network with recursive graphical representation Gy .
Build a new graphical representation G for (Hy,ny) by adding
single-headed edges from nodes in Z to g. Observe that in G,
the parents of ¢ are now given by P~ UPTUZ. Let Z~ :=SyNZ
and Z* :=Z\Z". Since Sy contains all the elements in D~
we have that D~ = Z~ U{j}. Consequently, D™ = Z* U {i}.
Also, it follows from Lemma VIL.1 that in (Hy,ny) the output
processes of nodes k in Z~ are now x;(f — 1) while the output
processes of nodes i (since i € D7) and £ in ZT remain
unchanged, x,(¢). Applying Proposition IIL.1 on ¢ in G, which
is recursive, gives

Xg(0) AL (2) | Ip-z-0qy (t = 1) Ipruz+ (1) (30)
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Apply Lemma VII.1 one more time on ¢ in Gy to get G.
Every g-pointing path 7y = {i---k — ¢} between i and g in G
that does not pass through j could be mapped to a j-pointing
path m; = {i---k — j} between i and j in G'. Thus, from
assumption (i) we have that Z also blocks all paths 7; in G.
Every g-pointing path I = {i---j — i3 — q}, where 73 is a
node or a path that might or might not be directed, between i
and ¢ in G that passes through j corresponds to a j-pointing
path m = {j — 3 — j} between j and itself in G. Thus,
from assumption (ii) we have that Z also blocks all paths 7T,
in G. Therefore, Z blocks all the g-pointing paths between i
and ¢ in G. By Lemma VIL3, we have that pas(q) \ Z are d-
separated from i by ZU{g}. Theorem 24 in [24] states that if
two sets of nodes A and B are d-separated by C in a graphical
representation of a network we have that Iy (¢) 1L Ig(¢) | Ic(t).
Therefore, applying Theorem 24 in [24] to G we get

| Irgyuz-(t — 1)1+ (1).

By Contraction property of conditional independence [31,
Chapter 1, Page 11], combining (30) and (31), we obtain

Ip-(t — 1),IP+U{q}(I)J_LI,'(t) | IZ*U{q}(I —1),17+(2).
By Decomposition property of conditional independence [31,
Chapter 1, Page 11], this yields

Xq () LLLi(2) | I7-0qqy (8= 1), Iz (2).

Therefore, when estimating x,() from Iy z+(t),l1gyuz- (t —
1), the transfer function corresponding x; will be zero:

E(xg(t) | Iiyuz+ () Iigyuz-(t = 1)) =
E(xq(t) |2+ (1), 1gyuz-(t = 1)) =

Fo(2)xg(0)+ Y, Fae(@x()+ Y, Fe(a)xi(r), (34)
kezZ~ kez+

Ip-(t — 1),Ip+(t) 1L L(2) 31

(32)

(33)

where Fy,(z) and Fy(z), k € Z~ are strictly causal transfer
functions, and Fqk(z), k € ZT are causal transfer functions.
Since Hj,(z) =1 is causally invertible, it follows that the
filtration induced by random processes x; and xz+ till time ¢
and xz- and x, till time 7 — 1 is equal to the filtration induced
by random processes x; and x+ till time ¢ and x;- and x;
till time # — 1. Since x;(t) = x4(¢) + Hji(z)x;i(¢), when x;(t) is
projected on Iy z+ (1), I jjuz- (f — 1), we get

E(xj(t) | Iijuz+ (1), I joz-(t—1)) =
E(xg (1) + Hji(2)xi(t) | Ljpuz+ (), I jpuz-(—1)) =
Hji(2)xi(t) + E(xg(t) | Lyuz+ (1), 1 j0z- (= 1)) =
Hji(2)xi(t) + E(xg(t) | Iiyuz+ (1), Igpuz-(t— 1)) =

)
Y Fu@xu()+ Y, Fula)xu() =

kezZ~
Hf(z)xi(t) +qu(z) (xj(t) _Hji(Z)Xi(t))+
Y Fu@ut)+ ¥ Fploxnt) =

keZ~ kez*t
Faq(2)xj(t) + [Hji(z) — Fyq(2)H,ji(2)}xi(r)
+ ) Fu@u) + Y Fu(@)x(r).

kezZ~ kez+

(35)
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Procedure 1 in step 3 computes

E(i(t) | Ip-(t=1), Ips (1)) = ¥

keD~UD*

Wik(2)xi(t).  (36)
Since the power spectral density matrix associated with
(xi,xj,xz) is non-singular, comparing the two expressions for
E(xj(t) | Iiyuz+ (1), 150z~ (t—1)) we can conclude Wi (z) =
Fy(z) for all k€ Z~UZ", Wjj(z) = Fyy(z), and

Wiji(z) = Hji(z) — Fyq(2)Hji(z) = Hji(z) — Wj(2)Hji(z). (37)

This verifies the assertion for the case where i € D*. Analo-
gous steps apply to prove the case where i € D™.

C. Proofs of Theorems IV.1 and IV.2

To prove Theorems IV.1 and IV.2, we first introduce a
Lemma.

Lemma VIIL4. Consider a network with recursive graphical
representation G = (V,E|,E») and i € pag(j). Let ZN{i,j} =
0 be a set that j-pointing separates nodes i and j in G. Let
G’ be the graph of instantaneous propagations associated
to G and let D™ and D™ be the following two disjoint sets
partitioning Z\U{i, j}

e D" i=ang(j)N(ZU{i})

e D™ :=(ZU{i,j}H)\D"
Let

E(xjt) | Ip-(t=1),Ip-(1)) = ),

reD-UD*

Wir(2)x (1), (38)
Then, Hji(z) is strictly causal if and only if W;(z) is strictly
causal.

Proof. Let G' = (V,(EyUEz) \ {i — j}) be the standard di-
rected graph associated to G after removing the edge i — j.
Define E = E; UE,. Also define a new processes x,(t) =
xj(t) —Hji(z)xi(t) and x,(t) = x;(t). We are going to define
a new network ¢” = (H”.n") with all the variables of the
original network and the additional variables x, and x,,. Let

n __ . " __ "N __ n H
and ny =nj, n, =0, n; = 0, and n;; = n; in all other cases.

From G we can obtain a graphical representation for ¢ given
by G" = (V",E/,Ej) in the following way. Let K; := {k|k #
i and k — j € E} be the set of single-headed parents of j in
G that are not node i and K, := {k|k#iand k — j € E»} be
the set of double-headed parents of j in G that are not node
i. Then

v":=vU{q,w}

El =EU{g— jw—ji—=wlU{k—qlkeK}
\{k— jlk €Ki}

Ey :=E,U{k—qlk € K2} \ {k — jlk € K2}

15

Namely, in G” = (V" ,E{,El), the additional node ¢ is placed
in between j and its original parents in G that are not the
node i, and node w is placed in between nodes i and j. Also,
notice that since G is recursive, G” is trivially recursive, as
well. Observe that i € D and j € D™, hence D™ is never
empty. Let Sop be the set containing all descendants of the
nodes in D™ in G”!, So 1= deg (D7). Since G” is recursive
and D~ is not empty, by Lemma VIL.2 there exists a node
wo € So such that ch, (wo) = 0. Apply Lemma VIL.1 on
wo obtaining a new network with recursive graphical repre-
sentation G. Define §; :=deg +(D™). From Lemma VIL1 it
follows that S; = Sp \ {wo}. Again, by Lemma VII.2 there
exists a node wy € Sy such that Chcli (w1) =0. Apply Lemma
VIL.1 on wy, represent the resulting network with G, and let
Sy :=deg +(D”). Again, from Lemma VIL1 it follows that
S> =81\ {w1}. Repeat the procedure N times, till Sy =0, for
N € Z, the number of elements in So. Let (Hy,ny) be the
resulting network with recursive graphical representation Gy .
Let Z7 :=SyNZ and Z* :=Z\ Z~. Since Sy contains all the
elements in D~ we have that D~ = Z~ U{j}. Consequently,
DT =Z*tU{i}. Also, it follows from Lemma VILI that in
(Hy,ny) the output processes of nodes k in Z~ are now
x(t — 1) while the output processes of nodes i (since i € DT)
and £ in Z* remain unchanged, x¢(r). Apply Lemma VIL1 one
more time on w in Gy to get G. By Lemma VIL3, we have
that node g is d-separated from node i given {w, j}UZ~UZ™T
in G. Note that the output process of node w in G is x;(t — 1).
Therefore, applying Theorem 24 in [24] yields

X (1) LLxi(t) | I jyuz— (¢ = 1), 17+ (t). (39)
Thus, we have that
E(xq(t) | Iijyuz+ (0), Ijyuz-(t—1)) =
E(xg(t) | I+(t), Ijijyuz-(t—1)). (40)

Therefore, we can write

E(x;(t) | Ip+(t),Ip- (1 —1)) =
E(x;(t) | Iiyuz+ (0), I jyuz-(t = 1))
E(xq(t) +Hji(2)xi(t) | Liyuz+ () 0z (t—1)) =
Hji(2)xi(t) + E(xg(t) | Iryuz+ (1), 1 jpuz- (1= 1))
Hji(2)xi(t) + E(xg(2) | I+ (1), I jpuz-(t—1))
Hji(2)xi(t) + Y

reli,jyoz-uz+
Hji(2)xi(t) + Fpi(2)xi(t) + Fpi(2)xj(0) + Y, For(2)x(r) =
reZ-uz+t

[Hji(Z)+Fqi(Z)]xi(t)+qu(1)xj(t)+ Z qu(Z)xr(t) 41
reZ=Uz+

Fyr(2)x.(6) =

where Fi(z), F;j(z), and Fy(z), r € Z~ are strictly causal
transfer functions. Since the power spectral density matrix
associated with (x;,x;,xz) is non-singular, comparing the two
expressions for E(x;(¢) | Ip+(t),Ip-(t — 1)) we can conclude
Wir(z) = Fy(z) for all k € Z-UZ", Wjj(z) = F,j(z) and
W;i(z) = Hi(z) + F,i(z). Since Fy;(z) is strictly causal, Wj;(z) =
Hji(z) + F,i(z) is strictly causal if and only if Hj;(z) is strictly
causal. Also, Wj;(z) is not strictly causal if and only if Hj;(z)
is not strictly causal. O
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Proof of Theorem IV.1: Let GP = (V,E' El) be the perfect
graphical representation of the network. Since the network has
no algebraic loops, G? is recursive. Build a new graphical
representation G = (V,E|, E,) of the network by adding single-
headed edges from all nodes k € Z* to j in GP. That is,
E, = E} and E| = EV Uiz {k — j}. This implies that
Z* Can(j). Note that G is recursive because for all edges
k — j that we added to E{’ to obtain E;, we have that
k & de s (/). Assume, by contradiction that H;;(z) is not strictly
causal. Since Z~ :={l € Z: { & ang(j)}, we have that
Z~ Nangy(j) = 0. Since Z~ does not contain any ancestor
of Zt in G7, it also follows that Z~ ﬂanéz (j) = 0. Hence,
applying Lemma VIL4 on G, we get that Z~ C D™. On the
other hand, since ZT C an_s (j), we have that Z+ C D*. Since

i is a parent of j in 5!, which is a recursive graph, there
is one choice of A and A, where D~ =Z~ UA; U{j} and
DT =Z"UA,U{i} meeting the conditions of Lemma VIL4
on G. For those A and A, Lemma VIL4 gives that Hj;(z) is
strictly causal which is a contradiction.

Proof of Theorem IV.2: Without any loss of generality,
assume that {j — i} € Ej, otherwise we can redefine E; and
E; respectively as E; U{j — i}, and E, \ {j — i}, since this
would still give us a (non-necessarily recursive) graphical
representation of the network where the set Z still satisfies
the Theorem’s assumption. Let G” = (V,EV,EY) be the perfect
graphical representation of the network. Since the network has
no algebraic loops, G” is recursive. Since G” is recursive
it holds that (i) every dipath from j to i has at least a
double headed edge or (ii) every dipath from i to j has at
least a double headed edge. Consider first case (i). Build
a graphical representation G = (V,E{,E») of the network
by adding the single headed edge i — j and single-headed
edges from all nodes k € Z™ to j in GP. That is, E; = E}
and Ey = EY U{i = j} Uicz+ {k — j}. This implies that
Z* U{i} Can(j). Since Z~ does not contain any ancestor of
Z* in G, it also follows that Z~ Nan (j) = 0. Observe also

that because of (i) and the definition of Z*, G is recursive.
Hence, by applying Lemma VIL4 on G, we get that there
exist disjoint A; and A, such that D~ =A;UZ~ U{j} and
DT =A,UZ" U{i} giving a non-strictly causal estimate of the
transfer function H;(z). Since for all choices of A; and A, the
transfer function estimate that would result from Equation (12)
and Equation (13) has a non-zero feedthrough component,
Hji(z) needs to be non-strictly causal under scenario (i). If
instead scenario (ii) holds, we build a graphical representation
G = (V,E|,E;) of the network by adding the single headed
edge j — i and single-headed edges from all nodes k€ Z* to i
in GP. By repeating steps similar to scenario (i) with reversed
roles for the nodes i and j, we would find that, in scenario
(i), because of Equation (14) and Equation (15) the transfer
function H;j(z) needs to be non-strictly causal. Now, we do
not know if scenario (i) or scenario (ii) holds, thus, we can
only conclude that either Hj;(z) is strictly causal or H;;(z) is
strictly causal.
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